IRTG-Seminar: Non-covalent Interactions

Stefan Grimme Theoretische Organische Chemie Universität Münster

13/14. 8. 2008

Introduction and Theory

Dispersion Correction (DFT-D)

Van der Waals complexes

Conformations and Folding (Intramolecular Cases)

Supramolecular Structures

What it is all about

Noncovalent Interactions are Important

in many areas of Physics, Chemistry and Biology, e.g.

- ► Formation of condensed phases (gas→fluid→solid)
- Aggregation of molecules to clusters
- Supramolecular Chemistry
- Protein structure and folding
- DNA/RNA structure and mechanism
- Drug-receptor binding

...

Molecular Interactions

Weak? Typical Dissociation (-Interaction) Energies (kcal/mol)

$(Ne)_2$	0.1
$(CH_4)_2$	0.5
$(Xe)_2$	0.6
$(\text{benzene})_2$	2.8
$(NH_3)_2$	3.1
$(H_2O)_2$	5.0
$(\mathrm{HCOOH})_2$	16
G-C bas pair (WC)	28
C_{60} $O C_{240}$	180

The typical distance regime (inter-atomic or center-of-mass) is

250-600 pm

for neutral fragments

Contributions and Distance Dependence

1. Dispersion (van der Waals without repulsive part)

$$E \propto -rac{C^6}{R^6} - rac{C^8}{R^8} - rac{C^{10}}{R^{10}}$$

- medium (long-range)
- always present, not very system-dependent
- 2. Electrostatics
 - short to very long-range
 - very system-dependent
- 3. Induction (polarization)
 - medium to long range
 - system-dependent
- 4. Pauli-Exchange Repulsion
 - short-range
 - always present, not very system-dependent
- 5. Charge-Transfer und orbital-interactions
 - short-range
 - system-dependent, not well-defined

Electrostatics (ES)

Interaction of the unperturbed charge distributions (ρ and nuclei) on A and B:

$$\Delta E = \sum \sum \frac{Z_A Z_B}{R_{AB}} + \int \int \frac{\rho_A(r_1)\rho_B(r_2)}{r_{12}} dr_1 dr_2 - \int \frac{Z_A \rho_B(r_1)}{r_{1A}} dr_1 - \int \frac{Z_B \rho_A(r_1)}{r_{1B}} dr_1$$

- almost always attractive
- multipole-expansion
 - charge-charge ¹/_{R¹}
 charge-dipole ¹/_{R²}

 - charge-quadrupole $\frac{1}{R^3}$
 - dipole-dipole $\frac{1}{R^3}$
 - dipole-quadrupole $\frac{1}{R^4}$
 - ▶ ...

Induction (Ind)

 \blacktriangleright proportional to polarizeabilty α of A and multipole-moment of B

$$\bullet \ \alpha = \frac{\partial^2 E}{\partial F_{xyz} \partial F'_{xyz}}$$

- requires change of WF (density) of one component (second-order effect)
- e.g. interaction of a point-charge with the induced dipole moment in a H-Atom

$$\Delta E = -\frac{\alpha}{2R^4}$$

Requires mixing of valence with higher angular momentum functions:

Pauli-Exchange Repulsion (EXR)

- electrons with same spin can not be at the same position in space (Fermi-hole)
- these electrons have an additional (independent of charge) repulsion
- it is proportional to the orbital overlap S
- ▶ four-electron (e.g. He₂) model:

London-Dispersion Interactions (disp)

- many particle effect originating from correlated electron "movements" ("fluctuations")
- time-independent phenomenon
- present in any many-electron system even if electron-densities are not overlapping
- not accounted for by simple MO theories (e.g. Hartree-Fock and standard KS-DFT)

Symmetry Adapted Perturbation Theory (SAPT)

See e.g.:

R. Podeszwa, R. Bukowski, R., K. Szalewicz J. Phys. Chem. A, 2006, 110, 10345.

A. Heßelmann, G. Jansen and M. Schütz J. Chem. Phys., 2005, 122, 014103.

The word symmetry refers to the Fermionic-anti-symmetry of the WF

Partitioning:

$$\hat{H} = \hat{H}(A) + \hat{H}(B) + \hat{V}(AB)$$

Interaction energy:

$$\Delta E_{int,AB} = E_{es}^{(1)} + E_{exr}^{(1)} + E_{ind}^{(2)} + E_{exr-ind}^{(2)} + E_{disp}^{(2)} + E_{exr-disp}^{(2)}$$

Condensed to:

$$\Delta E_{int,AB} = E_{exr} + E_{es} + E_{disp}$$

Example: $(CH_4)_2$, $(NH_3)_2$, $(H_2O)_2$

RI-SAPT-DFT(PBE0)/aug-cc-pVTZ at r_e

 \rightarrow transition from typical vdW complex to a conventional hydrogen-bond \rightarrow even hydrogen-bonded systems benefit significantly from dispersion

Energy Decomposition Analysis (DFT-D)

Energy Decomposition Analysis Distance dependent

Inter- vs. Intra-Molecular Interactions

- methods should treat both cases on an equal footing
- intramolecular case important for biomolecules (e.g. protein-folding)

Solvent and Other Effects

```
Experiment: \Delta G(solv)
Computed: \Delta E(gas)
```

```
typically \Delta G(gas) << \Delta G(solv)
```

 $\Delta G \approx \Delta H$

 $\Delta H = \Delta E + \Delta ZPVE + thermal(298K) contributions$

 $\Delta ZPVE > 0$ (because new internal degrees of freedom are created) and thus

 $\Delta H > \Delta E$

For $(H_2O)_2$, $\Delta E = -5$ kcal/mol and $\Delta ZPVE pprox 1.2$ kcal/mol

Solvent and Other Effects

$$\Delta E(s)_{exp} > \Delta E(g)_{theor.}$$

Reason: $|\Delta E_{desolv,A+B}| > |\Delta E_{solv,AB}|$

solvent accessible surface of A+B > A-B

General Aspects

General Methodological Problems

- weak on a pair-wise basis (but: many small effects may add up!)
- contributions of different sign
- error compensation problematic (very system dependent)
- numerical artefacts
- basis set truncation

Methods

- simple MO theory (semiempirical methods, Hartree-Fock, standard DFT) not possible because of lack of dispersion
- correlated WF-theory (e.g. CCSD(T)) with large basis sets is OK but too costly for large systems
- force-fields are OK but often too inaccurate (the main problem is ES and ind) and not generally applicable
- the current standard for large systems is dispersion corrected DFT (called DFT-D)

The benzene dimer: a difficult but quite realistic test

sucked parallel dig	placed	R R T-shaped	0 D	
	PD T			
	R	$-\Delta E$	R	$-\Delta E$
exp.	_	_	496	2.0-2.8
est. CCSD(T) ^a	360	2.8	500	2.8
SCS-MP2/aug-cc-pVTZ	355	2.5	490	2.3
MP2/aug-cc-pVTZ	340	4.7	480	3.5
DFT-B3LYP		not l	bound	
DFT-B97-D/TZVPP	352	2.8	492	3.0

in pm and kcal/mol. a M. O. Sinnokrot and C. D. Sherrill, JPC A, 108 (2004) 10200.

Empirical dispersion correction (DFT-D)

Originally for HF: Scholes et al. Chem. Phys. Lett., 36 (1975) 451. Tight-binding DFT: Elstner et al., J. Chem. Phys. 114, 2001, 5149 Generalization: SG, J. Comput. Chem. 25 (2004) 1463, ibid. 27 (2006) 1787.

$$E_{DFT-D} = E_{DFT} + E_{disp}$$

Dispersion term:

$$E_{disp} = -s_6 \sum_{i=1}^{N_{at}-1} \sum_{j=i+1}^{N_{nat}} rac{C_6^{ij}}{R_{ij}^6} f_{dmp}(R_{ij})$$

Damping function and composing rule:

$$f_{dmp}(R) = rac{1}{1 + e^{-lpha(R/R_0 - 1)}} \quad C_6^{ij} = \sqrt{C_6^i C_6^j}$$

- Functional dependence accounted for by scaling factor s₆ (B2PLYP: 0.55, PBE: 0.75, BLYP: 1.2)
- ▶ Atomic cut-off radius R₀ at 0.01 a.u. electron density contour
- Atomic C_6^i parameters for H-Xe available

Damping and Scaling in DFT-D

♦ OFT-D-BLYP ♦ -♦ DFT-BLYP O DFT-D-PBE -0.1 O −O DFT-PBE --- Ř ▼ SCS-MP2 R E.0- [[kcal/mol] E.0- 8.0- 8.0dmp E [kcal/mol] -0.4 -0.5 250 -10 280 300 320 340 360 380 400 420 440 460 300 350 450 400 500 R [pm] R [pm]

DFT-D potential for two C-atoms ($s_6 = 1$)

(cytosine)₂ potential curves

Non covalently bound systems: Hobza's S22 test set

22 complexes, mean D_e of 9 kcal/mol, range: 0.5–21 kcal/mol

DFT-D (B97-D/TZVPP) Benchmarks for Biomolecular Complexes

Set and reference data (est. CCSD(T)/CBS) taken from: P. Jurecka, J. Sponer, J. Cerny, and P. Hobza, PCCP, 2006, 8, 1985.

MAD (143 entries):

0.5-0.6 kcal/mol (BLYP-D, B97-D)

typical error 5% of ΔE

J. Antony and SG, PCCP, 8 (2006) 5287

A large vdW complex: the porphine dimer

C. Mück-Lichtenfeld and SG, Mol. Phys. 105, (2007), 2793.

Even Larger: Multi-shell(hyper) Fullerenes, Fullerene Complexes and Graphite

- Stacking of very large π-systems, accuracy of DFT-D with system-independent C₆?
- Interaction energies for two sheets of graphite not accurately known (exp.: -35±15 meV/atom, -43 meV/atom, -55±5 meV/atom)
- > Also for hyperfullerenes, only empirical or LDA data have been reported

Some Technical Tests

distance dependence of dispersion energy

Results for Graphene/Graphite

J. Phys. Chem. C 111, (2007), 11199

A Bucky-Catcher

Experiments: Sygula et al., JACS 129 (2007) 3842.

Shortest inter-molecular CC distance:

Complexation energy

Fragment deformation energies

3.13 Å (exp., disordered) 3.08 Å (B97-D/TZV(2d,p))

-42 kcal mol⁻¹ (B97-D/TZV(2d,p)) (66% of graphene sheet)

 2 kcal mol^{-1}

NA-base-graphene stacking interactions and cooperativity

J. Antony & SG, PCCP in press.

- Stacking energies on graphene (base1@gr, base2@gr)
- Hydrogen bond energies of WC pairs (base1-base2)

Results:

- short inter-plane distances (2.9-3.0 Å)
- $\Delta E(A@gr) = -20.6$, $\Delta E(T@gr) = -19.9$, $\Delta E(C@gr) = -19.2$, $\Delta E(C@gr) = -26.3$ free base-pairs: $\Delta E(A - T) = -17.7$, $\Delta E(G - C) = -32.3$

small anti-cooperativities (5-10%)

Are special non-covalent $\pi - \pi$ stacking interactions really existing? and if yes, what are the reasons?

SG, Angew. Chem. Int. Ed., 47 (2008) 3430-3434.

- ▶ Benzene and cyclohexane are fluid at RT (both $\Delta H_{vap} \approx$ 8 kcal/mol)
- Interaction energy (CCSD(T)) of benzene dimer (-2.8 kcal/mol) smaller(!) than that of pentane dimer (-3.9 kcal/mol)
- ► C₆ dispersion coefficients very similar for PAH and alkanes
- But: large PAH are almost unsoluable in normal organic solvents (opposed to large alkanes)

Model sytems

Linear acenes (benzene, naphthalene, anthracene tetracene), $\pi\text{-stacked}$ and T-shaped

vs.

perhydrogenated acenes (cyclohexane, decaline, ...), stacked

Yes, there is a $\pi - \pi$ stacking effect!

B2PLYP-D/QZV(3d2f,2p1d)//B97-D/TZ2P

but it is not very significant for the systems for which it is typically discussed!

 π -systems in T-shaped orientation behave like saturated dimers!

Analysis I

- no significant π -orbital overlap
- ES effects favor saturated complexes

Dispersion interactions are important

Analysis II

Decomposition into orbital pair correlation energies (SCS-LMP2/TZV(2d,p)) aromatic stacked vs. T-shaped dimers:

Analysis III

Structures

$\pi-\pi$ stacking interactions: Conclusions

- the term makes sense only for large systems
- depends on the orientation and not only on the presence of π -electrons
- non-local (orbital-dependent) dispersion effect
- cooperativity of 'softer' Pauli-exchange repulsion wall and
- \blacktriangleright stronger intermolecular $\pi-\pi$ and $\sigma-\pi$ electron correlations in the stacked orientation
- different behavior of aromatic and saturated systems not accounted for by simple DFT-D treatment

Structures: Dimers of Polar Dyes

exp.: Würthner et al. JACS 126 (2004) 8336.

first ECD related work on dimeric dyes: T. Mori, Y. Inoue, SG, JOC 71 (2006) 9797.

Structures: π -Stacking in Triptycene Derivatives

DFT without D-correction

DFT-D

Structures: π -Stacking in Bicyclic Bis-thiophenes

exp. Collard et al. JACS, 128 (2006) 13680

TZV(2d,2p) AO basis

A Simple Model of Folding

SG, J. Antony, T. Schwabe, C. Mück-Lichtenfeld, Org. Biomol. Chem. 5 (2007) 741 .

linear

folded Energy difference^a between linear and folded forms

	$\Delta E_{LF}(kcal/mol)$			
method	$C_{14}H_{30}$	$\mathrm{C}_{22}\mathrm{H}_{46}$	$\mathrm{C}_{30}\mathrm{H}_{62}$	
HF ^b	-8.9	-23.8	-30.6	
BLYP ^b	-6.9	-16.5	-20.8	
B3LYP ^c	-7.5	-18.0	-22.9	
BLYP-D ^b	-1.4	6.8	12.7	
B2PYLP-D° MP2 °	-2.6 - 2.2	3.4 3.6	8.2 8.8	
BLYP-D ^b B2PYLP-D ^b MP2 ^c	-1.4 -2.6 - 2.2	6.8 3.4 3.6	12. 8.2 8.8	

^a BLYP-D/TZV(d,p) optimized. ^b TZVP(2df,2pd). ^c aug-cc-pVTZ.

Alkane Conformational Energies

conformer #

The smallest chiral alkane with a stereogenic center

conformer #

T. Schwabe and SG, PCCP, 9 (2007) 3397

Phenylalanyl-glycyl-glycine benchmark taken from: Hobza et al., Chem. Eur. J. 11 (2005) 6803

Application: Tryptophane-Serine Conformational Energies

T. Häber, K. Seefeld, G. Engler, SG, K. Kleinermanns, PCCP, 10 (2008) 2844.

Exp. observed conf. A and B in infrared-UV double-resonance spectra

E=0

E=1.0-1.4 kcal/mol

LMO-Analysis of Tyrosine-Glycine Conformational Energies

SG, C. Mück-Lichtenfeld, J. Antony, PCCP 10 (2008) 3327. Example taken from T. van Mourik, Mol. Phys., 2006, 104, 559.

♦=80

♦=180

φ=290

total

fragments

Encapsulation of molecules

First study of Klärner's tweezer and clip complexes: M. Parac, M. Etinski, M. Peric, S. Grimme, J. Chem. Theory Comput. 1, (2005), 1110.

Comparison of BLYP-D/TZVP (green) and experimental (red) structures

Encapsulation of molecules

The example of a resorcinarene dimer: T. Heinz, D. Rudkevich and J. Rebek, Nature, 394, (2000), 764-766.

Encapsulated decane, B97-D/TZVP optimized structure.

Binding energies (B97-D/TZVP in kcal/mol) with and without dispersion correction.

guest	DFT-D	DFT
NONE (formation)	-50.1	-31.6
methane	-6.1	4.2
decane	-44.8	30.6
tetradecane	-47.1	59.8

Hydrogen storage inside C_{60}

Inclusion of up to 20 ${\rm H_2}$ molecules in a C_{60} cage was considered. PBE/SVP optimized structures.

