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— Spike super-resolution

X X
X
weights Ob .
ut = ZN ;0 = :
=1 VX% x Reconstruction?
4\
positions
Q) c RY compact Data f
Collection of point sources (stars, Measurement filters out fine scale
fluorescent molecules, cells, ...) information, adds noise

Ideal frequency filter: Q = [0, 1]9, cutoff frequency f, € N, Ob = F where

Fu= (/ g~ 2milx du(x))
[0,1]4 lezd

(P
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=—— bl Convex optimization 4

How can we reconstruct u’ = ZI_ a;0, from data f' = Obu'?

Consider the convex optimization problem

s.t. Obu=f" ER
uen]up ullry u=f (ER)

space of Radon measures total variation norm of a measure

> ifu=3" iy, then Jullny = 0 lay| = [l
» Continuous analog of ¢*-norm
P Convex, induces sparsity of solutions
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——wwu Exact reconstruction

Goal: Prove that u' is the unique solution to

min |uly, st Fu=f".

ueM(£2)

(ER)

Candés, Fernandez-Granda: True if for every € CV with |1;| = 1, there exists a dual

certificate

il q(x;) = s,
q(x) = c,e?™* such that {
IE& gkl <1,

The low-frequency polynomial g interpolates

i=
x € Q\{xq,..

Xyt

between the signs in 7.

TR——

Thm.: Certicates exist as long as the

K ----- 3

+1

positions {x;} are well separated.

- -3
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Grid-based: Solve e o o
. t e o o
g;gcrgllélll st. ME{=f . o o

with measurement matrix ¢ o o

M := (Ochpl, o ObépL) e o o

Grid points {p,, ...

@ Can use off-the-shelf
convex solver

© Num. of vars grows
exponentially w/
dimension

,p;} € Q © Basis mismatch

Off-the-grid example: Alternating Descent Conditional Gradient method (ADCG), alternates

between

P adding new source points to solve global convex problem
P performing local, differentiable optimization on positions and weights

X = True srces Add source Smooth opt.

Add source Smooth opt.

supp = {} supp={Q}  supp={O}

supp = {O,O} supp={0O.0O}

[Boyd et al. 2015]



—"— wwu

— MUNSTER

Outline

Static

Dynamic

Dimension reduction




—— Dynamic super-resolution

><
t=-1 . Ob £,

o x
y\ t=0 | “x Ob fJ

/ X

X
t=1 o Ob i
P Timestepstc T CR




—— Dynamic super-resolution

><
t=-1 . Ob £,

o x
y\ t=0 | “x Ob fJ

/ X

X
t=1 o Ob i
P Timestepstc T CR

P Particles have positions xy, ..., x at step
t = 0 and move linearly with velocities
Vi ooy Vi



—— Dynamic super-resolution

t=-1
— P
x/
t=0
>\/ T
e
t=1
- "

P Timestepstc T CR

P Particles have positions xy, ..., x at step
t = 0 and move linearly with velocities
Vi ooy Vi

P One measurement f;' per time step

X

Ob
— gl A

Ob

Ob
> f




—— Dynamic super-resolution

X

t=-1
— P
x/
t=0
>\/ T
e
t=1
- "

P Timestepstc T CR

P Particles have positions xy, ..., x at step
t = 0 and move linearly with velocities
Vi ooy Vi

P One measurement f;' per time step

Ob
9

Ob

Ob
— f]

Goals:



— Dynamic super-resolution 8

X
t=-1 . Ob
— !,
X
X/
X
t=0 x Ob
\ I N
/ X
X
t=1 Ob
]
P Timestepstc T CR
P Particles have positions xy, ..., x at step Goals:
t = 0 and move linearly with velocities » Improve reconstruction by combining

Vis s Viy information from multiple measurements

P One measurement f;' per time step



— Dynamic super-resolution 8

X
t=-1 . Ob
— !,
X
X/
X
t=0 x Ob
\ I N
/ X
X
t=1 Ob
]
P Timestepstc T CR
P Particles have positions xy, ..., x at step Goals:
t = 0 and move linearly with velocities » Improve reconstruction by combining

Vis s Viy information from multiple measurements

+ q
> One measurement f;" per time step P Reconstruction of velocities



wwuy Pushforward
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§ * > iy @il Z @i0f ()
« X
o -
., p= : i

pe M)

The pushforward transports mass along f.

fer € M(Y), fyu(A) =

(=1 (A))



— Phase space lifting
Idea (Alberti et al.): Change to a representation in phase space.

X
"
(Moved,)y | x Ob
X
7
R
(Move), | ™ x*0 Ob
4 x = x — =5
Xt
u
(Move{), ! Ob X
« X [ f]
Moved: RY x RY — R? ul := (Moved),\' fi = Obuf

(X, V) > X + tv

N
= § aiéx,-+tv,»
i=1
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X

(Moved,) X Ob "
—— D

X
X/
(Moved), | Ob
v k B I
X
(Move?), Ob T
— x> f]

Full-dimensional model by Alberti et al.:

A subjectto Ob(Move?), \=fVte T ERdyn
Aewr[n[;{g - 1Ay j (Movef )4\ = ff (ERdyn)



— Dynamic vs. static

» Dynamical reconstruction:

i A t. Ob(Moved ) \=fIvVteT
Aeﬂn}ggdyn)\! lrv s (Movef )yA = f' Vt €

P Static reconstruction fort € T

min  |u s.t. Obu=f!
minfuly ;

12

(ERdyn)

(ER?)
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» Dynamical reconstruction:

i A t. Ob(Moved) A =fivteT ERd
\fmin [\l st Ob(Movef), = ff vi € (ERdyn)

P Static reconstruction fort € T

min  |u s.t. Obu=f! ERt
minfuly ; (ER)

P Assume that dual certificates exist for the static problems (ERt) for some time steps ¢
(e.g. the particles are well-separated at those times)

What can we infer about solutions to the dynamical reconstruction problem?
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— Dynamical reconstruction
Theorem (Alberti, Ammari, Romero, Wintz 2019)

Let {(x;,v;)}!, C Q be a configuration of N particles, o« € C" a vector of weights and T’ C T
a subset of time steps with |T”| = 3.
Consider the target measure

)\T = O‘i5(x,~,v,-) € M(Qdyn) .

M=

Assume
1. No two particles overlap at these time steps,

2. Foreveryt € T’ and everyn € CN with In;| = 1, there exists a dual certificate for the
static problem at time step t,

3. No “ghost particles”.
Then \' is the unique solution to

min  ||A|lyy s.t. Ob(Moved),\ = f := Ob(Moved),\TVt € T (ERdyn)
AEM (Qyyn)
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X

\

P Phase space measures live on subset of R29, twice the dimension of the original static
problem

P Grid-based methods would require high dimensional grid, problem quickly becomes
intractable

P Frank-Wolfe methods like ADCG need to search for new source points in high
dimensional space

—> Need for dimension reduction!
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Radon transform for measures
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Dimension reduction 16

F i (Rof ocsisr (Rof )(S) = / F(s0+y) dS(y)

Radon transform for measures Joint Radon transform

M(RY) > u s (Rdgl) e
Rdyu :=[x = 6 - x]yu € M(R)

x-Dimensions

Hg

M(R?®) 3 X = (RjpA) pese-s
Righ == [(x,V) = (0 - x,0 - v)]u)\ € M(R?)

V) New variable:

N
\ 75 = RigA = Rig Y 0.1

< i=1

\ Vq N
X
§ 9 “X;,0-v;)
i=1
v-Dimensions
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—— Derivation of dim-reduced problem

Try to formulate a minimization problem for the new variable (~,):

min sup |yl st
(76) gesd-1 CM (R?) gesd-1
(Up) e CM([O, 1]9)
Obu, = f{ VteT

(Move!)4y, = Rdyu, Vte Xvhe 591

Steps: Apply Radon transform:

1. Replace full-di iabl
eplace full-dim variable R, (Moves),\
N ——  —

=(Movef)4Rjg A=(Move{ )4,

N

Replace objective

w

Reintroduce snapshots u;

=

Relax time consistency constraint

= Rdeut

v e 541

17
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The dimension-reduced problem can now be formulated:

min X Sup ||79“TV s.t.
(’Y@)gggdfl CM([R )965‘171
(Up)rex CHM([0,1]%)

Obu, = f} VteT,
(Movel)yy, = Rdyu, Vte X, Vo e 541

(ERdyn")

» Variables in M (R?) for every § € S9! — problem dimension reduced from 2d to
d-1+2=d+1

P What can be said about exact reconstruction?

P Simplification: Consider only nonnegative target measures, i.e. o; € [0, o), and
restrict minimization to nonnegative real-valued measures
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Theorem

Let \" € M (Qyy,,) be a nonnegative discrete phase space measure. Assume that there is a
Subset T’ C T of time steps, such that

1. no two particles overlap at these time steps,

2. foreveryt € T, the static problem using only the data measured at time t exactly
reconstructs the configuration at this time,

3. there is no ghost particle with respect to 7.
If (v, u) is any solution of (ERdyn~), we have

1. u=ul Vtex

2. 7, = Rj, A" for almost all § € S92,



— Analysis 2: Noisy data

Data f; is distorted by noise with intensity §

. 1 . .
min ||l + Do Z |Ob(u,) - f’|?> subjectto u,, v, are consistent

snapshots u,

projections v, times t

Quantify error in unbalanced optimal transport cost:

OTCostg(vy,v,) = inf{WZ(v,v,) + 3R?|lvy — vy | v € ML(R")}

Theorem

Choose o = /4. There exist constants R, C > 0 such that, for all
times t and directions 6 “away” from overlaps, ghost particles:

1. OTCostg(uy, uf) < CV/6
2. OTCostp(7g,7h) < CVO

20

(Ps)

e Ground truth pf
x  Reconstruction p,

X

@ |

'\




=—— bl Preprint 21
Stability and con-
vergence rates in

unbalanced Wasser-
stein divergence

Model well-posedness
and equivalence

~ Dimension reduction, exact recovery, and error estimates
~ for sparse reconstruction in phase space

Download PDF

Numerical implementation
e e & simulations

From: Moxander Scor viow smad]
’ (V11 F. 17 Dao 2021 200447 UTC @71 KB)
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Dimension reduction of dynamic super-resolution

Thank you for your attention!

Alexander Schliiter, collab. Benedikt Wirth, Martin Holler 22
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Correct reconstruction rate

[TI=3

dynamic

Simulations: noise-free

correct recons. failed recons.
| |

[T1=5

dynamic

correct recons.  failed recons.
|

[T1=17

dynamic

correct recons. failed recons.
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—A Application: Cell tracking in PET

P Project “TraCAR” with people from medicine,
physics, biotechnology company

P Cancerimmunotherapy using modified immune
cells called CAR T-cells

P Development of new therapies require better

insights into cell movement near the tumor Time Line of Response

P Very little activity per cell -> need to be very data t1
efficient, reconstruction directly from listmode
PET without binning

P Dynamics of interest to estimate cell activity,
tumor penetration t4 line4

linel
t2 line2
t3 line3
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Static average certificate 26

Idea (Alberti et al.): Build dynamic certificate by averaging static certificates

stat

—

stat
— 4

stat
q=q

dyn
0 Gavg

1

qug (X, v) = % Z g3t (x + kAt v)
k=1

0.2

S 0

-0.2
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_____ ,stat
T

______ ,sStat
do

stat

43

dyn
‘ Gavg

Ghost particles

1

Z g; (x + kAt v)

k=—1

1
0.2
S 0
—-0.2
0
0 0.5 1

T

aovg (X, v) =

W=

27
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