Dimension reduction of dynamic super-resolution

Alexander Schlüter, collab. Benedikt Wirth, Martin Holler

May 4, 2022

Outline

Outline

Spike super-resolution

Collection of point sources (stars, fluorescent molecules, cells, ...)

Measurement filters out fine scale information, adds noise

Spike super-resolution

Collection of point sources (stars, fluorescent molecules, cells, ...)

Measurement filters out fine scale information, adds noise

Spike super-resolution

Collection of point sources (stars, fluorescent molecules, cells, ...)

Measurement filters out fine scale information, adds noise

Spike super-resolution

Collection of point sources (stars, fluorescent molecules, cells, ...)

Spike super-resolution

Collection of point sources (stars, fluorescent molecules, cells, ...)

Ideal frequency filter: $\Omega=[0,1]^{d}$, cutoff frequency $f_{c} \in \mathbb{N}, \mathrm{Ob}=\mathcal{F}$ where

$$
\mathcal{F} u=\left(\int_{[0,1]^{d}} e^{-2 \pi i l \cdot x} \mathrm{~d} u(x)\right)_{\substack{l \in \mathbb{Z}^{d} \\\| \| \|_{\infty} \leq f_{c}}}
$$

Convex optimization

How can we reconstruct $u^{\dagger}=\sum_{i=1}^{N} \alpha_{i} \delta_{x_{i}}$ from data $f^{\dagger}=\mathrm{Ob}^{\dagger}$?

Convex optimization

How can we reconstruct $u^{\dagger}=\sum_{i=1}^{N} \alpha_{i} \delta_{x_{i}}$ from data $f^{\dagger}=\mathrm{Ob}^{\dagger} ?$

Idea

Consider the convex optimization problem

$$
\begin{equation*}
\min _{u \in \mathcal{M}(\Omega)}\|u\|_{\text {TV }} \quad \text { s.t. } \quad \text { Ob } u=f^{\dagger} \tag{ER}
\end{equation*}
$$

How can we reconstruct $u^{\dagger}=\sum_{i=1}^{N} \alpha_{i} \delta_{x_{i}}$ from data $f^{\dagger}=\mathrm{Ob}^{\dagger}$?

Idea

Consider the convex optimization problem

How can we reconstruct $u^{\dagger}=\sum_{i=1}^{N} \alpha_{i} \delta_{x_{i}}$ from data $f^{\dagger}=\mathrm{Ob} u^{\dagger}$?

Idea

Consider the convex optimization problem
space of Radon measures $\min _{u \in \mathcal{M}(\Omega)}\|u\|_{\mathrm{TV}}$ s.t. $\mathrm{Ob} u=f^{\dagger}$

- If $u=\sum_{i=1}^{N} \alpha_{i} \delta_{x_{i}}$, then $\|u\|_{T V}=\sum_{i=1}^{N}\left|\alpha_{i}\right|=\|\alpha\|_{1}$

How can we reconstruct $u^{\dagger}=\sum_{i=1}^{N} \alpha_{i} \delta_{x_{i}}$ from data $f^{\dagger}=\mathrm{Ob} u^{\dagger}$?

Idea

Consider the convex optimization problem
space of Radon measures
$\min _{u \in \mathcal{M}(\Omega)}\|u\|_{T V} \quad$ s.t. \quad Obu $=f^{\dagger}$

- If $u=\sum_{i=1}^{N} \alpha_{i} \delta_{x_{i}}$, then $\|u\|_{T V}=\sum_{i=1}^{N}\left|\alpha_{i}\right|=\|\alpha\|_{1}$
- Continuous analog of ℓ^{1}-norm

How can we reconstruct $u^{\dagger}=\sum_{i=1}^{N} \alpha_{i} \delta_{x_{i}}$ from data $f^{\dagger}=\mathrm{Ob} u^{\dagger}$?

Idea

Consider the convex optimization problem
space of Radon measures \qquad s.t. $\quad \mathrm{Ob} u=f^{\dagger}$

- If $u=\sum_{i=1}^{N} \alpha_{i} \delta_{x_{i}}$, then $\|u\|_{\text {TV }}=\sum_{i=1}^{N}\left|\alpha_{i}\right|=\|\alpha\|_{1}$
- Continuous analog of ℓ^{1}-norm
- Convex, induces sparsity of solutions

Exact reconstruction

Goal: Prove that u^{\dagger} is the unique solution to

$$
\begin{equation*}
\min _{u \in \mathcal{M}(\Omega)}\|u\|_{\text {TV }} \quad \text { s.t. } \quad \mathcal{F} u=f^{\dagger} \tag{ER}
\end{equation*}
$$

Goal: Prove that u^{\dagger} is the unique solution to

$$
\begin{equation*}
\min _{u \in \mathcal{M}(\Omega)}\|u\|_{\text {TV }} \quad \text { s.t. } \quad \mathcal{F} u=f^{\dagger} \tag{ER}
\end{equation*}
$$

Candès, Fernandez-Granda: True if for every $\eta \in \mathbb{C}^{N}$ with $\left|\eta_{i}\right|=1$, there exists a dual certificate

$$
q(x)=\sum_{\| \| \|_{\infty} \leq f_{c}} c_{l} e^{2 \pi i l \cdot x} \text { such that } \begin{cases}q\left(x_{i}\right)=\eta_{i}, & i=1, \ldots, N, \\ |q(x)|<1, & x \in \Omega \backslash\left\{x_{1}, \ldots, x_{N}\right\} .\end{cases}
$$

Exact reconstruction

Goal: Prove that u^{\dagger} is the unique solution to

$$
\begin{equation*}
\min _{u \in \mathcal{M}(\Omega)}\|u\|_{\text {TV }} \quad \text { s.t. } \quad \mathcal{F} u=f^{\dagger} \tag{ER}
\end{equation*}
$$

Candès, Fernandez-Granda: True if for every $\eta \in \mathbb{C}^{N}$ with $\left|\eta_{i}\right|=1$, there exists a dual certificate

$$
q(x)=\sum_{\| \| \|_{\infty} \leq f_{c}} c_{l} e^{2 \pi i l \cdot x} \text { such that } \begin{cases}q\left(x_{i}\right)=\eta_{i}, & i=1, \ldots, N, \\ |q(x)|<1, & x \in \Omega \backslash\left\{x_{1}, \ldots, x_{N}\right\} .\end{cases}
$$

The low-frequency polynomial q interpolates between the signs in η.

Goal: Prove that u^{\dagger} is the unique solution to

$$
\begin{equation*}
\min _{u \in \mathcal{M}(\Omega)}\|u\|_{\text {TV }} \quad \text { s.t. } \quad \mathcal{F} u=f^{\dagger} \tag{ER}
\end{equation*}
$$

Candès, Fernandez-Granda: True if for every $\eta \in \mathbb{C}^{N}$ with $\left|\eta_{i}\right|=1$, there exists a dual certificate

$$
q(x)=\sum_{\| \| \|_{\infty} \leq f_{c}} c_{l} e^{2 \pi i l \cdot x} \text { such that } \begin{cases}q\left(x_{i}\right)=\eta_{i}, & i=1, \ldots, N, \\ |q(x)|<1, & x \in \Omega \backslash\left\{x_{1}, \ldots, x_{N}\right\} .\end{cases}
$$

The low-frequency polynomial q interpolates between the signs in η.

Thm.: Certicates exist as long as the positions $\left\{x_{i}\right\}$ are well separated.

Grid-based:

Grid-based: Solve

$$
\min _{\xi \in \Omega_{L}\|\xi\|_{1} \quad \text { s.t. } \quad M \xi=f^{\dagger} .}
$$

with measurement matrix
$M:=\left(0 b \delta_{p_{1}}, \ldots, 0 \mathrm{Ob} \delta_{p_{L}}\right)$

Grid points $\left\{p_{1}, \ldots, p_{L}\right\} \subset \Omega$

Numerics: Grid-based vs. off-the-grid

Grid-based: Solve

$$
\min _{\xi \in \mathbb{C}_{L}}\|\xi\|_{1} \quad \text { s.t. } \quad M \xi=f^{\dagger}
$$

with measurement matrix
$M:=\left(0 b \delta_{p_{1}}, \ldots, 0 \mathrm{Ob} \delta_{p_{L}}\right)$

\oplus Can use off-the-shelf convex solver

Numerics: Grid-based vs. off-the-grid

Grid-based: Solve

$$
\min _{\xi \in \Gamma_{L}}\|\xi\|_{1} \quad \text { s.t. } \quad M \xi=f^{\dagger}
$$

with measurement matrix
$M:=\left(\mathrm{Ob} \delta_{p_{1}}, \ldots, \mathrm{Ob} \delta_{p_{L}}\right)$

- - - -

Grid points $\left\{p_{1}, \ldots, p_{L}\right\} \subset \Omega$
\oplus Can use off-the-shelf convex solver
\ominus Num. of vars grows exponentially w/ dimension

Numerics: Grid-based vs. off-the-grid

Grid-based: Solve

$$
\min _{\xi \in \Gamma_{L}}\|\xi\|_{1} \quad \text { s.t. } \quad M \xi=f^{\dagger}
$$

with measurement matrix
$M:=\left(\mathrm{Ob} \delta_{p_{1}}, \ldots, \mathrm{Ob} \delta_{p_{L}}\right)$

Grid points $\left\{p_{1}, \ldots, p_{L}\right\} \subset \Omega$
\oplus Can use off-the-shelf convex solver
\ominus Num. of vars grows exponentially w/ dimension
\ominus Basis mismatch

Numerics: Grid-based vs. off-the-grid

Grid-based: Solve

$$
\min _{\xi \in \mathbb{C}^{L}}\|\xi\|_{1} \quad \text { s.t. } \quad M \xi=f^{\dagger}
$$

with measurement matrix
$M:=\left(0 b \delta_{p_{1}}, \ldots, 0 \mathrm{Ob} \delta_{p_{L}}\right)$

Grid points $\left\{p_{1}, \ldots, p_{L}\right\} \subset \Omega$
\oplus Can use off-the-shelf convex solver
\ominus Num. of vars grows exponentially w/ dimension
\ominus Basis mismatch

Off-the-grid example: Alternating Descent Conditional Gradient method (ADCG), alternates between

Numerics: Grid-based vs. off-the-grid

Grid-based: Solve

$$
\min _{\xi \in \mathbb{C}^{L}}\|\xi\|_{1} \quad \text { s.t. } \quad M \xi=f^{\dagger}
$$

with measurement matrix
$M:=\left(0 b \delta_{p_{1}}, \ldots, 0 \mathrm{Ob} \delta_{p_{L}}\right)$

Grid points $\left\{p_{1}, \ldots, p_{L}\right\} \subset \Omega$
\oplus Can use off-the-shelf convex solver
\ominus Num. of vars grows exponentially w/ dimension
\ominus Basis mismatch

Off-the-grid example: Alternating Descent Conditional Gradient method (ADCG), alternates between

- adding new source points to solve global convex problem

Numerics: Grid-based vs. off-the-grid

Grid-based: Solve

$$
\min _{\xi \in \mathbb{C}^{L}}\|\xi\|_{1} \quad \text { s.t. } \quad M \xi=f^{\dagger}
$$

with measurement matrix
$M:=\left(\mathrm{Ob} \delta_{p_{1}}, \ldots, \mathrm{Ob} \delta_{p_{L}}\right)$

Grid points $\left\{p_{1}, \ldots, p_{L}\right\} \subset \Omega$
\oplus Can use off-the-shelf convex solver
\ominus Num. of vars grows exponentially w/ dimension
\ominus Basis mismatch

Off-the-grid example: Alternating Descent Conditional Gradient method (ADCG), alternates between

- adding new source points to solve global convex problem
- performing local, differentiable optimization on positions and weights

$X=$ True srces	Add source	Smooth opt.	Add source	Smooth opt.
$\times \times$	O	$x \bigcirc \times$	$\times \bigcirc \times$	Q \otimes
supp $=\{ \}$	supp $=\{\bigcirc\}$	$\operatorname{supp}=\{\bigcirc\}$	upp $=\{\bigcirc$,	upp $=\{\bigcirc$,

MUNSTER
Outline

Dimension reduction

Dynamic super-resolution

Dynamic super-resolution

- Time steps $t \in \mathcal{T} \subset \mathbb{R}$
\rightarrow Particles have positions x_{1}, \ldots, x_{N} at step $t=0$ and move linearly with velocities v_{1}, \ldots, v_{N}

Dynamic super-resolution

- Time steps $t \in \mathcal{T} \subset \mathbb{R}$
\rightarrow Particles have positions x_{1}, \ldots, x_{N} at step
$t=0$ and move linearly with velocities
v_{1}, \ldots, v_{N}
- One measurement f_{t}^{\dagger} per time step

Dynamic super-resolution

Goals:

- Particles have positions x_{1}, \ldots, x_{N} at step
$t=0$ and move linearly with velocities
v_{1}, \ldots, v_{N}
- One measurement f_{t}^{\dagger} per time step

Dynamic super-resolution

- Particles have positions x_{1}, \ldots, x_{N} at step $t=0$ and move linearly with velocities v_{1}, \ldots, v_{N}
- Improve reconstruction by combining information from multiple measurements
- One measurement f_{t}^{\dagger} per time step

Dynamic super-resolution

- Particles have positions x_{1}, \ldots, x_{N} at step $t=0$ and move linearly with velocities v_{1}, \ldots, v_{N}
- One measurement f_{t}^{\dagger} per time step
- Improve reconstruction by combining information from multiple measurements
- Reconstruction of velocities

Pushforward

The pushforward transports mass along f.

Phase space lifting
Idea (Alberti et al.): Change to a representation in phase space.

Phase space lifting

Full-dimensional model by Alberti et al.:
$\min _{\lambda \in \mathcal{M}\left(\mathbb{R}^{d} \times \mathbb{R}^{d}\right)}\|\lambda\|_{\text {TV }} \quad$ subject to $\quad \operatorname{Ob}\left(\text { Move }_{t}^{d}\right)_{\#} \lambda=f_{t}^{\dagger} \forall t \in \mathcal{T}$
(ERdyn)

Dynamic vs. static

- Dynamical reconstruction:

$$
\begin{equation*}
\min _{\lambda \in \mathcal{M}\left(\Omega_{\mathrm{dyn}}\right)}\|\lambda\|_{\mathrm{TV}} \quad \text { s.t. } \quad \mathrm{Ob}\left(\operatorname{Move}_{t}^{d}\right)_{\#} \lambda=f_{t}^{\dagger} \forall t \in \mathcal{T} \tag{ERdyn}
\end{equation*}
$$

- Static reconstruction for $t \in \mathcal{T}$:

$$
\begin{equation*}
\min _{u \in \mathcal{M}\left((0,1]^{d}\right)}\|u\|_{\mathrm{TV}} \quad \text { s.t. } \quad \mathrm{Ob} u=f_{t}^{\dagger} \tag{ERt}
\end{equation*}
$$

Dynamic vs. static

- Dynamical reconstruction:

$$
\begin{equation*}
\min _{\lambda \in \mathcal{M}\left(\Omega_{\mathrm{dyn}}\right)}\|\lambda\|_{\mathrm{TV}} \quad \text { s.t. } \quad \operatorname{Ob}\left(\operatorname{Move}_{t}^{d}\right)_{\#} \lambda=f_{t}^{\dagger} \forall t \in \mathcal{T} \tag{ERdyn}
\end{equation*}
$$

- Static reconstruction for $t \in \mathcal{T}$:

$$
\begin{equation*}
\min _{u \in \mathcal{M}\left([0,1]^{d}\right)}\|u\|_{\mathrm{TV}} \quad \text { s.t. } \quad \mathrm{Ob} u=f_{t}^{\dagger} \tag{ERt}
\end{equation*}
$$

$>$ Assume that dual certificates exist for the static problems (ERt) for some time steps t (e.g. the particles are well-separated at those times)

Dynamic vs. static

- Dynamical reconstruction:

$$
\begin{equation*}
\min _{\lambda \in \mathcal{M}\left(\Omega_{\mathrm{dyn}}\right)}\|\lambda\|_{\mathrm{TV}} \quad \text { s.t. } \quad \operatorname{Ob}\left(\operatorname{Move}_{t}^{d}\right)_{\#} \lambda=f_{t}^{\dagger} \forall t \in \mathcal{T} \tag{ERdyn}
\end{equation*}
$$

- Static reconstruction for $t \in \mathcal{T}$:

$$
\begin{equation*}
\min _{u \in \mathcal{M}\left([0,1]^{d}\right)}\|u\|_{\mathrm{TV}} \quad \text { s.t. } \quad \mathrm{Ob} u=f_{t}^{\dagger} \tag{ERt}
\end{equation*}
$$

- Assume that dual certificates exist for the static problems (ERt) for some time steps t (e.g. the particles are well-separated at those times)

Question

What can we infer about solutions to the dynamical reconstruction problem?

Dynamical reconstruction
Theorem (Alberti, Ammari, Romero, Wintz 2019)
Let $\left\{\left(x_{i}, v_{i}\right)\right\}_{i=1}^{N} \subset \Omega$ be a configuration of N particles, $\alpha \in \mathbb{C}^{N}$ a vector of weights and $\mathcal{T}^{\prime} \subset \mathcal{T}$ a subset of time steps with $\left|\mathcal{T}^{\prime}\right| \geq 3$.

Dynamical reconstruction

Theorem (Alberti, Ammari, Romero, Wintz 2019)
Let $\left\{\left(x_{i}, v_{i}\right)\right\}_{i=1}^{N} \subset \Omega$ be a configuration of N particles, $\alpha \in \mathbb{C}^{N}$ a vector of weights and $\mathcal{T}^{\prime} \subset \mathcal{T}$ a subset of time steps with $\left|\mathcal{T}^{\prime}\right| \geq 3$.
Consider the target measure

$$
\lambda^{\dagger}=\sum_{i=1}^{N} \alpha_{i} \delta_{\left(x_{i}, v_{i}\right)} \in \mathcal{M}\left(\Omega_{\mathrm{dyn}}\right) .
$$

Assume

Dynamical reconstruction

Theorem (Alberti, Ammari, Romero, Wintz 2019)
Let $\left\{\left(x_{i}, v_{i}\right)\right\}_{i=1}^{N} \subset \Omega$ be a configuration of N particles, $\alpha \in \mathbb{C}^{N}$ a vector of weights and $\mathcal{T}^{\prime} \subset \mathcal{T}$ a subset of time steps with $\left|\mathcal{T}^{\prime}\right| \geq 3$.
Consider the target measure

$$
\lambda^{\dagger}=\sum_{i=1}^{N} \alpha_{i} \delta_{\left(x_{i}, v_{i}\right)} \in \mathcal{M}\left(\Omega_{\mathrm{dyn}}\right) .
$$

Assume

1. No two particles overlap at these time steps,

Dynamical reconstruction

Theorem (Alberti, Ammari, Romero, Wintz 2019)
Let $\left\{\left(x_{i}, v_{i}\right)\right\}_{i=1}^{N} \subset \Omega$ be a configuration of N particles, $\alpha \in \mathbb{C}^{N}$ a vector of weights and $\mathcal{T}^{\prime} \subset \mathcal{T}$ a subset of time steps with $\left|\mathcal{T}^{\prime}\right| \geq 3$.
Consider the target measure

$$
\lambda^{\dagger}=\sum_{i=1}^{N} \alpha_{i} \delta_{\left(x_{i}, v_{i}\right)} \in \mathcal{M}\left(\Omega_{\mathrm{dyn}}\right) .
$$

Assume

1. No two particles overlap at these time steps,
2. For every $t \in \mathcal{T}^{\prime}$ and every $\eta \in \mathbb{C}^{N}$ with $\left|\eta_{j}\right|=1$, there exists a dual certificate for the static problem at time step t,

Dynamical reconstruction

Theorem (Alberti, Ammari, Romero, Wintz 2019)
Let $\left\{\left(x_{i}, v_{i}\right)\right\}_{i=1}^{N} \subset \Omega$ be a configuration of N particles, $\alpha \in \mathbb{C}^{N}$ a vector of weights and $\mathcal{T}^{\prime} \subset \mathcal{T}$ a subset of time steps with $\left|\mathcal{T}^{\prime}\right| \geq 3$.
Consider the target measure

$$
\lambda^{\dagger}=\sum_{i=1}^{N} \alpha_{i} \delta_{\left(x_{i}, v_{i}\right)} \in \mathcal{M}\left(\Omega_{\mathrm{dyn}}\right) .
$$

Assume

1. No two particles overlap at these time steps,
2. For every $t \in \mathcal{T}^{\prime}$ and every $\eta \in \mathbb{C}^{N}$ with $\left|\eta_{j}\right|=1$, there exists a dual certificate for the static problem at time step t,
3. No "ghost particles".

Dynamical reconstruction

Theorem (Alberti, Ammari, Romero, Wintz 2019)
Let $\left\{\left(x_{i}, v_{i}\right)\right\}_{i=1}^{N} \subset \Omega$ be a configuration of N particles, $\alpha \in \mathbb{C}^{N}$ a vector of weights and $\mathcal{T}^{\prime} \subset \mathcal{T}$ a subset of time steps with $\left|\mathcal{T}^{\prime}\right| \geq 3$.
Consider the target measure

$$
\lambda^{\dagger}=\sum_{i=1}^{N} \alpha_{i} \delta_{\left(x_{i}, v_{i}\right)} \in \mathcal{M}\left(\Omega_{\mathrm{dyn}}\right)
$$

Assume

1. No two particles overlap at these time steps,
2. For every $t \in \mathcal{T}^{\prime}$ and every $\eta \in \mathbb{C}^{N}$ with $\left|\eta_{j}\right|=1$, there exists a dual certificate for the static problem at time step t,
3. No "ghost particles".

Then λ^{\dagger} is the unique solution to

$$
\begin{equation*}
\min _{\lambda \in \mathcal{M}\left(\Omega_{\mathrm{dyn}}\right)}\|\lambda\|_{\mathrm{TV}} \quad \text { s.t. } \quad \operatorname{Ob}\left(\text { Move }_{t}^{d}\right)_{\#} \lambda=f_{t}^{\dagger}:=\mathrm{Ob}\left(\text { Move }_{t}^{d}\right)_{\#} \lambda^{\dagger} \forall t \in \mathcal{T} \tag{ERdyn}
\end{equation*}
$$

Numerics

$$
\left\{\begin{array}{lllll}
\bullet & \bullet & \bullet & \bullet & \bullet \\
\bullet & \bullet & \bullet & \bullet & \bullet \\
\bullet & \bullet & \bullet & \bullet & \bullet \\
\bullet & \bullet & \bullet & \bullet & \bullet \\
\bullet & \bullet & \bullet & \bullet & \bullet
\end{array}\right\} X\left\{\begin{array}{lllll}
\bullet & \bullet & \bullet & \bullet & \bullet \\
\bullet & \bullet & \bullet & \bullet & \bullet \\
\bullet & \bullet & \bullet & \bullet & \bullet \\
\bullet & \bullet & \bullet & \bullet & \bullet \\
\bullet & \bullet & \bullet & \bullet & \bullet
\end{array}\right\}
$$

$>$ Phase space measures live on subset of $\mathbb{R}^{2 d}$, twice the dimension of the original static problem

$$
\left\{\begin{array}{lllll}
\bullet & \bullet & \bullet & \bullet & \bullet \\
\bullet & \bullet & \bullet & \bullet & \bullet \\
\bullet & \bullet & \bullet & \bullet & \bullet \\
\bullet & \bullet & \bullet & \bullet & \bullet \\
\bullet & \bullet & \bullet & \bullet & \bullet
\end{array}\right\} X\left\{\begin{array}{lllll}
\bullet & \bullet & \bullet & \bullet & \bullet \\
\bullet & \bullet & \bullet & \bullet & \bullet \\
\bullet & \bullet & \bullet & \bullet & \bullet \\
\bullet & \bullet & \bullet & \bullet & \bullet \\
\bullet & \bullet & \bullet & \bullet & \bullet
\end{array}\right\}
$$

Phase space measures live on subset of $\mathbb{R}^{2 d}$, twice the dimension of the original static problem

- Grid-based methods would require high dimensional grid, problem quickly becomes intractable

$$
\left\{\begin{array}{lcccc}
\bullet & \bullet & \bullet & \bullet & \bullet \\
\bullet & \bullet & \bullet & \bullet & \bullet \\
\bullet & \bullet & \bullet & \bullet & \bullet \\
\bullet & \bullet & \bullet & \bullet & \bullet \\
\bullet & \bullet & \bullet & \bullet & \bullet
\end{array}\right\} \quad X\left\{\begin{array}{lllll}
\bullet & \bullet & \bullet & \bullet & \bullet \\
\bullet & \bullet & \bullet & \bullet & \bullet \\
\bullet & \bullet & \bullet & \bullet & \bullet \\
\bullet & \bullet & \bullet & \bullet & \bullet \\
\bullet & \bullet & \bullet & \bullet & \bullet
\end{array}\right\}
$$

Phase space measures live on subset of $\mathbb{R}^{2 d}$, twice the dimension of the original static problem

- Grid-based methods would require high dimensional grid, problem quickly becomes intractable
- Frank-Wolfe methods like ADCG need to search for new source points in high dimensional space

$$
\left\{\begin{array}{lcccc}
\bullet & \bullet & \bullet & \bullet & \bullet \\
\bullet & \bullet & \bullet & \bullet & \bullet \\
\bullet & \bullet & \bullet & \bullet & \bullet \\
\bullet & \bullet & \bullet & \bullet & \bullet \\
\bullet & \bullet & \bullet & \bullet & \bullet
\end{array}\right\} X\left\{\begin{array}{lllll}
\bullet & \bullet & \bullet & \bullet & \bullet \\
\bullet & \bullet & \bullet & \bullet & \bullet \\
\bullet & \bullet & \bullet & \bullet & \bullet \\
\bullet & \bullet & \bullet & \bullet & \bullet \\
\bullet & \bullet & \bullet & \bullet & \bullet
\end{array}\right\}
$$

Phase space measures live on subset of $\mathbb{R}^{2 d}$, twice the dimension of the original static problem

- Grid-based methods would require high dimensional grid, problem quickly becomes intractable
- Frank-Wolfe methods like ADCG need to search for new source points in high dimensional space
\Longrightarrow Need for dimension reduction!

Outline

Dimension reduction

Classical Radon transform

$$
f \mapsto\left(\mathcal{R}_{\theta} f\right)_{\theta \in S^{d-1}},\left(\mathcal{R}_{\theta} f\right)(s)=\int_{H_{\theta}} f(s \theta+y) \mathrm{d} S(y)
$$

Radon transform for measures

$$
\begin{gathered}
\mathcal{M}\left(\mathbb{R}^{d}\right) \ni u \mapsto\left(\operatorname{Rd}_{\theta} u\right)_{\theta \in \mathbb{S}^{d-1}} \\
\operatorname{Rd}_{\theta} u:=[x \mapsto \theta \cdot x]_{\#} u \in \mathcal{M}(\mathbb{R})
\end{gathered}
$$

Classical Radon transform

$$
f \mapsto\left(\mathcal{R}_{\theta} f\right)_{\theta \in S^{d-1}},\left(\mathcal{R}_{\theta} f\right)(s)=\int_{H_{\theta}} f(s \theta+y) \mathrm{d} S(y)
$$

Radon transform for measures

$$
\begin{array}{cc}
\mathcal{M}\left(\mathbb{R}^{d}\right) \ni u \mapsto\left(\mathrm{Rd}_{\theta} u\right)_{\theta \in \Phi^{d-1}} & \mathcal{M}\left(\mathbb{R}^{2 d}\right) \ni \lambda \mapsto\left(\mathrm{Rj}_{\theta} \lambda\right)_{\theta \in \mathbb{S}^{d-1}} \\
\operatorname{Rd}_{\theta} u:=[x \mapsto \theta \cdot x]_{\#} u \in \mathcal{M}(\mathbb{R}) & \operatorname{Rj}_{\theta} \lambda:=[(x, v) \mapsto(\theta \cdot x, \theta \cdot v)]_{\#} \lambda \in \mathcal{M}\left(\mathbb{R}^{2}\right)
\end{array}
$$

New variable:

$$
\begin{aligned}
\gamma_{\theta}^{\dagger}:=\mathrm{Rj}_{\theta} \lambda^{\dagger} & =\mathrm{Rj}_{\theta} \sum_{i=1}^{N} \alpha_{i} \delta_{\left(x_{i}, v_{i}\right)} \\
& =\sum_{i=1}^{N} \alpha_{i} \delta_{\left(\theta \cdot x_{i}, \theta \cdot v_{i}\right)}
\end{aligned}
$$

Derivation of dim-reduced problem

Try to formulate a minimization problem for the new variable $\left(\gamma_{\theta}\right)$:

$$
\begin{gathered}
\min _{\lambda \in \mathcal{M}\left(\Omega_{\mathrm{dyn}}\right)}\|\lambda\|_{\mathrm{TV}} \mathrm{s.t.} \\
\mathrm{Ob}\left(\operatorname{Move}_{t}^{d}\right)_{\#} \lambda=f_{t}^{\dagger} \forall t \in \mathcal{T}
\end{gathered}
$$

Steps:

Derivation of dim-reduced problem

Try to formulate a minimization problem for the new variable $\left(\gamma_{\theta}\right)$:

$$
\begin{gathered}
\min _{\lambda \in \mathcal{M}\left(\Omega_{\mathrm{dyn}}\right)}\|\lambda\|_{\mathrm{TV}} \mathrm{s.t.} \\
\mathrm{Ob}\left(\operatorname{Move}_{t}^{d}\right)_{\#} \lambda=f_{t}^{\dagger} \forall t \in \mathcal{T}
\end{gathered}
$$

Steps:

Derivation of dim-reduced problem

Try to formulate a minimization problem for the new variable $\left(\gamma_{\theta}\right)$:

$$
\begin{aligned}
& \min _{\left(\gamma_{\theta}\right)_{\theta \in S}^{d-1} \subset \mathcal{M}\left(\mathbb{R}^{2}\right)}\|\lambda\|_{\text {TV }} \quad \text { s.t. } \\
& \operatorname{Ob}\left(\operatorname{Move}_{t}^{d}\right)_{\#} \lambda=f_{t}^{\dagger} \forall t \in \mathcal{T}
\end{aligned}
$$

Steps:

1. Replace full-dim variable

Derivation of dim-reduced problem

Try to formulate a minimization problem for the new variable $\left(\gamma_{\theta}\right)$:

$$
\begin{aligned}
& \min _{\left(\gamma_{\theta}\right)_{\theta \in S}^{d-1} \subset \mathcal{M}\left(\mathbb{R}^{2}\right)}\|\lambda\|_{\text {TV }} \quad \text { s.t. } \\
& \operatorname{Ob}\left(\operatorname{Move}_{t}^{d}\right)_{\#} \lambda=f_{t}^{\dagger} \forall t \in \mathcal{T}
\end{aligned}
$$

Steps:

1. Replace full-dim variable

Derivation of dim-reduced problem

Try to formulate a minimization problem for the new variable $\left(\gamma_{\theta}\right)$:

$$
\begin{gathered}
\min _{\left(\gamma_{\theta} \theta_{\theta \in S}^{d-1} \subset \mathcal{M}\left(\mathbb{R}^{2}\right)\right.} \sup _{\theta \in S^{d-1}}\left\|\gamma_{\theta}\right\|_{\mathrm{TV}} \quad \text { s.t. } \\
\operatorname{Ob}\left(\operatorname{Move}_{t}^{d}\right)_{\# \lambda} \lambda=f_{t}^{\dagger} \forall t \in \mathcal{T}
\end{gathered}
$$

Steps:

1. Replace full-dim variable
2. Replace objective

Derivation of dim-reduced problem

Try to formulate a minimization problem for the new variable $\left(\gamma_{\theta}\right)$:

$$
\begin{gathered}
\min _{\left(\gamma_{\theta}\right)_{\theta \in S^{d-1} \subset \mathcal{M}\left(\mathbb{R}^{2}\right)} \sup _{\theta \in S^{d-1}}\left\|\gamma_{\theta}\right\|_{\mathrm{TV}} \quad \text { s.t. }} \operatorname{Ob}\left(\operatorname{Move}_{t}^{d}\right)_{\#} \lambda=f_{t}^{\dagger} \forall t \in \mathcal{T}
\end{gathered}
$$

Steps:

1. Replace full-dim variable
2. Replace objective

Derivation of dim-reduced problem

Try to formulate a minimization problem for the new variable $\left(\gamma_{\theta}\right)$:

$$
\begin{aligned}
& \min _{\substack{\left(\gamma_{\theta}\right)_{\theta \in S^{d-1} \subset \mathcal{M}\left(\mathbb{R}^{2}\right)} \\
\left(u_{t}\right) \in \Sigma \mathcal{M}\left([0,1]^{d}\right)}} \sup _{\theta \in S^{d-1}}\left\|\gamma_{\theta}\right\|_{\text {TV }} \text { s.t. } \\
& \operatorname{Ob}\left(\operatorname{Move}_{t}^{d}\right)_{\# \lambda} \lambda=f_{t}^{\dagger} \forall t \in \mathcal{T}
\end{aligned}
$$

Steps:

1. Replace full-dim variable
2. Replace objective
3. Reintroduce snapshots u_{t}

Derivation of dim-reduced problem

Try to formulate a minimization problem for the new variable $\left(\gamma_{\theta}\right)$:

$$
\begin{aligned}
& \min \sup \left\|\gamma_{\theta}\right\|_{T V} \quad \text { s.t. } \\
& \left(\gamma_{\theta}\right)_{\theta \in S d-1} \subset \mathcal{M}\left(\mathbb{R}^{2}\right) \quad \theta \in S^{d-1} \\
& \left(u_{t}\right)_{t \in \Sigma} \subset \mathcal{M}\left([0,1]^{d}\right) \\
& \text { Ob } u_{t}=f_{t}^{\dagger} \quad \forall t \in \mathcal{T}, \\
& \left(\text { Move }_{t}^{d}\right)_{\#} \lambda=u_{t} \quad \forall t \in \Sigma
\end{aligned}
$$

Steps:

1. Replace full-dim variable
2. Replace objective
3. Reintroduce snapshots u_{t}

Derivation of dim-reduced problem

Try to formulate a minimization problem for the new variable $\left(\gamma_{\theta}\right)$:

$$
\begin{aligned}
& \left(u_{t}\right)_{t \in \Sigma} \subset \mathcal{M}\left([0,1]^{d}\right) \\
& \text { Ob } u_{t}=f_{t}^{\dagger} \quad \forall t \in \mathcal{T}, \\
& \left(\text { Move }_{t}^{d}\right)_{\# \lambda} \lambda=u_{t} \quad \forall t \in \Sigma
\end{aligned}
$$

Steps:

1. Replace full-dim variable
2. Replace objective
3. Reintroduce snapshots u_{t}

Derivation of dim-reduced problem

Try to formulate a minimization problem for the new variable $\left(\gamma_{\theta}\right)$:

$$
\begin{gathered}
\min _{\substack{\left.\left(\gamma_{\theta}\right)_{\theta \in S^{d-1} \subset \mathcal{M}\left(\mathbb{R}^{2}\right)}\right) \\
\left(u_{t}\right)_{t \in \Sigma} \subset \mathcal{M}\left([0,1]^{d}\right)}} \sup _{\theta \in S^{d-1}}\left\|\gamma_{\theta}\right\|_{\text {TV }} \quad \text { s.t. } \\
\operatorname{Ob} u_{t}=f_{t}^{\dagger} \quad \forall t \in \mathcal{T}, \\
\left(\operatorname{Move}_{t}^{d}\right)_{\#} \lambda=u_{t} \quad \forall t \in \Sigma
\end{gathered}
$$

Steps:

1. Replace full-dim variable
2. Replace objective
3. Reintroduce snapshots u_{t}
4. Relax time consistency constraint

Apply Radon transform:

$$
\underbrace{\operatorname{Rd}_{\theta}\left(\operatorname{Move}_{t}^{d}\right)_{\# \lambda} \lambda}=\operatorname{Rd}_{\theta} u_{t} \quad \forall \theta \in \mathbb{S}^{d-1}
$$

Derivation of dim-reduced problem

Try to formulate a minimization problem for the new variable $\left(\gamma_{\theta}\right)$:

$$
\begin{aligned}
& \min _{\left(\gamma_{\theta}\right)_{\theta \in S d-1} \subset \mathcal{M}\left(\mathbb{R}^{2}\right)} \sup _{\theta \in \subseteq \subseteq d-1}\left\|\gamma_{\theta}\right\|_{\text {TV }} \text { s.t. } \\
& \left(u_{t}\right)_{t \in \Sigma} \subset \mathcal{M}\left([0,1]^{d}\right) \\
& \mathrm{Ob} u_{t}=f_{t}^{\dagger} \quad \forall t \in \mathcal{T}, \\
& \left(\operatorname{Move}_{t}^{d}\right)_{\# \lambda} \lambda=u_{t} \quad \forall t \in \Sigma
\end{aligned}
$$

Steps:

1. Replace full-dim variable
2. Replace objective
3. Reintroduce snapshots u_{t}
4. Relax time consistency constraint

Apply Radon transform:

$$
\underbrace{\operatorname{Rd}_{t}\left(\text { Move }_{t}^{d}\right)_{\#} \lambda}_{=\left(\text {Move }_{t}^{1}\right)_{\# \#} \mathrm{Ri}_{\theta} \lambda}=\operatorname{Rd}_{\theta} u_{t} \quad \forall \theta \in \mathbb{S}^{d-1}
$$

Derivation of dim-reduced problem

Try to formulate a minimization problem for the new variable $\left(\gamma_{\theta}\right)$:

$$
\begin{aligned}
& \min _{\substack{\left(\gamma_{\theta}\right)_{\theta \in S^{d-1} \subset \mathcal{M}\left(\mathbb{R}^{2}\right)}\left(u_{t}\right) \\
\left(u_{t \in \Sigma} \subset \mathcal{M}\left([0,1]^{d}\right)\right.}} \sup _{\theta \in S^{d-1}}\left\|\gamma_{\theta}\right\|_{\text {TV }} \quad \text { s.t. } \\
& \operatorname{Ob} u_{t}=f_{t}^{\dagger} \quad \forall t \in \mathcal{T}, \\
& \left(\operatorname{Move}_{t}^{d}\right)_{\#}^{+} \lambda=u_{t} \quad \forall t \in \Sigma
\end{aligned}
$$

Steps:

1. Replace full-dim variable
2. Replace objective
3. Reintroduce snapshots u_{t}
4. Relax time consistency constraint

Apply Radon transform:

$$
\underbrace{\operatorname{Rd}_{\theta}\left(\text { Move }_{d}^{d}\right)_{\#} \lambda}_{=\left(\text {Move }_{t}^{1}\right)_{\#} \mathrm{Ri}_{\theta} \lambda=\left(\text { Move }_{t}^{1}\right)_{\#} \gamma_{\theta}}=\operatorname{Rd}_{\theta} u_{t} \quad \forall \theta \in \mathbb{S}^{d-1}
$$

Derivation of dim-reduced problem

Try to formulate a minimization problem for the new variable $\left(\gamma_{\theta}\right)$:

$$
\begin{aligned}
& \quad \min _{\substack{\left(\gamma_{\theta} \theta \\
\left(u_{\theta}\right)_{t \in \Sigma} \subset \mathcal{S} \subset \mathcal{M}\left([0,1]^{d}\right)\right.}} \sup _{\theta \in \mathbb{S}^{d-1}}\left\|\gamma_{\theta}\right\|_{\mathrm{TV}} \quad \text { s.t. } \\
& \mathrm{Obu}_{t}=f_{t}^{\dagger} \\
& \left(\mathrm{Move}_{t}^{1}\right)_{\#} \gamma_{\theta}=\operatorname{Rd}_{\theta} u_{t} \quad \forall t \in \Sigma \forall \theta \in \mathbb{S}^{d-1}
\end{aligned}
$$

Steps:

1. Replace full-dim variable
2. Replace objective
3. Reintroduce snapshots u_{t}
4. Relax time consistency constraint

Apply Radon transform:

$$
\underbrace{\operatorname{Rd}_{\theta}\left(\text { Move }_{d}^{d}\right)_{\#} \lambda}_{=\left(\text {Move }_{t}^{1}\right)_{\#} \mathrm{Ri}_{\theta} \lambda=\left(\text { Move }_{t}^{1}\right)_{\#} \gamma_{\theta}}=\operatorname{Rd}_{\theta} u_{t} \quad \forall \theta \in \mathbb{S}^{d-1}
$$

Dimension-reduced problem

The dimension-reduced problem can now be formulated:

$$
\begin{align*}
& \min _{\left(\gamma_{\theta}\right)_{\theta \in \mathbb{S}^{d-1} \subset \mathcal{M}\left(\mathbb{R}^{2}\right)} \sup _{\theta \in \mathbb{S}^{d-1}}\left\|\gamma_{\theta}\right\|_{T V} \quad \text { s.t. }}^{\text {. }} \\
& \left(u_{t}\right)_{t \in \Sigma} \subset \mathcal{M}\left([0,1]^{d}\right) \tag{ERdynº}\\
& \text { Ob } u_{t}=f_{t}^{\dagger} \quad \forall t \in \mathcal{T} \text {, } \\
& \left(\operatorname{Move}_{t}^{1}\right)_{\#} \gamma_{\theta}=\operatorname{Rd}_{\theta} u_{t} \quad \forall t \in \Sigma, \forall \theta \in \mathbb{S}^{d-1}
\end{align*}
$$

$>$ Variables in $\mathcal{M}\left(\mathbb{R}^{2}\right)$ for every $\theta \in \mathbb{S}^{d-1} \Longrightarrow$ problem dimension reduced from $2 d$ to $d-1+2=d+1$

Dimension-reduced problem

The dimension-reduced problem can now be formulated:

$$
\begin{align*}
& \min _{\substack{\left(\gamma_{\theta}\right)_{\theta \in S^{d-1} \subset \mathcal{M}\left(\mathbb{R}^{2}\right)}^{\left(u_{t}\right)} \\
\sup _{\theta \in \mathbb{S}^{d-1}} \| \mathcal{M}\left([0,1]^{d}\right)}}\left\|\gamma_{\theta}\right\|_{\mathrm{TV}} \quad \text { s.t. } \\
& \mathrm{Obu}_{t}=f_{t}^{+} \tag{ERdyń}\\
& \left(\text {Move }_{t}^{1}\right)_{\#} \gamma_{\theta}=\operatorname{Rd}_{\theta} u_{t} \quad \forall t \in \mathcal{T}, \\
&
\end{align*} \quad \forall t \in \Sigma, \forall \theta \in \mathbb{S}^{d-1} 1
$$

$>$ Variables in $\mathcal{M}\left(\mathbb{R}^{2}\right)$ for every $\theta \in \mathbb{S}^{d-1} \Longrightarrow$ problem dimension reduced from $2 d$ to $d-1+2=d+1$

- What can be said about exact reconstruction?

Dimension-reduced problem

The dimension-reduced problem can now be formulated:

$$
\begin{align*}
& \quad \min _{\substack{\left(\gamma_{\theta}\right) \\
\left(u_{\theta}\right)_{t \in \Sigma}^{d-1} \subset \mathcal{M}\left(\left[\mathbb{R}^{2}\right)\right.}} \sup _{\theta \in \mathbb{S}^{d-1}}\left\|\gamma_{\theta}\right\|_{\mathrm{TV}} \quad \text { s.t. } \\
& \mathrm{Obu}_{t}=f_{t}^{\dagger} \tag{ERdynº}\\
& \left(\mathrm{Move}_{t}^{1}\right)_{\#} \gamma_{\theta}=\operatorname{Rd}_{\theta} u_{t} \quad \forall t \in \Sigma, \forall \theta \in \mathbb{S}^{d-1}
\end{align*}
$$

\rightarrow Variables in $\mathcal{M}\left(\mathbb{R}^{2}\right)$ for every $\theta \in \mathbb{S}^{d-1} \Longrightarrow$ problem dimension reduced from $2 d$ to $d-1+2=d+1$

- What can be said about exact reconstruction?
$>$ Simplification: Consider only nonnegative target measures, i.e. $\alpha_{i} \in[0, \infty)$, and restrict minimization to nonnegative real-valued measures

Theorem

Let $\lambda^{\dagger} \in \mathcal{M}\left(\Omega_{\mathrm{dyn}}\right)$ be a nonnegative discrete phase space measure. Assume that there is a subset $\mathcal{T}^{\prime} \subset \mathcal{T}$ of time steps, such that

Theorem

Let $\lambda^{\dagger} \in \mathcal{M}\left(\Omega_{\text {dyn }}\right)$ be a nonnegative discrete phase space measure. Assume that there is a subset $\mathcal{T}^{\prime} \subset \mathcal{T}$ of time steps, such that

1. no two particles overlap at these time steps,

Theorem

Let $\lambda^{\dagger} \in \mathcal{M}\left(\Omega_{\mathrm{dyn}}\right)$ be a nonnegative discrete phase space measure. Assume that there is a subset $\mathcal{T}^{\prime} \subset \mathcal{T}$ of time steps, such that

1. no two particles overlap at these time steps,
2. for every $t \in \mathcal{T}^{\prime}$, the static problem using only the data measured at time texactly reconstructs the configuration at this time,

Theorem

Let $\lambda^{\dagger} \in \mathcal{M}\left(\Omega_{\mathrm{dyn}}\right)$ be a nonnegative discrete phase space measure. Assume that there is a subset $\mathcal{T}^{\prime} \subset \mathcal{T}$ of time steps, such that

1. no two particles overlap at these time steps,
2. for every $t \in \mathcal{T}^{\prime}$, the static problem using only the data measured at time texactly reconstructs the configuration at this time,
3. there is no ghost particle with respect to \mathcal{T}^{\prime}.

Theorem

Let $\lambda^{\dagger} \in \mathcal{M}\left(\Omega_{\mathrm{dyn}}\right)$ be a nonnegative discrete phase space measure. Assume that there is a subset $\mathcal{T}^{\prime} \subset \mathcal{T}$ of time steps, such that

1. no two particles overlap at these time steps,
2. for every $t \in \mathcal{T}^{\prime}$, the static problem using only the data measured at time texactly reconstructs the configuration at this time,
3. there is no ghost particle with respect to \mathcal{T}^{\prime}.

If (γ, u) is any solution of (ERdyn ${ }^{-}$), we have

1. $u_{t}=u_{t}^{\dagger} \quad \forall t \in \Sigma$

Theorem

Let $\lambda^{\dagger} \in \mathcal{M}\left(\Omega_{\mathrm{dyn}}\right)$ be a nonnegative discrete phase space measure. Assume that there is a subset $\mathcal{T}^{\prime} \subset \mathcal{T}$ of time steps, such that

1. no two particles overlap at these time steps,
2. for every $t \in \mathcal{T}^{\prime}$, the static problem using only the data measured at time texactly reconstructs the configuration at this time,
3. there is no ghost particle with respect to \mathcal{T}^{\prime}.

If (γ, u) is any solution of (ERdyn ${ }^{-}$), we have

1. $u_{t}=u_{t}^{\dagger} \quad \forall t \in \Sigma$
2. $\gamma_{\theta}=\mathrm{Rj}_{\theta} \lambda^{\dagger}$ for almost all $\theta \in \mathbb{S}^{d-1}$.

Analysis 2: Noisy data

Data f_{t}^{δ} is distorted by noise with intensity δ

$$
\min _{\substack{\text { saphshots } u_{t} \\ \text { projections } \gamma_{\theta}}}\left\|\gamma_{\theta}\right\|_{\mathrm{TV}}+\frac{1}{2 \alpha} \sum_{\text {times } t}\left\|\operatorname{Ob}\left(u_{t}\right)-f_{t}^{\delta}\right\|^{2} \quad \text { subject to } \quad u_{t}, \gamma_{\theta} \text { are consistent }
$$

Quantify error in unbalanced optimal transport cost:

$$
\operatorname{OTCost}_{R}\left(\nu_{1}, \nu_{2}\right)=\inf \left\{\left.W_{2}^{2}\left(\nu, \nu_{2}\right)+\frac{1}{2} R^{2}\left\|\nu_{1}-\nu\right\|_{\text {TV }} \right\rvert\, \nu \in \mathcal{M}_{+}\left(\mathbb{R}^{n}\right)\right\}
$$

Theorem

Choose $\alpha=\sqrt{\delta}$. There exist constants $R, C>0$ such that, for all times t and directions θ "away" from overlaps, ghost particles:

1. $\operatorname{OTCost}_{R}\left(u_{t}, u_{t}^{\dagger}\right) \leq C \sqrt{\delta}$
2. $\operatorname{OTCost}_{R}\left(\gamma_{\theta}, \gamma_{\theta}^{\dagger}\right) \leq C \sqrt{\delta}$

Preprint

Model well-posedness and equivalence

Exact reconstruction for Dimension reduction, exact recovery, and
for sparse reconstruction in phase space
Download PDF

 strongly expobt terpoorat consistery betwen the droveret measuremementimes. The storgest

Submission history

Thank you for your attention!

References

(Giovanni S Alberti et al. "Dynamic spike superresolution and applications to ultrafast ultrasound imaging." In: SIAM Journal on Imaging Sciences 12.3 (2019), pp. 1501-1527.

E- N. Boyd, G. Schiebinger, and B. Recht. "The alternating descent conditional gradient method for sparse inverse problems." In: Proc. IEEE 6th Int. Workshop Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP). Dec. 2015, pp. 57-60. DOI: 10.1109/CAMSAP. 2015.7383735.

Emmanuel J. Candès and Carlos Fernandez-Granda. "Towards a Mathematical Theory of Super-resolution." In: Communications on Pure and Applied Mathematics 67.6 (2014), pp. 906-956. DOI: 10.1002/cpa. 21455.

Application: Cell tracking in PET

- Project "TraCAR" with people from medicine, physics, biotechnology company
- Cancer immunotherapy using modified immune cells called CAR T-cells
- Development of new therapies require better insights into cell movement near the tumor
- Very little activity per cell -> need to be very data efficient, reconstruction directly from listmode PET without binning
- Dynamics of interest to estimate cell activity, tumor penetration

Static average certificate
Idea (Alberti et al.): Build dynamic certificate by averaging static certificates

$$
q_{\mathrm{avg}}^{\mathrm{dyn}}(x, v):=\frac{1}{3} \sum_{k=-1}^{1} q_{k}^{\mathrm{stat}}(x+k \Delta t v)
$$

Ghost particles

$$
q_{\mathrm{avg}}^{\mathrm{dyn}}(x, v):=\frac{1}{3} \sum_{k=-1}^{1} q_{k}^{\text {stat }}(x+k \Delta t v)
$$

