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Spike super-resolution 3

u† = ∑N

i=1
𝛼i𝛿xi

weights

positions

Ω ⊂ ℝd compact

Collection of point sources (stars,

fluorescent molecules, cells, …)

Data f

Measurement filters out fine scale

information, adds noise

Ob

Ideal frequency filter: Ω = [0, 1]d, cutoff frequency fc ∈ ℕ, Ob = ℱ where

ℱu = (∫
[0,1]d

e−2𝜋il⋅x du(x))
l∈ℤd

‖l‖∞≤fc
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Convex optimization 4

How can we reconstruct u† = ∑N

i=1
𝛼i𝛿xi from data f † = Obu†?

Idea

Consider the convex optimization problem

min
u∈ℳ(Ω)

‖u‖TV s.t. Obu = f † (ER)

space of Radon measures total variation norm of a measure

▶ If u = ∑N

i=1
𝛼i𝛿xi , then ‖u‖TV = ∑N

i=1
|𝛼i| = ‖𝛼‖1

▶ Continuous analog of ℓ1-norm
▶ Convex, induces sparsity of solutions
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Exact reconstruction 5

Goal: Prove that u† is the unique solution to

min
u∈ℳ(Ω)

‖u‖TV s.t. ℱu = f † . (ER)

Candès, Fernandez-Granda: True if for every 𝜂 ∈ ℂN with |𝜂i| = 1, there exists a dual
certificate

q(x) = ∑
‖l‖∞≤fc

cle
2𝜋il⋅x such that {

q(xi) = 𝜂i, i = 1,… ,N,

|q(x)| < 1, x ∈ Ω ∖ {x1,… , xN} .

The low-frequency polynomial q interpolates

between the signs in 𝜂.

Thm.: Certicates exist as long as the

positions {xi} are well separated.

+1
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Numerics: Grid-based vs. off-the-grid 6

Grid-based:

Solve

min
𝜉∈ℂL

‖𝜉‖1 s.t. M𝜉 = f †

with measurement matrix

M ≔ (Ob𝛿p1 ,… , Ob𝛿pL)

Grid points {p1,… ,pL} ⊂ Ω

⊕ Can use off-the-shelf

convex solver

⊖ Num. of vars grows

exponentially w/

dimension

⊖ Basis mismatch

Off-the-grid example: Alternating Descent Conditional Gradient method (ADCG), alternates

between

▶ adding new source points to solve global convex problem

▶ performing local, differentiable optimization on positions and weights

= True srces Add source Smooth opt. Add source Smooth opt.

supp = { } supp = { } supp = { } supp = { , } supp = { , }

[B
o
yd
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Dynamic super-resolution 8

t = −1

t = 1

t = 0

Ob
f †−1

Ob
f †0

Ob
f †1

▶ Time steps t ∈ 𝒯 ⊂ ℝ

▶ Particles have positions x1,… , xN at step

t = 0 and move linearly with velocities

v1,… , vN
▶ One measurement f †t per time step

Goals:

▶ Improve reconstruction by combining

information from multiple measurements

▶ Reconstruction of velocities
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Pushforward 9

∑N

i=1
𝛼i𝛿xi

f −1(A)

𝒳

𝜇 ∈ ℳ(𝒳)

∑N

i=1
𝛼i𝛿f (xi)

A

𝒴

f#𝜇 ∈ ℳ(𝒴), f#𝜇(A) ≔ 𝜇(f −1(A))

f

f −1

The pushforward transports mass along f .



Phase space lifting 10

Idea (Alberti et al.): Change to a representation in phase space.

u†−1

u†0

u†1

(Moved−1)#

(Moved1)#

(Moved0)#

Ob
f †−1

Ob
f †0

Ob
f †1

𝜆† = ∑N

i=1
𝛼i𝛿(xi,vi)

Movedt :ℝd × ℝd → ℝd

(x, v) ↦ x + tv

u†t ≔ (Movedt )#𝜆†

=
N

∑
i=1

𝛼i𝛿xi+tvi

f †t ≔ Obu†t



Phase space lifting 11

(Moved−1)#

(Moved1)#

(Moved0)#

Ob
f †−1

Ob
f †0

Ob
f †1

Full-dimensional model by Alberti et al.:

min
𝜆∈ℳ(ℝd×ℝd)

‖𝜆‖TV subject to Ob(Movedt )#𝜆 = f †t ∀t ∈ 𝒯 (ERdyn)



Dynamic vs. static 12

▶ Dynamical reconstruction:

min
𝜆∈ℳ(Ωdyn)

‖𝜆‖TV s.t. Ob(Movedt )#𝜆 = f †t ∀t ∈ 𝒯 (ERdyn)

▶ Static reconstruction for t ∈ 𝒯:

min
u∈ℳ([0,1]d)

‖u‖TV s.t. Obu = f †t (ERt)

▶ Assume that dual certificates exist for the static problems (ERt) for some time steps t

(e.g. the particles are well-separated at those times)

Question

What can we infer about solutions to the dynamical reconstruction problem?
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Dynamical reconstruction 13

Theorem (Alberti, Ammari, Romero, Wintz 2019)

Let {(xi, vi)}Ni=1 ⊂ Ω be a configuration of N particles, 𝛼 ∈ ℂN a vector of weights and 𝒯′ ⊂ 𝒯
a subset of time steps with |𝒯′| ≥ 3.

Consider the target measure

𝜆† =
N

∑
i=1

𝛼i𝛿(xi,vi) ∈ ℳ(Ωdyn) .

Assume

1. No two particles overlap at these time steps,

2. For every t ∈ 𝒯′ and every 𝜂 ∈ ℂN with |𝜂j| = 1, there exists a dual certificate for the

static problem at time step t,

3. No “ghost particles”.

Then 𝜆† is the unique solution to

min
𝜆∈ℳ(Ωdyn)

‖𝜆‖TV s.t. Ob(Movedt )#𝜆 = f †t ≔ Ob(Movedt )#𝜆† ∀t ∈ 𝒯 (ERdyn)
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Numerics 14
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▶ Phase space measures live on subset of ℝ2d, twice the dimension of the original static

problem

▶ Grid-based methods would require high dimensional grid, problem quickly becomes

intractable

▶ Frank-Wolfe methods like ADCG need to search for new source points in high

dimensional space

⟹ Need for dimension reduction!
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Static Dynamic Dimension reduction

𝜃



Dimension reduction 16

Classical Radon transform

f ↦ (ℛ𝜃f )𝜃∈𝕊d−1 , (ℛ𝜃f )(s) = ∫
H𝜃

f (s𝜃 + y)dS(y)

Radon transform for measures

ℳ(ℝd) ∋ u ↦ (Rd𝜃u)𝜃∈𝕊d−1

Rd𝜃u ≔ [x ↦ 𝜃 ⋅ x]#u ∈ ℳ(ℝ)

Joint Radon transform

ℳ(ℝ2d) ∋ 𝜆 ↦ (Rj𝜃𝜆)𝜃∈𝕊d−1

Rj𝜃𝜆 ≔ [(x, v) ↦ (𝜃 ⋅ x, 𝜃 ⋅ v)]#𝜆 ∈ ℳ(ℝ2)

𝜃
x1

x2

x-Dimensions

𝜃
v1

v2

v-Dimensions

New variable:

𝛾†𝜃 ≔ Rj𝜃𝜆† = Rj𝜃
N

∑
i=1

𝛼i𝛿(xi,vi)

=
N

∑
i=1

𝛼i𝛿(𝜃⋅xi,𝜃⋅vi)
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Derivation of dim-reduced problem 17

Try to formulate a minimization problem for the new variable (𝛾𝜃):

min
𝜆∈ℳ(Ωdyn)

‖𝜆‖TV s.t.

Ob(Movedt )#𝜆 = f †t ∀t ∈ 𝒯

Steps:

1. Replace full-dim variable

2. Replace objective

3. Reintroduce snapshots ut

4. Relax time consistency constraint

Apply Radon transform:

Rd𝜃(Movedt )#𝜆⏟⏟⏟⏟⏟⏟⏟ = Rd𝜃ut ∀𝜃 ∈ 𝕊d−1
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Dimension-reduced problem 18

The dimension-reduced problem can now be formulated:

min
(𝛾𝜃)𝜃∈𝕊d−1⊂ℳ(ℝ2)
(ut)t∈Σ⊂ℳ([0,1]d)

sup
𝜃∈𝕊d−1

‖𝛾𝜃‖TV s.t.

Obut = f †t ∀t ∈ 𝒯,
(Move1t )#𝛾𝜃 = Rd𝜃ut ∀t ∈ Σ, ∀𝜃 ∈ 𝕊d−1

(ERdyn
−
)

▶ Variables in ℳ(ℝ2) for every 𝜃 ∈ 𝕊d−1 ⟹ problem dimension reduced from 2d to

d − 1 + 2 = d + 1

▶ What can be said about exact reconstruction?

▶ Simplification: Consider only nonnegative target measures, i.e. 𝛼i ∈ [0,∞), and
restrict minimization to nonnegative real-valued measures
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Exact reconstruction (dim-reduced) 19

Theorem

Let 𝜆† ∈ ℳ(Ωdyn) be a nonnegative discrete phase space measure. Assume that there is a

subset 𝒯′ ⊂ 𝒯 of time steps, such that

1. no two particles overlap at these time steps,

2. for every t ∈ 𝒯′, the static problem using only the data measured at time t exactly

reconstructs the configuration at this time,

3. there is no ghost particle with respect to 𝒯′.

If (𝛾,u) is any solution of (ERdyn
−
), we have

1. ut = u†t ∀t ∈ Σ
2. 𝛾𝜃 = Rj𝜃𝜆† for almost all 𝜃 ∈ 𝕊d−1.
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Analysis 2: Noisy data 20

Data f 𝛿
t is distorted by noise with intensity 𝛿

min
snapshots ut
projections 𝛾𝜃

‖𝛾𝜃‖TV +
1

2𝛼
∑
times t

‖Ob(ut) − f 𝛿
t ‖2 subject to ut , 𝛾𝜃 are consistent (P𝛿)

Quantify error in unbalanced optimal transport cost:

OTCostR(𝜈1, 𝜈2) = inf {W2
2 (𝜈, 𝜈2) + 1

2
R2‖𝜈1 − 𝜈‖TV ∣ 𝜈 ∈ ℳ+(ℝn)}

Theorem

Choose 𝛼 =
√

𝛿. There exist constants R,C > 0 such that, for all

times t and directions 𝜃 “away” from overlaps, ghost particles:

1. OTCostR(ut ,u†t ) ≤ C
√

𝛿
2. OTCostR(𝛾𝜃, 𝛾†𝜃) ≤ C

√
𝛿

R

Ground truth ρ†t
Reconstruction ρt
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Model well-posedness
and equivalence

Exact reconstruction for
noise-free data

Stability and con-
vergence rates in

unbalanced Wasser-
stein divergence

Numerical implementation
& simulations



Dimension reduction of dynamic super-resolution

Thank you for your attention!

Alexander Schlüter, collab. Benedikt Wirth, Martin Holler 22
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Application: Cell tracking in PET 25

▶ Project “TraCAR” with people from medicine,

physics, biotechnology company

▶ Cancer immunotherapy using modified immune

cells called CAR T-cells

▶ Development of new therapies require better

insights into cell movement near the tumor

▶ Very little activity per cell -> need to be very data

efficient, reconstruction directly from listmode

PET without binning

▶ Dynamics of interest to estimate cell activity,

tumor penetration

𝜌(x) = ?

Time Line of Response

t1 line1

t2 line2

t3 line3

t4 line4

⋮ ⋮



Static average certificate 26

Idea (Alberti et al.): Build dynamic certificate by averaging static certificates

q
dyn
avg(x, v) ≔ 1

3

1

∑
k=−1

qstatk (x + kΔt v)

0 0.5 1

−0.2

0

0.2

x

v

0

1

k = −1k = 0k = 1

qstat
0

qstat
1

qstat
−1

qdyn
avg
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q
dyn
avg(x, v) ≔ 1

3

1

∑
k=−1

qstatk (x + kΔt v)

0 0.5 1

−0.2

0

0.2

x

v

0

1

k = −1k = 0k = 1

qstat
0

qstat
1

qstat
−1

qdyn
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