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Abstract

We propose an unconditionally stable semi-implicit time discretization of the phase eld
crystal evolution. It is based on splitting the underlying energy into convex and concae parts
and then performing H * gradient descent steps implicitly for the former and explicitly for the
latter. The splitting is e ected in such a way that the resulting equations are linear in each
time step and allow an extremely simple implementation and e cient solution. We provide the
associated stability and error analysis as well as numerical experimenttvalidate the method's
e ciency.

1 Introduction

During the past few years, the so-called phase eld crystal (FFC) method has become quite popular
in physics [4, 5]. It can be used to simulate the evolution of tomic crystals on time scales much
longer than possible for molecular dynamics, while keepingnuch more detail than standard phase
eld models. In particular, it allows for the study of the evo lution of lattice defects, the behavior of
grain boundaries, the relation between elasticity and lattice distortion, and various further physical
phenomena such as, for instance, epitaxial growth [6, 15] &i simulation.

The method is based on a free energy, which in its simplest diensionless form reads

Z
1 2 2, L4 .
E[u] = é( u+ u) éu + Zu dx: D

Here, RY (d = 1;2;3) is the domain occupied by some atomic material, has the interpretation
of a dimensionless temperature, and the order papametet can be thought of as a probability
density for the atom positions, whose average = Jij udx is typically prescribed as a parameter.
Depending on the parameters and u, the energy E prefers di erent states, the most important
being a constant-density liquid state and a periodic hexagoal crystalline state. Di erent variants
of E can produce di erent crystal symmetries [13, 14].

In physical simulations, the atomic density u is evolved in time via anH * gradient ow (which
conserves the average density) for the energy E,

u= (+1) 2u u+u 2)

Being sixth order parabolic, this partial di erential equa tion is very sti (explicit time stepping
would by the CFL condition require the time step  to be limited by the sixth power of the grid size,
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h®, which is impracticable). Since one is typically interestal in its long-time behavior, corresponding
e cient, stable numerical schemes are indispensable. Notehat the L? gradient ow for the energy
E, known as the Swift{Hohenberg evolution, is also of physichinterest. It is given by

u= (+1) %u+ u u? (3)

and will in this paper be treated alongside with the phase eld crystal equation.

Our proposed numerical scheme is closely related to the onergposed by Wise etal. [12], who
base their scheme on a convex-concave splitting idea of Eyr@]f If an energy E can be written as
the di erence of two convex energiesk. and &, E= E. E ¢, then the time discretization

un+1 un

= 1 g Eu"™ ]+ 1y Eu"] (4)

of the gradient ow u; = r y E[u] is energy-stable, that is, it satis es E[u"*1] E [u"] for all time
stepsn. Here, is the discrete time step,u" denotes the time-discrete approximation ofu(n ).
r y E denotes the gradient of an energyE with respect to the inner product on a Hilbert spaceH,
de ned by

(rw Eu]; )n = oEUI() 8 2H; (5)

where the right-hand side is the Gateaux derivative ofE in a test direction . Wise etal. decompose
the phase eld crystal energy into two convex energies accaling to
Z Z

BlUl= (WPt Sou?+ Sutdk;  Eul=  Jr ujd ©)
2 2 4
and then apply scheme (4) forH H (), yielding an energy-stable time discretization of (2).
The disadvantage of the above approach is that each time stepequires the solution of a nonlinear
problem since the term %u“ is part of the implicitly treated energy. We therefore aim to shift this
term into the energy E.. However, in this case we also have to add an additional quaditic term to
both E. and E in order to make E; su ciently convex while respecting E= E. E . In detail, for
a su ciently large constant C > 0 and for the operator L being either the identity L 1 or the
gradient L r , we propose to split the phase eld crystal energy accordingo E= E- E | with
z

1 c. .
Elu]=  S(u+u? Su+ Zjluj?dx; 7
Z
c. . 1
Elu]= Sjluj® Zutdx 8)

and then apply scheme (4) forH  H (), which turns out to yield a stable linear scheme.

This idea of adding and subtracting a term %kLu kfz() to a nonlinear energy E to obtain a
stable linear time discretization is not new [7]. In di erent contexts, explicit time stepping schemes
Ll u") = F[ 2u"; u";u"] have been stabilized by adding and subtracting a higher ordr
term[8, 9, 11], 2 (U™ uM+ C 2u™! = F[ 2u"; u";u"]+C Z2u". Bertozzietal. even stabilized
a Cahn{Hilliard evolution with a lower order term [2]. Howev er, stability in these works is only
observed numerically and not proven.

Concerning numerical discretization of the phase eld crysal evolution, a linear stable scheme
has also been proposed by Cheng and Warren [3]. Besides theale-mentioned nonlinear convex-

concave splitting scheme, Wise and coworkers also introd@ti a second order accurate two-step
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scheme for which they could prove the energ¥ to stay bounded. A di erent, promising approach

is taken by Athreyaetal. and Yeonetal. [1, 16], who derive dierential equations for the amplitude

of the order parameter u, valid in the regime where u is approximately periodic, which can be
solved on coarser grids and from whose solution can approximately be reconstructed.

The next section will introduce the proposed time discretiation in detail and provide the
corresponding stability and error analysis. The choice of he constantC in (7) and (8) is discussed
in Section3. Section4 introduces a spatial discretizationand transfers the stability and error
analysis to the fully discrete scheme. Finally, Section5 sbws various numerical experiments to
demonstrate the practicability of the proposed scheme.

2 An e cient stable time discretization

For simplicity, throughout this article we will assume R" to be a rectangular domain at whose
boundary we impose periodic boundary conditions. In this setion, we prove the stability and
convergence of the proposed scheme.

2.1 Stable convex-concave splitting

For a su ciently large constant C > 0 and for the operator L being either the identity L 1 or
the gradient L r , we propose to split the phase eld crystal energy accordingo E= EL E |
with

z 1 C
Es[u] = Sl U+ u)? §U2+ EJ'LUJ'ZCIX: ©)
Z
c. . 1
EL[u] = > Luj? Zu“ dx : (10)

This splitting naturally leads to the semi-implicit time dis cretization of the Swift{Hohenberg or the
phase eld crystal evolution given by (4). Its strong form, for the choices (9) and (10), thus reads

uttooun 2, n+1 +1 +1 3
= (+1) “u"™+ u" CL L(u" u™) (M (11)

for the Swift{Hohenberg scheme and

un+1 un
=  (+1) 2"t u™+cL L@t u")+(uM)? (12)

for the phase eld crystal evolution, where eitherL L 1 orL L

The above scheme satis es many desirable properties. Firsof all, just as in the continuous
case, the time-discrete phase eld crystal evolution consefes the average valueu. This is readily
seen by integrating both sides of (12) over and applying the divergence theorem together with
the periodic boundary conditions. Also, for C chosen su ciently large, each time step is uniquely
solvable for u"*!, since (11) and (12) are equivalent to solving the strictly @nvex minimization
problem

u™! = argmin ku2u”kﬁ +E[ul  GEs[uM(u); (13)



which is coercive (the strict convexity and coercivity for C 2 are readily seen when expanding all
squares in the above energy). Hered  L?() for the Swift{Hohenberg scheme,and H H 1()
for the phase eld crystal evoluation. Apparently, the scheme is rst order consistent and in each
time step only requires the solution of a constant coe cient linear problem, which allows highly
e cient implementations (e. g. via Fourier transforms, see Section5). Moreover, the linear system
to be solved is the same in every time step, which makes the seme extremely simple to implement.

For C large enough, the proposed scheme is! -stable and decreases the phase eld crystal
energy in every step, as shown by the following theorem.

Theorem 2.1 (Stability) . Assume < 1. Forany u®: ! R with nite energy E there exists a
C > 0 such that the schemeg11) (for L 1) and (12) (for L  1;r ) are stable for any > 0in
the sense

E[u"?!] E [u"] 8n2N;
9U>O:ku”k|_1() U8n2N:

Proof. Let us abbreviate E[u®] = E. The same argument as in [12] leads to a bound
s

LJFJ J:4=: U

kUOkLl 0O
for some > 0 independent ofu®, where without loss of generality we assumé&) 1. Indeed, using
%kuk‘l_“l() %I_(kaz() L) and kr ukfz() = (U u)z Zikukfz() + 5K ukfz() for any
> 0 we obtain

1 1 1
Elu] = Zkukﬂ4() + Tkukﬁz() ke ukfoy + Sk ukf 2y
2 2 I
3 I
5 (kukizay +k uklz) 2
.2 1y 5
for =min —5—;=5- > 0 (take, e.g., = 3=). Hence,
Efu] + 1 kuk?,, + k ukZ,, + }(kukz +k uk?,y )
4 L2() Lz T VL2 L2()
Kuk?z(y + kr uk?zy + k ukfz( kukf:

for some > 0 by Sobolev embedding. We will show that for an appropriate boice of C,
kukii (y  UandE[u"] Eforall n2N.
Choose

3 E+ 2 jut 3E+ % ju?
C > max ;2;3U% =U?3 al | = al | : (14)

where is the constant from the Poincae inequality, satisfying kr ukfz() ku ukﬁz() with u

being the average ofi. We will prove the theorem by induction on n 2 N, so let us assumé&[u®]  E
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R R
andku"k 1 (y U tohold. We know that u"** 2 N, whereN = fu2 L?() j udx= u®dxg
for scheme (12) andN = L?() for scheme (11).

First note that EL is a convex functional. Let us introduce
z C
EL[u] = EjLuj2 f(u)dx; where
(
1,,4. o :
*U 3 u U H
fu= 3., 3--34.JJ
sU“us 2U°%uj+ zU%;  else.
EL is convex onN: Indeed, its second Gateaux derivative in some test diregon  satis es
Z
ZES[Ul(; )= CKL K&, 3min(u;U?%) 2dx  CKL kf»,  3U%k kfz(y :
In the caseL 1 this is clearly non-negative. The casd. r is only considered for the Wase eld
crystal evolution. In that case, since the test functions ma not lead outside of N, we have dx =
0. Thus, the non-negativity of the second Gateaux derivative follows by Poincae's inequality. By
the analogous argument we obtain thatEy is convex onfu 2 N jkuk?, 0 $ min(1; )g.
We now employ the classical convex-concave splitting argum#: By the convexity of EL and

E.

E(u™™] ES(u™] E Q[T BCQUM(WEE[UM] GBSt u)
= Ef[u"] E g[u"]+( JES U] GES[UD(UT UM
= Eu"] L™ oyt u)y E U] E;
whereH  L?() for the Swift{Hohenberg scheme, and H H 1() for the phase eld crystal
evoluation. However, this implies ku"*1 kfl 0 Ergi vt % min(1; ), since for any u we have
4

E El[u] Eg[u]:%k u+ uk?,, + f(u) éu20|x

L2()
1 > uz 5 .4
§k u+ ukpz, +7kuk|_2() yl ju
5
2 LU
kukLl() ZJ ju

using the same estimates as earlier. Now, sindg: is convex onfu 2 N jkukf1 0 % min(1; )g,

we may again apply the classical convex-concave splitting gument, this time to E-  E L, which
yields

Eu"]= ES[u™'] E g[u™] E g[u"] E §u"]+( JEF[U™] GBSt W) E "] E
and thus alsoku"** k.1 ()  U. O

Remark 2.2. The condition < 1 can be removed by slightly improving the derivation of the
L! -bound from E[u] E.



2.2 Convergence of the scheme

The stability and rst order consistency imply rst order co nvergence. The argument is similar to
the analysis for the scheme in [12], nevertheless we will pvide a compact version of the proof for
the sake of completeness.

Theorem 2.3 (Error estimate). Suppose the Swift{Hohenberg (or phase eld crystal) equatiois

solved by a smooth spatially periodic functioru : [O; T] ! R forsomeT 2 (0;1 ), and denote

the solution to (11) (or (12)) by u", n =0;1;:::, where u® = u(0) and C is chosen according to

Theorem 2.1. Then, there exists a constanK > 0 independent of such that (for small enough)
ku(n ) uk_ 2 K

for all n with n T.

Proof. We show the argument for the phase eld crystal equation (the treatment of the Swift{
Hohenberg equation only requires obvious adaptions). Let s abbreviatet” = n and e" = u(t")
u". The time-continuous solution satis es

u(t"*t) uh) _ (+1) 2 U(tn+l)+ CL L U(tn+1) u(t™) +U(tn)3 + N+l
where by a second order Taylor expansion about"*! the truncation error "*! satis es

Con+l; 1 3 _.

P "™ gkukezqorycoqy * Ckukerqorgeay * KUkgiorpcey =K
with a=2for L landa=4for L r . Subtracting (12), we obtain

et e

— (+1) 2 en+1 + CL L(en+1 en)+ U(tn)3 (un)3 + n+1 .
Testing with e"*1 and integrating some terms by parts, we arrive at
ke"tk? (e e)= ke kE+2k K2 (1 kr K
CKL r en+l k2+ C(L r en;l_ r en+1)+(u(tn)3 (un)3; en+l)+( n+l;en+l) :

where for simplicity we wrote k k for the L?()-norm and ( ;) for the corresponding inner product.

We now apply Young's inequality (v; w) %kvk2+ %kwk2 (with appropriate ") to all inner products,
which yields

ken+1 k2 k enkz h

5 kr  €"1k2+ Sk @*1k2 (1 )kr €K

C(l L)kL r e*1k?+ S kL r k2

+ %ku(t”)3 (un)3k2+ %k n+1 k2+ %ken+1 k2

for any > 0. Since by Theorem2.1 bothu(t") and u" are bounded in L' by some constant
U, we haveku(t™)® (u")3k? Kke"k?, where K is the Lipschitz constant of ()3 on [ U;U].
Furthermore, 3k €"*1k?  22ke"1k?+ kr  €"*1k? due to

21,, kr vk® + Skr vk?

1 ! 2 1, 2.1 2, " 2.
= 2,,(v, V) + ékr vk 4"2kvk +21k vk +§kr vke:

k vk2= (rvir V)




Applying these estimates, we obtain

ken+1 kZ k enk2 h
5 (1 )kr k2 C(1 )KL r e"lk? i

A i k-2
+ Gkl r @K+ Ske'k?+ LT 24 Token+ig?

and thus by induction (choosing such that =(2 1) 1“};

27

(1+K )ke"k2+ | jK23+C kL rek® (2 L)kL r e*lk?

n+1,2
ke k [ 1
27
| I
‘n+l .. "]
1+ R K2+ | jrz 33X 14K
1 1582 152 1 1582
27 27 =0 27
. !
C 1+ K 02 1 +1,2
+l 15 {1 KL r e’k (2 2)kL r ek
27 27
| . n+1
: 1+ K
j k23X 1+ R J:ij.zzl% '
1 L2 o 1 2 K + 152
n+l 14 KT N*L
Due to t"*1 T we have l“f'é 1++21T ' i exp T(K + %) so that the factor

27 27(n+1)

is bounded for small enough (or equivalently, n large enough), which concludes the proof. [

3 Guidelines for choosing C

In this section we attempt to provide some understanding of tie e ect of the choice of C. First,
we consider the Swift{Hohenberg evolution, where it can be rnmediately seen that choosing a
large C slows the evolution; indeed, the e ective time step is showrto be proportional to C * as
'l . Here we also present a simple condition orC to guarantee the energy stability of the
Swift{Hohenberg evolution. Next, we proceed to the more corplicated phase eld crystal evolution.
We emulate a calculation of Cheng and Warren [3] to understad the e ect of the choice of C on
the phase eld evolution, nding that the maximum e ective t ime step is again proportional toC *
as !'1 . Forthis reason, it is preferable to chooseC as small as possible while still maintaining
the unconditional stability of the algorithm. We conclude t his section by presenting some heuristic
arguments to motivate an expression for the choice o€ which seems to be su cient to give stable
numerical solutions for a wide variety of problems in the conext of the phase eld crystal evolution.

3.1 Swift{Hohenberg evolution

The constant C, which stabilizes the time stepping scheme, should be choseas small as possible,
not only for accuracy reasons, but primarily because a largeC e ects a slower evolution. This is
particularly easy to see for the Swift{Hohenberg case: The cheme (11) (withL 1) is equivalent
to the time discretization
un+l un
- ( + 1) 2un+1 + u n+1 (un)3 (15)



with time step ~ = . For the phase eld crystal equation the relation is not as simple, but
qualitatively similar, and will be discussed later in this section. It therefore appears bene cial to
understand what phenomena limit the value ofC. The proof of Theorem 2.1 provides a lower bound
just in terms of the initial energy E[u®], but this bound is based on a number of non-sharp estimates
and thus must be quite pessimistic. The matter seems more aessible for the Swift{Hohenberg
discretization, for which we will provide a brief analysis in the following.

h i
Theorem 3.1 (Stability of (15)) . If C > 0is chosen such that the operatoA® = 1 ct % L.

LY () ! LY() has normkA®k.: 3 forqall C C, then the discretization (15) satis es the
following stability properties: If ku®k 1 ( $ and ~< &, then

E[u"!] E [u"] 8n2N;
p__
kUnkLl 0O 1= 3~ 8n2 N:
Proof. Iteration (15) can be expressed asi"! = A=(u" ~(u")3). Obviously, ku"k, 1 0 1=p?T~
implies ku"*k 1 () k ATk ku" ~Uu")3K, o 3 ?0% which upon induction proves the
second inequality.

For the rst inequality we note that (15) is equivalent to 0 = uEHuntt] + uEé)[Lﬂ] for the

parameter choiceC = 1. Both E} and E! are convex onfu 2 L () jkuk.i () 1= 3~g= M,

and by the previous p:'zlrt we may assumeu”;u"*! 2 M. Hence, by the usual convex-concave
splitting argument,
Eu™] = B[] E "]
E c[u"] E glu"l+( wEU™] JEuM(uTt um)
= E[u"] E Ju"]= E[u"]:

O
Remark 3.2. C is chosen such that onlykACk 1 forall € C, then by the same proof
kuOk 1 0 2 C=3and ~< é imply ku"kg1 () 2= 3~for all n 2 N, however, we can no

longer guaranteeE[u"*'] E [u"].

The above implies that unconditional stability of scheme (11) (given appropriate input data)
is already guaranteed if we chooseC such that all C > C satisfy KACk 1 % (for L' and en-

ergy stability) or even only kA®k 1 3 (for L' stability). It turns out that kA®k.: !

F 1=1+] j% Lirey = F L1=1+j j% L1(re) (s€€ appendixA), whereF denotes the
Fourier transform on RY. For d = 1;2; 3, this number is smaller than% so that an appropriate C
can indeed be found.

While the proof of Theorem 2.1 only provides lower bounds orC but no intuition of what e ects
might limit its choice, the analysis of the operator A€ gives a hint as to under which circumstances
a violation of the bounds may cause problems. The proof of LemaA.1 in the appendix shows
that the operator AC can be expressed as a convolution with a continuous functiom®. Hence,
AC increases theL! norm most if it is applied to sign(h®( )): !'f 1;1g. Consequently,
an iteration (15) yields the largest L1 norm if initialized with discontinuous step functions. Thi s



e ect is similar to the Gipbs phenomenon. Indeed,AC acts like a low pass Iter which damps all
frequencies larger than” C. Hence, application to a step function results in local oveshoots near
the discontinuity.

3.2 Phase eld crystal evolution

Though the phase eld crystal model is more di cult to analyz e than Swift{Hohenberg, we present
some heuristic calculations which suggest that the situatbn with regard to the choice of C is similar

in this case. As suggested by the work of Cheng and Warren [3]}ye calculate the Fourier space
\e ective time step," which gives the e ective time step for a given Fourier modek as compared
to the equivalent explicit Euler time stepping scheme. The Hiler scheme for (2) is

un+1 un
= (D) A" uH(u")? (16)

where g is the Euler time step. The update for the k" Fourier mode is seen to be

+1 n
U CW e (G eyeng e @ an
E
R .

where the hat denotes the Fourier coe cient, 0[K] u(x)e X dx. The unconditionally stable
algorithm (12) can be expressed in an analogous form,

k] anik] _

e [k]

where the e ective time step for the k™ Fourier mode is given by

e [K]=

i ki? (j kiP+D2ank]  an[k]+ @Wn)3K] (18)

(19)

1+ Jkj2((@ j kjp)?+C + )

with  =1if L 1and = jkj?ifL r . Assuming C, for the dominant modes k, with
jkj 1, one obtains

(K e (20)

suggesting that the maximum e ective time step for the dominant modesis ¢ [k]= C tas !1
as was observed for all frequencies in the Swift{Hohenbergvelution.

To provide guidelines for the choice ofC which have proved reliable in a variety of numerical
simulations, we consider (12) in the limit that ! 1 , i.e. the left-hand side of the equation
approaches 0. What remains may be rearranged as

7+7(+1) ’ un+1:

LL
C C

1
L Lu™ =@M (21)
C
As periodic boundary conditions preclude linear terms, theabove is solvable up tou"*'. However,
the phase eld crystal model in question xes u throughout the evolution. In Fourier space, this
gives the nearly-pointwise (up to the nonlinear term u")%) updates
8

2 an[0] k= 0;
k= | em e

T _sGkZm?
1 C + C

22
otherwise. (22)
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96 for L 1 and

The dgnominator indicates that high-frequency modes | those with jkj
iKj CforL r |areimmediately damped out.
First, we consider the caseL 1. For k 1, we test the ansatzu"(x) = Asin(k x), with

(u"(x))® = 2A3sink x) 2A3sin(3k x), which gives

3A2
G K] A114C: (23)

C

To prevent this coe cient from alternating signs at each dis crete time step, we propose to choose
C %AZ for A the maximum amplitude among all Fourier modesk 1 of the initial data u®.
Furthermore, the denominator indicates that C should be chosen such thatC > to prevent
blowup of the dominant jkj 1 modes. Finally, for the reasons suggested in Theorem 3.1,enalso
recommend C 3ku°kf1 0 Together, these conditions suggest thatC could be chosen as, for
example,

3
= 2; Zj6O[k]j?; 3ku®k? : 24
C = max ,jrl1(1ja>§418 [K1i% 3ku"kEs (y (24)

Our heuristic analysis suggests that it is necessary thaC be chosen with this scaling with respect
to the initial data and parameters; furthermore, numerical experiments suggest that this choice of
C is also su cient for a wide range of numerical experiments.

In the case that L r , we observe that the update (22) is equivalent to the case of. 1
with a frequency-dependent \constant” Cjkj?. Supposing that u is smooth, the smallest non-zero
frequency supported in one dimension by the periodic boundg conditions is k = (2 )=", where
" denotes the domain length. Thus, if (24) is su cient to guarantee unconditional stability for

L =1, choosing
2

X 3. ,
C= 5 max 2;max I BOIK1IZ; 3kukE s (25)
in the case that L r must also be sucient. Numerical experiments again suggestthat this
choice for C is approximately necessary. This condition is obviously megh more severe than the
condition of (24), and for this reason we always takeL 1 in the numerical simulations presented
in Section 5.

We conclude this discussion with a few observations. Firstwhile the heuristic calculations are
essentially performed in one dimension, our numerical expéanents suggest that C may be chosen
in a dimension-independent way. Next, we consider the partialar case of normally distributed
initial data with mean , and standard deviation . In this case, ku®k, 1 o 1 J+5 , however,
numerical experiments suggest that the optimalC ~ 3(j j+5 )2. We suggest that the guidelines
presented are based on \worst-case" estimates. In the numesal experiments of Section 5 with this
sort of initial data, we choose C much smaller than the guidelines here suggest and numeridsl
nd energy stability. Finally, we remind the reader that the se guidelines are based on heuristic
calculations and empirical observations, and we do not guantee these to be su cient conditions
for energy stability of the schemes proposed in (12) for all pssible initial conditions.

4 Spatial discretization

Until this point, the discussion has been focused on time disrete but spatially continuous func-
tions u"(x). Here we rst describe the spatial discretization we emply to obtain a fully discrete
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description of the proposed algorithm. Next, we present spgally discrete versions of Theorems
2.1 and 2.3. These new theorems verify that the spatial dis@tization does not interfere with the
existence of aC > 0 guaranteeing the energy stablity of the proposed algoritim.

4.1 Finite di erence approximation

For simplicity of exposition, we work on a uniform grid discretizing =[0 ;)9 in d dimensions with
m grid points in each direction (with a total of M = m¢ grid points) and grid spacing h, so that
" = mh. Itis trivial to allow °, m, and h to depend on dimension. We apply periodic boundary
conditions and denote the discrete approximation ofu(t; x) at t = n and x = jh by an forn2 N,
j2f0:::;m 1g%

We discretize the spatial Laplacian using the standard seaad di erence to de ne

U+e 2Ui+ U ¢
h2 ’

hUj =
i=1

(26)

whereeg; is the i!" standard unit basis vector, and hUp = u(jh)+ O(h?) for u 2 C*(). Here, the
index arithmetic is to be interpreted in Z=mZ, taking account of the periodic boundary conditions.
The temporally and spatially discretized Swift{fHohenberg and phase eld crystal evolution are now
given by (11) and (12) with U replacing u and (26) in place of u.

It is entirely straightforward to solve the discrete linear systems de ned in this way. The matrix
to be inverted is sparse and constant-coe cient, and so need®nly be computed once. lIts inverse
could thus be precomputed, however, sparsity is lost followng inversion so that the inverse contains
M M non-zero entries. The matrix-vector product then requiresM 2 operations to compute at
each time step, in addition to the M 2 memory requirement. These requirements quickly become
impracticable as m grows, particularly in the physically-relevant case whered = 3.

As our preferred alternative, we remind the reader of the disrete Fourier transform (DFT),
de ned by X
Blkl=  Ujexp( 2ik j=m) (27)

i
fork 2f0;:::;:m 1g9, and observe that

'p

xd
[ PUK] = 2 (cos(2k i=m) 1) B[k]= F[K]PB[K] (28)

i=1
for p = 1;2;:::, and the discretization (26). Making use of the DFT, we obtain the following
expression for the update of thek™ Fourier coe cient by the discretized version of (11) and (12),

Onk]+ ( FLk) C( Fk]) O"[k] {U")3[K]
Um (k] = (29)
1+ ( FK]) (FK]+1)2+ C( F[K])

with = 0; if discretizing (11), _ 0 ifL 1
1, if discretizing (12), 1, ifL r

This update is pointwise in Fourier space. The computation ¢ the Fourier and inverse Fourier
transforms is the most expensive part of the computation butcan be done via the Fast Fourier
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Transform in O(M logM ) operations. The main limitation of this approach is that it requires
periodic boundary conditions, which may not be desirable inall applications. For example, in the
study of grain boundaries via the PFC method, one might impo® Dirichlet boundary conditions
to enforce desired grain orientations.

To demonstrate the scheme's simplicity, below we provide aimple Matlab implementation of
(29) in 2D with =1 and =0 for given values of tau, m h, Cand initial condition u.

[X,Y] = meshgrid(0:m-1,0:m-1);

F = 2/h"2 * (cos(2*pi/m*X) + cos(2*pi/m*Y) - 2);

denom = 1 - tau*F.*((F+1)."2+C-delta);

for i = 1:n

real(ifft2( (fft2(u)+tau*F.*fft2(u.~3-C*u)) ./ denom );

u
end
4.2 Transfer of stability and error analysis

Let us denote a spatially discretized function byU = (U;); and the M -dimensional space of such
functions by V. For U;V 2V}, we de ne the inner product
X
(UiV)h=h? UV (30)
j
and the discrete LP-norm
kUK, = (jUjP;1)n;  KUkp: =max jUjj; (31)
h J
where 1 denotes the discretized function which is constantly one. ket us introduce the discrete

gradient

1
PU U ety Upe)ts (32)
where again the index 1 shall be interpreted asm 1. One can easily verify the integration by

parts formula

rhy =

(r WUsr nV)n = (U; wVn: (33)

Finally, there are constants + ~> 0 with

KUKZ2 + kr nUK, + k nUK?,  ~KUKE: (34)
kr nUkE, kU (Uil JkEz (35)

a discrete Sobolev and Poincae inequality, the proofs of vaich can be performed analogously to
the proofs of the corresponding results in [12].
The spatially discrete version of the free energy is now give as

1

BV = 5

1
k U+ UK ékUkEﬁ+ ZkUk‘L‘ﬁ: (36)

Replacing the di erential operators, inner products, and norms in the proof of Theorem 2.1 by their
discrete counterparts, we arrive at the following stability result.

12



Theorem 4.1 (Stability of (29)) . Assume < 1. Forany U°: | R with nite energy E, there
exists aC > 0 such that the fully discrete schemg29) is stable for any > 0 in the sense

E,JU"'] E 1[U"] 8n2N;
9U>0kUnk|_%() U8n2N:

Likewise, the proof of the error estimate Theorem 2.3 can berainsferred one-to-one, noting that
the truncation error for temporal and spatial discretizati on can be bounded by

I Skukezqorycoqy + hPkukeogoimyes(y

+ hZCkukeiorycary + h2kukigorycaqy = K( +h?)
with a=4for L landa=6for L r

Theorem 4.2 (Error estimate of (29)). Suppose the Swift{Hohenberg or phase eld crystal equation
is solved by a smooth spatially periodic functioru : [0; T] I R forsomeT 2 (0;1 ), and denote
the solution to (29) by U", n = 0;1;:::, where U° = (u(0;jh)); and C is chosen according to the
previous theorem. Then, there exists a constanK > 0 independent of and h such that (for ;h
small enough)

k(u(n; jh); UMk  K( + h?)

for all n with n T.

5 Numerical validation

The primary goal of this section is to present some numericaéxperiments validating this algorithm.
We present several simple simulations in one, two, and threspatial dimensions. We demonstrate
the numerical convergence of the algorithm as ! 0 and also compare its evolution for large to an
alternative linear scheme from the literature. We then showthe ability of the algorithm to preserve
a coexistence solution in one dimension, and perform fairljarge, su ciently resolved two- and
three-dimensional simulations. Next, we present a series afmall simulations in three dimensions
demonstrating various types of microstructure that can be dotained in three dimensions even with
fairly low spatial resolution.

5.1 Numerical convergence test

Though this work is primarily concerned with demonstrating the unconditional stability of the
proposed algorithm, it is also important to understand the convergence properties of the algorithm
as ! 0. To that end, we performed a numerical convergence test onhie two-dimensional devel-
oping periodic structure displayed in Figure 1(a). The parameters of the simulation are™ = 24
m =500, C =1, =1=2, u=1=4, and the total simulation time is 1. Twelve tests were run,
with =21 P for the pth test. The results, shown in Table 1, are indicative of linearconvergence
to some unknown exact solution. Figure 1(b{c) demonstratesthat the relative error in energy
dissipation and the discreteLﬁ error with respect to the most re ned computed solution decrease
approximately linearly for the intermediary tests. It is ex pected that if the exact solution were
known and compared to, this linear convergence would contine through the more re ned tests.
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Figure 1. (a) The initial microstructure for the numerical ¢ onvergence test. (b) Relative error in
energy dissipation and (c)Lﬁ error, as compared to the most re ned solution. The line with slope

1 is provided as a guide for the eye, suggestive of linear coakgence to some (unknown) exact
solution.

n B2 1 BE=E kU Uk
1 1 1.8755 472 101 1:.356 10 1
2 1/2 23964 2936 10! 9199 10 2
4 1/4 2.8001 1746 101! 5620 10 2
8 1/8 3.0651 9646 10 2 3163 10 2
16 1/16 3.2201 5079 102 1:684 10 ?
32 1/32 3.3044 2594 10 2 8652 103
64 1/64 3.3484 1296 10 2 4:336 10 3
128 1/128 3.3709 &17 103 2117 103
256 1/256 3.3823 D59 103 9927 10 4
512 1/512 3.3881 271 103 4264 10 *
1024 1/1024 3.3909 #£39 10 4 1:423 10 *

o

2048 1/2048 3.3924 0

Table 1: Each test ran n iterations at time step for total evolution time 1. g, is the total
discrete energy dissipated throughout the evolution. Refeence values E, and U refer to the
most re ned simulation. By approximately n =8, convergenceinl E,= E, andkU" U kLﬁ
appear approximately linear (compare Figure 1).
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5.2 Comparison to an alternative linear scheme

In [3], Cheng and Warren propose a linear scheme for the phaseld crystal evolution, given by

un+1 un
——= (1 Yawu"+(az 1u"t)

+2(ay u"+(az 1) u™H)+(ag u"+(ag 1) A" +(u")®; (37)
where from a linear stability analysis they derive the condtions

3u? 1 1
2 20 ) ® 20 ® 3
for the weights a;1;az;as. The underlying motivation is to evolve the phase eld crystal model in
steps as large as possible, where each time step only requiréhe solution of a linear system of
equations. From this e ciency perspective it makes sense tocompare (37) to our newly proposed
scheme with regard to the number of e ective time steps need#to evolve to a similar state. Figure 2
shows solutionsu" for both schemes after di erent numbersn of time steps. The top row depicts
the evolution of our scheme, while the bottom two rows are simlated via the algorithm from [3],
using two di erent sets of numerical parameters: The rst set has been chosen experimentally to
maximize the e ective crystal evolution per time step (Figure 2, middle row), whereas the second
set appears to achieve the fastest energy decrease (bottorow).

Remarkably, despite the large time step size and the inevithly associated inaccuracy, all three
simulations evolve through very similar states. It cannot be expected that these states occur after
the same number of time steps, though, as the schemes might ta very di erent e ective time
steps for large (compare the discussion in Section 3). Apparently, while eeh step of (37) with
the rst parameter set evolves the crystal almost as far as ou scheme does, the energy hardly
decreases due to high frequency modes which are only slowhahped. The second parameter set
immediately smoothes out these high frequencies and thus #&ls to a low energy level as quickly as
our method, however, the system is seen to evolve much moreosily. In all three cases, a further
increase of the nominal time step size does not have any visible e ect on the results.

a; <

5.3 Coexistence in one dimension

Elder and Grant [4] studied the approximate phase diagrams dr the phase eld crystal model
( = rintheir notation) via one-mode approximations. They demondrated that, forany > 1=4,
there is a range of values ofu for which it is energetically favorable to choose a solutionthat is
essentially piecewise, corresponding to a liquid solutiotin one region and a periodic solution in the
other. We numerically demonstrate the ability of our algorithm to preserve such solutions.

In this one-dimensional simulation, we take as parameters = 28 , m = 1000, u = 1=2, and
= 3=4. We compare three di erent initial conditions for u: a constant liquid state (u; = 1=2),
a one-mode approximation of a periodic state §, = 1=2 + 1=25sin(x)), and a coexistence state
chosen so that the appropriate mearu is maintained and the function is continuous:

2=5+3=5sin(x); if6 +sin ' I x< 20 +sin ' i ;

usz = 3

. (38)
3=5; otherwise.

Discrete versions of these initial conditions are superimpsed in Figure 3(a). The proposed al-
gorithm is run for 1000 iterations with =1 and C = 1 with each initial condition, generating
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Figure 2: Comparison of our new scheme (12) (top rowL 1, C = :05, = 10°) with the linear
scheme from [3] (middle row: a; = 0:45,a, = 0:5, a3 = 05, = 10°; bottom row: a; = 0:45,
ap =1, a3 =0, = 10%. We show density snapshots after di erent numbersn of time steps,

starting from the same initial condition. The parameters for the middle and bottom row have
been chosen optimally to give the fastest evolution and the dstest energy decrease, respectively.
Parameters were chosen as in [3]: =0:025,u =0:07, =128, m = 128.
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Figure 3: (a) The initial microstructures for a one-dimensional simulation of coexistence. (b) At

t = 1000, the liquid solution remains stationary while the periodic solution changes minimally. The
calculated energy density for each remains'y, = 0:0469 to four decimal places. The coexistence
solution has changed signi cantly and has a nal calculated energy density ", = 0:0437. In each
plot, Uy is the black curve, U, the blue curve, and U3 the red curve.

the resulting microstructure seen in Figure 3(b). The initial and nal discrete energy densities
("n = B=") for both U; and U, are 00469 to four decimal places.U; clearly remains stationary,
which is not surprising, given that the liquid is a stationary solution. The apparent amplitude of U,
shrinks slightly (to approximately 0:03), and the details of the pro le are expected to change some
though any changes from the one-mode approximation are not esly visible. It is expected that
after a longer simulation time, numerical perturbations will cause the system to leave this periodic
pro le in favor of the coexistence state. The initial discrete energy density of Us is calculated as
0:0767 (and is unbounded ash ! 0 asus is not everywhere di erentiable), but the nal energy
density is calculated to be 00437, less than the calculated energy of the liquid or perioid solutions.

5.4 Medium-scale simulation of grain coarsening in 2D

The phase eld crystal model is also able to describe a classiphenomenon known as grain coarsen-
ing: If the initial condition u® contains crystals of di erent orientation with interfaces in between
(compare Figure 4, bottom), then these interfaces move dung the evolution in such a way that
large crystals or grains increase in size on the expense of alhgrains, which shrink until they
nally disappear. Such simulations of polycrystals typically involve a large amount of atoms and
can easily be performed using the proposed scheme. A very badMatlab implementation already
yields the result shown in Figure 4 in just two hours computation time on a single processor. Due to
the scheme's simplicity, a highly parallel implementation could readily be programmed on a GPU,
which would increase the simulation speed even much more.

5.5 Well-resolved three-dimensional simulation

To demonstrate the e ciency of our algorithm, we present a small but well-resolved three-dimensional
simulation. We choosem =100, " =10 , =1, =1=2, andC =5. The initial data is normally
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Figure 4: Simulation of grain coarsening (same parameterssaFigure 2 except’ = 4097, m = 4097,
3:7 10° atoms). The coloring helps to distinguish regions of di erent lattice orientation, the
bottom image shows a zoom-in. The result is shown after 50, 10@nd 500 time steps. Simulation

time on single processor was 2h and 12 min.
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U  Microstructure "h(U) "h(U)

01  1-periodic 430 103 378 103
0:2 2-periodic Q87 10°% 154 10°?
0:3 3-periodic 344 10° 358 10?2
0:4 liquid 6:64 102 664 102

Table 2: Comparison of the calculated discrete energy dertsi "y, for the various types of microstruc-
ture displayed in Figure 6 to the discrete energy density of he liquid solution for = 1=4. In each
of the periodic cases, the calculated energy density for theeriodic solution is less than the energy
associated with the liquid solution.

distributed with mean U = 0:02 and standard deviation Q2. 10,000 time steps are performed. Fig-
ure 5 shows the microstructural evolution through time. Initially, U appears to rapidly approach

the liquid solution U U, but structure quickly emerges and then on a much slower timescale

appears to form rolls. The energy is numerically calculatedo decrease at each time step.

5.6 Phase portrait in three-dimensions

Here we present a series of minimally-resolved calculatioria three dimensions to demonstrate that
this algorithm can nd the various types of microstructure e xpected to exist in three dimensions

with quite minimal computational e ort. We choose m =40 and " =8 , sothat h = =5 We
x =1=4, =1, C=1, and compute until t =10;000. We choose normally distributed initial
data 9 with mean 0 and standard deviation 1, and vary the meanu by setting U% = 0+ U.

We explore the choicesU = 0:1, 0:2, 0:3, and 04, nding four distinct types of microstructure. In
analogy with the striped and hexagonal phases found in two dnensions, there are three periodic
phases, with one-, two-, and three-dimensional periodicity, espectively. For large U, we obtain
the constant liquid microstructure. See Figure 6 for the vaiious periodic phases. Table 2 compares
the energy of the periodic solutions to the calculated energ of the liquid solution with the same
parameter choices and demonstrates that the periodic solibns are, indeed, energetically favorable
to the liquid solution where they appear.
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A The limit of kACk,: asC!1

For simplicity we will assume =1[0 ;'] RY. Let us introduce the functions
4 X 00cos(k 1x1)  cos(k gXq) |

g (x)= )

e 10 G R

g (x); x2[0-]%
g (x)=

0 else

coskixi)  cosKdXq)
= dk ;
o paye 1+(ki+  +kg)?
P P P
wherek; denotes theith component of the vectork. = 3 is an abbreviation for - 10 2 5y,

where the prime indicates that the rst summand (k; = 0) is weighted with % For x 2 [0; -],

g (x) is the trapezium rule quadrature for g(x) on a uniform d-dimensional grid with spacing
, and one can readily showg ! | ¢ g pointwise, since the integrand decays quickly enough

in k. Let gs furthermore introduce the d-dimensional Fourier transform F : L2(RY I L?(RY),

Ful(k) = Rau(x)e "2 kKXdx, then we observe

7 )
1 e 1kx 1 1 X
= = ——dk=—=-F —— -
9= 2 1+ 2t 15 2
Lemma A.1. Ifg ! gin L'(0;1)% as ! 0, then kACk,: ! F 1=(1+] j% Li(Rd) @S

cli
R - X
Proof. Let F : L2(; C) ! 13(2%:C), Flul(k) = & u(x)e 'Zr'? ~ dx, denote the semi-discrete
Fourier transform. For u 2 L?() we have F[ACu](k) = Flul(k) 1 ¢+ W
ACu= h® u for
1 X g2 k* 2 X 00coskix1)  cos(-kgxq)

C — -
0= (=K 12~ (B)2(kg+ +k2) 12

kozd 1 6+ —c kond 1 6+ c

1
and thus
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Due to the high decay rate of its Fourier coe cients h® is continuous, and furtherm%re KACk, 1 =
khCk_1(y . We splitup h® according toh® = h§ + h§ with h§ (x) = ( QE: )dg2 )=C O (7 Cx). It
is straightforward to show that the L2()-norm (and thus also the L*()-norm) of the remainder h§
converges to zero a ! 1 so that limciy  kASk 1 =limciu  khfki () . Finally, abbreviating

:%’

d d
khkii) = “okg kisgoz = 2 kg Kiagoa ) 2 kakiigoi )
7o
= 29E 1L+ ] Pk yoy = KEIE+ 1)Ky

where we have applied a change of variables in the rst equaly on either side of the limit and
where we have exploited the evenness ané--periodicity of g . O

Due to the pointwise convergenceg ! g, by Lebesgue's theorem it would be su cient to
majorize all g by an L() function in order to verify the conditions of the previou s lemma.
However, such a function is not easily found. In 1D, one can m a direct proof of the L *-convergence
g ! g (see below). In higher dimensions, similar methods can pradbly be applied (using higher-
dimensional Euler{Maclaurin formulae [10]), however, the resulting equations will become highly
complicated.

Lemma A2. In1D(d=1), g ! gin L[0;1)) as ! O.

Proof. Dene f* (k) = i‘f((:zx)}. For x 2 [0;-], the classical second order Euler{Maclaurin
formula yields Z,
Bo(k b k)

X; 10 .
5 ()R dk

g () 9(x)j=

P 1 cos(2nk )

where B is the second Bernoulli polynomial. It is known that Bo(k b kc)=2 = _; @)z

Using this fact, after some algebra we arrive at

4
. . l 1 20&4 1232 2 2 COS(Zn yﬁ)+COS( 2n +yﬁ)
19 (x)  9x)j = . 2n)2 , 1+ Q4)2Q y 2(1+ k%)
n= .
+8y K3 sin(2" Y Ryssin( 20y dk

2(1+ k4)2

fory=x andk=k . Now,
zZ, Z_ Z,
jg (X)  g(x)jdx = . jg (X)  g(x)jdx + jg(x)jdx:

P
Usingg(x) = e ** 2sin(z+ p%), the second integral approaches zeroas!1 . The rstintegral
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becomes

z z

)4 # : h 20Q4 12&2 y2 COS( VQ)+COS(2n +yﬁ)

L@n)2 o k2 201+ k%)
3 sin(2"—YR)+sin( 2" *YQ)
v +8yk 2(1+ R4)2 dk dy

R 1 (2n+1) R R

— 1 y (3 10R* 6 (32 1 y

. @n 2 ony ° cos( Q)(1 Q4)3Q dk + o cos( Q)z(l - dR
R,
* oo sm(yﬁ)(l Riye dk dy

The inner integrals in K may all be viewed as Fourier coe cients of certain functionsat the frequency
Y. Since these functions are integrable, their Fourier coe dents decay to zero as the frequency
goes to in nity. Hence, all inner integrals uniformly converge to zeroas !1 , and so does the
complete term. O
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