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Introduction

Optimal transportation problems

The statement of the problem of the theory of Optimal Transportation was

first posed by Monge in 1781 in [36] when he raised the following question:

given two mass distributions f+ and f−, minimize the transport cost∫
RN
|x− t(x)|f+(x) dx

among all transport maps t, i.e. measurable maps such that the mass balance

condition ∫
t−1(B)

f+(x) dx =

∫
B

f−(y) dy

holds for every Borel set B. The Monge’s approach to this problem is quite

simple to be stated: the unknown of the problem is the map t that tells

that the infinitesimal amount of mass dx located at x will be placed in the

point t(x) at the end of the transportation and that the work done is given

by |x − t(x)|f+(x)dx. Clearly, instead of two mass distributions f+ and

f− one can consider two probability measures µ+ and µ− and minimize the

functional given by

t 7→
∫

RN
|x− t(x)| dµ+(x)

among the transport maps t, i.e. measurable maps such that µ−(B) =

µ+(t−1(B)) for any Borel set B. In spite of the easiness of its formulation

and physical interpretation, the mathematical difficulties are great. In fact,

because of the strong non-linearity in the unknown of the problem, the map

t, in the general case neither the existence of a transport plan nor that of an

optimal one is assured. So, Monge’s formulation did not lead to significant

advances up to 1940, when Kantorovich proposed his own formulation in his

famous papers [30] and [31].
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2 Introduction

In modern notation, given two finite positive Borel measures µ+ and µ−

on RN such that µ+(RN) = µ−(RN), Kantorovich was interested to minimize

the functional

µ 7→
∫

RN×RN
c(x, y) dµ(x, y)

among all transport plans µ, i.e. positive Borel measures on RN × RN such

that π+
#µ = µ+ and π−#µ = µ−, where by # we denoted the push-forward

operator (i.e. h#µ(E) = µ(h−1(E))). The cost function c is a non-negative

lower semicontinuous function defined on RN × RN . It is easy to see that

if t is a transport map between µ+ = f+LN and µ− = f−LN , then µt :=

(Id×t)#µ
+ is a transport plan and∫

RN
c(x, t(x)) dµ+(x) =

∫
RN×RN

c(x, y) dµt(x, y).

So, Kantorovich’s problem is a weak formulation of Monge’s one. The advan-

tages of this approach are evident: the set of transport plans is a non-empty,

convex and weakly compact set, the functional is now linear in the unknown

and, last but not least, the existence of minimizer is implied.

The study of optimal transport problems has received a great attention

after the work by Sudakov on the existence of an optimal transport map (see

[46]) and now the theory has applications in various subjects of research in

Non-linear Partial Differential Equations, Calculus of Variations, Probability,

Economics, Statistical Mechanics, Fluidodynamics and many other fields.

These developments are accounted in various surveys and books such as [2],

[25], [39], [40], and [47].

Plan of the work

This thesis consists in three chapters. The first one deals with the theory

of Optimal Transportation, while in the second a model of urban planning

based on a functional built upon Kantorovich functional is studied. In the

third an alternative approach to transport probability measures is considered

and studied.

Chapter 1, Optimal Transportation Problems

In this chapter we review some basic facts in the theory of Optimal Trans-

portation. First we state Monge and Kantorovich’s Problems in a sufficient



Introduction 3

general setting.

Problem (Monge Problem). Given two finite positive Borel measures µ+

and µ− on a metric space X such that µ+(X) = µ−(X), the object of the

minimization if the functional

M(t) =

∫
X

c(x, t(x)) dµ+(x)

among all transport maps t, that is measurable maps t : X → X such

that µ−(B) = µ+(t−1(B)), that is t#µ
+ = µ−. Here c is a generic cost

function, that is to say a function c : X × X → R non-negative and lower

semicontinuous.

Problem (Kantorovich Problem). Given two finite positive Borel mea-

sures µ+ and µ− on a metric space X such that µ+(X) = µ−(X), the func-

tional to minimize is

K(µ) =

∫
X×X

c(x, y) dµ(x, y)

among all transport plans µ, i.e. positive Borel measures on X × X such

that µ+(A) = µ(A × X) and µ−(B) = µ(X × B), that is π+
#µ = µ+ and

π−#µ = µ−.

Then, we consider the question of the existence of an optimal transport

map or of an optimal transport plan, showing that, while neither the existence

of a transport map nor that of an optimal one are guaranteed, the existence

of an optimal transport plan is proved (in Polish spaces).

In the sequel some other classic topics are considered, such as cyclical

monotonicity with respect to a cost c.

Definition (c-cyclical monotonicity). A subset S ⊆ X × Y is said to

be c-cyclically monotone if for any n ∈ N and for any couples (xi, yi) ∈ S,

i = 1, 2, . . . , n and for any permutation of n elements σ ∈ Sn we have that

n∑
i=1

c(xi, yi) ≤
n∑
i=1

c(xσ(i), yi).

The main result is the proof that the support of an optimal transport plan

is c-cyclically monotone (Theorem 1.3.2), the generalized Rockafellar Theo-

rem (Theorem 1.3.8) and the proof of the existence of an optimal transport

plan in the quadratic case (Theorem 1.3.12).
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In Section 1.4 we give the statement and the full proof of Kantorovich

Duality Formula.

Then we go on with the study of the main properties of the p-Wasserstein

distance, i.e. a distance on the set of probability measures.

Definition (Wasserstein distances). Let X be a metric space and d its

distance. Given µ+, µ− ∈ Pp(X), the Wasserstein distance of order p is

defined by

Wp(µ
+, µ−) :=

[
inf

µ∈P(µ+,µ−)

∫
X×X

[d(x, y)]p dµ(x, y)

]min{1, 1
p}
.

where µ ranges in the set of transport plans between µ+ and µ−.

The main basic properties are investigated, including the equivalence be-

tween the convergence with respect to the p-Wasserstein distance and the

convergence in the duality with bounded continuous functions plus conver-

gence of the momenta of order p.

Finally, we will introduce some tools to deal with displacement convexity

(first introduced and studied in [35] and studied in the general case in [1]),

that is convexity with respect to the displacement interpolation (given µ+

and µ− the displacement interpolation, in the case p = 2, is given by µt =

[(1− t) Id +tT ]#µ
+, where T is the optimal transport between µ+ and µ−).

In particular, we prove that certain kind of functionals (that arise in the

modelling of an interacting gas, see [35]) are displacement convex (these

results will be useful in Chapter 3).

Chapter 2, Optimal Networks for Mass Transportation

Problems

In this chapter we study the generalization of a an urban planning problem

already stated in [18] and [20]. The result of this chapter can also be found

in [13].

We consider a bounded connected open subset Ω with Lipschitz boundary

of RN (the urban area) with N > 1 and two positive finite measures µ+ and

µ− on K := Ω (the distributions of working people and of working places).

We assume that µ+ and µ− have the same mass that we normalize both equal

1, that is µ+ and µ− are probability measures on K.
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The optimization problem for transportation networks considered is this:

to every “urban network” Σ we associate a suitable “cost function” dΣ which

takes into account the geometry of Σ as well as the costs for customers to

move with their own means and by means of the network. The cost functional

will be then

T (Σ) = WdΣ(µ+, µ−),

where WdΣ(µ+, µ−) is the “Wasserstein distance” W1(µ
+, µ−) with respect to

the pseudo-distance dΣ, so that the optimization problem we deal with is

min{T (Σ) : Σ “admissible network”}.

The main result is to prove that, under suitable and very mild assumptions,

and taking as admissible networks all connected, compact one-dimensional

subsets Σ of K, the optimization problem we consider admits a solution. The

tools we use to obtain the existence result are a suitable relaxation procedure

to define the function dΣ and a generalization of the classical Go lab Theorem

(Theorem 2.2.2 and Theorem 2.2.3).

In order to introduce the distance dΣ on the set Ω × Ω we consider a

function J : [0,+∞]3 → [0,+∞]. For a given path γ in K the parameter a

in J(a, b, c) measures the length of γ outside Σ, b measures the length of γ

inside Σ, while c represents the total length of Σ. The cost J(a, b, c) is then

the cost of a customer who travels for a length a by his own means and for

a length b on the network, being c the length of the latter. For instance we

could take J(a, b, c) = A(a) +B(b) + C(c) and then the function A(t) is the

cost for travelling a length t by one’s own means, B(t) is the price of a ticket

to cover the length t on Σ and C(t) represents the cost of a network of length

t.

For every closed connected subset Σ in K, we then define the cost function

dΣ as

dΣ(x, y) := inf
{
J
(
H1(γ \ Σ),H1(γ ∩ Σ),H1(Σ)

)
: γ ∈ Cx,y

}
,

where Cx,y is the class of all closed connected subsets of K containing x and

y.

The optimization problem we consider is then the minimization for the

functional

Σ 7→ T (Σ) = WdΣ(µ+, µ−)

where we take as admissible networks all closed connected subsets Σ of K

with H1(Σ) < +∞.
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Chapter 3, Path Functionals over Wasserstein Spaces

The problem of transporting a source mass distribution onto a target mass

distribution by keeping together as much mass as possible during the trans-

port, from which tree-shaped configurations arise, has been very much stud-

ied (see, for example, [7], [34] or [48]). In the new approach to this problem

presented in this chapter (and also in [14]) probability measures valued curves

are considered, while the condition of keeping masses together is achieved

considering only measures supported in discrete sets.

Given a source or initial probability measure µ0 and a target or final

probability measure µ1 we look for a path γ in a Wasserstein space Wp(Ω)

that connects µ0 to µ1 and minimizes a suitable cost functional J (γ). We

consider functionals of the form

J (γ) =

∫ 1

0

J(γ(t))|γ′|(t)dt

where |γ′| is the metric derivative of γ in the Wasserstein space Wp(Ω) and

J is a lower semicontinuous functional defined on measures. Here J may be

easily seen as the coefficient of a degenerate “Riemannian distance” on the

space Wp(Ω).

We restrict our analysis to the case of J being a local functional over

measures, an important class of functionals extensively studied by Bouchitté

and Buttazzo in [9], [10], and [11]. These functionals are the key tool in

our approach, and among them we can find both functionals which are finite

only on concentrated measures and functionals which are finite only on spread

ones. In fact, a particular point of interest in our approach is the fact that

also different kinds of “Riemannian distances” are allowed (for instance those

which prefer spread measures) by a change of the functional J .

The analysis of existence results as well as the definition of the cost func-

tionals is done in an abstract metric spaces framework, which can be used

for future generalizations and developments.

In particular, we consider the two extreme cases, in which the functional

J is chosen as one of the following:

Gr(µ) =

{∑
k∈N(ak)

r if µ =
∑

k∈N akδxk

+∞ otherwise
(0 ≤ r < 1)
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whose domain is the space of purely atomic measures, or

Fq(µ) =

{∫
Ω
|u|qdx if µ = u · LN

+∞ otherwise
(q > 1)

whose domain is the space Lq(Ω). We denote respectively by Gr the functional

J with J replaced by Gr and by Fq the same functional with J replaced by

Fq.

The first case is the one in which we get a “Riemannian distance” on prob-

abilities which make paths passing through concentrated measures cheaper.

The second case, on the contrary, allows only paths which lie on Lq(Ω).

In both cases we analyze the question of the existence of optimal paths

γopt giving finite value to the functional. When the domain Ω ⊂ RN is

compact we find for the first case:

• if µ0 and µ1 are atomic measures, then an optimal path γopt providing

finite value to Gr always exists;

• if r > 1− 1/N , then the same is true for any pair of measures;

• if r ≤ 1−1/N , then there are measures µ0 and µ1 such that every path

connecting them has an infinite cost.

Similarly, for the second case we find:

• if µ0 and µ1 are in Lq(Ω), then an optimal path γopt providing finite

value to Fq always exists;

• if q < 1 + 1/N , then the same is true for any pair of measures;

• if q ≥ 1+1/N , then there are measures µ0 and µ1 such that every path

connecting them has an infinite cost.

It is not difficult to see that the model proposed is different and in general

provides different solutions with respect to those proposed by Xia in [48] and

by Maddalena, Morel and Solimini in [34]. However, among the different

features our model supplies we may cite its mathematical simplicity and the

possibility of performing standard numerical computations.

From the mathematical point of view, our model recalls the construction

of Riemannian metrics as already pointed out, and the existence results for

optimal paths is easy to prove.
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The comparison with the results obtained by Xia and by Maddalena,

Morel and Solimini will be important for future investigations. For instance,

for the model proposed in [34] conditions to link two prescribed measures

by a finite cost configuration have been studied in [23] (while in Chapter 3

or [14] and in [48] only conditions in order to link arbitrary measures are

provided).



Chapter 1

Optimal Transportation

Problems

In this chapter we discuss some aspects on the classical theory of mass trans-

portation as it was proposed by Monge and subsequently developed by Kan-

torovich.

1.1 Original and relaxed formulation

The problem of Optimal Transportation can be simply set as follows: given

two mass distributions f+ and f−, minimize the transport cost∫
RN
|x− t(x)|f+(x) dx

among all transport maps t, i.e. measurable maps such that the mass balance

condition ∫
t−1(B)

f+(x) dx =

∫
B

f−(y) dy

holds for every Borel set B. In particular, taking B = RN , we must have∫
RN
f+(x) dx =

∫
RN
f−(y) dy,

that is f+ and f− carry the same mass.

Notation. Let X and Y be measure spaces and let t : X → Y be a measurable

map. For any measure µ on X we define t#µ as the measure on Y given by

t#µ(B) := µ(t−1(B)) (1.1.1)

9



10 Chapter 1. Optimal Transportation Problems

for any measurable set B.

In modern notation the problem of Monge can be set as follows.

Problem 1.1.1 (Monge’s Problem). Given two finite positive Borel mea-

sures µ+ and µ− on a metric space X such that µ+(X) = µ−(X), study the

minimization of

M(µ) :=

∫
X

c(x, t(x)) dµ+(x) (1.1.2)

among all transport maps t, that is measurable maps t : X → X such that

µ−(B) = µ+(t−1(B)) for any measurable set B, that is t#µ
+ = µ−. Here c

is a generic cost function, that is a non-negative and lower semicontinuous

function c : X ×X → R. We will denote by M(µ+, µ−) the set of transport

maps between µ+ and µ−, and by Mopt(µ
+, µ−) the subset of optimal ones.

The following proposition gives a quite raw result on the infimum value

of Problem 1.1.1. We will provide better results in the next section.

Proposition 1.1.2. The infimum of Problem 1.1.1 is larger than or equal

to

sup

{∫
X

u d(µ+ − µ−) : u ∈ Lip1(X, c)

}
where

Lip1(X, c) = {u : X → R : |u(x)− u(y)| ≤ c(x, y) ∀x, y ∈ X}.

Proof. Since u is 1-Lipschitz with respect to c we have∫
X

c(x, t(x)) dµ+ ≥
∫
X

|u(x)− u(t(x))| dµ+

≥
∫
X

(u(x)− u(t(x))) dµ+ =

∫
X

u(x) d(µ+ − µ−).

Then

inf
t

∫
X

c(x, t(x)) dµ+ ≥ sup
u

∫
X

u(x) d(µ+ − µ−)

where the infimum is taken among transport maps between µ+ and µ− and

the supremum for u ∈ Lip1(X, c).

Because of the strong non-linearity in the unknown transport map t,

Monge’s formulation did not lead to significant advances up to 1940, when

Kantorovich proposed his own formulation (see [30], [31]). Moreover, Monge’s

formulation shows some intrinsic difficulties as in the following examples.
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Example 1.1.3 (Non-existence of transport maps). While the condi-

tion of equal total mass µ+(X) = µ−(X) is a necessary condition to the

existence of a transport map between µ+ and µ−, it is not sufficient. For ex-

ample, consider µ+ = δx0 and µ− = 1
2
δy0 + 1

2
δy1 (with y0 6= y1). No transport

maps can exist since t#δx0 = δt(x0).

Example 1.1.4 (Non-existence of the minimizer). Let S0, S1, S2 be the

subsets of R2 given by

S0 = {(x, 0) : 0 ≤ x ≤ 1}
S1 = {(x, d) : 0 ≤ x ≤ 1}
S2 = {(x,−d) : 0 ≤ x ≤ 1}

and let µ+ = H1 S0, µ
− = 1

2
H1 S1 + 1

2
H1 S2. In this case the class of

transport maps is not empty since the map t : R2 → R2 defined by

(x, 0) 7→
{

(2x, d) if 0 ≤ x ≤ 1
2

(2x− 1,−d) if 1
2
< x ≤ 1

is a transport map. The optimal transport problem with cost c(x, y) = |x−y|
has no minima. This can be seen as follows. First of all, the cost of the

optimal transport is at least d by Proposition 1.1.2 (use u(x, y) = −|y|).
Actually, it is exactly d. Consider the sequence of transport maps {tn}n∈N

such that tn is linear non-decreasing between the intervals Ikn and Jkn if k is

even and is linear non-decreasing between the intervals Ikn and Kk
n if k is odd,

where

Ikn =

(
k

2n
,
k + 1

2n

)
Jkn =

(
k/2

n
,
k/2 + 1

n

)
Kk
n =

(
(k − 1)/2

n
,
(k + 1)/2 + 1

n

)
.

It is easy to see that limnM(tn) = d.

On the other hand, the minimal value is achieved only if a point and

its image lie on the same vertical line. Let S be the set of points lying on

the same straight line. On one hand, both S1 and S2 carry a mass equal to

1/2 each, so we have µ−(t(S)) = µ+(S)/2. On the other hand, µ−(t(S)) =

µ+(t−1(t(S))) ≥ µ+(S). So we must have µ+(S) = 0, that is the set of points

lying on the same vertical line is negligible and the minimal value of the

transport cannot be achieved.
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The minimizers may not be unique (this may also happen in Kantorovich’s

statement of the problem) as it can be seen in the following example.

Example 1.1.5 (Non-uniqueness of the minimizer). Let us consider

µ+ = 1
2
δ(0,0) + 1

2
δ(1,1) and µ− = 1

2
δ(1,0) + 1

2
δ(0,1) and c(x, y) = |x − y|p. Then

both the vertical transport and the horizontal one are optimal.

Here is another example of non-uniqueness of the optimal transport map.

Example 1.1.6 (Book shifting). Let us fix an integer number n ≥ 1 and

consider as the initial and final measures for the Monge’s problem those given

by µ+ = L1χ[0,n] and µ− = L1χ[1,n+1]. From Proposition 1.1.2 (using as test

function u(t) = −t) it follows that the value of the optimal transportation is

at least n. The transportation cost for the map defined by t(x) = x+ 1 is n,

so it is optimal. It can be also seen that the map

t(x) =

{
x+ n if t ∈ [0, 1]

x if t ∈ [1, n],

is optimal for every n, so we can conclude that in the case n ≥ 2 there exist

two distinct optimal transport maps. Actually, in the case n = 1 the map

t(x) = 2− x is optimal, so even in the case n = 1 we do not have uniqueness

of the optimal transport map.

In order to overcome the main difficulties that arise in the Monge’s ap-

proach to the problem of mass transportation, Kantorovich proposed his own

formulation. Kantorovich’s approach is a generalization of Monge’s Problem,

but can also be viewed as a relaxation of it (as we will prove). In the fol-

lowing π+ and π− will be the projections of X ×X on the first and on the

second factor: π+(x, y) = x, π−(x, y) = y.

A great limitation in Monge’s version of mass transportation problem

is that the mass can be put together, but cannot be split. For example,

as we have seen, no transport maps between a Dirac mass and a convex

combination of Dirac masses can exist.

Problem 1.1.7 (Kantorovich’s Problem). Given two finite positive Borel

measures µ+ and µ− on a metric space X such that µ+(X) = µ−(X), study

the minimization of

K(µ) :=

∫
X×X

c(x, y) dµ(x, y) (1.1.3)
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among all transport plans µ, i.e. positive Borel measures on X × X such

that µ+(A) = µ(A × X) and µ−(B) = µ(X × B), that is π+
#µ = µ+ and

π−#µ = µ−. We will denote by P(µ+, µ−) the set of transport plans between

µ+ and µ−, and by Popt(µ+, µ−) the subset of optimal ones.

Thanks to the linearity of K with respect to µ, the subset of optimal

plans Popt(µ+, µ−) is a convex subset.

It is easy to see that if t is a transport map between µ+ and µ−, then

µt := (Id×t)#µ
+ is a transport plan between the same measures and∫
X

c(x, t(x)) dµ+(x) =

∫
X×X

c(x, y) dµt(x, y).

So, Kantorovich’s problem is a weak formulation of Monge’s one. Of course,

since not all transport plans are of the kind of µt for a suitable transport

map t it may happen that the optimal value of Problem 1.1.7 is strictly less

than the one of Problem 1.1.1 as in the following example (see also [38]).

Example 1.1.8. Consider again the situation of Example 1.1.4, but with a

different cost function.

c(x, y) =

{
|x− y| if x− y lies on a vertical line,

2|x− y| otherwise.

In this case, the infimum of Kantorovich Problem is δ, while that of Monge

Problem is 2δ since (as we have seen) a map cannot move the mass vertically.

1.2 Existence of an optimal transport plan

In this section and in the following ones we are going to prove some results

in the theory of mass transportation, such as the existence of an optimal

transport plan and the comparison between the infimum of Monge’s Problem

and Kantorovich’s one.

Lemma 1.2.1. Let f be a lower semicontinuous function defined on a metric

space (X, d) with range in [0,+∞]. Then the set of functions {gt : t ≥ 0}
defined by

gt(x) = inf{f(y) + td(x, y) : y ∈ X}

satisfies the following properties:
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• gt ≥ 0;

• gt is t-Lipschitz continuous;

• gt(x) ↗ f(x) for every x ∈ X.

Proof. Obviously, gt ≥ 0. For all y the function x 7→ f(y) + td(x, y) is t-

Lipschitz continuous, so gt is t-Lipschitz continuous too. Let now prove the

third part of the Lemma. Since d is positive, the map t 7→ gt is increasing and

gt(x) ≤ f(x) for every x. If supt≥0 gt(x) = +∞, then we have f(x) = +∞
and the statement is proved. When supt≥0 gt(x) < +∞, let x ∈ X and choose

xt such that

f(xt) + td(x, xt) < gt(x) + 2−t. (1.2.1)

We have from (1.2.1)

td(x, xt) ≤ gt(x)− f(xt) + 2−t

≤ gt(x) + 2−t ≤ sup
t≥0

gt(x) + 1 =: M(x) < +∞.

We then have d(x, xt) ≤ M(x)/t, so that xt → x. Passing to the limit as

t→ +∞ in (1.2.1), the semicontinuity of f yields

f(x) ≤ lim inf
t→+∞

f(xt) ≤ lim
t→+∞

gt(x).

Corollary 1.2.2. In the same hypotheses of Lemma 1.2.1 there exists a

sequence of continuous bounded non-negative functions ht such that ht(x) ↗
f(x) for every x ∈ X.

Proof. Just define ht(x) = inf{gt(x), t}.

This lemma will be useful in the next sections.

Lemma 1.2.3. Let f be an upper semicontinuous function defined on a met-

ric space (X, d). Assume also that f is bounded from above. Then the set of

functions {ht : t ≥ 0} defined by

ht(x) = sup{f(y)− td(x, y) : y ∈ X}

satisfies the following properties:

• ht ≥ f ;
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• ht is t-Lipschitz continuous;

• ht(x) ↘ f(x) for every x ∈ X.

Proof. The proof is very similar to that of Lemma 1.2.1.

Kantorovich’s Problem (Problem 1.1.7) has a solution: this is the result

of the next Theorem 1.2.5. Before we prove Theorem 1.2.5 we need a lemma

to establish the tightness of the set of transport plans.

Lemma 1.2.4 (Tightness of the set of transport plans). Let µ+ and µ−

be Borel probability measures on a Polish space X. Then the set of transport

plans P(µ+, µ−) is tight.

Proof. It is easy to check that X × X endowed with the product topology

is still a Polish space. Thanks to Theorem A.1.2 (Ulam’s Lemma), for every

ε > 0 there exists a compact subset Kε such that:

µ+(X \Kε) < ε, µ−(X \Kε) < ε.

Let µ ∈ P(µ+, µ−). Then

µ((X ×X) \ (Kε ×Kε)) ≤ µ((X \Kε)×X) + µ(X × (X \Kε))

= µ+(X \Kε) + µ−(X \Kε) < 2ε.

Since the compact Kε depends only on µ+ and µ− (and ε of course), the

proof is achieved.

Theorem 1.2.5 (Existence of an optimal transportation plan). Let µ+

and µ− be Borel probability measures on a Polish space X. Let c : X ×X →
R+. Then there exists a measure µ∗ such that:

K(µ∗) = inf{K(µ) : µ ∈ P(µ+, µ−)}.

Proof. Thanks to Lemma 1.2.4, the set of transport plans is tight and by

Theorem A.1.4 (Prokhorov’s Theorem) Kantorovich’s functional is continu-

ous when the cost function c is continuous and bounded.

In the general case of a lower semicontinuous cost function c the Kan-

torovich’s functional 1.1.3 is lower semicontinuous. Let us consider the in-

creasing sequence of non-negative bounded continuous functions {cn}n∈N
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given by Corollary 1.2.2. Thanks to the Monotone Convergence Theorem

we have that

Kn(µ) =

∫
X×X

cn(x, y) dµ↗ K(µ) =

∫
X×X

c(x, y) dµ

for every transport plan µ ∈ P(µ+, µ−). K is then lower semicontinuous

since it is the supremum of continuous functionals.

The existence of a minimizer is then a standard application of the direct

method of the Calculus of Variations. The only thing we need now to prove

is that the set of transport plans is closed under the weak topology. Let

{µn}n∈N be a convergent sequence in P(µ+, µ−) and let us denote by µ the

weak limit of {µn}n∈N, that is µn ⇀ µ. Then∫
X×X

f ◦ π+ dµn +

∫
X×X

g ◦ π− dµn =

∫
X

f dµ+ +

∫
X

g dµ−

for every couple of functions f, g ∈ Cb(X). Passing to the limit as µn ⇀ µ

we obtain:∫
X×X

f ◦ π+ dµ+

∫
X×X

g ◦ π− dµ =

∫
X

f dµ+ +

∫
X

g dµ−

that is ∫
X

f d(π+
#µ) +

∫
X

g d(π−#µ) =

∫
X

f dµ+ +

∫
X

g dµ−,

that is π+
#µ = µ+ and π−#µ = µ−.

Let {µn}n∈N be a minimizing sequence. By Theorem A.1.4 a convergent

subsequence can be extracted, so we can suppose µn ⇀ µ∗ for some Borel

probability measure. Since the set of transport plans P(µ+, µ−) is closed

with respect to the weak topology, we have µ∗ ∈ P(µ+, µ−) and thanks to

the lower semicontinuity of the Kantorovich functional µ∗ is a minimizer.

The next theorem gives some conditions in order to assure the equality

of the infima of Monge and Kantorovich’s functionals.

Theorem 1.2.6. Assume that X is a compact subset of RN . If the cost func-

tion c is continuous and real valued and µ+ has no atoms, then Kantorovich

functional is the lower semicontinuous envelope of Monge functional. In par-

ticular,

min
µ∈P(µ+,µ−)

K(µ) = inf
t∈M(µ+,µ−)

M(t).
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Proof. What we need to prove is that given µ ∈ P(µ+, µ−) it is possible

to provide a sequence of Borel maps ψh ∈ M(µ+, µ−) such that (with the

notation used in the Appendix)∫
δψn(x) ⊗ µ+ ⇀ µ

in M(X ×X). By Theorem A.3.1 we obtain a Borel map ϕ : X → X such

that ϕ#µ
+ is not atomic and approximates arbitrarily µ− and

∫
δϕ(x) ⊗ µ+

approximates arbitrarily µ (with respect to the weak convergence).

We can suppose that the cost function c is Lipschitz with constant L and

that |x− y| ≤ c(x, y) (eventually multiplying c by a positive constant).

Now, let us fix an integer n. We will rename µ+ with µ0
0 and choose

ϕ0 : X → X such that ϕ0#µ
0
0 is not atomic, W1(µ

−, ϕ0#µ
0
0) < 2−n and∫

X

c(ϕ0(x), x) dµ0
0 < W1(µ

−, µ0
0) + 2−n,

where by W1(µ
+, µ−) we mean infimum value of Kantorovich functional with

respect to the cost c. Then, setting µ1
0 = ϕ0#µ

0
0 we find ϕ1 : X → X such

that ϕ1#µ
1
0 has no atom, W1(µ

−, ϕ1#µ
1
0) < 2−(n+1)

∫
X

c(ϕ1(x), x) dµ1
0 < W1(µ

−, µ1
0) + 2−(n+1).

Setting µk0 = ϕk−1#µ
k−1
0 we can then build by induction a Borel function

ϕk : X → X such that ϕk#µ
k
0 has no atom, W1(µ

−, ϕk#µ
k
0) < 2−(n+k)

∫
X

c(ϕk(x), x) dµk0 < W1(µ
−, µk0) + 2−(n+k).

Now we set φ0(x) = x and φk = ϕk−1 ◦· · ·◦ϕ0 for k ≥ 1, so that µk0 = φk#µ
+.

The sequence {φk}k≥0 is a Cauchy sequence in L1(X,µ+;X). In fact,

+∞∑
k=0

∫
X

|φk+1(x)− φk(x)| dµ+(x) =
+∞∑
k=0

∫
X

|ϕk(y)− y| dµk0(y)

≤ 21−n +
+∞∑
k=0

W1(µ
−, µk0) < +∞.
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Now, set limk φk = ψn. We have ψn#µ
+ = µ− and∫

X

c(φk(x), x) dµ+(x)

≤
∫
X

c(ϕ0(x), x) dµ+(x) + L

k∑
i=1

∫
X

|φi(x)− φi−1(x)| dµ+(x)

≤ W1(µ
+, µ−) + 2−n + L

k∑
i=1

∫
X

|ϕi(y)− y| dµi0(y)

≤ W1(µ
+, µ−) + 2−n(1 + 2L).

Passing to the limit as k → +∞ we obtain∫
X

c(ψn(x), x) dµ+(x) ≤ W1(µ
+, µ−) + 2−n(1 + 2L),

which is the result.

1.3 Cyclical monotonicity and regularity of

optimal transport plans

In this section we are going to study some concepts deeply studied in various

papers, such as [27], [4], [32], [43].

In this section we will consider rather general assumptions: X and Y will

be locally compact, σ-compact metric spaces. The cost function c : X×Y →
R will be a positive function. We will show some results when c is continuous

and real valued, but also in a more general setting allowing c to be only lower

semicontinuous and assuming extended real values.

The notions of cyclical monotonicity and concavity with respect to a cost

c we are going to introduce are generalization of those given by Rockafellar

in [41] in the quadratic case and in Euclidean spaces, that is when c(x, y) =

〈x, y〉.

Notation. In this section we will denote by Sn the symmetric group, that is

the set of permutations of a set with cardinality n, n ∈ N.

Definition 1.3.1 (c-cyclical monotonicity). A subset S ⊆ X × Y is said

to be c-cyclically monotone if for any n ∈ N and for any couples (xi, yi) ∈ S,
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i = 1, 2, . . . , n and for any permutation of n elements σ ∈ Sn it is true that

n∑
i=1

c(xi, yi) ≤
n∑
i=1

c(xσ(i), yi). (1.3.1)

Since any σ ∈ Sn is the product of cycles, inequality (1.3.1) implies

Definition 1.3.1 whenever it is true for any cycle σ. Moreover, by suitable

rearrangement of indexes it can be seen that Definition 1.3.1 is equivalent to

n∑
i=1

c(xi, yi) ≤
n∑
i=1

c(xi+1, yi) (1.3.2)

for any n and any couples (xi, yi) ∈ S, i = 1, 2, . . . , n, (with xn+1 = x1).

Through c-cyclical monotonicity we can give a characterization of optimal

measures. Recall that ∫
Y

f d(g#µ) =

∫
X

f ◦ g dµ (1.3.3)

whenever g : X → Y is a measurable map between the measure space

(X, TX , µ) and the measurable space (Y, TY ) and f : Y → R is a non-negative

measurable function.

Theorem 1.3.2. Let c : X × Y → R be a continuous and non-negative

cost. Suppose that the transport plan µ∗ is optimal for Kantorovich’s Prob-

lem (Problem 1.1.7). Moreover, suppose that the infimum of Kantorovich’s

functional (1.1.3) is finite, K(µ∗) < +∞. Then, the support of µ∗ is c-

cyclically monotone.

Proof. Suppose on the contrary that sptµ is not c-cyclically monotone. Then,

there exist an integer n, a permutation σ, and couples of points (x̃i, ỹi) ∈
sptµ∗ ⊆ X × Y , i ∈ {1, 2, . . . , n}, such that the function

f(x1, y1, . . . , xn, yn) =
n∑
i=1

c(xσ(i), yi)− c(xi, yi)

takes negative value on (x̃1, ỹ1, . . . , x̃n, ỹn). Since f is continuous, there exist

neighbourhoods Ui ⊆ X and Vi ⊆ Y such that f is negative on the set∏n
i=1 Ui × Vi. Moreover, we can choose the sets Ui and Vi to be relatively

compact and disjoint. Let us set

λ := inf{µ∗(Ui × Vi) : i ∈ {1, 2, . . . , n}} > 0
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(it is a positive number since (x̃i, ỹi) ∈ sptµ∗ for i ∈ {1, 2, . . . , n}) and

µi(B) =
µ∗(B ∩ (Ui × Vi))

µ∗(Ui × Vi)

that is the normalized restriction to Ui × Vi of µ∗. Let us now consider the

product probability space(
Ω =

n∏
i=1

Ui × Vj, B(Ω), η = ⊗n
i=1µi

)
and projections πXi : Ω → X and πYi : Ω → Y defined as

πXi (x1, y1, . . . , xn, yn) = xi,

πYi (x1, y1, . . . , xn, yn) = yi.

Finally, let µ′ be the non-negative measure defined by:

µ′ = µ∗ + λn−1

n∑
i=1

(πXσ(i) × πYi )#η − (πXi × πYi )#η.

It is easy to check via formula (1.3.3) that

K(µ′)−K(µ∗) = λn−1

∫
Ω

c(πXσ(i), π
Y
i )− c(πXi , π

Y
i ) dη < 0.

That implies K(µ′) < K(µ∗), in spite of the minimality of µ∗.

Not only the support of an optimal transport plan is c-cyclically mono-

tone, but also the union of the supports of all the optimal plans is so. This

is a consequence of the convexity of the set of optimal measures with fixed

marginals.

Corollary 1.3.3. The union of the supports of all the optimal transport plans

is c-cyclically monotone.

Proof. Let S be the union of the supports of all optimal transport plans. Let

(xi, yi) ∈ S for i ∈ {1, . . . , n}, and let µi be an optimal measure such that

(xi, yi) ∈ sptµi. It is easy to check that the measure given by

µ =
1

n

n∑
i=1

µi

is still an optimal transport plan between µ+ and µ−. Since µ is an optimal

measure its support is c-cyclically monotone, and by construction (xi, yi) ∈
sptµ. This implies that condition (1.3.1) is satisfied.
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Definition 1.3.4. A function u : X → R ∪ {−∞} is said to be c-concave if

it is of the kind

u(x) = inf
(y,λ)∈A

c(x, y) + λ

for some subset A ⊆ X × R.

The usual definition of concavity for a function u : Rn → R ∪ {−∞} can

be recovered by the one of c-concavity. In fact, it is easy to see that for

the cost functional c(x, y) = 1
2
|x − y|2 the c-concavity of u reduces to the

concavity of u(x) − 1
2
|x|2. Moreover, if c is a continuous function, then u is

upper semicontinuous.

Before we prove Theorem 1.3.8, we just recall some definitions about the

c-transform which will become useful in the Section 1.4. A deeper account

on these facts and their proofs can be found in [41], [24] or [47].

Definition 1.3.5 (c-transform). Let X and Y be non-empty sets and c :

X × Y → R. Given u : X → R ∪ {−∞}, the c-transform of u is defined by

uc(y) := inf
x∈X

[c(x, y)− u(x)]. (1.3.4)

Of course, a similar definition can be given for functions v : Y → R∪{−∞}.

The following facts are an easy consequence of Definition 1.3.5.

Theorem 1.3.6 (Generalized Legendre duality). Let X and Y be non-

empty sets and c : X × Y → R. Given a function u : Rn → R ∪ {−∞}, we

have

• u(x) + uc(y) ≤ c(x, y) for every (x, y) ∈ X × Y ;

• ucc ≥ u, uccc = uc;

• ucc = u if and only if u is c-concave.

Definition 1.3.7 (c-superdifferential). Given a function u : Rn → R ∪
{−∞}, the c-superdifferential ∂cu is the set

∂cu := {(x, y) ∈ X × Y : u(v) ≤ u(x) + c(v, y)− c(x, y) for all v ∈ X}.
(1.3.5)

Moreover, we define ∂cu(x) as the set of those y such that (x, y) ∈ ∂cu:

∂cu(x) := {y ∈ Y : u(v) ≤ u(x) + c(v, y)− c(x, y) for all v ∈ X}. (1.3.6)
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Theorem 1.3.8 (Rockafellar Theorem for general costs). The follow-

ing statements are equivalent for a subset S ⊆ X × Y :

1. There exists a c-concave function u : X → R ∪ {−∞} such that S ⊆
∂cu;

2. S is c-cyclically monotone.

Proof.

• 1 ⇒ 2. Let us consider (xi, yi) ∈ ∂cu for i ∈ 1, . . . n. Since u is c-

concave we can assert the existence of a point x̃ such that u is finite at

x̃. Thanks to the c-concavity of u

u(x̃) ≤ u(xi) + c(x̃, y)− c(xi, y)

that is x̃i cannot be −∞. Thanks to c-concavity of u again:

u(xσ(i))− u(xi) ≤ c(xσ(i), yi)− c(xi, yi) (1.3.7)

Summing from i = 1, . . . , n inequalities (1.3.7) we get

0 ≤
n∑
i=1

c(xσ(i), yi)−
n∑
i=1

c(xi, yi)

which is Definition 1.3.1.

• 2 ⇒ 1. Fix (x0, y0) ∈ S and let u be given by (recall the equivalence of

Definition 1.3.1 with inequality (1.3.2)):

u(x) := inf
n,(xi,yi)∈S

(
c(x, yn)− c(xn, yn) +

n−1∑
i=1

[c(xi+1, yi)− c(xi, yi)]

)
.

where n ∈ N, and (xi, yi) ∈ S for i ∈ {1, . . . , n}. We now prove that

if (x′, y′) ∈ S, then (x′, y′) ∈ ∂cu. By definition, u is c-concave and

u(x0) = 0 (the infimum is attained when n = 1 and (x1, y1) = (x0, y0)).

By definition of u we also have that for every ε > 0(
c(x′, yn)− c(xn, yn) +

n−1∑
i=1

[c(xi+1, yi)− c(xi, yi)]

)
< u(x′) + ε.
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Setting xm+1 = x′ and ym+1 = y′ again by definition of u we have

u(x) ≤

(
c(x, yn+1)− c(xn+1, yn+1) +

n∑
i=1

[c(xi+1, yi)− c(xi, yi)]

)

so that

u(x) ≤ c(x, yn+1)− c(xn+1, yn+1) + u(x′) + ε.

By the arbitrary choice of ε we get

u(x)− u(x′) ≤ c(x, y′)− c(x′, y′).

Since u(x0) = 0, u(x′) > −∞ and y′ ∈ ∂cu(x′), that is S ⊆ ∂cu.

Remark 1.3.9. Recall that the support of an optimal transport plan and the

union of the supports of all optimal transport plans are c-monotone sets, so

they are contained in the superdifferential of a suitable c-monotone function.

As a consequence of Theorem 1.3.8 we prove the following Corollary,

which is true for continuous costs c which are a distance on X ×X.

Corollary 1.3.10. Suppose that the continuous cost c is a distance on X,

and let µ ∈ P(X × X) be a transport plan between fixed marginals µ+ and

µ−. Then µ is optimal if and only if there exists u : X → R such that

|u(x)− u(y)| ≤ c(x, y) for all (x, y) ∈ X ×X, (1.3.8)

u(x)− u(y) = c(x, y) for all (x, y) ∈ sptµ. (1.3.9)

Moreover, there exists a function u such that equations (1.3.8) and (1.3.9)

holds for any optimal plan µ.

Proof.

• Sufficiency. Let µ∗ be an admissible transport plan. Thanks to (1.3.8)

and (1.3.9) we have

K(µ∗) ≥
∫
X×X

u(x)− u(y) dµ∗ =

∫
X

u dµ+ −
∫
X

u dµ−

=

∫
X

u(x)− u(y) dµ = K(µ).
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• Necessity. Let S be the union of the supports of all the optimal trans-

port plans. Thanks to Theorem 1.3.8 there exists a c-concave function

u such that S ⊆ ∂cu. Equation (1.3.8) simply follows from the fact that

the infimum of c-Lipschitz functions is itself c-Lipschitz, while equation

(1.3.9) follows from S ⊆ ∂cu. We have

u(y)− u(x) ≤ c(y, y)− c(x, y) = −c(x, y)

for any (x, y) ∈ sptµ because S ⊆ ∂c(u) and, by equation (1.3.8),

u(x)− u(y) ≤ c(x, y)

for any (x, y) ∈ X ×X, that is equation (1.3.9).

A simple consequence of Corollary 1.3.10 is the following result.

Corollary 1.3.11 (Linear case). Suppose that the continuous cost c is a

distance on X. Then, the function in Corollary 1.3.10 is a maximizer of

u 7→
∫
X

u d(µ+ − µ−)

among 1-Lipschitz maps with respect to the distance c. Moreover, we have

inf{K(µ) : µ ∈ P(X ×X)} = max

{∫
X

u d(µ+ − µ−) : u ∈ Lip1(X, c)

}
.

(1.3.10)

Proof. For every u ∈ Lip1(X, c), we have:∫
X

u(x) d(µ+ − µ−) =

∫
X

u(x) dµ+ −
∫
X

u(y) dµ−

=

∫
X×X

u(x) dµ−
∫
X×X

u(y) dµ

=

∫
X×X

u(x)− u(y) dµ ≤
∫
X×X

c(x, y) dµ.

We now prove that, when µ is an optimal transport plan and u is a Kan-

torovich potential, equality in the previous inequality holds. In fact, we have:∫
X×X

c(x, y) dµ =

∫
sptµ

c(x, y) dµ =

∫
sptµ

u(x)− u(y) dµ

=

∫
X×X

u(x)− u(y) dµ =

∫
X×X

u(x) dµ−
∫
X×X

u(y) dµ

=

∫
X

u(x) dµ+ −
∫
X

u(y) dµ− =

∫
X

u(x) d(µ+ − µ−),

and equality in equation (1.3.10) must hold.
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Another useful consequence of Theorem 1.3.8 is the following corollary.

It was proved first by Brenier in [15] and generalized in [27]. We will prove

it in a slight weaker form we will use in the following when the notion of

displacement convexity will be introduced.

Corollary 1.3.12 (Quadratic case). Let us consider the Kantorovich func-

tional associated to the cost function c(x, y) = 1
2
|x− y|2 and assume that µ+

is absolutely continuous. Then there exists a unique transport plan µ. More-

over, µ is induced by an optimal transport map which is the gradient of a

convex function.

Proof. Let ψ : X → R be a c-concave function such that the graph Γ of its

superdifferential contains the support of any optimal transport plan µ. Since

we are considering the quadratic cost c(x, y) = |x− y|2/2 it can be seen that

(x0, y0) ∈ Γ ⇐⇒ y0 ∈ ∂+v(x0)

where v is the concave function given by v(x) = u(x)−|x|2/2. Since a concave

function is almost everywhere differentiable with respect to Lebesgue measure

and hence with respect to µ+ we get that for µ+-a.e. x0 ∈ X there exists a

unique point y0 such that (x0, y0) (i.e. y0 = ∇v(x0)). Since sptµ ⊂ Γ, we

have µ = (Id×v)#µ
+.

Corollary 1.3.12 can be generalized following Gangbo and McCann in [27]

or Ambrosio, Gigli and Savaré [1] for the Hilbert space setting.

Theorem 1.3.13 (Stricly convex cost case). Let us consider the Kan-

torovich functional associated to a cost c(x, y) = h(x − y) with h strictly

convex and superlinear. Assume that µ+ is absolutely continuous and that

the minimum of Kantorovich functional is finite. Then there exists a unique

transport plan µ. Moreover, µ is induced by an optimal transport map T

uniquely determined µ+-a.e. requiring that

• T#µ
+ = µ−;

• T (x) = x−∇c∗(∇ϕ(x)) for some c-concave function ϕ; c∗ is the Leg-

endre Transform of c (see Definition 1.4.3).
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1.4 Kantorovich Duality Formula

In this section we will prove both the general Kantorovich duality and the

particular case when the cost function is itself a distance (which will lead to

the Kantovich-Rubinstein Theorem 1.4.8)

1.4.1 General duality

Kantorovich Problem admits a dual formulation, that is the minimum value

of Kantorovich functional can be related to the supremum of

J(ϕ, ψ) =

∫
X

ϕ(x) dµ+(x) +

∫
Y

ψ(y) dµ−(y). (1.4.1)

on a suitable subset of L1(X)×L1(Y ) (or Cb(X)× Cb(Y ) as we will see that

it leads to the same value). Let us denote by Φ(µ+, µ−, c) the subset of

L1(X)× L1(Y ) given by

Φ(µ+, µ−, c) :=
{

(ϕ, ψ) ∈ L1(X)× L1(Y ) : µ+(B+
ϕ,ψ) = 0, µ−(B−

ϕ,ψ) = 0
}
,

where we set

Bϕ,ψ := {(x, y) ∈ X × Y : ϕ(x) + ψ(y) > c(x, y)},

and

B+
ϕ,ψ = π+(Bϕ,ψ), B−

ϕ,ψ = π−(Bϕ,ψ).

Finally, we set ΦCb(µ
+, µ−, c) = Φ(µ+, µ−, c) ∩ (Cb(X)× Cb(Y )).

Before the proof, we state the following simple lemma.

Lemma 1.4.1. Let (ϕ, ψ) ∈ Φ(µ+, µ−, c). Then there exist functions ϕ̃ and

ψ̃ such that ϕ̃ = ϕ and ψ̃ = ψ almost everywhere with respect to µ+ and µ−

respectively such that ϕ̃+ ψ̃ ≤ c is point-wise true.

Proof. Let us indicate by χS the indicator function of the set S (defined by

χS(x) = 1, if x ∈ S, and χS(x) = 0, if x /∈ S). Given a couple (ϕ, ψ) ∈
Φ(µ+, µ−, c), set

ϕ̃ = (1− χB+
ϕ,ψ

)ϕ, ψ̃ = (1− χB−ϕ,ψ
)ψ.

By definition ϕ̃ = ϕ and ψ̃ = ψ almost everywhere with respect to µ+ and

µ− respectively, and the inequality

ϕ̃(x) + ψ̃(y) ≤ c(x, y)

is point-wise true.
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We now prove Kantorovich Duality Formula.

Theorem 1.4.2 (Kantorovich Duality Formula). Let X and Y be Polish

spaces, let µ+ ∈ P(X) and µ− ∈ P(Y ) be probability measures on X and Y

respectively. Finally, let c : X×Y → R+∪{+∞} be a lower semicontinuous

function. Then

inf{K(µ) : µ ∈ P(µ+, µ−)} = sup{J(ϕ, ψ) : (ϕ, ψ) ∈ Φ(µ+, µ−, c)}
= sup{J(ϕ, ψ) : (ϕ, ψ) ∈ ΦCb(µ

+, µ−, c)}.
(1.4.2)

Proof of Theorem 1.4.2 (Part I). Let ϕ̃ and ψ̃ be the functions of Lemma

1.4.1. If µ ∈ P(µ+, µ−) we have:∫
X

ϕ dµ+ +

∫
Y

ψ dµ− =

∫
X

ϕ̃ dµ+ +

∫
Y

ψ̃ dµ−

=

∫
X×Y

ϕ̃+ ψ̃ dµ ≤
∫
X×Y

c(x, y) dµ.

Since the previous inequality holds for every couple (ϕ, ψ) ∈ Φ(µ+, µ−, c) and

every transport plan µ ∈ P(µ+, µ−), taking the supremum on the left-hand

side and the infimum on the right-hand side we get

sup{J(ϕ, ψ) : (ϕ, ψ) ∈ Φ(µ+, µ−, c)} ≤ inf{K(µ) : µ ∈ P(µ+, µ−)}
(1.4.3)

which gives the first desired inequality. The other inequality to be proved,

that is

sup{J(ϕ, ψ) : (ϕ, ψ) ∈ ΦCb(µ
+, µ−, c)} ≤

sup{J(ϕ, ψ) : (ϕ, ψ) ∈ Φ(µ+, µ−, c)}, (1.4.4)

is trivial.

To go on in the proof of Theorem 1.4.2 we need some basic results on

convex analysis. We begin with the definition of Legendre-Fenchel transform.

Definition 1.4.3 (Legendre-Fenchel transform). Let X be a normed

vector space and f : X → R ∪ {+∞} be a convex function. The Legendre-

Fenchel transform of f is the function f ∗ : X∗ → R ∪ {+∞} defined on the

topological dual of X by:

f ∗(x∗) = sup
x∈X

[〈x∗, x〉 − f(x)].
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Theorem 1.4.4 (Fenchel-Rockafellar Duality). Let X be a normed vec-

tor space and let F,G : X → R∪{+∞} be convex functionals. Let us suppose

that there exists x0 ∈ X such that

• F (x0) < +∞ and G(x0) < +∞;

• F is continuous at x0.

Then,

inf
x∈X

[F (x) +G(x)] = max
x∗∈X∗

[−F ∗(−x∗)−G∗(x∗)]. (1.4.5)

Proof. The proof is an application of Hahn-Banach Theorem and can be

found, for example, in [16] or [42].

Proof of Theorem 1.4.2 (Part II). We split what remains to be proved in

three parts. In the first one we assume that X and Y are compact metric

spaces and the cost function c is continuous, in the second we will drop

compactness, but c will be uniformly continuous and bounded and in the

third one we will use some approximation arguments to reach the general

case.

Part II-I. Let E = Cb(X × Y ) be the set of continuous functions on

X×Y (these functions are all bounded since the product X×Y is compact)

equipped with the ‖ · ‖∞ norm. Let us define the functionals F and G on

Cb(X × Y ) by

F (u) =

{
0 if u(x, y) ≤ −c(x, y)

+∞ otherwise

and

G(u) =


∫
X

ϕ dµ+ +

∫
Y

ψ dµ− if u ∈ S

+∞ if u /∈ S,

where S is the subset of Cb(X × Y ) given by

S = {u ∈ Cb(X × Y ) : ∃ϕ ∈ Cb(X), ψ ∈ Cb(Y ), u(x, y) = ϕ(x) + ψ(y)}.

Just before going on in the proof, note that the functional G is well-defined,

that is its value does not depend on the expression of u as the sum of a

function of the variable x and of a function of the variable y. In other words
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if u(x, y) = ϕ(x) + ψ(y) = ϕ′(x) + ψ′(y), then ϕ(x) − ϕ′(x) = ψ′(y) − ψ(y)

must be constant so that∫
X

ϕ(x) dµ+ +

∫
Y

ψ(y) dµ− =

∫
X

ϕ′(x) dµ+ +

∫
Y

ψ′(y) dµ−.

F and G are obviously convex and it is easy to see that the function F is

continuous at u(x, y) = 1, so we can use Theorem 1.4.4. Let us now compute

the left-hand side and right-hand side of equation (1.4.5). The left-hand side

is given by

inf

{∫
X

ϕ dµ+ +

∫
Y

ψ dµ− : ϕ(x) + ψ(y) ≥ −c(x, y)

}
.

Let us now compute the Legendre-Fenchel transform of F and G. We have:

F ∗(−µ) = sup
u∈Cb(X×Y )

{
−
∫
X×Y

u(x, y) dµ(x, y) : u(x, y) ≥ −c(x, y)

}
(1.4.6)

= sup
u∈Cb(X×Y )

{∫
X×Y

u(x, y) dµ(x, y) : u(x, y) ≤ c(x, y)

}
. (1.4.7)

If µ is not a non-negative measure, then we can find a continuous function

u ∈ Cb(X × Y ) such that v ≤ 0 and
∫
X×Y v dµ > 0. The supremum taken

over the functions given by u = λv with λ > 0 is +∞, so F ∗(−µ) = +∞
when µ is a non-negative measure. When µ is a non-negative measure, it

is easy to see that the supremum is given by
∫
X×Y c(x, y) dµ. Then the

Legendre-Fenchel transform of F is given by

F ∗(−µ) =


∫
X×Y

c(x, y) dµ if µ ∈M+(X × Y ),

+∞ else.

Let us now compute the Legendre-Fenchel transform of the functional G. We

have

G∗(µ) = sup

[∫
X×Y

u(x, y) dµ−
∫
X

ϕ(x) dµ+ −
∫
Y

ψ(y) dµ−
]

(1.4.8)

where the supremum is taken on the subset of Cb(X ×Y ) of functions u ∈ S.

Recall then that, when µ is a transport plan between µ+ and µ−,∫
X×Y

ϕ(x) + ψ(y) dµ =

∫
X

ϕ(x) dµ+ +

∫
Y

ψ(y) dµ−, (1.4.9)
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and, viceversa, when (1.4.9) holds for (ϕ, ψ) ∈ Cb(X) × Cb(Y ), then µ is a

transport plan between µ+ and µ−. When µ is a transport plan between µ+

and µ−, then supremum in (1.4.8) is zero. In the other cases, we can find

(ϕ′, ψ′) ∈ Cb(X)× Cb(Y ) such that∫
X×Y

ϕ′(x) + ψ′(y) dµ−
∫
X

ϕ′(x) dµ+ −
∫
Y

ψ′(y) dµ− 6= 0.

The supremum of (1.4.8) on the class of functions u given by u(x, y) =

λϕ(x) + λψ(y), λ ∈ R is then +∞. Thanks to Theorem 1.4.4 we get

inf{K(µ) : µ ∈ P(µ+, µ−)} = max{J(ϕ, ψ) : (ϕ, ψ) ∈ ΦCb(µ
+, µ−, c)}.

(1.4.10)

The equality (1.4.10) combined with inequalities (1.4.3) and (1.4.4) proves

Kantorovich Duality in compact metric spaces for continuous costs.

Part II-II. Let us suppose that the cost function c is bounded and uni-

formly continuous. Let µ∗ be an optimal transport plan given by Theorem

1.2.5. Since µ∗ is tight, for every δ > 0 there exists compact sets X0 ⊂ X

and Y0 ⊂ Y such that µ+(X \X0) ≤ δ and µ−(Y \ Y0) ≤ 0. Then, it is easy

to see that µ∗((X × Y ) \ (X0 × Y0)) ≤ 2δ. Let us define µ∗0 as

µ∗0(B) =
µ∗(B ∩ (X0 × Y0))

µ∗(X0 × Y0)
.

µ∗0 is a probability measure on X0 × Y0 whose marginals on X0 and Y0 will

be respectively indicated by µ+
0 and µ−0 . Up to the end of the proof we will

consider Kantorovich functional on the space X×Y and on the space X0×Y0

and we will denote them by K and K0 respectively, that is

K(µ) =

∫
X×Y

c(x, y) dµ, K0(µ0) =

∫
X0×Y0

c(x, y) dµ0,

where µ and µ0 are measures respectively on M(X × Y ) and M0(X0 × Y0).

Let us consider a measure µ̃0 optimal for Kantorovich functional on X0×Y0,

that is

K0(µ̃0) = inf K0(µ0),

where µ0 ranges among the set of transport plans between µ+
0 and µ−0 . We

now consider the following transport plan between µ+ and µ−:

µ̃ = µ∗(X0 × Y0)µ̃0 + χ(X0×Y0)cµ∗.
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Then, from

K(µ̃) = µ∗(X0 × Y0)K0(µ̃0) +

∫
(X0×Y0)c

c(x, y) dµ∗ ≤ K0(µ̃0) + 2δ‖c‖∞

= inf K0 + 2δ‖c‖∞,

it easily follows that

inf
µ∈P(µ+,µ−)

K(µ) ≤ K0(µ̃0) + 2‖c‖∞δ.

Let now consider the analogous of functional J , but defined on X0×Y0, that

is

J0(ϕ0, ψ0) =

∫
X0

ϕ0 dµ+
0 +

∫
Y0

ψ0 dν−0 ,

which is defined on L1(X,µ+
0 )×L1(Y, µ−0 ). Thanks to Part II-I of the proof,

inf K0 = sup J0. In particular, there exists admissible functions ϕ̃0, ψ̃0 such

that

J0(ϕ̃0, ψ̃0) ≥ sup J0 − δ.

Thanks to Lemma 1.4.1 we can suppose that ϕ̃0(x)+ ψ̃0(y) ≤ c(x, y) is point-

wise true. Since J0(0, 0) = 0, we have sup J0 ≥ 0. In particular, if µ0 is any

admissible measure we can write

J0(ϕ̃0, ψ̃0) =

∫
X×Y

ϕ̃0(x) + ψ̃0(y) dµ0,

and then the existence of (x0, y0) such that ϕ̃(x0) + ψ̃(y0) ≥ −1 is assured.

Moreover, with a careful choice of the couple (ϕ̃, ψ̃), we get

ϕ̃(x0) ≥ −1

2
, ψ̃(y0) ≥ −1

2
.

As a consequence, for every (x, y) ∈ X0 × Y0,

ϕ̃0(x) ≤ c(x, y0)− ψ̃0(y0) ≤ c(x, y0) +
1

2
,

ψ̃0(y) ≤ c(x0, y)− ϕ̃0(x0) ≤ c(x0, y) +
1

2
.

Let us now define for every x ∈ X

ϕ0(x) = inf
y∈Y0

[c(x, y)− ψ̃0(y)].
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It can be easily seen that ϕ̃0 ≤ ϕ0 on X0 and J0(ϕ0, ψ̃0) ≥ J0(ϕ̃0, ψ̃0). More-

over, the following estimates are true

ϕ0(x) ≥ inf
y∈Y0

[c(x, y)− c(x0, y)]− 1

2
,

ϕ0(x) ≤ c(x, y0)− ψ̃0(y0) ≤ c(x, y0) +
1

2
.

We now define, for y ∈ Y ,

ψ0(y) = inf
x∈X

[c(x, y)− φ0(x)].

Then, (ϕ0, ψ0) ∈ Φ(µ+, µ−, c), J0(ϕ0, ψ0) ≥ J0(ϕ0, ψ̃0) ≥ J0(ϕ̃0, ψ̃0) and

ψ0(y) ≥ inf
x∈X

[c(x, y)− c(x, y0)]−
1

2
,

ψ0(y) ≤ c(x0, y)− ϕ0(x0) ≤ c(x0, y)− ϕ̃0(x0) ≤ c(x0, y) +
1

2
.

From the inequalities above we get

ϕ0(x) ≥ −‖c‖∞ −
1

2
,

ψ0(y) ≥ −‖c‖∞ −
1

2
.

Then we have:

J(ϕ0, ψ0) =

∫
X

ϕ0 dµ+ +

∫
Y

ψ0 dµ− =

∫
X×Y

[ϕ0(x) + ψ0(y)] dµ∗

= µ∗(X0 × Y0)

∫
X0×Y0

[ϕ0(x) + ψ0(y)] dµ∗0

+

∫
X×Y

[ϕ0(x) + ψ0(y)] dµ∗0

≥ (1− 2δ)

(∫
X0

ϕ0 dµ+
0 +

∫
Y0

ψ0 dµ−0

)
− (2‖c‖∞ + 1)µ∗((X0 × Y0)

c)

≥ (1− 2δ)J0(ϕ0, ψ0)− 2(2‖c‖∞ + 1)δ

≥ (1− 2δ)J0(ϕ̃0, ψ̃0)− 2(2‖c‖∞ + 1)δ

≥ (1− 2δ)(inf K0 − δ)− 2(2‖c‖∞ + 1)δ

≥ (1− 2δ)(inf I − (2‖c‖∞ + 1)δ)− 2(2‖c‖∞ + 1)δ.
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Thanks to the arbitrary choice of δ, we finally get sup J = inf K. Note that

the uniform continuity of c implies the uniform continuity of ϕ0 and ψ0, then

the supremum of J can be either taken over Φ(µ+, µ−, c) or ΦCb(µ
+, µ−, c).

Part II-III, general case. Let us now drop the uniform continuity of the

cost function c. X and Y will be Polish spaces and the cost c will only be lower

semicontinuous and non-negative. Thanks to Corollary 1.2.2, there exists a

non-decreasing sequence of bounded non-negative and uniformly continuous

costs cn such that c = supn cn. Let us define Kn by

Kn(µ) =

∫
X×Y

cn dµ.

Thanks to Part II-II, Kantorovich Duality holds for the cost cn. Since in-

equality

inf
µ∈P(µ+,µ−)

K(µ) ≥ sup
(ϕ,ψ)∈Φ(µ+,µ−,c)

J(ϕ, ψ)

is already proved, the only inequality left to show is the opposite one. This

will be done if we prove first that

inf
µ∈P(µ+,µ−)

K(µ) = sup
n

inf
µ∈P(µ+,µ−)

Kn(µ) (1.4.11)

sup
(ϕ,ψ)∈Φ(µ+,µ−,cn)

J(ϕ, ψ) ≤ sup
(ϕ,ψ)∈Φ(µ+,µ−,c)

J(ϕ, ψ) (1.4.12)

With these two inequalities, combined with the known part of Kantorovich

Duality for the costs cn, we will get the one we are looking for.

Inequality (1.4.12) is very easy since Φ(µ+, µ−, cn) ⊆ Φ(µ+, µ−, c) and

ΦCb(µ
+, µ−, cn) ⊆ ΦCb(µ

+, µ−, c).

cn ≤ c implies Kn ≤ K and inequality

inf
µ∈P(µ+,µ−)

K(µ) ≥ sup
n

inf
µ∈P(µ+,µ−)

Kn(µ)

follows immediately. Let us now prove

inf
µ∈P(µ+,µ−)

K(µ) ≤ sup
n

inf
µ∈P(µ+,µ−)

Kn(µ).

Let µn be an optimal measure for functional Kn. Thanks to Lemma 1.2.4

and Theorem A.1.4 (Prokhorov Theorem), µn has a convergent subsequence.

Suppose that µnk ⇀ µ∗. If n ≥ m, we have inf Kn = Kn(µn) ≥ Km(µn).

Then, passing to the limit with respect to n

sup
n

inf
P(µ+,µ−)

Kn ≥ lim sup
n→+∞

Km(µn) ≥ Km(µ∗). (1.4.13)
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By the Monotone Convergence Theorem

Km(µ∗) → K(µ∗) ≥ inf
µ∈P(µ+,µ−)

K(µ). (1.4.14)

Gluing together inequalities (1.4.13) and (1.4.14) we finally achieve (1.4.11)

and the proof of Kantorovich Duality is finally complete.

Remark 1.4.5. As a consequence of the proof of Theorem 1.4.2, we have that,

when the cost function c is bounded, the supremum in equation (1.4.2) can

be taken on pairs (ϕcc, ϕc) with ϕ bounded of conjugate c-concave functions.

1.4.2 Some other results

The following results are due to Ambrosio and Pratelli. They can be found in

[4]. Theorem 1.4.6 adds some necessary and sufficiency optimality conditions.

Theorem 1.4.6. The following facts are true.

1. If µ ∈ P(µ+, µ−) is optimal and K(µ) < +∞, then µ is concentrated

on a c-monotone Borel subset of X × Y .

2. Assume that c is real-valued, µ ∈ P(µ+, µ−) is concentrated on a c-

cyclically monotone Borel subset Γ of X × Y and

µ

({
x ∈ X :

∫
Y

c(x, y) dµ−(y) < +∞
})

> 0, (1.4.15)

ν

({
y ∈ Y :

∫
X

c(x, y) dµ+(x) < +∞
})

> 0. (1.4.16)

Then µ is optimal, K(µ) < +∞, and there exists a maximizing pair

(ϕ, ψ) where ϕ is a c-concave function and ψ = ϕc.

Proof. Let (ϕn, ψn) be a maximizing sequence for the functional J and set

cn = c− ϕn − ψn. By definition, cn ≥ 0 and∫
X×Y

cn dµ→ 0.

So, we can find a sequence cn(k) and a Borel set Γ on which µ is concentrated,

c is finite on Γ and cn(k) → 0 on Γ. Let us consider a finite subset of points
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{(xi, yi)}1≤i≤p ⊆ Γ and a permutation σ. We have:

p∑
i=1

c(xi, yσ(i)) ≥
p∑
i=1

[
ϕn(k)(xi) + ψn(k)(yσ(i))

]
=

p∑
i=1

[
ϕn(k)(xi) + ψn(k)(yi)

]
=

p∑
i=1

[
c(xi, yi)− cn(k)(xi, yi)

]
.

The c-cyclical monotonicity of Γ follows now as k → +∞.

In order to show the second part of the theorem, first make a partition

of Γ in subsets Γk such that Γ = ∪kΓk and c|Γk is continuous. We now build

a c-concave Borel function ϕ : X → [−∞,+∞) such that for µ+-a.e. x ∈ X
we have

ϕ(x′) ≤ ϕ(x) + c(x′, y)− c(x, y) for every x′ ∈ X and (x, y) ∈ Γ. (1.4.17)

This fact is achieved with a generalized Rockafellar construction as in [43].

Set

ϕ(x) = inf{c(x, yp)− c(xp, yp) + c(xp, yp−1)− c(xp−1, yp−1) + · · ·
+ c(x1, y0)− c(x0, y0)},

where (x0, y0) ∈ Γ1 is fixed and the infimum runs among all integers p and

collections {(xi, yi)}1≤i≤p ⊆ Γ. ϕ is a Borel function since it can be written

as

ϕ = lim
p→+∞

lim
m→+∞

lim
l→+∞

ϕp,m,l,

where ϕp,m,l is defined as the infimum among all finite subsets of p points

{(xi, yi)}1≤i≤p of Γm as

ϕp,m,l(x) = inf{cl(x, yp)− c(xp, yp) + cl(xp, yp−1)− c(xp−1, yp−1) + · · ·
+ cl(x1, y0)− c(x0, y0)},

and ϕp,m,l is lower semicontinuous. With the same argument of the proof

of Theorem 1.3.8 it can be checked that ϕ(x0) = 0 and inequality (1.4.17)

holds. Moreover, choosing x′ = x0 we obtain that ϕ > −∞ on πX(Γ). Since

µ is concentrated on Γ, πX(Γ) has full measure with respect to µ+, that is

ϕ(x) ∈ R for µ+-a.e. x.

Now, we have to show that ψ := ϕc is µ−-measurable, real-valued µ−-a.e.

and that ϕ+ψ = c on Γ. It is sufficient to study ψ on πY (Γ) since µ− = πY#µ
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is concentrated on the Borel set πY (Γ). Thanks to inequality (1.4.17), for

y ∈ πY (Γ) we have

ψ(y) = c(x, y)− ϕ(x) ∈ R, ∀x ∈ Γy := {x : (x, y) ∈ Γ}.

Consider now the disintegration of µ =
∫
X
µy ⊗ µ− of µ with respect to y

and observe that µy is concentrated on Γy for µ−-a.e. y, therefore

ψ(y) =

∫
X

[c(x, y)− ψ(x)] dµy(x), µ−-a.e. y ∈ Y .

Since y 7→ µy is a Borel measure-valued map we obtain that ψ is µ−-

measurable.

Let us now prove that ϕ+ and ψ+ are integrable with respect to µ+ and

µ−. By condition (1.4.15) choose x such that∫
Y

c(x, y) dµ−(y) < +∞

and ϕ(x) ∈ R. Since ψ+(y) ≤ c(x, y)+ϕ−(x), by integration on Y , we obtain

ψ+ ∈ L1(Y, µ−). In the same way, we can prove that ϕ ∈ L1(X,µ+).

From ϕ+ ∈ L1(X,µ+) and ψ+ ∈ L1(Y, µ−) we deduce∫
X×Y

(ϕ+ ψ) dµ̃ =

∫
X

ϕ dµ+

∫
Y

ψ dµ− ∈ R ∪ {−∞}, ∀µ̃ ∈ P(µ+, µ−).

Choosing µ̃ = µ and recalling that ϕ + ψ = c we obtain
∫
X×Y c(x, y) dµ <

+∞, ϕ ∈ L1(X,µ+) and ψ ∈ L1(Y, µ−). Moreover,∫
X×Y

c dµ̃ ≥
∫
X×Y

(ϕ+ ψ) dµ̃ =

∫
X

ϕ dµ+ +

∫
Y

ψ dµ−

=

∫
X×Y

(ϕ+ ψ) dµ =

∫
Γ

(ϕ+ ψ) dµ =

∫
X×Y

c dµ,

that is µ is optimal for K and the pair (ϕ, ψ) is optimal for J .

A Borel function ϕ ∈ L1(X,µ+) is a maximal Kantorovich potential if

the pair (ϕ, ϕc) is a maximizer for the functional J introduced in (1.4.1).

Thanks to Theorem 1.4.6 we can state the optimality of a transport plan via

the optimality of a maximal Kantorovich potential. This is the content of

the next theorem.
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Theorem 1.4.7. Let µ+ ∈ P(X) and µ− ∈ P(Y ). Assume that c is real

valued, sup J = inf K < +∞ and that conditions (1.4.15) and (1.4.16) are

satisfied. Then there exists a maximizing pair (ϕ, ϕc) for the functional J .

Moreover, µ ∈ P(µ+, µ−) is optimal if and only if

ϕ(x) + ϕc(y) = c(x, y), µ-a.e. in X × Y . (1.4.18)

Proof. The existence of a maximizing pair is a consequence of the last part of

the proof of Theorem 1.4.6. Suppose now that µ ∈ P(µ+, µ−) is an optimal

transport plan. From Kantorovich Duality it follows that∫
X×Y

[c(x, y)− ϕ(x)− ϕc(y)]dµ = 0. (1.4.19)

Since the integrand is positive, we must have

ϕ(x) + ϕc(y) = c(x, y), µ-a.e. in X × Y .

Viceversa, if equation (1.4.18) holds then also equation (1.4.19) holds. This

means J(ϕ, ϕc) = K(µ), that is µ has to be optimal (since (ϕ, ϕc) is optimal).

1.4.3 Duality when the cost function is a distance

Recall that if ϕ ∈ Lip(X), then

‖ϕ‖Lip := sup
x 6=y

|ϕ(x)− ϕ(y)|
d(x, y)

.

Theorem 1.4.8 (Kantorovich-Rubinstein Theorem). Let X be a Polish

space and let d be a lower semicontinuous metric on X. Fix µ+, µ− ∈ P(X).

Let us consider the Kantorovich functional associated to the cost function d,

that is

µ 7→ Kd(µ) =

∫
X×X

d(x, y) dµ.

Then,

inf{Kd(µ) : µ ∈ P(µ+, µ−)}

= sup

{∫
X

d(µ− ν) : ϕ ∈ Lip(X) ∩ L1(‖µ+ − µ−‖), ‖ϕ‖Lip ≤ 1

}
.

(1.4.20)

Moreover, the supremum in formula (1.4.20) does not change if we add the

condition of ϕ bounded.
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Proof. Set

dn :=
d

1 + d/n
.

dn is again a distance and satisfies dn(x, y) ↗ d(x, y). Arguing as in Part

II-III of Theorem 1.4.2 we reduce to prove Theorem 1.4.8 for d bounded.

Then in the following we replace d by dn and suppose d bounded. We have

to show that

sup
(ϕ,ψ)∈Φ(µ+,µ−,d)

J(ϕ, ψ) = sup

{∫
X

ϕ d(µ+ − µ−) : ‖ϕ‖Lip ≤ 1)

}
.

Thanks to Remark 1.4.5

sup
(ϕ,ψ)∈Φ(µ+,µ−,d)

J(ϕ, ψ) = sup
ϕ∈L1(X,µ+)

J(ϕdd, ϕd).

By definition, ϕd is 1-Lipschitz. Since ϕd is 1-Lipschitz, we have

−ϕd(x) ≤ d(x, y)− ϕd(y) (1.4.21)

and then

−ϕd(x) ≤ inf
y

[d(x, y)− ϕd(y)].

On the other hand, setting x = y in the left-hand side of inequality (1.4.21)

inf
y

[d(x, y)− ϕd(y)] ≤ d(x, x)− ϕd(x) = −ϕd(x).

Then, summing up,

−ϕd(x) ≤ inf
y∈X

[d(x, y)− ϕd(y)] ≤ −ϕd(x),

that is, ϕdd = −ϕd. Finally,

sup
(ϕ,ψ)∈Φ(µ+,µ−,d)

J(ϕ, ψ) ≤ sup
ϕ∈L1(X,µ+)

J(ϕdd, ϕd)

= sup
ϕ∈L1(X,µ+)

J(−ϕd, ϕd) ≤ sup
‖ϕ‖Lip≤1

J(ϕ,−ϕ)

≤ sup
(ϕ,ψ)∈Φ(µ+,µ−,d)

J(ϕ, ψ),

which concludes the proof.
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1.5 Wasserstein distances

1.5.1 Definition and basic properties

In this section we review some basic concepts and properties about Wasser-

stein distances. In particular we will relate the convergence with respect to

Wasserstein distance to the weak convergence of measures.

Let X be a Polish space and let d be a complete distance which metrizes

X. Given p ≥ 0, we will denote by Pp(X) the set of Borel probability

measures with finite momentum of order p, that is all measures µ ∈ P(X)

such that ∫
X

[d(x0, x)]p dµ(x) < +∞ (1.5.1)

(for p = 0 we define [d(x, y)]0 as limp→0+[d(x, y)]p = χ{x 6=y}) for a given point

x0 (actually the finiteness of integral in formula (1.5.1) is independent on the

choice of the point x0). It is clear that when d is bounded (for example when

X is compact) P(X) = Pp(X).

Definition 1.5.1 (Wasserstein distances). Given µ+, µ− ∈ Pp(X), the

Wasserstein distance of order p is defined by

Wp(µ
+, µ−) :=

[
inf

µ∈P(µ+,µ−)

∫
X×X

[d(x, y)]p dµ(x, y)

]min{1, 1
p}
. (1.5.2)

Example 1.5.2. Via Theorem 1.4.8 the Wasserstein distance of order p = 1

is given also by

W1(µ
+, µ−) = sup

‖ϕ‖Lip≤1

∫
X

ϕ d(µ+ − µ−).

Via Theorem 1.4.8 again it can be proved that the Wasserstein distance of

order p = 0 is just half of the total variation of µ+ − µ−, that is

W0(µ
+, µ−) =

1

2
‖µ+ − µ−‖.

In the rest of this section we want to prove some useful properties of

this family of distances. But before we start, let us prove that Wasserstein

distances are actually distances.

Theorem 1.5.3. Given µ0, µ1 ∈ Pp(X), we have always Wp(µ0, µ1) < +∞.

Moreover, given µ0, µ1, µ2 ∈ Pp(X)
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• Wp(µ0, µ1) = 0 if and only if µ0 = µ1;

• Wp(µ0, µ1) = Wp(µ1, µ0);

• Wp(µ0, µ2) ≤ Wp(µ0, µ1) +Wp(µ1, µ2).

The next step before the proof of Theorem 1.5.3 is the following “gluing

lemma” which we are going to prove in a quite general setting.

Lemma 1.5.4 (Gluing Lemma). Let µ1, µ2, µ3 be probability measures on

the spaces on X1, X2, X3 respectively and let µ12 ∈ P(µ1, µ2) and µ23 ∈
P(µ2, µ3). Then there exists a probability measure µ ∈ P(X1 × X2 × X3)

such that its marginals on X1×X2 and X2×X3 are µ12 and µ23 respectively.

Proof. Thanks to Theorem A.2.2, if µ is a probability measure on X × Y

with marginal µ0 on X there exists a map x ∈ X 7→ µx ∈ P(Y ) such that

for every u ∈ Cb(X × Y ),∫
X×Y

u(x, y) dµ(x, y) =

∫
X

[∫
Y

u(x, y) dµx(y)

]
dµ0(x),

or, shortly,

µ =

∫
X

(δx ⊗ µx) dµ0(x).

Let us now consider the disintegration of µ12 and µ23, that is maps X2 →
P(X1) and X2 → P(X3) denoted by x2 7→ µ12,x2 and x2 7→ µ23,x2 respectively

such that

µ12 =

∫
X2

µ12,x2 ⊗ δx2 dµ2(x2),

µ23 =

∫
X2

δx2 ⊗ µ23,x2 dµ2(x2).

The measure µ we are seeking is then given by

µ =

∫
X2

µ12,x2 ⊗ δx2 ⊗ µ23,x2 dµ2(x2),

as it can be easily checked.

Proof of Theorem 1.5.3. Clearly, Wp(µ0, µ0) = 0 since in this case the iden-

tity map is admissible and the transport plan induced by it realizes the

infimum. Let us suppose on the contrary that Wp(µ0, µ1) = 0 and let µ be



1.5. Wasserstein distances 41

an optimal transport plan between µ0 and µ1. Then, the diagonal set in

X ×X has to be charged with full measure by µ and given ϕ ∈ Cb(X)∫
X

ϕ(x) dµ0(x) =

∫
X×X

ϕ(x) dµ(x, y)

=

∫
X×X

ϕ(y) dµ(x, y) =

∫
X

ϕ(y) dµ1(y),

which implies µ0 = µ1.

Note that if µ is a plan between µ0 and µ1, and S : X × X → X × X

is the map given by S(x, y) = (y, x), then S#µ is a plan between µ1 and µ0.

Moreover, thanks to the symmetric properties of d,∫
X×X

d(x, y) dµ(x, y) =

∫
X×X

d(x, y) d(S#µ)(x, y).

The symmetric property Wp(µ0, µ1) = Wp(µ1, µ0) is then straightforward.

Let us now prove the triangular inequality and the finiteness of Wp on

Pp(X) × Pp(X). When 0 ≤ p ≤ 1 both easily follows from the fact that

(x+y)p ≤ xp+yp for every x, y ≥ 0, while when p > 1 both are consequences

of the Gluing Lemma 1.5.4. So we skip the proof for the case 0 ≤ p ≤ 1 and

go straight into the one of the case p > 1. Let µ01 and µ12 be optimal

transport plans between the pairs µ0, µ1 and µ1, µ2. Let µ ∈ P(X ×X ×X)

be the measure given by the Gluing Lemma 1.5.4 and µ02 the image of µ

onto the first and third factor of X ×X ×X. Then we have:

Wp(µ0, µ1) ≤
(∫

X×X
[d(x0, x2)]

p dµ01(x0, x2)

)1/p

=

(∫
X×X×X

[d(x0, x2)]
p dµ(x0, x1, x2)

)1/p

≤
(∫

X×X×X
[d(x0, x1) + d(x1, x2)]

p dµ(x0, x1, x2)

)1/p

.

Thanks to Minkowski inequality(∫
X×X×X

[d(x0, x1) + d(x1, x2)]
p dµ(x0, x1, x2)

)1/p

≤
(∫

X×X×X
[d(x0, x1)]

p dµ(x0, x1, x2)

)1/p

+

(∫
X×X×X

[d(x1, x2)]
p dµ(x0, x1, x2)

)1/p
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=

(∫
X×X

[d(x0, x1)]
p dµ01(x0, x1)

)1/p

+

(∫
X×X

[d(x1, x2)]
p dµ12(x1, x2)

)1/p

= Wp(µ0, µ1) +Wp(µ1, µ2).

The triangular inequality

Wp(µ0, µ1) ≤ Wp(µ0, µ1) +Wp(µ1, µ2)

is then proved. Note that this inequality also implies the finiteness of Wp on

Pp(X)× Pp(X) since for every µ ∈ P(X)

Wp(µ, δQ) =

(∫
X

[d(x,Q)]p dµ

)1/p

,

so that when (µ+, µ−) ∈ Pp(X)× Pp(X)

Wp(µ0, µ1) ≤ Wp(µ0, δQ) +Wp(δQ, µ2)

=

∫
X

[d(x,Q)]p dµ+ +

∫
X

[d(x,Q)]p dµ− < +∞,

which concludes the proof.

Remark 1.5.5 (Equivalence of Wasserstein distances). Note that Jensen’s

inequality implies that Wp ≤ Wp′ whenever p ≤ p′. On the other hand it is

easy to check that when d ≤ R we have (Wp′/R)p
′
≤ (Wp/R)p.

1.5.2 Topological properties

In this subsection the main result about Wasserstein spaces is proved. The-

orem 1.5.6 will relate the convergence of probability measures with respect

to the Wasserstein distance to the weak convergence. The convergence with

respect to the Wasserstein distance will be proved to be equivalent to the

weak one in compact spaces.

Theorem 1.5.6 (Wasserstein distances and weak convergence). Let

1 ≤ p < +∞, let {µn}n∈N be a sequence of probability measures in Pp(X)

and let µ ∈ P(X). Then, the following statements are equivalent:

1. Wp(µn, µ) → 0 for n→ +∞;
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2. µn → µ in the weak sense and the following tightness condition is

satisfied

lim
R→+∞

lim sup
n→+∞

∫
X\B(x0,R)

[d(x0, x)]p dµn(x) = 0 (1.5.3)

for some point (and then for any) x0 ∈ X;

3. µn → µ in weak sense and the p-momenta converge, that is for some

point (and then for any) x0 ∈ X∫
X

[d(x, x0)]
p dµn(x) →

∫
X

[d(x, x0)]
p dµ(x) (1.5.4)

for n→ +∞;

4. if ϕ ∈ C(X) satisfies the growth condition

|ϕ(x)| ≤ C[1 + d(x0, x)p] (1.5.5)

for some x0 ∈ X and C ∈ R, then∫
X

ϕ dµn →
∫
X

ϕ dµ (1.5.6)

for n→ +∞.

We split the proof of Theorem 1.5.6 for convenience.

Proof of Theorem 1.5.6, Part I. First, let us reduce the proof of the theorem

to the equivalence of 1 and 3.

3 ⇒ 2. We have

lim
k→+∞

∫
X

[inf{d(x0, x), R}]p dµk(x) =

∫
X

[inf{d(x0, x), R}]p dµ(x);

on the other hand, by the Monotone Convergence Theorem,

lim
R→+∞

∫
X

[inf{d(x0, x), R}]p dµ(x) =

∫
X

[d(x0, x)]p dµ(x).

Combining the previous inequalities with (1.5.4) we get

lim
R→+∞

lim
k→+∞

∫
X

d(x0, x)p − inf{[d(x0, x)]p, Rp} dµk(x) = 0.
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When d(x0, x) ≥ 2R, d(x0, x)p−Rp ≥ (1−2−p)d(x0, x)p. It then follows that

(1.5.3) is satisfied.

2 ⇒ 4. Consider a function ϕ satisfying the growth condition (1.5.5).

Then we can write

ϕ = ϕR + ψR

where ϕR(x) = inf{ϕ(x), C(1 +Rp)} and ψR(x) = ϕ(x)− ϕR(x). Note that

ψR(x) ≤ Cd(x0, x)pχ{x∈X : d(x0,x)≥R}.

Then,∣∣∣∣∫
X

ϕ dµk −
∫
X

ϕ dµ

∣∣∣∣ ≤ ∣∣∣∣∫
X

ϕR d(µk − µ)

∣∣∣∣
+ C

∫
{x∈X : d(x0,x)≥R}

d(x0, x)p dµk(x)

+ C

∫
{x∈X : d(x0,x)≥R}

d(x0, x)p dµ(x).

Then,

lim sup
k→+∞

∣∣∣∣∫
X

ϕ(x) dµk −
∫
X

ϕ(x) dµ

∣∣∣∣
≤ C lim sup

k→+∞

∫
{x∈X : d(x0,x)≥R}

d(x0, x)pd(µk + µ)(x).

When R→ +∞ condition (1.5.6) is achieved.

4 ⇒ 3. This claim is trivial.

This shows that what is left to prove is only the equivalence of 1 and

3. We now deal with the case the metric on X is bounded. In this case

the condition of convergence of the momenta is a consequence of the weak

convergence.

Proof of Theorem 1.5.6, Part II. Let us then suppose that the distance is

bounded, d ≤ 1. Recall that by Remark 1.5.5 all Wasserstein distances are

equivalent to W1, so we just need to prove the theorem for p = 1.

(1) ⇒ (3). Let us assume that W1(µn, µ) → 0. Note that by Theorem

1.4.8, this is equivalent to

lim
n→+∞

(
sup

‖ϕ‖Lip≤1

∫
X

ϕ d(µn − µ)

)
= 0. (1.5.7)
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From condition (1.5.7) we get

lim
n→+∞

∫
X

ϕ dµn =

∫
X

ϕ dµ (1.5.8)

for any Lipschitz function ϕ. But thanks to Lemma 1.2.1 and Lemma 1.2.3

any ϕ ∈ Cb(X) can be approximated by sequences of Lipschitz and uniformly

bounded functions ϕ
n

and ϕn point-wise increasing and decreasing such that

lim
n→+∞

ϕ
n

= ϕ = lim
n→+∞

ϕn,

it easily follows that (1.5.8) is true also for any ϕ ∈ Cb(X).

(3) ⇒ (1). Let us assume that µn ⇀ µ and fix x0 ∈ X. If we prove that

lim
n→+∞

(
sup

ϕ∈Lip1;x0
(X)

∫
X

ϕ d(µn − µ)

)
= 0,

where Lip1,x0
is the set of Lipschitz function vanishing at x0 and with a

Lipschitz constant less or equal than 1, we are done since condition (1.5.7)

is implied. From Theorem A.1.4 we obtain a sequence of compact sets Kn

such that supk µk(Kn) ≤ 1/n and µ(Kc
n) ≤ 1/n. We assume that x0 ∈ K1.

Then, for every n ≥ 1 the set

{ϕχKn : ϕ ∈ Lip1,x0
}

is a subset of Lip1,x0
and by Ascoli-Arzelà Theorem it is a compact subset of

Cb(Kn). Via a diagonal argument it can be then proved that for any sequence

of ϕn ∈ Lip1,x0
(X) we can extract a subsequence uniformly convergent on

each Kn to some bounded Lipschitz (because uniform limit of a sequence of

uniformly bounded and uniformly Lipschitz functions) function ϕ∞ defined

on ∪nKn. We will apply this statement to a family ϕn such that

sup
ϕ∈Lip1,x0

(X)

∫
X

ϕ d(µn − µ) ≤
∫
X

ϕn d(µn − µ) +
1

n
,

finding a convergent subsequence ϕn (not relabelled) converging uniformly on

each Kn to a function ϕ∞ ∈ Lip(∪nKn). The function ϕ∞ can be extended

to a function in Lip1(X). We then have that∫
X

ϕk d(µk−µ) ≤
∣∣∣∣∫
Kn

(ϕk − ϕ∞) d(µk − µ)

∣∣∣∣+ ∣∣∣∣∫
Kc
n

(ϕk − ϕ∞) d(µk − µ)

∣∣∣∣
+

∣∣∣∣∫
X

ϕ∞ d(µk − µ)

∣∣∣∣ .
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For any n, thanks to the uniform convergence of ϕk to ϕ∞,

lim
k→+∞

∣∣∣∣∫
Kn

(ϕk − ϕ∞) d(µk − µ)

∣∣∣∣ = 0.

Since the functions ϕk and ϕ∞ are uniformly bounded in k, then∣∣∣∣∫
Kc
n

(ϕk − ϕ∞) d(µk − µ)

∣∣∣∣ ≤ C(µk(K
c
n) + µ(Kc

n)) ≤ 2C

n
,

then as n approaches +∞ the second addendum goes to 0 uniformly with

respect to k. The third addendum goes to zero because of the weak conver-

gence of µk to µ. The proof is then achieved passing to the limit n → +∞
and then k → +∞.

Lemma 1.5.7. Let X be a Polish space and d its distance. Given R > 0,

let Wp and Wp,R be Wasserstein distances with respect to the distance d and

dR := inf{d,R}. Let µn and µ0 be in Pp(X). Then,

Wp(µn, µ0) → 0 ⇐⇒ Wp,R(µn, µ0) → 0.

Proof. Since d ≥ dR from Wp(µn, µ0) → 0 follows that Wp,R(µn, µ0) → 0. To

prove the other claim, let us consider a transport plan between µn and µ0

W p
p (µn, µ0) ≤

∫
X×X

[d(x, y)]p dµ

=

∫
{d≤R}

[d(x, y)]p dµ+

∫
{d≤R}c

[d(x, y)]p dµ

≤
∫
{d≤R}

[d(x, y)]p dµ

+ 2p−1

[∫
{d>R}

[d(x, z0)]
p dµn +

∫
{d>R}

[d(z0, y)]p dµ0

]
≤
∫
X×X

[dR(x, y)]p dµ

+ 2p−1

[∫
{d>R}

[d(x, z0)]
p dµn +

∫
{d>R}

[d(z0, y)]p dµ0

]
,

and passing to the infimum on the transport plan µ we get

W p
p (µn, µ0) ≤ W p

p,R(µn, µ0) +

[∫
{d>R}

[d(x, z0)
p] dµn +

∫
{d>R}

[d(z0, y)p] dµ0

]
.

Recall that, by Part II of the proof of Theorem 1.5.6, the convergence with

respect to Wp,R is equivalent to the weak convergence. Passing to the limit

as n→ +∞ and then to the limit as R→ +∞ we prove the other claim.
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We finally deal with the case of an unbounded distance.

Proof of Theorem 1.5.6, Part III. First of all, note that µk ⇀ µ implies∫
X

[d(x0, x)]p dµ(x) = lim
R→+∞

lim
k→+∞

∫
X

[inf{d(x0, x), R}]p dµk(x)

≤ lim inf
k→+∞

∫
X

[d(x0, x)]p dµk(x).

So, the convergence of the momenta is equivalent to

lim sup
k→+∞

∫
X

[d(x0, x)]p dµk(x) ≤
∫
X

[d(x0, x)]p dµ(x).

The proof will be then complete if we prove that the convergence with respect

Wp implies the above inequality. Recall that given ε > 0 there exists a

constant Cε such that for all nonnegative real numbers a, b we have

(a+ b)p ≤ (1 + ε)ap + Cεb
p.

We then have

d(x0, x)p ≤ (1 + ε)[d(x0, y)]p + Cε[d(x, y)]p.

Now let us consider a sequence µk such that Wp(µk, µ) → 0 and as sequence

of optimal transport plans πk between µk and µ. We then have∫
X

[d(x0, x)]p dµk(x) ≤ (1 + ε)

∫
X

[d(x0, y)]p dµ(y)

+ Cε

∫
X×Y

[d(x, y)]p dπk(x, y).

The second addendum goes to zero being equal to W p
p (µk, µ) up to a constant.

The inequality reduces to

lim sup
k→+∞

∫
X

[d(x0, x)]p dµk(x) ≤ (1 + ε)

∫
X

[d(x0, x)]p dµ(x),

and passing to the limit ε→ 0 the proof is achieved.

1.6 Displacement convexity

In this section we will present some useful results due to McCann (see [35])

and generalized by Ambrosio, Gigli and Savaré (see [1]). The results we are

going to show refers to the case p = 2 even though in Chapter 3 we will use

it in the general case p > 1. The missing proofs can be found [1].
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1.6.1 The case p = 2

Given two absolutely continuous (with respect to the Lebesgue measure)

µ0, µ1 by Theorem 1.3.12 there exists a unique gradient of a convex function

φ such that (∇φ)#µ0 = µ1 which is optimal for Monge problem. Thanks to

φ we can build an interpolation curve between µ0 and µ1 in a particular way

which will be very useful.

Definition 1.6.1 (Displacement interpolation). Given two absolutely

continuous (with respect to the Lebesgue measure) µ0, µ1, let∇φ the function

given by Theorem 1.3.12. The displacement interpolation between µ0, µ1 is

defined by

[µ0, µ1]t := [(1− t) Id +t∇φ]#µ0. (1.6.1)

Remark 1.6.2. Since (1 − t) Id +t∇φ = ∇φt with φt = [(1 − t)| · |2/2 + tφ]

is the gradient of a convex function, it is the optimal map between µ0 and

µt := [µ0, µ1]t. Then, we have:

W 2
2 (µ0, µt) =

∫
Rn
|x− [(1− t)x+ t∇φ(x)]|2 dµ+(x)

= t2
∫

Rn
|x−∇φ(x)|2 dµ+(x) = t2W 2

2 (µ0, µ1).

Then, W2(µ0, µt) = tW2(µ0, µ1), that is the curve t 7→ µt is a geodesic be-

tween µ0 and µ1.

Proposition 1.6.3 (Basic properties). The following statements are true:

1. [µ, ν]t = [ν, µ]1−t;

2. [[µ, ν]t, [µ, ν]t′ ]s = [µ, ν](1−s)t+st′;

3. if µ or ν are absolutely continuous with respect to the Lebesgue measure,

then also [µ, ν]t is so for every t ∈ (0, 1).

Proof. We will recall some properties of convex functions.

1. First, note that ∇φ∗ = (∇φ)−1, so µ0 = (∇φ∗)#µ1. Then we have:

[µ0, µ1]t = [(1− t) Id +t∇φ]#µ0 = [(1− t) Id +t∇φ]#(∇φ∗)#µ1

= [(1− t)∇φ∗ + t Id]#µ1 = [µ1, µ0]1−t.
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2. It follows from a straightforward computation.

3. Our claim is that if B is a Borel set of zero Lebesgue measure, then

(∇φt)−1(B) = 0. Let us consider the function φt defined by φt(x) =

(1−t)|x|2/2+tφ(x). The convexity of φ implies the strict convexity of φt
so that ∇φ must be a single-valued function on its domain. Moreover,

since

|∇φt(x)−∇φt(y)||x− y| ≥ 〈∇φt(x)−∇φt(y), x− y〉
= (1− t)|x− y|2 + t〈∇φ(x)−∇φ(y), x− y〉.

This shows that (∇φt)−1 is (1−t)−1-Lipschitz, so by standard geometric

measure results (∇φt)−1(B) = 0 for every Borel set B of null Lebesgue

measure.

The proof is then concluded.

Remark 1.6.4. An alternative way to define the displacement interpolation

would be to consider the optimal transport plan µ of Kantorovich Problem

(the uniqueness of the optimal transport plan is guaranteed by Theorem

1.3.12 in the case of an absolutely continuous pair of measures) and then

define the displacement interpolation as

[µ0, µ1]t := (Φt)#µ, (1.6.2)

where (Φt)# is the map defined by Φt(x, y) = (1 − t)x + ty. Of course, in

this case the displacement interpolation between them may not be unique.

This alternative notion will be useful in the generalization to the case p > 1

in Section 1.6.3. We will go deeper in the next section.

We now go on with the notion of convexity we are interested in, that is

displacement convexity.

Definition 1.6.5 (Displacement convex sets). Let us denote by Pac(RN)

the subset of P(RN) which are absolutely continuous with respect to the

Lebesgue measure. A subset of P ⊆ Pac(RN) is said to be displacement

convex if for all µ0, µ1 ∈ P the displacement interpolation satisfies [µ0, µ1]t ∈
P .

Note that Pac(RN) is a displacement convex set.
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Definition 1.6.6 (Displacement convex functionals). Let P ⊆ Pac a

displacement convex set and F : P → R∪{+∞}. F is said to be displacement

convex on P if for every µ0, µ1 ∈ P the function

t 7→ F ([µ0, µ1]t)

is convex on the interval [0, 1].

Remark 1.6.7. In view of the alternative definition of displacement interpo-

lation given by formula (1.6.2), Definition 1.6.5 and Definition 1.6.6 can be

generalized requiring that the characterizing condition holds for at least one

displacement interpolation (recall that the uniqueness is no more assured).

Definition 1.6.8 (Displacement convexity, again). A functional F de-

fined on a displacement convex subset P ⊆ Pac is said to be strictly dis-

placement convex if for every couple µ0, µ1 ∈ Pac(RN) such that µ0 6= µ1 the

function

t 7→ F ([µ0, µ1]t)

is strictly convex on [0, 1]. It is said to be λ-uniformly displacement convex

for some λ ∈ R+ if given µ0, µ1 we have

d2

dt2
F ([µ0, µ1]t) ≥ λW 2

2 (µ0, µ1)

It is said to be displacement semiconvex if for some constant C > 0 we have

d2

dt2
F ([µ0, µ1]t) ≥ −CW 2

2 (µ0, µ1).

In the next part we will study some functionals which will come out to

be displacement convex. These results have been developed by McCann in

[35].

1.6.2 Displacement convex functionals, case p = 2

The functionals we are going to consider are of three types.

The first type is the internal energy functional U and is defined as U(µ) :=

+∞ on µ ∈ P2(RN) \ Pac(RN) and as

U(µ) :=

∫
RN
U(ρ(x))dx (1.6.3)
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if µ = ρLN is an absolutely continuous measure given by the density ρ. The

function U is called internal energy density and will be a measurable function

U : R+ → R+ ∪ {+∞} such that U(0) = 0 and U not identically +∞ on

R+ \ {0}.
The second kind is the potential energy functional V which is defined as

V(µ) := +∞ on µ ∈ Pp(RN) \ Pac(RN) and as

V(µ) :=

∫
RN
V (x)ρ(x)dx (1.6.4)

if µ = ρLN is an absolutely continuous measure and its density is given by

ρ. The function V will be a measurable function RN → R∪ {+∞} bounded

from below.

The last kind is then the interaction energy functional W defined by

W(µ) := +∞ on Pp(RN) \ Pac(RN) and by

W(µ) :=
1

2

∫
RN
W (x− y)ρ(x)ρ(y)dxdy (1.6.5)

if µ = ρLN is an absolutely continuous measure with respect to the Lebesgue

measure with density ρ. The function W will be a measurable function

RN → R ∪ {+∞} bounded from below.

The next three theorems are main results due to McCann in [35].

Theorem 1.6.9 (Displacement convexity of internal energy). Let P
be a displacement convex subset of Pac(RN). Then, if U satisfies U(0) = 0

and the map

r 7→ ψ(r) := rNU(r−N)

is convex non-increasing on ]0,+∞[, then U is displacement convex on P.

Theorem 1.6.10 (Displacement convexity of potential energy). Let

P be a displacement convex subset of P2(RN). Convexity, strict convex-

ity, λ-uniform convexity, semiconvexity of constant C of V imply respec-

tively the displacement convexity, strict displacement convexity, λ-uniform

displacement convexity, displacement semiconvexity of constant C of V.

Theorem 1.6.11 (Displacement convexity of interaction energy). Let

P be a displacement convex subset of P2(RN). Convexity, semiconvexity of

constant C of W imply respectively the displacement convexity, displacement

semiconvexity of constant C of W. Strict convexity, λ-uniform convexity of

W respectively imply strict displacement convexity and λ-uniform convexity

of W on the subspace Pm of P of measures having a given m ∈ RN as mean.
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Notation. Let µ0 and µ1 be probability measures, ρ0 and ρ1 their densities.

In the following we will write the displacement interpolation as

µt = (Id−tθ)#µ0,

with θ = Id−∇ϕ and ϕ convex.

Proof of Theorem 1.6.9, internal energy. As a consequence of Theorem 4.4

of [35], we have

U(µt) =

∫
RN
U

(
ρ0

det(Id−t∇θ(x))

)
det(Id−t∇θ(x)) dx (1.6.6)

Note that the integrand in equation (1.6.6) is the composition of t 7→ λ =

det(Id−tS)1/N and λ 7→ U(r/λN)λN , where r = ρ(x) and S = ∇θ(x) is a

symmetric matrix and S ≤ Id. The convexity of the integrand of equation

(1.6.6) and of the whole integral will be established if we prove the concavity

of the map t 7→ det(Id−tS)1/N . This will follow from Lemma 1.6.12.

Lemma 1.6.12 (Arithmetic-geometric inequality). The following state-

ments are true.

1. Let {xi}1≤i≤n and {λi}1≤i≤n be real numbers satisfying xi ≥ 0, λi ≥
0,
∑n

i=1 λi = 1. Then,

n∑
i=1

λixi ≥
n∏
i=1

xλii . (1.6.7)

2. Let A and B be two nonnegative symmetric matrices and λ ∈ [0, 1].

Then

det(λA+ (1− λ)B)1/N ≥ λ(detA)1/N + (1− λ)(detB)1/N . (1.6.8)

3. Let A and B be two nonnegative symmetric matrices and λ ∈ [0, 1].

Then

det(λA+ (1− λ)B) ≥ (detA)λ(detB)1−λ. (1.6.9)

Proof. For sake of completeness we give a full proof of these inequalities.

1. It is an immediate consequence of the concavity of the logarithmic

function.
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2. First, it is sufficient to prove

det(A+B)1/N ≥ (detA)1/N + (detB)1/N

Thanks to a density argument, we may also suppose that A is invertible.

So, we must prove that

det(Id +C)1/N ≥ det(Id)1/N + (detC)1/N = 1 + (detC)1/N ,

with C symmetric and nonnegative. C can be diagonalized and if

ci, 1 ≤ i ≤ N are its eigenvalues, then our inequality reduces to

N∏
i=1

(1 + ci)
1/N ≥ 1 +

(
N∏
i=1

ci

)1/N

,

which is a consequence of the arithmetic-geometric inequality (1.6.7).

3. Consider inequality (1.6.8) and apply the well known inequality

λx+ (1− λ)y ≥ xλy1−λ

(inequality (1.6.7) with n = 2). Setting x = (detA)1/N and y =

(detB)1/N . We then have

det(λA+ (1− λ)B)1/N ≥ λ(detA)1/N + (1− λ)(detB)1/N

≥ (detA)λ/N(detB)(1−λ)/N .

We achieve the third claim raising to the N -th power.

This concludes the proof.

For sake of completeness we will prove Theorems 1.6.10 and 1.6.11, even

though we will not use these results later.

Proof of Theorem 1.6.10, potential energy. This is the easiest case. We have:

V(ρt) =

∫
RN
V (x) dµt(x) =

∫
RN
V (x− tθ(x)) dµ0(x), (1.6.10)

so, the convexity of V implies that of V . All the other convexity properties

(strict displacement convexity, λ-uniform displacement convexity, displace-

ment semiconvexity) follow easily from equation (1.6.10).
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If V is strictly convex, the function t 7→ V(ρt) is not strictly convex only

if θ(x) = 0 for µ-a.e. x ∈ RN , that is µ0 = µ1.

If V is λ-uniformly convex, then

σV(ρt1) + (1− σ)V(ρt2)− V(ρσt1+(1−σ)t2) =

=

∫
RN

[σV (x− t1θ(x)) + (1− σ)V (x− t2θ(x))

− V (σ(x− t1θ(x)) + (1− σ)(x− t2θ(x))] dµ0(x)

≥ λ
σ(1− σ)

2

∫
RN
|(x− t1θ(x))− (x− t2θ(x))|2 dµ0(x)

= λ
σ(1− σ)

2

[∫
RN
|θ(x)|2 dµ0(x)

]
(t1 − t2)

2.

Since
∫
|θ(x)|2 dµ(x) = W 2

2 (µ0, µ1), the map t 7→ V(µt) is displacement

convex of constant λ.

Proof of Theorem 1.6.11, interaction energy. First of all, note that we may

replace W with its symmetric part, W S(z) = (W (z) + W (−z))/2. Let us

write

W(ρt) =
1

2

∫
RN
W ([x− y]− t[θ(x)− θ(y)])ρ0(x)ρ0(y)dxdy.

So W is convex as soon as W is convex.

If W is strictly convex, then the function t 7→ W(ρt) may be not strictly

convex in the only case for some θ0 we have θ(x) = θ0 for µ-a.e. x ∈ RN . This

means that µ0 and µ1 are obtained one from the other through a translation

(which is excluded by the fact that the center of mass is fixed).

If W is λ-uniformly convex, we can write:

σW(ρt1) + (1− σ)W(ρt2)−W(ρσt1+(1−σ)t2)

≥ 1

2
λ
σ(1− σ)

2

[∫
RN×RN

|θ(x)− θ(y)|2ρ0(x)ρ0(y)dxdy

]
(t1 − t2)

2.

Since the center of mass is fixed, we have∫
RN×RN

|θ(x)− θ(y)|2 dµ0(x)dµ0(y) = 2

∫
RN
|θ(x)|2 dµ0(x) = 2W 2

2 (µ0, µ1).

Indeed, since (Id−θ)#µ0 = µ1, we have∫
RN

(x− θ(x)) dµ0(x) =

∫
RN
y dµ1(y).
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Since µ0 and µ1 have the same center of mass, we obtain∫
RN
θ(x) dµ0(x) = 0.

Finally,∫
RN×RN

|θ(x)− θ(y)|2 dµ0(x)µ0(y) =

2

∫
RN
|θ(x)|2 dµ0(x)− 2

∣∣∣∣∫
RN
θ(x) dµ0

∣∣∣∣2 = 2

∫
RN
|θ(x)|2 dµ0(x),

and the proof is concluded.

1.6.3 The case p > 1

The ideas developed by McCann in [35] have been generalized by Ambrosio,

Gigli and Savaré in [1]. In this section we will make just a sketch of the results

without going into details, trying to highlight the differences introduced in

this more general approach.

In the following we will consider a separable Hilbert space X. Recall that

Pp(X) is the space of probability measures on X such that the p-momentum

is finite.

Definition 1.6.13. A curve t 7→ µt from [0, 1] to P(X) is a constant speed

geodesic if

Wµs,µt = (t− s)Wµ0,µ1 .

Let N ≥ 2, 1 ≤ i, j, k ≤ N , t ∈ [0, 1], and µ ∈ P(XN) be given. We define the

maps πi→j
t : XN → X, πi→j,k

t : XN → X2 and the curves t→ µi→j
t ∈ P(X),

t→ µi→j,k
t ∈ P(X2) as

πi→j
t := (1− t)πi + tπj, (1.6.11)

πi→j,k
t := (1− t)πi,k + tπj,k, (1.6.12)

and

µi→j
t := (πi→j

t )#µ, (1.6.13)

µi→j,k
t := (πi→j,k

t )#µ, (1.6.14)

where πi : XN → X is the projection onto the i-th factor and πj,k : XN → X2

is the projection onto the j-th and k-th factors.
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It will be useful to recover the alternative definition of displacement con-

vexity we already introduced in Definition (1.6.2).

Definition 1.6.14 (λ-convexity along geodesics). Let X be a separable

Hilbert space and F : Pp(X) → (−∞,+∞]. Given λ ∈ R, F is said to

be λ-geodesically convex in Pp(X) if for every couple µ1, µ2 ∈ Pp(X) there

exists an optimal plan µ between µ1 and µ2 such that

F (µ1→2
t ) ≤ (1−t)F (µ1)+tF (µ2)−λ

2
t(1−t)W 2

p (µ1, µ2) ∀t ∈ [0, 1], (1.6.15)

where µ1→2
t = (π1→2

t )#µ (as in (1.6.13)).

We now go on introducing the notion of generalized geodesic. We will

denote by P(µ1, µ2, µ3) the set of measures µ ∈ P(X3) such that πi#µ =

µi, i = 1, 2, 3 (the proof of the existence of such a measure is the so called

Gluing Lemma, Lemma 1.5.4).

Definition 1.6.15 (Generalized geodesics). Let X be a separable Hilbert

space. A generalized geodesic joining µ2, µ3 ∈ Pp(X) with base µ1 ∈ Pp(X)

is a curve whose expression can be given by

µ2→3
t := (π2→3

t )#µ t ∈ [0, 1], (1.6.16)

where µ ∈ P(µ1, µ2, µ3) and π1,2
# µ, π1,3

# µ are optimal plans between µ1, µ3 and

µ1, µ3 respectively.

Remark 1.6.16. Recall that when µ1 is absolutely continuous it can be proved

that there exists a unique generalized geodesic joining µ2 and µ3 with base

µ1 (via Theorem 1.3.13 and the fact that the plan µ satisfying the conditions

of π1,2
# µ, π1,3

# µ being optimal is unique). If t2 and t3 are the optimal maps

between µ1 and µi, i = 2, 3 respectively, then µ is given by the formula

µ = (Id×t2 × t3)#µ
1.

Definition 1.6.17 (λ-convexity along generalized geodesics). Given

λ ∈ R, F is said to be λ-convex along generalized geodesics if for any

µ1, µ2, µ3 ∈ Dom(F ) there exists a generalized geodesic µ2→3
t induced by

a plan µ ∈ P(µ1, µ2, µ3) such that

F (µ2→3
t ) ≤ (1−t)F (µ2)+tF (µ3)−λ

2
t(1−t)W 2

µ(µ2, µ3) ∀t ∈ [0, 1], (1.6.17)

where

W 2
µ(µ2, µ3) :=

∫
X3

|x2 − x3|2 dµ(x1, x2, x3) ≥ W 2
2 (µ2, µ3).
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1.6.4 Displacement convex functionals, case p > 1

Internal energy

Let U : [0,+∞) → (−∞,∞] be a proper, lower semicontinuous convex

function such that

U(0) = 0, lim inf
s→0+

U(s)

sα
> −∞ for some α >

N

N + p
. (1.6.18)

The functional we are interested in is, as usual, U : Pp(RN) → (−∞,+∞]

defined by

U(µ) :=

∫
RN
U(ρ(x)) dx,

if µ = ρLN is an absolutely continuous with respect to the Lebesgue measure

given by the density ρ and by U(µ) := +∞ otherwise. Note that equation

(1.6.18) implies that U− is integrable. It can be shown (see [3], [17], [9], [29])

that U coincides with its lower semicontinuous envelope U∗ on the subset of

Pp(RN) of absolutely continuous measures and on the whole Pp(RN) if U has

superlinear growth.

Theorem 1.6.18 (Displacement convexity of internal energy). If the

map

r 7→ ψ(r) := rNU(r−N)

is convex non-increasing on ]0,+∞[, then U is convex along geodesics in

Pp(RN) (Definition 1.6.14) and along generalized geodesics when p = 2 (Def-

inition 1.6.17).

Sketch of the proof. We will skip the proof of generalized geodesic convexity

and we will prove only the convexity along geodesics; all details can be found

in [1]. First, it is sufficient to check the geodesic convexity of U . So, let us

suppose that µ1 = ρ1LN , µ2 = ρ2LN ∈ Dom(U) and that r is the optimal

transport map between µ1, µ2 for the p-Kantorovich functional (such a map

exists thanks to Theorem 1.3.13). It can be shown that r is approximately dif-

ferentiable µ1-a.e., ∇̃r is diagonalizable and its eigenvalues are non-negative.

Since µ2 is absolutely continuous, it follows that det ∇̃r(x) > 0 for µ1-a.e.

x ∈ RN ; as a consequence rt = (1− t) Id +tr is diagonalizable with positive

eigenvalues. The measure µ1→2
t = (rt)#µ

1 is absolutely continuous and its

density ρt is given by

ρt(rt(x)) =
ρ1(x)

det ∇̃rt(x)
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for µ1-a.e. x ∈ RN . Then, it follows that

U(µ1→2
t ) =

∫
RN
U(ρt(y)) dy =

∫
RN
U

(
ρ1(x)

det ∇̃rt(x)

)
det ∇̃rt(x) dx. (1.6.19)

Since it can be viewed as the composition of the convex non-increasing map

s 7→ sNF (ρ1(x)/sN) and of the concave map t 7→ det((1 − t) Id +t∇̃r(x)),

the integrand of equation (1.6.19) is convex in t and then the integral is

convex.

Potential energy

Let V : X → (−∞,+∞] be a proper, lower semicontinuous function such

that for some constants A,B ∈ R

V (x) ≥ −A−B|x|p ∀x ∈ X. (1.6.20)

The functional we are interested in is then

V(µ) :=

∫
X

V (x) dµ(x).

The functional V is finite on Dirac masses, so it is proper. Moreover, thanks

to inequality (1.6.20) we gain the lower semicontinuity.

Theorem 1.6.19 (Displacement convexity of potential energy). If V

is λ-convex, i.e. for every x1, x2 ∈ X

V ((1− t)x1 + tx2) ≤ (1− t)V (x1) + tV (x2)−
λ

2
t(1− t)|x1 − x2|2, (1.6.21)

then for every µ1, µ2 ∈ Dom(V) and µ ∈ P(µ1, µ2) we have

V (µ1→2
t ) ≤ (1−t)V (µ1)+tV (µ2)−λ

2
t(1−t)

∫
X2

|x1−x2|2 dµ(x1, x2). (1.6.22)

As a consequence, if p = 2 the functional V is λ-convex on generalized

geodesics (Definition 1.6.17). Finally, if p ≤ 2, λ ≥ 0 or p ≥ 2, λ ≤ 0,

then V is λ-geodesically convex in Pp(X) (Definition 1.6.14).

We now go on with the proof which is quite similar to that of Theorem

1.6.10.
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Proof. Thanks to inequality (1.6.20) the function V is well-defined on Pp(X).

Fix a transport plan µ ∈ P(µ1, µ2) with µ1, µ2 ∈ Dom(V). We then have:

V(µ1→2
t ) =

∫
X2

V ((1− t)x1 + tx2) dµ(x1, x2)

≤
∫
X2

(1− t)V (x1) + tV (x2)−
λ

2
t(1− t)|x1 − x2|2 dµ(x1, x2)

= (1− t)V(µ1) + tV(µ2)− λ

2
t(1− t)

∫
X2

|x1 − x2|2 dµ(x1, x2),

which is the convexity along generalized geodesics, when p = 2. If p 6= 2,

choose an optimal µ ∈ P(µ1, µ2): if p > 2 we use the fact that the inequality∫
X2

|x1 − x2|2 dµ(x1, x2) ≤ W 2
p (µ1, µ2)

is true, while if p < 2 we use the opposite one.

Interaction energy

Fix an integer k > 1 and a lower semicontinuous function W : Xk →
(−∞,+∞] such that W− satisfies

W (x) ≥ −A−B|x|p ∀x ∈ X, (1.6.23)

for some A,B ∈ R and all x ∈ RN . Consider the functional

Wk(µ) :=

∫
Xk

W (x1, x2, . . . , xk) dµ⊗k(x1, x2, . . . , xk).

Theorem 1.6.20 (Displacement convexity of interaction energy). If

W is convex, then the functional Wk is convex along any interpolating curve

µ1→2
t = (π1→2

t )#µ with µ transport plan (not necessarily optimal) between µ1

and µ2.

Proof. Recall that if fi : Xi → Yi are measurable maps and µi are measures

on Xi for 1 ≤ i ≤ k, then

⊗k
i=1(fi#µi) = (⊗k

i=1µi)#(⊗k
i=1fi),

where (⊗ifi)(x1, . . . , xk) = (f1(x1), . . . , fk(xk)). Let us now consider a trans-

port plan µ between µ1 and µ2 and the curve µ1→2
t = (π1→2

t )#µ. Then,

W(π1→2
t )#µ) =

∫
Xk

W d((π1→2
t )#µ)⊗k

=

∫
(X×X)k

W ((1− t)x1 + ty1, . . . , (1− t)xk + tyk) dµ⊗k(x1, y1, . . . , xk, yk).
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Now it is clear that the convexity properties of W will reflect on W .



Chapter 2

Optimal Networks for Mass

Transportation Problems

In this chapter we study the network problem proposed in [18] and inves-

tigated from a qualitative point of view in [20]. Here a more general cost

functional is considered. The results of this chapter can also be found in

[13].

2.1 The Optimal Network Problem

We consider a bounded connected open subset Ω with Lipschitz boundary of

RN (the urban area) with N > 1 and two positive finite measures µ+ and µ−

on K := Ω (the distributions of working people and of working places). We

assume that µ+ and µ− have the same mass that we normalize both equal 1,

that is µ+ and µ− are probability measures on K.

The optimization problem for transportation networks is the following:

to every “urban network” Σ we associate a suitable “cost function” dΣ which

takes into account the geometry of Σ as well as the costs for customers to

move with their own means and by means of the network. The cost functional

will be then

T (Σ) = WdΣ(µ+, µ−),

where WdΣ(µ+, µ−) is the Wasserstein distance W1(µ
+, µ−) with respect to

the pseudo-distance dΣ, so that the optimization problem we deal with is

min{T (Σ) : Σ “admissible network”}. (2.1.1)

61
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The main result is the proof that, under suitable and very mild assumptions,

and taking as admissible networks all connected, compact one-dimensional

subsets Σ of K, the optimization problem (2.1.1) admits a solution. The tools

we use to obtain the existence result are a suitable relaxation procedure to

define the function dΣ (Theorem 2.3.2) and a generalization of the Go lab

Theorem (Theorem 2.2.3), also obtained by Dal Maso and Toader in [21].

In order to introduce the distance dΣ on the set Ω × Ω we consider a

function J : [0,+∞]3 → [0,+∞]. For a given path γ in K the parameter a

in J(a, b, c) measures the length of γ outside Σ, b measures the length of γ

inside Σ, while c represents the total length of Σ. The cost J(a, b, c) is then

the cost of a customer who travels for a length a by his own means and for

a length b on the network, being c the length of the latter. For instance we

could take J(a, b, c) = A(a) +B(b) + C(c) and then the function A(t) is the

cost for travelling a length t by one’s own means, B(t) is the price of a ticket

to cover the length t on Σ and C(t) represents the cost of a network of length

t.

For every closed connected subset Σ in K, we define the cost function dΣ

as

dΣ(x, y) := inf
{
J
(
H1(γ \ Σ),H1(γ ∩ Σ),H1(Σ)

)
: γ ∈ Cx,y

}
,

where Cx,y is the class of all closed connected subsets of K containing x and

y. The optimization problem we consider is then (2.1.1) where we take as

admissible networks all closed connected subsets Σ of K with H1(Σ) < +∞.

We also define, for every closed connected subset γ of K

LΣ(γ) := J
(
H1(γ \ Σ),H1(γ ∩ Σ),H1(Σ)

)
.

We assume that J satisfies the following conditions:

• J is lower semicontinuous,

• J is non-decreasing, i.e.

a1 < a2, b1 < b2, c1 < c2 =⇒ J(a1, b1, c1) ≤ J(a2, b2, c2),

• J(a, b, c) ≥ G(c) with G(c) → +∞ when c→ +∞,

• J is continuous in its first variable.



2.2. The Go lab Theorem and its extensions 63

A curve joining two points x, y ∈ K is an element of the set

Cx,y := {γ closed connected, {x, y} ⊆ γ ⊆ K}

while an element of C will be, by definition, a closed connected set in K:

C := {γ closed connected, γ ⊆ K}.

We associate to every admissible network Σ ∈ C the cost function

dΣ(x, y) = inf{LΣ(γ) : γ ∈ Cx,y}.

We are interested in the functional T given by

Σ 7→ T (Σ) := WdΣ(µ+, µ−)

which is defined on the class C .

Finally by L
x,y

Σ we denote the lower semicontinuous envelope of LΣ with

respect to the Hausdorff convergence on Cx,y (see Section 2.2 for the main

definitions). In other words, for every γ ∈ Cx,y we set

L
x,y

Σ (γ) =

{
min {lim infn LΣ(γn) : γn → γ, γn ∈ Cx,y} if γ ∈ Cx,y

+∞ if γ /∈ Cx,y,

where we fix the condition x, y ∈ γ. Moreover, we define LΣ as

LΣ(γ) = min

{
lim inf
n→+∞

LΣ(γn) : γn → γ, γn ∈ C

}
,

that is to say, the lower semicontinuous envelope of LΣ with respect to the

Hausdorff convergence on the class of closed connected sets of K.

2.2 The Go lab Theorem and its extensions

In this section X will be a set endowed with a distance function d, i.e. (X, d)

is a metric space. We assume for simplicity X to be compact. By C (X) we

indicate the class of all closed subsets of X.

Given two closed subsets C and D, the Hausdorff distance between them

is defined by

dH(C,D) := 1 ∧ inf{r ∈ [0,+∞[ : C ⊆ Dr, D ⊆ Cr}
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where

Cr := {x ∈ X : d(x,C) < r}.

It is easy to see that dH is a distance on C (X), so (C (X), dH) is a metric

space. We remark the following well-known facts (see for example [5]):

• (X, d) compact =⇒ (C (X), dH) compact,

• (X, d) complete =⇒ (C (X), dH) complete.

In the rest of the chapter we will use the notation Cn → C to indicate

the convergence of a sequence {Cn}n∈N to C with respect to the distance dH.

Proposition 2.2.1. Let {Cn}n∈N be a sequence of compact connected subsets

in X such that Cn → C for some compact subset C. Then C is connected.

Proof. Suppose, on the contrary, that there exist two closed non-void sepa-

rated subsets F1 and F2 such that C = F1∪F2. Since F1 and F2 are compact,

d(F1, F2) = d > 0. Let us choose ε = d/4. By the definition of Hausdorff

convergence, there exists a positive integer N such that

n ≥ N =⇒ Cn ⊆ (C)ε, C ⊆ (Cn)ε.

Since CN is connected, we must have either CN ⊆ (F1)ε or CN ⊆ (F2)ε.

Let us suppose, for example, that CN ⊆ (F1)ε. On one side by the Hausdorff

convergence it is F2 ⊆ (CN)ε, on the other by the choice of ε we have (CN)ε∩
F2 = ∅, a contradiction.

The Hausdorff 1-dimensional measure in (X, d) of a Borel set B is defined

by

H1(B) := lim
δ→0+

H1,δ(B),

where

H1,δ(B) := inf

{∑
n∈N

diamBn : diamBn < δ,B ⊆
⋃
n∈N

Bi

}
.

The measure H1 is Borel regular and if (X, d) is the 1-dimensional Euclidean

space, then H1 is just the Lebesgue measure L1.

The Go lab classical Theorem states that in a metric space, the measure

H1 is sequentially lower semicontinuous with respect to the Hausdorff con-

vergence over the class of all compact connected subsets of X.
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Theorem 2.2.2 (Go lab). Let X be a metric space. If {Cn}n∈N is a sequence

of compact connected subsets of X and Cn → C for some compact connected

subset C, then

H1(C) ≤ lim inf
n→+∞

H1(Cn). (2.2.1)

Actually, this result can be strengthened.

Theorem 2.2.3. Let X be a metric space, {Γn}n∈N and {Σn}n∈N be two se-

quences of compact subsets such that Γn → Γ and Σn → Σ for some compact

subsets Γ and Σ. Let us also suppose that Γn is connected for all n ∈ N.

Then

H1(Γ \ Σ) ≤ lim inf
n→+∞

H1(Γn \ Σn). (2.2.2)

A proof of this result has been given by Dal Maso and Toader in [21]; for

sake of completeness, we include the proof here below. It is in fact based on

the following two rectifiability theorems whose proof can be found in [5].

Theorem 2.2.4. Let X be a metric space and C a closed connected subset

of finite length, i.e. H1(C) < +∞. Then C is compact and connected by

injective rectifiable curves.

Theorem 2.2.5. Let C be a closed connected subset in a metric space X

such that H1(C) < +∞. Then there exists a sequence of Lipschitz curves

{γn}n∈N, γn : [0, 1] → C, such that

H1(C \
⋃
n∈N

γn([0, 1])) = 0.

The first step in the proof of Theorem 2.2.3 is a localized form of the

classical Go lab Theorem. To this aim we need the following lemma.

Lemma 2.2.6. Let C be a closed connected subset of X and let x ∈ C. If

r ∈ [0, 1
2

diamC], then

H1(C ∩Br(x)) ≥ r.

Proof. See for instance Lemma 4.4.2 of [5] or Lemma 3.4 of [26].

Remark 2.2.7. Lemma 2.2.6 yields the following estimate from below for the

upper density:

θ(C, x) := lim sup
r→0+

H1(C ∩Br(x))

2r
≥ 1

2
.
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We recall that for every measure µ the upper density is defined by

θ(µ, x) := lim sup
r→0+

µ(Br(x))

2r
.

We also recall that θ(µ, x) ≥ t for all x ∈ X implies µ(B) ≥ tH1(B) for every

Borel set B (see Theorem 2.4.1 in [5]).

We are now in a position to obtain the localized version of the Go lab

Theorem.

Theorem 2.2.8. Let X be a metric space. If {Cn}n∈N is a sequence of com-

pact connected subsets of X such that Cn → C for some compact connected

subset C, then for every open subset U of X

H1(C ∩ U) ≤ lim inf
n→+∞

H1(Cn ∩ U).

Proof. We can suppose that L := limnH1(Cn∩U) exists, is finite andH1(Cn∩
U) ≤ L + 1. Let dn = diam(Cn ∩ U). We can suppose up to a subsequence

that dn → d > 0. Let us consider the sequence of Borel measures defined by

µn(B) := H1(B ∩ Cn ∩ U)

for every Borel set B. Up to a subsequence we can assume that µn ⇀
∗ µ for

a suitable µ. We choose x ∈ C ∩ U and r′ < r < diam(C ∩ U)/2. Then, by

Lemma 2.2.6,

µ(Br(x)) ≥ µ(Br′(x)) ≥ lim sup
n→+∞

µn(Br′(x))

= lim sup
n→+∞

H1(Cn ∩Br′(x) ∩ U) ≥ r′.

Since r′ was chosen arbitrarily we get

µ(Br(x)) ≥ r

for every x ∈ C ∩U and r < diam(C ∩U)/2. This implies θ(C, x) ≥ 1/2. By

Remark 2.2.7

H1(C ∩ U) ≤ 2µ(X) ≤ 2 lim inf
n→+∞

µn(X) = 2 lim inf
n→+∞

H1(Cn ∩ U) = 2L.

By Theorem 2.2.5 for H1-almost all x0 ∈ C∩U there exists a Lipschitz curve

γ whose range is in C ∩ U such that x0 = γ(t0) and t0 ∈]0, 1[. We can also

suppose that

lim
h→0+

d(γ(t0 + h), γ(t0 − h))

2|h|
= 1.
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We choose arbitrarily σ ∈]0, 1[. If h is small, then

d(γ(t0 + h), γ(t0 − h)) ≥ (2− σ)|h|

and

(1− σ)|h| ≤ d(γ(t0 ± h), γ(t0)) ≤ (1 + σ)|h|.

Let us also suppose that |h| < σ/(1 + σ) and put

y := γ(t0 − h), z := γ(t0 + h), r := max{d(y, x0), d(z, x0)}.

We get

r < (1 + σ)|h| < σ, d(y, z) ≥ (2− σ)|h| ≥ 2− σ

2 + σ
r.

Let r′ := (1 + σ)r. Since Cn → C, then (see Proposition 4.4.3 in [5]) there

exist subsequences {yn}n∈N and {zn}n∈N such that yn, zn ∈ Cn ∩ U , yn → y

and zn → z. One must have yn, zn ∈ Br′(x0) for n large enough and

µn(Br′(x)) = H1(Cn ∩Br′(x) ∩ U) ≥ d(z, yn).

Taking the limsup

µ(Br′(x)) ≥ lim sup
n→+∞

H1(Cn ∩Br′(x) ∩ U) ≥ lim sup
n→+∞

d(z, yn)

= d(z, y) ≥ 2− σ

2 + σ
r =

2− σ

(2 + σ)(1 + σ)
r′.

Since σ was arbitrary, we get θ(µ, x0) ≥ 1 for H1-almost all x0 ∈ C ∩ U .

Then, by Remark 2.2.7

H1(C ∩ U) ≤ µ(X) ≤ lim inf
n→+∞

µn(X) = lim inf
n→+∞

H1(Cn ∩ U).

Proof of Theorem 2.2.3. Let A = Γ ∩ Σ. Thanks to the equality⋃
ε>0

(Γ \ Aε) = Γ \ Σ

we have

lim
ε→0+

H1(Γ \ Aε) = H1(Γ \ Σ).

Recalling that the following inclusion of sets holds for large values of n

Γn \ Aε ⊆ Γn \ An ⊆ Γn \ Σn
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by the localized form of Go lab Theorem (Theorem 2.2.8) we deduce

H1(Γ \ Aε) ≤ lim inf
n→+∞

H1(Γn \ Aε) ≤ lim inf
n→+∞

H1(Γn \ Σn).

Taking the limit as ε→ 0+, we obtain

H1(Γ \ Σ) ≤ lim inf
n→+∞

H1(Γn \ Σn).

Remark 2.2.9. It is easy to see that if the number of connected components

of Cn is bounded from above by a positive integer independent on n, then

the localized form of Go lab Theorem is still valid. All details can be found

in [21].

2.3 Relaxation of the cost function

We can give an explicit expression for the lower semicontinuous envelopes LΣ

and L
x,y

Σ in terms of J . In order to achieve this result it is useful to introduce

the function:

J(a, b, c) = inf{J(a+ t, b− t, c) : 0 ≤ t ≤ b}.

The following lemma is an important step to establish Theorem 2.3.2.

Lemma 2.3.1. Let γ and Σ be closed connected subsets of K. Let also

suppose that Σ has a finite length. Then for every t ∈ [0,H1(γ ∩ Σ)] we can

find a sequence {γn}n∈N in C such that

• γn → γ,

• limnH1(γn) = H1(γ),

• H1(γn ∩ Σ) ↗ H1(γ ∩ Σ)− t.

Moreover, if x, y ∈ γ then the sequence {γn}n∈N can be chosen in Cx,y.

Proof. The set γ ∩ Σ is closed and with a finite length. By the second

rectifiability result (Theorem 2.2.5) it follows the existence of a sequence of

curves σn ∈ Lip([0, 1], K) such that

H1

(
(γ ∩ Σ) \

⋃
n∈N

σn([0, 1])

)
= 0.
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We can also suppose that the subsets σn([0, 1]) are disjoint up to subsets of

negligible length. Fix a sufficiently small δ > 0 and choose a sequence of

intervals In = [an, bn] such that∑
n∈N

H1(σn(In)) = t+ δ.

For every sequence v = {vn}n∈N of unit vectors of RN such that vn is not

tangent to γ ∩ Σ in σn(an) and σn(bn), and every sequence ε = {εn}n∈N of

positive real numbers, let us consider

Av,ε =
⋃
n∈N

σn([0, an] ∪ [bn, 1]),

Bv,ε =
⋃
n∈N

(σn(an) + εnVn),

Cv,ε =
⋃
n∈N

(vn + σn(In)),

Dv,ε =
⋃
n∈N

(σn(bn) + εnVn)

γv,ε = (γ \ Σ) ∪ Av,ε ∪Bv,ε ∪ Cv,ε ∪Dv,ε

where Vn = {tvn : t ∈ [0, 1]} (see Figure 2.1).

Since Σ is closed and with a finite length, the class of γv,ε that have not

H1-negligible intersection with Σ is at most countable. Out of that set we

can choose sequences δm ↘ 0, and {γvm,εm}m∈N such that ‖εm‖ ↘ 0, where

by ‖ε‖ we denote the quantity
∑

n εn. The sequence {γvm,εm}m∈N is the one

we were looking for.

Theorem 2.3.2. For every closed connected subset γ ∈ Cx,y we have

L
x,y

Σ (γ) = J(H1(γ \ Σ),H1(γ ∩ Σ),H1(Σ)).

Moreover, if γ ∈ Cx,y then

L
x,y

Σ (γ) = LΣ(γ).

Proof. Let γ be a fixed curve in Cx,y. First we establish that

L
x,y

Σ (γ) ≥ J(H1(γ \ Σ),H1(γ ∩ Σ),H1(Σ)).
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v

v

Σ

γ

γ

Σ

Figure 2.1: The approximating curves γn.

It is enough to show that for every sequence {γn}n∈N in Cx,y converging to

γ with respect to the Hausdorff metric, there exists t ∈ [0,H1(γ ∩ Σ)] such

that

J(H1(γ \ Σ) + t,H1(γ ∩ Σ)− t,H1(Σ)) ≤ lim inf
n→+∞

LΣ(γn).

Up to a subsequence we can suppose the following equalities hold true:

lim inf
n→+∞

LΣ(γn) = lim
n→+∞

LΣ(γn),

lim inf
n→+∞

H1(γn) = lim
n→+∞

H1(γn),

lim inf
n→+∞

H1(γn \ Σ) = lim
n→+∞

H1(γn \ Σ).

Moreover, by Go lab Theorems (Theorem 2.2.2 and Theorem 2.2.3)

H1(γ) ≤ lim
n→+∞

H1(γn),

H1(γ \ Σ) ≤ lim
n→+∞

H1(γn \ Σ).

Choose t = limnH1(γn\Σ)−H1(γ\Σ). Then H1(γ\Σ)+t = limnH1(γn\Σ).

We have

H1(γn) = H1(γn \ Σ) +H1(γn ∩ Σ)

= [H1(γn \ Σ)− t] + [H1(γn ∩ Σ) + t].
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Taking the limit as n→ +∞ gives

H1(γ) ≤ lim
n→+∞

H1(γn) = [H1(γ \ Σ) + t] + lim
n→+∞

H1(γn ∩ Σ)

so that

H1(γ ∩ Σ)− t ≤ lim
n→+∞

H1(γn ∩ Σ).

It follows by the semicontinuity and monotonicity of J in the first two vari-

ables

J
(
H1(γ \ Σ) + t,H1(γ ∩ Σ)− t,H1(Σ)

)
≤ lim inf

n→+∞
J
(
H1(γn \ Σ),H1(γn ∩ Σ),H1(Σ)

)
.

Now, we have to establish the opposite inequality:

L
x,y

Σ (γ) ≤ J
(
H1(γ \ Σ),H1(γ ∩ Σ),H1(Σ)

)
.

In the same way as before, it is enough to show that for every t ∈ [0,H1(γ∩Σ)]

we can find a sequence {γn}n∈N in Cx,y which converges to γ such that

lim inf
n→+∞

LΣ(γn) ≤ J
(
H1(γ \ Σ) + t,H1(γ ∩ Σ)− t,H1(Σ)

)
.

Given t, let {γn}n∈N be the sequence given by Lemma 2.3.1. Then we get

lim
n→+∞

H1(γn \ Σ) = H1(γ)−H1(γ ∩ Σ) + t = H1(γ \ Σ) + t.

Thanks to H1(γn ∩ Σ) ≤ H1(γ ∩ Σ)− t, we have

J
(
H1(γn \ Σ),H1(γn ∩ Σ),H1(Σ)

)
≤ J

(
H1(γn \ Σ),H1(γ ∩ Σ),H1(Σ)

)
and by the continuity of J in the first variable

lim inf
n→+∞

J
(
H1(γn \ Σ),H1(γn ∩ Σ),H1(Σ)

)
≤ J

(
H1(γ \ Σ) + t,H1(γ ∩ Σ)− t,H1(Σ)

)
which implies the inequality we looked for. The proof of the second statement

of the Theorem is analogous and hence omitted.

The next proposition is a consequence of Theorem 2.3.2.
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Proposition 2.3.3. For every x, y ∈ K we have

dΣ(x, y) = inf{LΣ(γ) : γ ∈ Cx,y}.

Proof. By a general result of relaxation theory (see for instance [17]), the

infimum of a function is the same as the infimum of its lower semicontinuous

envelope, so

dΣ(x, y) = inf{Lx,yΣ (γ) : γ ∈ Cx,y}.

It is then enough to prove that

inf{Lx,yΣ (γ) : γ ∈ Cx,y} = inf{LΣ(γ) : γ ∈ Cx,y},

which is a consequence of Theorem 2.3.2.

It is more convenient to introduce the function whose variables a, b, c now

represent the length H1(γ \Σ) covered by one’s own means, the path length

H1(γ), and the length of the network H1(Σ):

Θ(a, b, c) = J(a, b− a, c).

Obviously, Θ satisfies

Θ(H1(γ \ Σ),H1(γ),H1(Σ)) = J(H1(γ \ Σ),H1(γ ∩ Σ),H1(Σ)).

We now study some properties of Θ.

Proposition 2.3.4. Θ is monotone, non-decreasing with respect to each of

its variables.

Proof. The monotonicity in the third variable is straightforward. The one in

the first variable can be obtained observing that

Θ(a, b, c) = inf
a≤s≤b

J(s, b− s, c) (2.3.1)

and that the right-hand side of (2.3.1) is a non-decreasing function of a. The

monotonicity in the second variable is obtained in a similar way, still relying

on (2.3.1) and paying attention to the sets where the infimum is taken.

Proposition 2.3.5. Θ is lower semicontinuous.
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Proof. We have to show that

Θ(a, b, c) ≤ lim inf
n→+∞

Θ(an, bn, cn)

when an → a, bn → b and cn → c. Let us consider for every real positive

number ε and for every positive integer n a real number sn such that an ≤
sn ≤ bn and

J(sn, b− sn, cn) ≤ Θ(an, bn, cn) + ε.

Up to a subsequence, we can suppose that

lim inf
n→+∞

Θ(an, bn, cn) = lim
n→+∞

Θ(an, bn, cn).

We can also suppose that sn → s, where a ≤ s ≤ b. Thanks to the semicon-

tinuity of J

Θ(a, b, c) ≤ J(s, b−s, c) ≤ lim inf
n→+∞

J(sn, bn−sn, cn) ≤ lim inf
n→+∞

Θ(an, bn, cn) +ε.

Letting ε→ 0+ yields the desired inequality.

2.4 Existence theorem

In this section we continue to develop the tools we will use to prove Theorem

2.4.5.

Proposition 2.4.1. Let {xn}n∈N and {yn}n∈N be sequences in K such that

xn → x and yn → y. If {Σn}n∈N is a sequence of closed connected sets such

that Σn → Σ, then

dΣ(x, y) ≤ lim inf
n→+∞

dΣn(xn, yn). (2.4.1)

Proof. First, up to a subsequence, we can suppose that

lim inf
n→+∞

dΣn(xn, yn) = lim
n→+∞

dΣn(xn, yn).

Given ε > 0, we choose a sequence {γn}n∈N such that γn ∈ Cxn,yn and

Θ(H1(γn \ Σn),H1(γn),H1(Σn)) ≤ dΣn(xn, yn) + ε.
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Up to a subsequence we can suppose that γn → γ (it is easy to check that

xn → x and yn → y imply γ ∈ Cx,y) and

H1(γ \ Σ) ≤ lim
n
H1(γn \ Σn),

H1(γ) ≤ lim
n
H1(γn),

H1(Σ) ≤ lim
n
H1(Σn).

Using the semicontinuity and monotonicity of Θ (Propositions 2.3.4 and

2.3.5), we obtain

dΣ(x, y) ≤ Θ
(
H1(γ \ Σ),H1(γ),H1(Σ)

)
≤ Θ

(
lim

n→+∞
H1(γn \ Σn), lim

n→+∞
H1(γn), lim

n→+∞
H1(Σn)

)
≤ lim inf

n→+∞
Θ
(
H1(γn \ Σn),H1(γn),H1(Σn)

)
≤ lim inf

n→+∞
dΣn(xn, yn) + ε.

The arbitrary choice of ε gives then inequality (2.4.1).

As a consequence of Proposition 2.4.1 we have the following Corollary.

Corollary 2.4.2. Let {xn}n∈N and {yn}n∈N be sequences in K such that

xn → x and yn → y. If Σ is a closed connected set, then

dΣ(x, y) ≤ lim inf
n→+∞

dΣ(xn, yn).

In other words, dΣ is a lower semicontinuous function on K ×K.

Proposition 2.4.4 will play a crucial role in the proof of our main existence

result. We split its proof in the next two lemmas for convenience.

Lemma 2.4.3. Let X be a compact metric space, {fn}n∈N a sequence of

positive real valued functions defined on X. Let also g be a continuous pos-

itive real valued function defined on X. Then, the following statements are

equivalent:

1. ∀ε > 0 ∃N : ∀n ≥ N ∀x ∈ X g(x) ≤ fn(x) + ε,

2. ∀x ∈ X ∀xn → x g(x) ≤ lim infn fn(xn).

Proof.
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• Let xn → x. Then

g(xn) = fn(xn) + (g(xn)− fn(xn)) ≤ fn(xn) + ε

By the continuity of g, taking the lower limit we achieve

g(x) ≤ lim inf
n→+∞

fn(xn) + ε. (2.4.2)

Then (1) ⇒ (2) is established when ε→ 0+.

• Let us now prove that (2) ⇒ (1). Suppose on the contrary that there

exists a positive ε and an increasing sequence of positive integers {nk}k
such that

g(xnk) ≥ fnk(xnk) + ε (2.4.3)

for a suitable xnk . Thanks to the compactness of X we can suppose up

to a subsequence that xnk → x. Define

xn =

{
xnk if n = nk for some k

x otherwise

Then xn → x, and g(x) ≤ lim infn fn(xn). From (2.4.3) it follows,

g(x) ≥ lim inf
k→+∞

fnk(xnk) + ε ≥ lim inf
n→+∞

fn(xn) + ε ≥ g(x) + ε

which is false.

Proposition 2.4.4. Let {fn}n∈N and f be non-negative lower semicontinu-

ous functions, all defined on a compact metric space (X, d). Let {µn}n∈N be

a sequence of nonnegative measures on X such that µn ⇀
∗ µ. Suppose that

∀x ∈ X ∀xn → x f(x) ≤ lim inf
n→+∞

fn(xn).

Then ∫
X

f dµ ≤ lim inf
n→+∞

∫
X

fn dµn.

Proof. Let ψ be a continuous function with compact support such that 0 ≤
ψ ≤ 1. Let gt be the function of Lemma 1.2.1; since gt satisfies the hypothesis

of Lemma 2.4.3 with g = gt, we have gt ≤ fn + ε for n large enough and then∫
X

gtψ dµ = lim
n→+∞

∫
X

gtψ dµn ≤ lim inf
n→+∞

∫
X

fn dµn.

Taking the supremum in t and ψ, we obtain∫
X

f dµ ≤ lim inf
n→+∞

∫
X

fn dµn.
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We may now state and prove our existence result.

Theorem 2.4.5. The problem

min{T (Σ) : Σ ∈ C }

admits a solution.

Proof. First, let us prove that for every l > 0 the class

Dl := {Σ : Σ ∈ C , H1(Σ) ≤ l}

is a compact subset of the metric space (C (K), dH). Since (C (K), dH) is a

compact space, it is enough to show that Dl is closed. We already know that

the Hausdorff limit of a sequence of closed connected set is a closed connected

set. If {Σn}n∈N is a sequence of closed connected sets such that H1(Σn) ≤ l

Σn → Σ =⇒ H1(Σ) ≤ lim inf
n→+∞

H1(Σn) ≤ l

by Go lab Theorem (Theorem 2.2.2).

Second, by our assumption on the function J

dΣ(x, y) ≥ G(H1(Σ))

so that

T (Σ) ≥ G(H1(Σ)).

Then, if {Σn}n∈N is a minimizing sequence, the sequence of 1-dimensional

Hausdorff measures {H1(Σn)}n∈N must be bounded, i.e. H1(Σn) ≤ l, for

some l > 0.

If we prove that the functional Σ 7→ T (Σ) is sequentially lower semi-

continuous on the class Dl, then then existence of an optimal Σ will be a

consequence of the fact that a sequentially lower semicontinuous function

takes a minimum on a compact metric space. Let {Σn}n∈N be a sequence

in Dl such that Σn → Σ. Let {µn}n∈N be an optimal transport plan for the

transport problem

min

{∫
K×K

dΣn(x, y)dµ : π+
#µ = µ+, π−#µ = µ−

}
.

Up to a subsequence we can suppose µn ⇀
∗ µ for a suitable µ. It is easy to

see that µ is a transport plan between µ+ and µ−.
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Since by Proposition 2.4.1 dΣ(x, y) ≤ lim infn dΣn(xn, yn) for all xn → x

and yn → y, by Lemma 2.4.4 we have∫
K×K

dΣ(x, y) dµ ≤ lim inf
n→+∞

∫
K×K

dΣn(x, y) dµn. (2.4.4)

Then by (2.4.4) we have

T (Σ) ≤
∫
K×K

dΣ(x, y) dµ ≤ lim inf
n→+∞

∫
K×K

dΣn(x, y) dµn = lim inf
n→+∞

T (Σn).

We end with the following remark.

Remark 2.4.6. Note that if Σn is a minimizing sequence, then the measure µ

obtained in the proof of Theorem 2.4.5 is an optimal transport plan for the

transport problem

min

{∫
K×K

dΣ(x, y) dµ : π+
#µ = µ+, π−#µ = µ−

}
.





Chapter 3

Path Functionals over

Wasserstein Spaces

3.1 Introduction

The problem of transporting a source mass distribution onto a target mass

distribution by keeping together as much mass as possible during the trans-

port, from which tree-shaped configurations arise, has been very much stud-

ied, for instance in [6], [7], [34], and [48]. In the approach to this problem

proposed in this chapter and in [14] probability measures valued curves are

considered, while the condition of keeping masses together is achieved con-

sidering only measures supported in discrete sets.

Given a source or initial probability measure µ0 and a target or final

probability measure µ1 we look for a path γ in a Wasserstein space Wp(Ω)

that connects µ0 to µ1 and minimizes a suitable cost functional J (γ). We

consider functionals of the form

J (γ) =

∫ 1

0

J(γ(t))|γ′|(t)dt (3.1.1)

where |γ′| is the metric derivative of γ in the Wasserstein space Wp(Ω) and

J is a lower semicontinuous functional defined on measures. Here J may be

easily seen as the coefficient of a degenerate “Riemannian distance” on the

space Wp(Ω).

We restrict our analysis to the case of J being a local functional over

measures, an important class of functionals extensively studied by Bouchitté

and Buttazzo in [9], [10], and [11]. These functionals are the key tool in

79
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our approach, and among them we can find both functionals which are finite

only on concentrated measures (we can see an application of them in [19]

and [44]) and functionals which are finite only on spread ones. In fact, a

particular point of interest in our approach is the fact that also different

kinds of “Riemannian distances” are allowed (for instance those which prefer

spread measures) by a change of the functional J .

In particular, we consider the two extreme cases, in which the functional

J is chosen as one of the following:

Gr(µ) =

{∑
k∈N(ak)

r if µ =
∑

k∈N akδxk

+∞ otherwise
(0 ≤ r < 1)

whose domain is the space of purely atomic measures, or

Fq(µ) =

{∫
Ω
|u|qdx if µ = u · LN

+∞ otherwise
(q > 1)

whose domain is the space Lq(Ω). We denote respectively by Gr the functional

in (3.1.1) with J replaced by Gr and by Fq the same functional with J

replaced by Fq.

The first case is the one in which we get a “Riemannian distance” on prob-

abilities which make paths passing through concentrated measures cheaper.

The second case, on the contrary, allows only paths which lie on Lq(Ω).

In both cases we analyze the question of the existence of optimal paths

γopt giving finite value to the functional. When the domain Ω ⊂ RN is

compact we find for the first case:

- if µ0 and µ1 are atomic measures, then an optimal path γopt providing

finite value to Gr always exists;

- if r > 1− 1/N , then the same is true for any pair of measures;

- if r ≤ 1−1/N , then there are measures µ0 and µ1 such that every path

connecting them has an infinite cost.

Similarly, for the second case we have:

- if µ0 and µ1 are in Lq(Ω), then an optimal path γopt providing finite

value to Fq always exists;

- if q < 1 + 1/N , then the same is true for any pair of measures;
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- if q ≥ 1+1/N , then there are measures µ0 and µ1 such that every path

connecting them has an infinite cost.

In subsection 3.3.2 we also discuss the case of unbounded domains such as

Ω = RN .

The analysis of existence results as well as the definition of the cost func-

tionals is made in Section 3.2 in an abstract metric spaces framework, which

can be used for future generalizations and developments.

In relation to the papers already mentioned it is not difficult to see that

the model proposed is different and in general provides different solutions.

However, among the different features our model supplies we may cite its

mathematical simplicity and the possibility of performing standard numerical

computations.

From the mathematical point of view, our model recalls the construction

of Riemannian metrics as already pointed out, and the existence results for

optimal paths are quite easy to prove.

As far as numerics is concerned, when discretizing the metric derivative

the cost functional becomes a weighted sum of Wasserstein distances among

couples of atomic probability measures which can be evaluated by well-known

algorithms such as the simplex method.

Taking into account the comparison with the results presented by Xia in

[48] and by Maddalena, Morel and Solimini in [34] will be important for future

investigations. For instance, for the model proposed in [34] conditions to link

two prescribed measures by a finite cost configuration have been studied in

[23] (while here and in [48] only conditions in order to link arbitrary measures

are provided): we do not know if similar conditions can be achieved in our

case.

3.2 The Metric Framework

In this section a generic metric space X with distance d is considered. Under

the assumption that closed bounded subsets of X are compact, we will prove

an existence result (Theorem 3.2.1) for variational problems with functionals

of the type

J (γ) =

∫ 1

0

J(γ(t))|γ′|(t) dt
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where γ : [0, 1] → X ranges among all Lipschitz curves such that γ(0) = x0

and γ(1) = x1. We will refer to the value of J in γ as the energy of γ. By

|γ′|(t) we denote the metric derivative of γ at the point t ∈ (0, 1), i.e.

|γ′|(t) = lim
s→t

d(γ(s), γ(t))

|s− t|
.

As a consequence of Rademacher Theorem it can be seen (see [5]) that for

any Lipschitz curve the metric derivative exists in almost every point (with

respect to Lebesgue measure). Another useful result is that the variation of

γ can be written in terms of the metric derivative in integral form:

Var(γ) =

∫ 1

0

|γ′|(t) dt.

By this formula it follows easily that |γ′| ≤M if and only if γ is M -Lipschitz,

since when s < t

d(γ(t), γ(s)) ≤ Var(γ, [s, t]) =

∫ t

s

|γ′|(τ) dτ ≤M |t− s|,

the converse implication being immediate.

Theorem 3.2.1. Let X be a metric space such that any closed bounded subset

of X is compact and J : X → [0,+∞] be a lower semicontinuous function

and x0, x1 arbitrary points in X. Then the functional

J (γ) =

∫ 1

0

J(γ(t))|γ′|(t) dt

achieves a minimum value among all Lipschitz curves γ : [0, 1] → X such

that γ(0) = x0 and γ(1) = x1, provided the following two assumptions are

satisfied:

(H1): there exists a curve γ0 such that J (γ0) < +∞;

(H2): it holds ∫ ∞

0

inf
Br(x0)

J dr = +∞.

The proof of Theorem 3.2.1 relies on the following reparametrization

lemma whose proof can be found for example in [5].
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Lemma 3.2.2. Let γ ∈ Lip([0, 1], X) and L = Var(γ) be its total variation.

Then there exists a Lipschitz curve γ̃ ∈ Lip([0, L], X) such that |γ̃′| = 1

almost everywhere in [0, L] and γ̃ is a parametrization of γ.

Proof of Theorem 3.2.1. Let {γn}n∈N be a minimizing sequence and set Ln =

Var(γn). Then the sequence {J (γn)}n∈N is bounded by a finite number

M . By Lemma 3.2.2 there exists a sequence of curves γ̃n : [0, Ln] → X

parametrized with unit velocity, reparametrizing the given curves. We have:

M ≥ J (γn) =

∫ Ln

0

J(γ̃n(t)) dt ≥
∫ Ln

0

(
inf

Bt(x0)
J

)
dt.

Then {Ln}n∈N is bounded otherwise, by assumption H2, the right hand side

would be unbounded. We can reparametrize each curve γn at constant speed

Ln, thus obtaining a new sequence {γ̂n}n∈N in Lip([0, 1], X), which is still a

minimizing sequence, thanks to the equality J (γn) = J (γ̂n). Being {Ln}n∈N

bounded, we get that this new minimizing sequence is uniformly bounded

and uniformly Lipschitz. By Ascoli-Arzelà Theorem we can suppose up to

a subsequence that γ̂n → γ̂ uniformly for some L-Lipschitz curve γ̂ where

we have taken L = lim infn Ln. By recalling the link between Lipschitz

conditions and metric derivative we have

|γ̂′|(t) ≤ L for a.e. t ∈ [0, 1].

Now by using the lower semicontinuity of the functional J , we obtain

J (γ̂) =

∫ 1

0

J(γ̂(t))|γ̂′|(t) dt ≤ L

∫ 1

0

lim inf
n→+∞

J(γ̂n(t)) dt

≤ lim inf
n→+∞

Ln

∫ 1

0

J(γ̂n(t)) dt = lim inf
n→+∞

J (γ̂n),

that is the lower semicontinuity of J on the considered sequence, which

achieves the proof.

Remark 3.2.3. Notice that the integral assumption H2 is always true if J ≥ c

for a suitable strictly positive constant. Moreover Theorem 3.2.1 still holds if

condition H2 is replaced by the weaker assumption that there exists a curve

γ0 such that

J (γ0) <

∫ +∞

0

inf
B(x0,r)

J dr.



84 Chapter 3. Path Functionals over Wasserstein Spaces

We give here a slightly refined version of Theorem 3.2.1, which will be

useful in the last section. The goal here is to weaken the compactness as-

sumption on bounded subsets of X.

Theorem 3.2.4. Let (X, d, d′) be a metric space endowed with two different

distances, such that:

(K1): d′ ≤ d;

(K2): all d−bounded sets in X are relatively compact with respect to d′;

(K3): the mapping d : X ×X → R+ is a lower semicontinuous function with

respect to the distance d′ × d′.

Let J : X → [0,+∞] be lower semicontinuous with respect to d′. Consider

the functional, defined on the set of d−Lipschitz curves γ : [0, 1] → X, given

by

J (γ) =

∫ 1

0

J(γ(t))|γ′|d(t)dt,

where |γ′|d(t) stands for the metric derivative of γ with respect to d. Then,

with the same hypotheses H1 and H2 (where Br(x0) are in the d-sense) of

Theorem 3.2.1, there exists a minimum for J .

Proof. We can take a minimizing sequence {γn}n and, as in Theorem 3.2.1,

reparametrize it to obtain a sequence {γ̂n}n in which every curve has constant

speed Ln. Hypothesis H2 gives us the boundedness of Ln. Hence the sequence

{γ̂n}n is composed by d−equicontinuous functions from [0, 1] to a d−bounded

subset of X. If we endow X with the distance d′ we have an equicontinuous

(thanks to assumption K1) sequence of functions whose images are contained

in a compact set. We can consequently use Ascoli-Arzelà Theorem to choose

a subsequence (not relabelled), such that γ̂n → γ, for a suitable curve γ

(uniformly in the d′−sense).

The lower semicontinuity of J with respect to d′ allows us to use Fatou

Lemma and shows that γ minimizes J , as far as we can show that γ is

d−Lipschitz with a Lipschitz constant not exceeding lim infn Ln. To do this

we use assumption K3. Taken two points s, t we have in fact:

d(γ(s), γ(t)) ≤ lim inf
n

d(γ̂n(s), γ̂n(t)) ≤ lim inf
n

Ln|s− t|,

which shows the required Lipschitz property.
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3.3 The Case of Wasserstein Spaces

In this section we consider a compact metric space Ω equipped with a distance

function c and a positive finite non-atomic Borel measure m. We consider

the p-Wasserstein metric space Wp(Ω). As we have seen in Section 1.5, this

is the space of Borel probability measures µ on Ω with finite momentum of

order p with respect to a point x0∫
Ω

c(x, x0)
p dµ < +∞,

equipped with the p-Wasserstein distance

Wp(µ1, µ2) = inf

(∫
Ω×Ω

c(x, y)p λ(dx, dy)

)1/p

where the infimum is taken on all transport plans λ between µ1 and µ2, that

is on all probability measures λ on Ω × Ω whose marginals π+
#λ and π−#λ

coincide with µ1 and µ2 respectively.

Notice that, since the distance c is bounded, the space Wp(Ω) consists

of all probability measures. We consider functions J on Wp(Ω) that can be

represented in the following form:

J(µ) =

∫
Ω

f

(
dµ

dm

)
dm+

∫
Ω\Aµ

f∞
(

dµs

d|µs|

)
d|µs|+

∫
Aµ

g(µ(x)) d#(x)

where

• dµ/dm is Radon-Nikodym derivative of µ with respect to m,

• f : R → [0,+∞] is convex, lower semicontinuous and proper (i.e. not

identically +∞),

• µs is the singular part of µ with respect to m according to the Radon-

Nikodym decomposition theorem;

• f∞ is the recession function

f∞(s) := lim
t→+∞

f(s0 + ts)

t

(the limit is independent of the choice of s0 in the domain of f , i.e. the

set of points where f is finite),
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• Aµ is the set of atoms of µ, i.e. the points such that µ(x) := µ({x}) > 0,

• g : R → [0,+∞] is a lower semicontinuous subadditive function such

that g(0) = 0

• # is the counting measure.

Note that our functional can be written in a simpler form since in our case

dµs/d|µs| = 1 for |µs|-a.e. of x, being µ a positive measure:

J(µ) =

∫
Ω

f

(
dµ

dm

)
dm+ f∞(1)|µs|(Ω \ Aµ) +

∫
Aµ

g(µ(x)) d#(x).

By the results that can be found in [9] and [10], these functionals are lower

semicontinuous for the weak-∗ convergence of measures (and represent all

local functionals with this semicontinuity property) whenever

g0(s) := sup
t>0

g(st)

t
= f∞(s).

Theorem 3.3.1. Suppose that f(s) > 0 for s > 0 and g(1) > 0. Then

we have J ≥ c > 0. In particular, the functional J defined on the set of

Lipschitz curves γ : [0, 1] → Wp(Ω) with given starting and ending point

achieves a minimum, provided that there exists a curve with finite cost.

Proof. Let us fix some notation. By µa we mean the absolutely continuous

part of µ with respect to the measure m, and by µs, µ#, µc respectively the

singular part, the atomic part and the singular diffused part of µ. Then we

have µ = µa +µs = µa +µc +µ#. Since f is convex, by Jensen inequality we

have∫
Ω

f

(
dµ

dm

)
dm ≥

m(Ω)f

(
1

m(Ω)

∫
Ω

dµ

dm
dm

)
= m(Ω)f

(
µa(Ω)

m(Ω)

)
. (3.3.1)

Since µ is a positive measure and f∞ is 1−homogeneous∫
Ω\Aµ

f∞
(

dµs

d|µs|

)
d|µs| =

|µs|(Ω \ Aµ)f∞(1) = m(Ω)f∞
(
µc(Ω)

m(Ω)

)
. (3.3.2)
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Since g is a subadditive function

∫
Aµ

g(µ(x)) d#(x) =

∑
x∈Aµ

g(µ(x)) ≥ g

∑
x∈Aµ

µ(x)

 = g(µ#(Ω)). (3.3.3)

For the recession function f∞ it holds

f∞(x) ≥ f(x+ y)− f(y) for all x, y ∈ R,

and so the sum of the first two terms, i.e. those given by (3.3.1) and (3.3.2),

can be estimated from below by

m(Ω)f

(
µa(Ω) + µc(Ω)

m(Ω)

)
.

Therefore summing up (3.3.1), (3.3.2) and (3.3.3) we obtain

J(µ) ≥ m(Ω)f

(
µa(Ω) + µc(Ω)

m(Ω)

)
+ g(µ#(Ω)).

We set a = µ#(Ω) and 1 − a = µa(Ω) + µc(Ω). Since the function a 7→
m(Ω)f((1− a)/m(Ω)) + g(a) is lower semicontinuous, it attains a minimum

in the interval [0, 1]. Thanks to our hypothesis this sum is always positive,

and so we have

min
0≤a≤1

m(Ω)f

(
1− a

m(Ω)

)
+ g(a) = c > 0,

that is, we have J(µ) ≥ c > 0.

3.3.1 Bounded domains

We now study some special cases of the functional we defined above. In the

rest of this section Ω will be a compact convex subset of RN and the measure

m will be the Lebesgue measure LN on it.
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First case: f = +∞, g(z) = |z|r (0 ≤ r < 1).

In this case we will denote the functional J by Gr and the corresponding

functional J on Lipschitz paths will be called Gr. This is the case when Gr

is finite only on purely atomic measures.

We are now going to consider the question whether there exists a curve

connecting two given measures keeping finite our functional. First we prove

that if both the initial and the final measure are atomic the answer is positive.

Then we prove that for r in a suitable subinterval of [0, 1] every measure can

be connected to a Dirac mass, hence every measure can be connected to every

other measure by a path of finite energy. Finally we show that this is not

possible in general for every r ∈ [0, 1].

Theorem 3.3.2. Let µ0 and µ1 be convex combinations of Dirac masses,

i.e.,

µ0 =
m∑
k=1

akδxk , µ1 =
n∑
l=1

blδyl

with ak, bl > 0,
∑

k ak =
∑

l bl = 1. Then, there exists a Lipschitz curve

γ : [0, 1] →Wp(Ω) such that γ(0) = µ0, γ(1) = µ1 and

Gr(γ) =

∫ 1

0

Gr(γ(t))|γ′|(t) dt < +∞.

Proof. It is sufficient to prove the theorem when a1 = 1, i.e. µ0 = δx1

since in the general case one connects the first measure µ0 to a Dirac mass

supported in an arbitrary point, then one connects that Dirac mass to the

final measure µ1. If one can keep finite the functional in both steps, then the

result is proved in the general case.

We now prove that the curve γ : [0, 1] →Wp(Ω) given by:

γ(t) =
n∑
l=1

blδx1+t(yl−x1).

is Wp-Lipschitz and Gr(γ) < +∞. Let t1 and t2 be time instants such that

t1 < t2. Then, the transport plan between the probability measures given

by
∑

l blδx1+t1(yl−x1) and
∑

l blδx1+t2(yl−x1) induced by the map T (x1 + t1(yl−
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x1)) := x1 + t2(yl − x1) gives:

Wp(γ(t2), γ(t1)) ≤
(∫

Ω

|x− T (x)|p dγ(t1)

)1/p

=

(
n∑
l=1

bl|t2 − t1|p|yl − x1|p
)1/p

= |t2 − t1|

(
n∑
l=1

bl|yl − x1|p
)1/p

.

Hence the metric derivative with the respect to the Wasserstein p-distance is

given by:

|γ′|(t) ≤

(
n∑
l=1

bl|yl − x1|p
)1/p

= Wp(µ0, µ1).

On the other hand we have:

Gr(µ) =

{ ∑
x∈Aµ |µ(x)|r if µa = µc = 0

+∞ otherwise.

Then

Gr(γ(t)) =

{
1 if t = 0∑n

l=1 b
r
l if t > 0.

Hence

Gr(γ) =

∫ 1

0

Gr(γ(t))|γ′|(t) dt ≤

n∑
l=1

|bl|r
(

n∑
l=1

bl|yl − x1|p
)1/p

< +∞.

Remark 3.3.3. By repeating the proof of Theorem 3.3.2 one obtains that the

statement still holds for infinite sums of Dirac masses (i.e. m = n = +∞)

provided Gr(µ0) and Gr(µ1) are finite, that is
∑

k a
r
k < +∞ and

∑
l b
r
l < +∞.

The proof of the next theorem is related to the one of Proposition 3.1 of

[48].

Theorem 3.3.4. Let 1 − 1/N < r ≤ 1. Then given two arbitrary µ0 and

µ1 in Wp(Ω), there exists a curve joining them such that the functional Gr is

finite.

Proof. It is sufficient to prove that every measure can be joined to a Dirac

mass in an arbitrary point. We prove first the statement for Ω = [0, 1]N .
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Figure 3.1: Approximation at step k = 3.

The dyadic subdivision of order k of Q = [0, 1]N is given by the family of

closed N -dimensional cubes {Qk
h}h∈Ik where Ik = {1, 2, 3, . . . , 2k}N obtained

by Q dividing each edge into 2k pieces of equal length. We will refer to the

elements of {Qk
h}h∈Ik as k-cubes. To every Borel regular finite measure µ we

associate the following sequence of measures:

µk =
∑
h∈Ik

bkhδyh

where bh = µ(Qk
h) and yh is the center of Qk

h. It is straightforward to see

that µk ⇀
∗ µ as k → +∞.

The idea is now simple (see Figure 3.1): first join µk to µk+1 with an arc

length parametrization γk, second put together all these curves to obtain a

path from a Dirac mass to the measure µ. At every step a k-cube is divided in

2N parts which are (k+1)-cubes. To bring the Dirac mass in the centre of the

k-cube to the 2N centres of the (k + 1)-cubes with the right weights at each

centre one splits the centre of the k-cube into 2N parts moving towards the

centres of the adjacent (k+1)-cubes in such a way that each point moves with

unitary speed. At each step (see Figure 3.1 where the first three steps are

represented) we obtain a curve γk defined on an interval of length (1/2)kd/2

(d is the diagonal of Q) such that |γ′k|(t) = 1 for all t.

Let us now compute the value of the functional on the curve γ made by

joining all curves γk above. Since the function f(x1, . . . , xn) =
∑n

i x
r
i with

the constraint
∑n

i xi = 1 reaches its maximum at point (1/n, . . . , 1/n) we
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have:

Gr(γ) =
+∞∑
k=1

(
1

2

1

2k
d
∑
h∈Ik

(bkh)
r

)
≤

+∞∑
k=1

(
1

2

1

2k
d2Nk

(
1

2Nk

)r)
.

Since 1− 1/N < r ≤ 1 the sum considered above is convergent.

In the case of a general Ω it is sufficient to consider a large cube containing

the support of the measure µ such that the centre is contained in Ω.

The bound given by r > 1− 1/N is sharp. We have in fact the following

result.

Theorem 3.3.5. Suppose r ≤ 1 − 1/N . Then there exists a probability

measure µ on Ω such that every non-constant Wp-Lipschitz path γ such that

γ(0) = µ is such that Gr(γ) = +∞.

Proof. Let Ω be the cube [0, 1]N and µ the Lebesgue measure on it. We want

to estimate from below

inf {Gr(ν) |Wp(µ, ν) ≤ t}

and we will show it to be larger than ct−N(1−r). Therefore, if γ is a Wp-

Lipschitz path with constant speed which originates from µ, the integral

defining Gr diverges. We can simply consider t = 2−k. To estimate Gr(ν),

when ν is such that Wp(µ, ν) ≤ t, consider a partition of Ω by small cubes of

side ε. Let k be the number of those cubes Qi such that ν(Qi) ≤ µ(Qi)/2 =

εN/2. In all these cubes we have a zone in which the optimal transport map

s between µ and ν must take values outside the cube; this zone, given by

Qi\s−1(Qi), has a measure of at least εN/2. We want to estimate from below

the contribute of this zone to the total transport cost between µ and ν. For

this contribute we may write∫
Qi\s−1(Qi)

d(x, ∂Qi)
pdx =

∫ (ε/2)p

0

|
(
Qi \ s−1(Qi)

)
∩ {d(x, ∂Qi)

p > τ} |dτ

≥
∫ (ε/2)p

0

(
εN

2
− | {d(x, ∂Qi)

p ≤ τ} |
)

dτ

≥
∫ Bpεp

0

(
εN

2
− | {d(x, ∂Qi) ≤ Bε} |

)
dτ

≥ c1ε
pεN ,
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where B is sufficiently small and c1 is a positive constant. By recalling that

the total transport cost (i.e. the p−th power of the distance Wp) is less than

tp, we have

kc1ε
N+p ≤ tp. (3.3.4)

On the other hand, the value of Gr can be estimated from below by means

of the other cubes and we have

Gr(ν) ≥ (ε−N − k)c2ε
Nr.

Let us now choose ε = mt with m an integer such that c1m
p > 1 and, by

using (3.3.4), we have

Gr(ν) ≥ t−N(m−N −m−N−p/c1)c2m
NrtNr = c3t

−N(1−r),

where the constant c3 is positive.

For general Ω we can simply use a cube contained in Ω and show that

the Lebesgue measure on it, rescaled to a probability measure, cannot be

reached keeping finite the value of the integral.

Example 3.3.6 (Y-shaped paths versus V-shaped paths). Consider

the example in Figure 3.2, where we suppose that l and h are fixed. We

define for 0 ≤ t ≤ l0
x(t) = (t, 0)

and for l0 ≤ t ≤ l0 +
√
l21 + h2

x1(t) =

(
l0 + l1

t− l0√
l21 + h2

, h
t− l0√
l21 + h2

)

x2(t) =

(
l0 + l1

t− l0√
l21 + h2

,−h t− l0√
l21 + h2

)
.

Let us consider the curve γ : [0, l0 +
√
l21 + h2] →Wp(Ω) defined by

γ(t) =

{
δx(t) if 0 ≤ t < l0
1
2
δx1(t) + 1

2
δx2(t) if l0 ≤ t ≤ l0 +

√
l21 + h2.

It easy to see that |γ′|(t) = 1 and that

Gr(γ) = l0 + 21−r
√

(1− l0)2 + h2.
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h

l

l l0 1

Figure 3.2: A Y-shaped path for r = 1/2.

Then the minimum is achieved for

l0 = l − h√
41−r − 1

.

In particular, when r = 1/2 we have a Y-shaped path (similar to the one of

Figure 3.2) when l > h, while the path is V-shaped when l ≤ h.

Remark 3.3.7. The result given by Theorem 3.3.4 can clearly be improved

for particular choices of µ0 and µ1. For instance, we can connect a Dirac

mass to the k-dimensional Hausdorff measure on a smooth k-surface for all

r ∈ [1− 1/k, 1] (see also [34]).

Second case: f(z) = |z|q (q > 1), g = +∞.

We follow the same structure of the previous section. In this case we will

denote the functional J by Fq and J by Fq.
We start by proving that when Fq(µ0) and Fq(µ1) are finite, that is µ0

and µ1 are measures with Lq(Ω) densities, the optimal path problem admits

a solution with finite energy.

Theorem 3.3.8. Assume that µ0 = u0 ·LN , µ1 = u1 ·LN with u0, u1 ∈ Lq(Ω).

Then µ0 and µ1 can be joined by a finite energy path.

The proof of this result relies on the notion of displacement convexity

which has been introduced in Chapter 1, Section 1.6. Recall that given µ0



94 Chapter 3. Path Functionals over Wasserstein Spaces

and µ1 absolutely continuous probability measures on Ω and T : Ω → Ω

optimal transport map (unique if p > 1) between µ0 and µ1 with respect to

the cost function |x− y|p, the map γT : [0, 1] →Wp(Ω) given by

t 7→ γT (t) := [(1− t)Id + tT ]#µ0 (3.3.5)

is called a displacement interpolation.

Remark 3.3.9. It is well-known (see [1] or Remark 1.6.2 for the case p = 2)

that the curve defined in (3.3.5) is a geodesic in Wp(Ω), parametrized in such

a way that

|(γT )′|(t) = Wp(µ0, µ1) for a.e. t.

A functional F defined on all absolutely continuous measures (with re-

spect to the Lebesgue measure) of Wp(Ω) is said to be displacement convex

if for every choice of µ0, µ1 absolutely continuous measures there exists an

optimal transport map T such that

t 7→ F (γT (t))

is convex on [0, 1].

Proof of Theorem 3.3.8. By Theorem 1.6.9 and Theorem 1.6.18 the func-

tional Fq is displacement convex, so that

Fq(γ
T (t)) ≤ (1− t)Fq(µ0) + tFq(µ1).

Then∫ 1

0

Fq(γ
T (t))|(γT )′|(t) dt ≤

Wp(µ0, µ1)

∫ 1

0

[(1− t)Fq(µ0) + tFq(µ1)] dt =

1

2
(Fq(µ0) + Fq(µ1))Wp(µ0, µ1).

Since Fq(µ0) and Fq(u1) are finite, we have that the path t 7→ γT (t) provides

a finite value for the energy functional Fq.

Next step will be the existence of an admissible path for arbitrary ex-

tremal measures, if q satisfies some additional constraints.
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Recall that if µ0 and µ1 are probability measures given by L1 densities (u0

and u1 respectively) and T is a transport map between them with sufficient

regularity we have:

u1(y) = u0(T
−1(y))|det DT−1(y)|.

Lemma 3.3.10. Let q < 1 + 1/N . Let also µ = u · LN with u ∈ Lq(Ω) and

ν =
∑k

j=1 bjδyj with
∑k

j=1 bj = 1. Then there exists a path between µ and ν

with finite energy.

Proof. Let T be an optimal transport map between µ and ν. Let Bj :=

T−1(yj). We now show that the path γT has a finite energy. Let us set Tt =

(1−t)Id+tT . If x ∈ Bj, then Tt(x) = (1−t)x+tyj and det DTt(x) = (1−t)N .

Let ut be the density of the measure (Tt)#µ, that is to say:

ut(y) = u(T−1
t (y))| det DT−1

t (y)|.

We then have:∫
|ut(y)|q dy =

k∑
j=1

∫ ∣∣∣∣u(y − tyj
1− t

)∣∣∣∣q 1

(1− t)Nq
dy

=
k∑
j=1

∫
|u(z)|q(1− t)N(1−q) dz

= (1− t)N(1−q)
∫
|u(z)|q dz.

Moreover, thanks to Remark 3.3.9, the metric derivative |γ′|(t) is constantly

equal to the Wasserstein distance Wp(µ, ν). Then,

Fq(γ) = Wp(µ, ν)

∫ 1

0

∫
|ut(y)|q dy dt =

Wp(µ, ν)

N + 1−Nq

∫
Ω

|u|q dx

which is finite since q < 1 + 1/N .

Theorem 3.3.11. Let q < 1 + 1/N . Then every couple of measures can be

joined by a path with finite energy.

Proof. It is enough to link any measure ν to a fixed Lq measure µ (for in-

stance, the normalized Lebesgue measure) with a finite energy path. Let
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{νk}k∈N be a sequence of atomic measures approximating ν in the Wasser-

stein distance Wp. By Lemma 3.3.10, for every k there is a path γk with

energy

Fq(γk) = CWp(µ, νk)

where C is a constant which only depends on N, q,Ω (and of course µ).

Extracting a convergent subsequence of {γk}k∈N provides a path γ such that,

by repeating the lower semicontinuity argument of Theorem 3.2.1, gives

Fq(γ) ≤ lim inf
k→+∞

Fq(γk) = lim
k→+∞

CWp(µ, νk) = CWp(µ, ν).

Since γk connects µ to νk, then γ connects µ to ν and the result is established.

As in the previous section, we show that the previous result is sharp, as

it can be seen from the following statement which is valid in a more general

setting. In fact, we prove an estimate which holds for every Wp-Lipschitz

curve not only valued in P(Ω), but also in P(RN).

Theorem 3.3.12. Suppose q ≥ 1 + 1/N . Then there exists µ ∈ Wp(Ω) such

that every non-constant Wp-Lipschitz path γ with γ(0) = µ gives Fq(γ) =

+∞.

Proof. Let us choose µ = δ0 (supposing, up to a translation, that 0 ∈ Ω). It

is sufficient to prove that

inf {Fq(ν) | ν ∈ P(Ω), Wp(µ, ν) ≤ t} ≥ Ct−N(q−1), (3.3.6)

with C > 0. In fact, by reparametrization, it is sufficient to prove that the

functional is infinite on constant speed paths. Taken such a path γ, with

constant speed L > 0, we then have

Fq(γ) = L

∫ 1

0

Fq(γ(t))dt ≥ L

∫ 1

0

C(Lt)−N(q−1)dt = +∞,

where the integral diverges thanks to the assumption on q. To prove (3.3.6)

we can suppose that Ω = RN , which is the worst case. This shows that the

result does depend neither on the compactness nor on the convexity of Ω.

By considering the map that associates to every probability measure ρ the

measure ν = (mt)#ρ, where mt(x) = tx, one has a one-to-one correspondence

between the probabilities whose Wasserstein distance from δ0 is less than 1
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and those whose distance is less than t. It is easy to see that ν is Lq if

and only if the same happens for ρ and that the density of ν is the function

x 7→ t−Nu(x/t), where u is the density of ρ. Therefore

Fq(ν) =

∫
uq(x/t)

tNq
dx =

∫
uq(y)t−NqtNdy = Fq(ρ)t−N(q−1).

Consequently, it is now sufficient to evaluate the infimum in (3.3.6) when

t = 1, and this number will be the constant C we are looking for. We

will show that this infimum is in fact a minimum, thus obtaining that it is

strictly positive. This problem is quite similar to those studied in [44]. To

get the existence of a minimum we recall that the functional Fq is sequen-

tially lower semicontinuous with respect to weak-∗ topology on probability

measures, while the set {ν ∈ P(Rn) |Wp(δ0, ν) ≤ 1} is sequentially compact

with respect to the same topology (in fact every sequence in it turns out to

be tight).

Remark 3.3.13. As in the previous case, it is possible that two measures could

be connected by a finite energy path even when q is greater than 1 + 1/N .

For instance, with N = 2, the path given by

γ(t) =
1

4t
1[−1,1]×[−t,t] · L2

is a Lipschitz path in Wp([−1, 1] × [−1, 1]) joining γ0 = 1/2H1 [−1, 1] to

γ1 = 1/4L2 (it is in fact a Wasserstein geodesic between them). The energy

is finite as far as ∫ 1

0

4t

(4t)q
dt < +∞.

This condition is fulfilled when 1 − q > −1, i.e. when q < 2, instead of the

condition q < 1 + 1/2 found in Theorem 3.3.11.

3.3.2 Unbounded domains

The existence results of the previous section were based on two important

facts: the compactness of Wasserstein spaces Wp(Ω) when Ω itself is compact

and 1 ≤ p < +∞, and the estimate like Fq ≥ c > 0, proven in Theorem 3.3.1,

that can be obtained when |Ω| < +∞. Both the facts do not hold when

Ω = RN , for instance. This is the reason why we developed in Section 3.1

some tools giving the existence of optimal paths under weaker assumption,
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even in the abstract metric setting. To replace the compactness of Ω we

need to use Theorem 3.2.4, while to deal with the fact that we do not have

Fq(ν) ≥ c > 0 in the case where ν runs over all Wp(RN) we can use the

weaker assumption given by hypothesis H2.

In this section we only deal with the case of Fq-like functionals studied

in the compact case in Section 3.3.1; the case of atomic measures and Gr-
like functionals of Section 3.3.1 still present some extra difficulties when Ω

is unbounded. We stress the fact that most of the techniques we use can

be adapted to deal with several different cases, i.e. Ω unbounded but not

necessarily the whole space, or the space W∞(Ω) (where the distance is given

by transport costs computed in a supremal way instead of an integral one).

Notice that the use of Theorem 3.2.4 is necessary because in general, if Ω

is not compact, the corresponding Wasserstein spaces are not even locally

compact (and the same happens when we take Ω compact but we choose to

consider the space W∞(Ω)), thus we cannot have the compactness of closed

balls.

First, we show some lemmas in order to use Theorem 3.2.4.

Lemma 3.3.14. The weak topology (i.e. the one induced by the duality with

the space Cb(Ω) of bounded continuous functions on Ω) on the space Wp(Ω)

can be metrized by a distance d′ such that d′ ≤ W1 ≤ Wp.

Proof. The usual distance metrizing the weak topology is given by

d(µ, ν) =
∞∑
k=1

2−k
∣∣∣∣∫ φkd(µ− ν)

∣∣∣∣ ,
where (φk)k is a dense sequence in the unit ball of Cb(Ω). We can choose

these functions to be Lipschitz continuous and let, for every index k, ck be

the Lipschitz constant of φk. Then

d′(µ, ν) =
∞∑
k=1

2−k

1 + ck

∣∣∣∣∫ φkd(µ− ν)

∣∣∣∣
is a distance which metrizes the same topology. Being φk/(1 + ck) a 1−Lip-

schitz function, thanks to the dual formulation of Monge’s problem, we have∣∣∣∣∫ φk
1 + ck

d(µ− ν)

∣∣∣∣ ≤ W1(µ, ν),

and so, by summing up on k, we get d′ ≤ W1 as required.
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The following two lemmas are well known.

Lemma 3.3.15. The distance Wp is lower semicontinuous on Wp(Ω) ×
Wp(Ω) endowed with the weak × weak convergence.

Proof. Take µn ⇀ µ and νn ⇀ ν. Let γn be an optimal transport plan for

the cost |x− y|p between µn and νn: the sequence of this plans turns out to

be tight thanks to tightness of the sequence of the marginal measures, and so

we may suppose γn ⇀ γ. We can now see that γ is a transport plan between

µ and ν and so it holds

Wp(µ, ν) ≤
(∫

|x− y|pdγ
)1/p

≤ lim inf
n→+∞

(∫
|x− y|pdγn

)1/p

= lim inf
n→+∞

Wp(µn, νn).

Lemma 3.3.16. All bounded sets in Wp(RN) are relatively compact with

respect to weak topology.

Proof. Just notice that, in a bounded set, every sequence of probability mea-

sures turns out to be tight. The limits up to subsequences (that exist in the

weak sense) still belong to the space Wp(RN) as a consequence of the lower

semicontinuity of the functional µ 7→ Wp(µ, δ0) (which is nothing but the

p−th momentum of the measure).

We can give now our result.

Theorem 3.3.17. Let Fq and Fq be defined as in Section 3.3.1 respectively

on Wp(RN) and on the set of Lipschitz path in Wp(RN) joining two measures

µ0 and µ1. Then

• if q < 1 + 1/N for every µ0 and µ1 there exists a path giving finite and

minimal value to Fq;

• if q ≥ 1 + 1/N there exist measures µ0 such that Fq = +∞ on every

non-constant path starting from µ0.

Proof. Let us start by the case q < 1 + 1/N : thanks to Lemma 3.3.15 and

3.3.16 we can use Theorem 3.2.4 and so we just need to verify the two as-

sumptions H1 and H2. The existence of a finite-energy path can be achieved
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in the same way as in Theorem 3.3.11, by passing through a fixed Lq probabil-

ity measure. Notice that, in order to have the convergence of a subsequence

and the lower semicontinuity in the approximation by atomic measures, we

will argue as in the proof of Theorem 3.2.4 instead of Theorem 3.2.1.

In order to estimate the integral in H2 we will use the same estimate

given in Theorem 3.3.12, to achieve

inf {Fq(ν) | ν ∈ P(Ω), Wp(µ, ν) ≤ t} ≥ Ct−N(q−1),

so that the integral diverges as far as q < 1 + 1/N .

By repeating the arguments of Theorem 3.3.12, we can then prove also

the second part of our result, because µ = δ0 cannot be joined to any other

probability measure by a finite energy path.

Remark 3.3.18. In the previous theorem we did not mention the possibility

to link, for arbitrary q > 1, two measures µ0, µ1 ∈ Lq(RN). It is easy to

check that the same construction used in Theorem 3.3.8 can be used in this

setting too. We get in such a way the existence of a path providing a finite

value to Fq, but some problems arise when we look for a minimal one. In

fact, for arbitrary q, condition H2 is no longer fulfilled and this prevents us

from applying the general existence results.

To conclude this section, we highlight the difference between the case we

dealt with (about the functional Fq) and the other important case, repre-

sented by the functional Gr. In this latter case it is not necessary to pass

through the divergence of the integral in assumption H2, because we actually

have Gr ≥ 1, as already shown.

On the other hand, some difficulties arise in verifying assumption H1. In

fact the construction we made to build a finite energy path linking δ0 to a

probability measure µ strongly uses the compactness of the support of µ. In

order to get a similar construction for the case Ω = RN we would need an

estimate like

inf{Wp(µ, ν) |# spt(ν) ≤ k} ≤ C(µ)k−1/N ,

where C(µ) is a finite constant depending on the measure µ. It is easy to

get a similar estimate when µ has compact support, but the constant may

depend on the diameter of its support. The existence of a similar estimate

for arbitrary measures µ is linked to the asymptotics of the rescaled location

problem in RN .
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A theory on this asymptotic problem has been explicitly developed (for

instance in [12]) only in the case of compact support. However, it leads

to a condition like µN/(N+p) ∈ L1, which is always fulfilled for µ compactly

supported, while it may fail for general probability measures in Wp(RN).

A positive answer to this estimate would easily imply a theorem similar to

Theorem 3.3.17 for the case of Gr, but we cannot say this to be necessary.

3.4 An alternative model for tree structures

Path functionals are not the only alternative model of optimal transportation.

In the past few years two models (formulated in a mathematical different way

which turns out to be the same) have been proposed in various papers. The

first one deals with transport paths and was proposed by Xia in [48]. The

second one deals with irrigation trees and traffic plans and appeared in [34]

and [7].

Interesting papers concerning the possibility of computing the optima of

these two models can be found in [28], [33] and [50]. In particular in [28]

a construction with ruler and compass for the nodes of an optimal graph is

provided, while in [50] an algorithm to optimize a graph with a given topology

is presented.

These model came out from the study of drainage networks, plants, trees

and their root systems, bronchial and cardiovascular systems. These models

seem also to be suitable to study the formation of a tree leaf (see [49]) or the

shaping of a land due to the flow of its rivers (see [45]).

In the next few pages we will describe the main properties of these two

models.

3.4.1 Xia’s transport paths

The first thing we want to define is how atomic two probability measures are

transported. So, we fix a compact subset Ω ⊂ RN and consider as initial and

final measures µ+ and µ− convex combinations of Dirac measures in Ω:

µ+ =
m∑
i=1

aiδxi , µ− =
n∑
j=1

bjδyj ,

with ai, bj ≥ 0,
∑m

i=1 ai =
∑n

j=1 bj = 1.
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Let us consider a graph G (we respectively indicate the set of vertexes

and the set of the edges of G by V (G) and E(G)) such that each edge is

oriented and is carried by a positive real number (i.e. a weight function

w : E(G) →]0,+∞[ is given). For such a graph to be a transport path

between µ+ and µ− we require that:

• xi ∈ V (G) for all 1 ≤ i ≤ m, yj ∈ V (G) for all 1 ≤ j ≤ n;

• for each initial vertex xi the sum of the weights of the edges coming

out from xi is equal to ai, the mass carried by xi. Denoting by e+ the

starting point of the oriented edge e ∈ E(G), we must have

ai =
∑

e∈E(G),
e+=xi

w(e);

• for each final vertex yj the sum of the weights of the edges coming in

yj is equal to bj, the mass carried by yj. Denoting by e− the ending

point of the oriented edge e ∈ E(G), we must have

bj =
∑

e∈E(G),
e−=yj

w(e);

• for any interior vertex v ∈ V (G)\{x1, . . . , xm, y1 . . . , yn} the Kirchoff’s

Law must hold: ∑
e∈E(G),
e+=v

w(e) =
∑

e∈E(G),
e−=v

w(e).

The idea under the transport paths is very simple. At the beginning we

have the initial measure µ+. Then the mass starts to flow inside the edges

of the graph G until it comes to the final measure µ−. The conditions above

simply guarantee that no mass is created or disappears when it is split in

two or more edges.

The point is now to provide to each transport path G a suitable cost that

makes keeping the mass together cheaper. The right cost function is then

Mα(G) :=
∑

e∈E(G)

[w(e)]αl(e), (3.4.1)

where l(e) is the length of the edge e and 0 ≤ α ≤ 1 is fixed. This cost takes

advantage of the subadditivity of the function t 7→ tα in order to make more

economic the tree-shaped graphs.



3.4. An alternative model for tree structures 103

x1

x2

y1

x1

x2
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Figure 3.3: Y shape versus V shape.

Figure 3.4: A more general tree.

Example 3.4.1. Let µ+ = mδx1 + (1−m)δx2 and µ− = δy1 . Thanks to the

subadditivity of t 7→ tα it may happen (depending on the mass m carried by

x1, the value of the parameter α and the positions of the points x1, x2 and

y1) that a Y-shaped graph will be more efficient that a V-shaped one in the

case of Figure 3.3. In the general case, an optimal graph will look like that

of Figure 3.4.

To deal with the case of general initial and final measures (i.e. Borel

probability measures) we must write the four conditions defining a transport

path in simplified and more compact form. The only fact we have to note is

that to each oriented edge e of a graph we can associate the vector measure

given by µe = (H1 e)ê (ê is the unit vector with the same orientation as e)

and that

div µe = δe+ − δe−
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in distributional sense. In this way, instead a weighted directed graph we

can consider the vectorial measure given by

G =
∑

e∈E(G)

µe

and the four conditions are summarized simply requiring that divG = µ+ −
µ−. In this case it is easy to see that M1(G) = ‖G‖(X).

In the general case a transport path between measures µ+ and µ− is a

vectorial measure T such that:

• there exists a sequence of atomic probability measures {µ+
i }i≥1 such

that µ+
i ⇀ µ+;

• there exists a sequence of atomic probability measures {µ−i }i≥1 such

that µ−i ⇀ µ−;

• there exists a sequence of transport paths {Ti}i≥1 between µ+
i and µ−i

such that Ti ⇀ T .

The Mα cost for a generalized transport path is then defined as the lower

semicontinuous envelope of Mα as defined on graphs in Definition 3.4.1:

Mα(T ) = inf
{Ti}i≥1

lim inf
i→+∞

Mα(Ti), (3.4.2)

where {Ti}i≥1 ranges in the set of transport paths satisfying the three con-

ditions above.

The main result regarding the existence of an optimal transport path is

quite analogous to Theorem 3.3.4. In fact it can be shown that if 1− 1/N <

α ≤ 1, then the existence of an optimal transport path is assured whatever

the initial and final measures are. Conditions to link arbitrary measures

have been found in [23]. Moreover, many questions about the regularity of

an optimal transport path are open.

Remark 3.4.2. Let µ+ = mδx1 + (1 − m)δx2 and µ− = δy1 . With a simple

minimization of a function of two real variables it is easy to see that the

position x of the node of an optimal Y-shaped graph between µ+ and µ− is

given by:

mα x− x1

|x− x1|
+ (1−m)α

x− x2

|x− x2|
+

x− y1

|x− y1|
= 0. (3.4.3)
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Consider now the same problem for the path functional Gr (note that the

parameter r corresponds exactly to α). With another simple minimization

it is easy to see that if we consider an optimal curve between µ+ and µ− the

masses will join in a point x satisfying (in the case p = 1, but a formula can

be easily obtained for a general p > 1)

[mr + (1−m)r]

(
m
x− x1

|x− x1|
+ (1−m)

x− x2

|x− x2|

)
+

x− y1

|x− y1|
= 0. (3.4.4)

Equalities (3.4.3) and (3.4.4) do not provide in general the same point, so in

the general case the minimizers will “look” different.

3.4.2 Maddalena, Morel, Solimini’s irrigation trees

The following approach is based on a kind of fluidodynamics approach. The

idea is to consider a set Ω and a set “fibres” coming out from a given point

S. The set of fibres will be obtained associating to each ω ∈ Ω a curve

χω : [0,+∞] → Ω such that χω(0) = S. Since all the fibres start from

the same point S in this model the initial measure cannot be other than δS.

Then, as time passes, the fibres separate one from each other until they reach

the final measure.

To be more clear, let (Ω,M, µ) be a probability space representing the

reference configuration of a fluid incompressible material body. Let S ∈ RN

be a given point of the Euclidean space of dimension N .

Definition 3.4.3 (Set of fibres). A set of fibres of Ω with source S is a

mapping

χ : Ω× R+ → RN

such that:

• for µ-a.e. ω ∈ Ω, the curve given by χω

t 7→ χω(t) := χ(ω, t)

is Lipschitz continuous and Lip(χω) ≤ 1;

• for µ-almost-every ω ∈ Ω, χω(0) = S.

We will denote by CS(Ω) the set of such functions.
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Definition 3.4.4 (χ-vessels at time t). Given t ∈ R+, the χ-vessels at

time t will be the equivalence classes of the equivalence relation defined by:

ω1 't ω2 ⇐⇒ χω1 = χω2 on [0, t].

In simpler words, a χ-vessel at a certain time instant t identifies all the

flux lines which build a certain tube at time t. As time goes on, the fibres

separate and the number of χ-vessels increases.

Definition 3.4.5 (Absorption time). Given χ ∈ CS(Ω), the function

σχ : Ω → R+ given by

σχ(ω) := inf{t ∈ R+ : χω constant on [t,+∞]}

is the absorption time. A point ω ∈ Ω is absorbed if σ(ω) < +∞, while it is

absorbed at time t if σ(ω) ≤ t. We will denote by At(χ) the set of absorbed

points at time t:

At(χ) := {ω ∈ Ω : σχ(ω) ≤ t},

and by Mt(χ) its complementary:

Mt(χ) := Ω \ At(χ) = {ω ∈ Ω : σχ(ω) > t}.

The irrigation measure induced by the set of fibres χ is the measure

µχ = iχ#µ, where iχ is defined by iχ(ω) := χ(ω, σχ(ω)). This is the measures

that is reached from δS through the set of fibres χ.

Definition 3.4.6 (MMS functional). Let α ∈ [0, 1]. The MMS functional

is defined by

MMS(χ) :=

∫ +∞

0

[∫
Mt(χ)

[µ([ω]t)]
α−1 dµ(ω)

]
dt.

In [34] it is proved that in a suitable subset of CS(Ω) functionals of the

type

χ 7→MMS(χ) + F (µχ),

where F is a lower semicontinuous functional defined on positive measures,

admit a minimizer. A case of particular interest is then that of a functional

F finite on a certain measure µ− and infinity elsewhere. In this case a

comparison between the model of Xia can be made, and the two models

come out to be the same (see [34]).
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3.4.3 Bernot, Caselles and Morel’s traffic plans

Let X be a compact subset of RN . Consider the space K := Lip1(R+, X) of

1-Lipschitz maps γ : R+ → X endowed by the distance

d(γ1, γ2) := sup
k≥1

[
1

k
‖γ1 − γ2‖L∞[0,k]

]
.

It is easy to check that, via Ascoli-Arzelà Theorem, K = Lip1(R+, X) is a

compact metric space. The metric d endows K with a topology, so we can

consider the Borel σ-algebra B on K.

One point is to define the stopping time of a curve of the set K. It will

be the last time instant before the curve becomes constant.

Definition 3.4.7 (Stopping time of a curve γ). Given a curve γ ∈ K =

Lip1(R+, X), its stopping time T is defined by

T (γ) := inf{t ∈ R+ : γ|[t,+∞[ is constant}. (3.4.5)

The function T given in Definition 3.4.7 is lower semicontinuous (and, in

particular, measurable).

Definition 3.4.8 (Traffic plans). A traffic plan is a probability measure

on the space (K = Lip1(R+, X),B) such that∫
K

T (γ) dµ(γ) < +∞. (3.4.6)

The set of traffic plans on X will be denoted by TP (X).

In other words, the integral appearing in Definition 3.4.8 is the trans-

portation time which is requested not to be infinite.

Definition 3.4.9 (Transport plan associated to a traffic plan). Given

a traffic plan µ, the transport plan associated to it is the measure acting on

the functions φ ∈ C(X ×X) as

〈πµ, φ〉 :=

∫
K

φ(γ(0), γ(T (γ))) dµ(γ).

The subset of TP (X) of traffic plans µ such that πµ = π, π given, is denoted

by TP (X, π).
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Since, formally,

〈πµ, χA×B〉 :=

∫
K

χA×B(γ(0), γ(T (γ))) dµ(γ)

= µ({γ ∈ K : γ(0) ∈ A, γ(T (γ)) ∈ B}),

πµ(A×B) is the amount of mass which is moved from A to B.

Definition 3.4.10 (Irrigating and irrigated measure). If µ is a traffic

plan, we define the irrigating measure µ+ and the irrigated measure µ− as

〈µ+, φ1〉 := 〈πµ, φ1 ◦ π+〉, 〈µ−, φ2〉 := 〈πµ, φ2 ◦ π−〉.

where φ1, φ2 ∈ C(X). The set of traffic plans with prescribed irrigating and

irrigated measure (say ν+ and ν−) will be denoted by TP (ν+, ν−).

In the next definition we consider the measure space (Ω = [0, 1],B(Ω), λ =

L1 [0, 1]).

Definition 3.4.11 (Parametrization of a traffic plan). Let µ be a prob-

ability measure on K. A parametrization of µ is a measurable application

χ : Ω → K such that χ#λ = µ.

Definition 3.4.12 (Multiplicity and path class). Let µ be a traffic plan.

We call multiplicity of µ at a point x ∈ RN the number

|x|µ := µ({γ : ∃t ∈ R+, γ(t) = x}).

Given a parametrization of µ, we define the path class of x ∈ RN as the set

[x]χ := {ω : ∃t ∈ R+, χ(ω)(t) = x}.

Since χ#λ = µ, we have that |[x]χ| = |x|µ.

Given a parametrization χ of µ, the energy E(µ) of a traffic plan µ will

be given by Definition 3.4.13.

Definition 3.4.13 (BCM functional). BCM functional is defined by

BCM(χ) :=

∫
Ω

[∫
R+

[µ([ω]t)]
α−1]|χ̇ω(t)| dt

]
dµ(ω). (3.4.7)
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The idea of traffic plan comes out from the necessity to track the move-

ment of the mass. In fact, a traffic plan is a measure on a set of curves along

which the mass moves. Roughly speaking, the way through the mass moves

is then established by the traffic plan: if no mass is carried on a certain set of

curves, then the mass will not go along that set of curves. The next theorem

proves the existence of a minimum for the BCM functional 3.4.7 whenever

we fix the irrigating and irrigated measure (i.e. we need to transport two

given distribution of masses ν+ and ν−), or a transport plan π is given (i.e.

we need to transport two given distribution of masses, but we already know

that an amount of mass given by π(A × B) of the initial mass placed in a

certain set A will have to be placed in a certain set B).

Proposition 3.4.14 (Existence of minimizers). The following facts are

true:

• given an irrigating measure ν+ and an irrigated measures ν−, the func-

tional BCM admits a minimizer in TP (ν+, ν−);

• given a transport plan π, the functional BCM admits a minimizer in

TP (π).

Definition 3.4.15 (Loop free traffic plan). A traffic plan µ is loop free

if there is a parametrization χ of µ such that for almost all ω ∈ Ω, the curve

χ(ω) is injective.

Definition 3.4.16 (Geometric embedding of a traffic plan). Let µ be

a traffic plan. We define the geometric embedding as

Gµ := {x ∈ Ω : |x|µ 6= 0}.

Proposition 3.4.17. Let µ be a traffic plan such that E(µ) < +∞. Then,

there exists a loop free traffic plan µ̃ such that Gµ̃ ⊆ Gµ and πµ̃ = πµ.

The following theorem relates the two functional 3.4.6 and 3.4.13.

Theorem 3.4.18 (MMS-BCM comparison). Let χ be a parametriza-

tion of a non trivial traffic plan µ with finite energy. Then, BCM(χ) ≥
MMS(χ); moreover, BCM(χ) = MMS(χ), if χ is loop free.





Appendix A

Polish spaces and measure

theory

A.1 Polish spaces

The aim of this appendix is just to recall some results on measure theory and

Polish spaces and to give some references on these subjects for the interested

reader.

Let X be a topological space. A Borel probability measure on X is a

positive measure of unitary total mass defined on the Borel σ-algebra, that

is the smallest σ-algebra which contains all open sets of X. A Polish space is

a separable topological space such that its topology is induced by a complete

metric. It is easy to see that if X and Y are Polish spaces, then X × Y is a

Polish space.

A useful result is that Borel probability measures on a Polish space are

always regular.

Proposition A.1.1. Let µ be a Borel probability measures on a Polish space

X. Then µ is regular, that is for any Borel set B the following equalities are

true:

µ(B) = sup{µ(K) : K compact, K ⊆ A},
µ(B) = inf{µ(U) : U open, A ⊆ U}.

The next result is known as Ulam’s Lemma.

Theorem A.1.2 (Ulam’s Lemma). A probability measure µ on a Polish

space is concentrated on a σ-compact subset, that is there exist countably

many compact subsets Kn, n ∈ N, such that µ(∪nKn) = 1.

111
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In other words, the content of Ulam’s Lemma is that a Borel probability

measure on a Polish space is tight, that is for every ε > 0 there exists a

compact subset Kε such that µ(X \Kε) < ε.

Another useful property of Polish spaces is the following theorem (known

as Prokhorov’s Theorem).

Definition A.1.3 (Tight set of Borel probability measures). A set S

of Borel probability measures on a topological space X is tight if for every

ε > 0 there exists a compact subset Kε such that

sup
µ∈S

µ(X \Kε) < ε.

Theorem A.1.4 (Prokhorov’s Theorem). Let S be a tight set of Borel

probability measures on a Polish space X. Then S is relatively sequentially

compact with respect to the weak convergence, that is given a sequence of

{µn}n∈N in S there exists a Borel probability measure µ such that for a suitable

subsequence µnk we have

lim
k→+∞

∫
X

ϕ dµnk =

∫
X

ϕ dµ

for every ϕ ∈ Cb(X).

A.2 Disintegration of measures

Let X and Y be locally compact and separable metric spaces. Let us consider

a map Y → [M(X)]m which we will denote by y 7→ λy. By definition, y 7→ λy
is a Borel map if for any open subset A of X the map Y → Rm given by

y 7→ λy(A) is a Borel map in the usual sense.

Recall that, given a set X, a Dynkin class D is a class of subsets of X

such that X ∈ D, D is closed under the union of an increasing sequence,

A \ B ∈ D whenever A,B ∈ D and B ⊆ A. According to Dynkin Lemma

(whose proof can be found in [8] or [37]), if D contains a class closed under

finite intersection, then it contains the σ-algebra generated by it. Recall also

that a vector space V of real functions defined on a measurable space is said to

be a monotone vector space if the point-wise limit of a sequence of functions

in V bounded by above by a function in V is still in V . Again, according

to [8] and [37], a monotone vector space containing all constant functions
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and characteristic functions of the sets in a basis (a basis is a subset which

generates the σ-algebra and is closed under finite intersection) contains all

bounded measurable functions.

Then, the following result is true.

Proposition A.2.1. Let X and Y be locally compact and separable metric

spaces. Let us consider a map Y → [M(X)]m which we will denote by

y 7→ λy. Then, y 7→ λy is Borel if and only if y 7→ λy(A) is Borel (in the

usual sense) for every Borel set A. Moreover, the map

y 7→
∫
X

ϕ(x, y) dλy(x)

is Borel for any bounded Borel function ϕ : X × Y → R.

Proof. For the first statement it is sufficient to apply Dynkin Lemma to the

class of Borel sets A ⊆ X such that y 7→ λy(A) is a Borel function and to

note that the class of open subsets is closed under finite intersection. For the

second it is sufficient to consider the monotone vector space of the functions

ϕ such that

y 7→
∫
X

ϕ(x, y) dλy(x)

is Borel and to note that it contains constant functions and characteristics

of Borel rectangles.

The proof of the following result can be found on [22]

Theorem A.2.2 (Disintegration of measures). Let X and Y be locally

compact and separable metric spaces and let π : X → Y be a Borel map.

Let λ ∈ [M(X)]m and µ = π#|λ| ∈ M+(Y ). Then, there exists a family of

measures λy ∈ [M(X)]m such that:

• y 7→ λy is a Borel map and |λy| is a probability measure in X for µ-a.e.

y ∈ Y ;

• λ =
∫
Y
λy ⊗ µ, that is for every A ∈ B(X)

λ(A) =

∫
Y

λy(A) dµ(y);

• |λy|(X \ π−1(y)) = 0 for µ-a.e. y ∈ Y .
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Theorem A.2.2 will be useful in the following form.

Corollary A.2.3 (Disintegration of measures). Let X and Y be locally

compact and separable metric spaces and let π : X ×Y → Y be a Borel map.

Let λ ∈ [M(X ×Y )]m and µ = π#|λ| ∈ M+(Y ). Then, there exists a family

of measures λy ∈ [M(X × Y )]m such that:

• y 7→ λy is a Borel map and |λy| is a probability measure in X × Y for

µ-a.e. y ∈ Y ;

• λ =
∫
Y
λy ⊗ µ, that is for every A ∈ B(X × Y )

λ(A) =

∫
Y

λy(A) dµ(y);

• |λy| is concentrated on the set X × {y} for µ-a.e. y ∈ Y .

Theorem A.2.4 (Uniqueness of the disintegration). Let X, Y, π be as

in Theorem A.2.2. Suppose that λ ∈ M+(X), µ ∈ M+(Y ). Suppose that

y 7→ ηy be a Borel function Y →M+(X) such that

• λ =
∫
Y
ηy ⊗ µ, that is

η(A) =

∫
Y

ηy(A) dµ(y);

• ηy is concentrated on π−1(y) for µ-a.e. y ∈ Y .

Then the map y 7→ ηy is uniquely determined up to a set negligible with

respect to µ.

A.3 Young measures

Assume that ψn : X → Y is a sequence of Borel maps between the compact

metric spaces X, Y . We now consider the measures given by

µψn = (Id×ψn)#µ0 =

∫
δψn(x) dµ0(x).

Assume also that µψn ⇀ µ. Since π0#µψn = µ0, we have also that π0#µ = µ0.

According to Theorem A.2.2, the measure µ can then be written as

µ =

∫
µn ⊗ µ0
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for a suitable Borel map of probability measures x 7→ µx (which is referred

to as the Young limit of the sequence ψh).

We will use the following result.

Theorem A.3.1. Let µ ∈M+(X × Y ) and set µ0 = π0#µ. Let µ = µx⊗µ0

be its disintegration. Then, if µ is not atomic we can find a sequence of Borel

maps ψn : X → Y such that

µ = µx ⊗ µ0 = lim
n→+∞

δψn(x) ⊗ µ.

Moreover, the functions ψn can be chosen is such a way ψn#µ is not atomic.
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