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Abstract

We propose an unconditionally stable semi-implicit time discretization of the phase field
crystal evolution. It is based on splitting the underlying energy into convex and concave parts
and then performing H−1 gradient descent steps implicitly for the former and explicitly for the
latter. The splitting is effected in such a way that the resulting equations are linear in each
time step and allow an extremely simple implementation and efficient solution. We provide the
associated stability and error analysis as well as numerical experiments to validate the method’s
efficiency.

1 Introduction

During the past few years, the so-called phase field crystal (PFC) method has become quite popular
in physics [4, 5]. It can be used to simulate the evolution of atomic crystals on time scales much
longer than possible for molecular dynamics, while keeping much more detail than standard phase
field models. In particular, it allows for the study of the evolution of lattice defects, the behavior of
grain boundaries, the relation between elasticity and lattice distortion, and various further physical
phenomena such as, for instance, epitaxial growth [6, 15] via simulation.

The method is based on a free energy, which in its simplest dimensionless form reads

E [u] =

∫

Ω

1

2
(∆u + u)2 − δ

2
u2 +

1

4
u4 dx . (1)

Here, Ω ⊂ Rd (d = 1, 2, 3) is the domain occupied by some atomic material, δ has the interpretation
of a dimensionless temperature, and the order parameter u can be thought of as a probability
density for the atom positions, whose average ū = 1

|Ω|
∫
Ω u dx is typically prescribed as a parameter.

Depending on the parameters δ and ū, the energy E prefers different states, the most important
being a constant-density liquid state and a periodic hexagonal crystalline state. Different variants
of E can produce different crystal symmetries [13, 14].

In physical simulations, the atomic density u is evolved in time via an H−1 gradient flow (which
conserves the average density ū) for the energy E ,

ut = ∆
(
(∆ + 1)2u − δu + u3

)
. (2)

Being sixth order parabolic, this partial differential equation is very stiff (explicit time stepping
would by the CFL condition require the time step τ to be limited by the sixth power of the grid size,
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h6, which is impracticable). Since one is typically interested in its long-time behavior, corresponding
efficient, stable numerical schemes are indispensable. Note that the L2 gradient flow for the energy
E , known as the Swift–Hohenberg evolution, is also of physical interest. It is given by

ut = −(∆ + 1)2u + δu − u3 (3)

and will in this paper be treated alongside with the phase field crystal equation.
Our proposed numerical scheme is closely related to the one proposed by Wise et al. [12], who

base their scheme on a convex-concave splitting idea of Eyre [7]: If an energy E can be written as
the difference of two convex energies Ec and Ee, E = Ec − Ee, then the time discretization

un+1 − un

τ
= −∇H Ec[u

n+1] + ∇H Ee[u
n] (4)

of the gradient flow ut = −∇H E [u] is energy-stable, that is, it satisfies E [un+1] ≤ E [un] for all time
steps n. Here, τ is the discrete time step, un denotes the time-discrete approximation of u(nτ).
∇H E denotes the gradient of an energy E with respect to the inner product on a Hilbert space H,
defined by

(∇H E [u], θ)H = δuE [u](θ) ∀θ ∈ H , (5)

where the right-hand side is the Gâteaux derivative of E in a test direction θ. Wise et al. decompose
the phase field crystal energy into two convex energies according to

Ec[u] =

∫

Ω

1

2
(∆u)2 +

1 − δ

2
u2 +

1

4
u4 dx , Ee[u] =

∫

Ω
|∇u|2 dx (6)

and then apply scheme (4) for H ≡ H−1(Ω), yielding an energy-stable time discretization of (2).
The disadvantage of the above approach is that each time step requires the solution of a nonlinear

problem since the term 1
4u4 is part of the implicitly treated energy. We therefore aim to shift this

term into the energy Ee. However, in this case we also have to add an additional quadratic term to
both Ec and Ee in order to make Ee sufficiently convex while respecting E = Ec − Ee. In detail, for
a sufficiently large constant C > 0 and for the operator L being either the identity L ≡ 1 or the
gradient L ≡ ∇, we propose to split the phase field crystal energy according to E = EL

c − EL
e with

EL
c [u] =

∫

Ω

1

2
(∆u + u)2 − δ

2
u2 +

C

2
|Lu|2 dx , (7)

EL
e [u] =

∫

Ω

C

2
|Lu|2 − 1

4
u4 dx (8)

and then apply scheme (4) for H ≡ H−1(Ω), which turns out to yield a stable linear scheme.
This idea of adding and subtracting a term C

2 ‖Lu‖2
L2(Ω) to a nonlinear energy E to obtain a

stable linear time discretization is not new [7]. In different contexts, explicit time stepping schemes
1
τ (un+1 − un) = F [∆2un, ∆un, un] have been stabilized by adding and subtracting a higher order
term [8, 9, 11], 1

τ (un+1−un)+C∆2un+1 = F [∆2un, ∆un, un]+C∆2un. Bertozzi et al. even stabilized
a Cahn–Hilliard evolution with a lower order term [2]. However, stability in these works is only
observed numerically and not proven.

Concerning numerical discretization of the phase field crystal evolution, a linear stable scheme
has also been proposed by Cheng and Warren [3]. Besides the above-mentioned nonlinear convex-
concave splitting scheme, Wise and coworkers also introduced a second order accurate two-step
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scheme for which they could prove the energy E to stay bounded. A different, promising approach
is taken by Athreya et al. and Yeon et al. [1, 16], who derive differential equations for the amplitude
of the order parameter u, valid in the regime where u is approximately periodic, which can be
solved on coarser grids and from whose solution u can approximately be reconstructed.

The next section will introduce the proposed time discretization in detail and provide the
corresponding stability and error analysis. The choice of the constant C in (7) and (8) is discussed
in Section 3. Section 4 introduces a spatial discretization and transfers the stability and error
analysis to the fully discrete scheme. Finally, Section 5 shows various numerical experiments to
demonstrate the practicability of the proposed scheme.

2 An efficient stable time discretization

For simplicity, throughout this article we will assume Ω ⊂ Rn to be a rectangular domain at whose
boundary we impose periodic boundary conditions. In this section, we prove the stability and
convergence of the proposed scheme.

2.1 Stable convex-concave splitting

For a sufficiently large constant C > 0 and for the operator L being either the identity L ≡ 1 or
the gradient L ≡ ∇, we propose to split the phase field crystal energy according to E = EL

c − EL
e

with

EL
c [u] =

∫

Ω

1

2
(∆u + u)2 − δ

2
u2 +

C

2
|Lu|2 dx , (9)

EL
e [u] =

∫

Ω

C

2
|Lu|2 − 1

4
u4 dx . (10)

This splitting naturally leads to the semi-implicit time discretization of the Swift–Hohenberg or the
phase field crystal evolution given by (4). Its strong form, for the choices (9) and (10), thus reads

un+1 − un

τ
= −(∆ + 1)2un+1 + δun+1 − CL∗L(un+1 − un) − (un)3 (11)

for the Swift–Hohenberg scheme and

un+1 − un

τ
= ∆

[
(∆ + 1)2un+1 − δun+1 + CL∗L(un+1 − un) + (un)3

]
(12)

for the phase field crystal evolution, where either L∗L ≡ 1 or L∗L ≡ −∆.
The above scheme satisfies many desirable properties. First of all, just as in the continuous

case, the time-discrete phase field crystal evolution conserves the average value ū. This is readily
seen by integrating both sides of (12) over Ω and applying the divergence theorem together with
the periodic boundary conditions. Also, for C chosen sufficiently large, each time step is uniquely
solvable for un+1, since (11) and (12) are equivalent to solving the strictly convex minimization
problem

un+1 = argmin
u

‖u − un‖2
H

2τ
+ EL

c [u] − δuEL
e [un](u) , (13)
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which is coercive (the strict convexity and coercivity for C ≥ 2 are readily seen when expanding all
squares in the above energy). Here, H ≡ L2(Ω) for the Swift–Hohenberg scheme, and H ≡ H−1(Ω)
for the phase field crystal evoluation. Apparently, the scheme is first order consistent and in each
time step only requires the solution of a constant coefficient linear problem, which allows highly
efficient implementations (e. g. via Fourier transforms, see Section 5). Moreover, the linear system
to be solved is the same in every time step, which makes the scheme extremely simple to implement.

For C large enough, the proposed scheme is L∞-stable and decreases the phase field crystal
energy in every step, as shown by the following theorem.

Theorem 2.1 (Stability). Assume δ < 1. For any u0 : Ω → R with finite energy E there exists a
C > 0 such that the schemes (11) (for L ≡ 1) and (12) (for L ≡ 1,∇) are stable for any τ > 0 in
the sense

E [un+1] ≤ E [un] ∀n ∈ N ,

∃U > 0 : ‖un‖L∞(Ω) ≤ U ∀n ∈ N .

Proof. Let us abbreviate E [u0] = Ê . The same argument as in [12] leads to a bound

‖u0‖L∞(Ω) ≤

√
Ê + |Ω|/4

γ
=: U

for some γ > 0 independent of u0, where without loss of generality we assume U ≥ 1. Indeed, using
1
4‖u‖4

L4(Ω) ≥
1
2‖u‖2

L2(Ω) −
|Ω|
4 and ‖∇u‖2

L2(Ω) = −(u, ∆u)L2(Ω) ≤ 1
2β‖u‖2

L2(Ω) + β
2 ‖∆u‖2

L2(Ω) for any
β > 0 we obtain

E [u] =
1

4
‖u‖4

L4(Ω) +
1 − δ

2
‖u‖2

L2(Ω) − ‖∇u‖2
L2(Ω) +

1

2
‖∆u‖2

L2(Ω)

≥
2 − δ − 1

β

2
‖u‖2

L2(Ω) +
1 − β

2
‖∆u‖2

L2(Ω) −
|Ω|
4

≥ 3

2
η(‖u‖2

L2(Ω) + ‖∆u‖2
L2(Ω)) −

|Ω|
4

for η = min
(2−δ− 1

β

3 , 1−β
3

)
> 0 (take, e. g., β = 2

3−δ ). Hence,

E [u] +
|Ω|
4

≥ η
(
‖u‖2

L2(Ω) + ‖∆u‖2
L2(Ω) +

1

2
(‖u‖2

L2(Ω) + ‖∆u‖2
L2(Ω))

)

≥ η
(
‖u‖2

L2(Ω) + ‖∇u‖2
L2(Ω) + ‖∆u‖2

L2(Ω)

)
≥ γ‖u‖2

L∞(Ω)

for some γ > 0 by Sobolev embedding. We will show that for an appropriate choice of C,
‖un‖L∞(Ω) ≤ U and E [un] ≤ Ê for all n ∈ N.

Choose

C > max
(
δ, 2, 3U2,

3

ν
U2, 3

Ê + 5
4 |Ω|U4

γ
,
3

ν

Ê + 5
4 |Ω|U4

γ

)
, (14)

where ν is the constant from the Poincaré inequality, satisfying ‖∇u‖2
L2(Ω) ≥ ν‖u− ū‖2

L2(Ω) with ū

being the average of u. We will prove the theorem by induction on n ∈ N, so let us assume E [un] ≤ Ê
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and ‖un‖L∞(Ω) ≤ U to hold. We know that un+1 ∈ N , where N = {u ∈ L2(Ω) |
∫
Ω u dx =

∫
Ω u0 dx}

for scheme (12) and N = L2(Ω) for scheme (11).
First note that EL

c is a convex functional. Let us introduce

ẼL
e [u] =

∫

Ω

C

2
|Lu|2 − f(u) dx , where

f(u) =

{
1
4u4 , |u| ≤ U ,
3
2U2u2 − 2U3|u| + 3

4U4 , else.

ẼL
e is convex on N : Indeed, its second Gâteaux derivative in some test direction θ satisfies

δ2
uẼL

e [u](θ, θ) = C‖Lθ‖2
L2(Ω) −

∫

Ω
3 min(u2, U2)θ2 dx ≥ C‖Lθ‖2

L2(Ω) − 3U2‖θ‖2
L2(Ω) .

In the case L ≡ 1 this is clearly non-negative. The case L ≡ ∇ is only considered for the phase field
crystal evolution. In that case, since the test functions may not lead outside of N , we have

∫
Ω θ dx =

0. Thus, the non-negativity of the second Gâteaux derivative follows by Poincaré’s inequality. By
the analogous argument we obtain that EL

e is convex on {u ∈ N | ‖u‖2
L∞(Ω) ≤ C

3 min(1, ν)}.
We now employ the classical convex-concave splitting argument: By the convexity of EL

c and
ẼL

e ,

EL
c [un+1] − ẼL

e [un+1] ≤ EL
c [un] − ẼL

e [un] + (δuEL
c [un+1] − δuẼL

e [un])(un+1 − un)

= EL
c [un] − EL

e [un] + (δuEL
c [un+1] − δuEL

e [un])(un+1 − un)

= E [un] − 1
τ (un+1 − un, un+1 − un)H ≤ E [un] ≤ Ê ,

where H ≡ L2(Ω) for the Swift–Hohenberg scheme, and H ≡ H−1(Ω) for the phase field crystal

evoluation. However, this implies ‖un+1‖2
L∞(Ω) ≤

Ê+ 5
4
|Ω|U4

γ ≤ C
3 min(1, ν), since for any u we have

Ê ≥ EL
c [u] − ẼL

e [u] =
1

2
‖∆u + u‖2

L2(Ω) +

∫

Ω
f(u) − δ

2
u2 dx

≥ 1

2
‖∆u + u‖2

L2(Ω) +
U2

2
‖u‖2

L2(Ω) −
5

4
|Ω|U4

≥ γ‖u‖2
L∞(Ω) −

5

4
|Ω|U4

using the same estimates as earlier. Now, since EL
e is convex on {u ∈ N | ‖u‖2

L∞(Ω) ≤ C
3 min(1, ν)},

we may again apply the classical convex-concave splitting argument, this time to EL
c − EL

e , which
yields

E [un+1] = EL
c [un+1]−EL

e [un+1] ≤ EL
c [un]−EL

e [un]+(δuEL
c [un+1]−δuEL

e [un])(un+1−un) ≤ E [un] ≤ Ê

and thus also ‖un+1‖L∞(Ω) ≤ U .

Remark 2.2. The condition δ < 1 can be removed by slightly improving the derivation of the
L∞-bound from E [u] ≤ Ê.
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2.2 Convergence of the scheme

The stability and first order consistency imply first order convergence. The argument is similar to
the analysis for the scheme in [12], nevertheless we will provide a compact version of the proof for
the sake of completeness.

Theorem 2.3 (Error estimate). Suppose the Swift–Hohenberg (or phase field crystal) equation is
solved by a smooth spatially periodic function u : [0, T ] × Ω → R for some T ∈ (0,∞), and denote
the solution to (11) (or (12)) by un, n = 0, 1, . . ., where u0 = u(0) and C is chosen according to
Theorem2.1. Then, there exists a constant K > 0 independent of τ such that (for τ small enough)

‖u(nτ) − un‖L2(Ω) ≤ Kτ

for all n with nτ ≤ T .

Proof. We show the argument for the phase field crystal equation (the treatment of the Swift–
Hohenberg equation only requires obvious adaptions). Let us abbreviate tn = nτ and en = u(tn)−
un. The time-continuous solution satisfies

u(tn+1)−u(tn)
τ = ∆

[(
(∆+1)2−δ

)
u(tn+1)+CL∗L

(
u(tn+1)−u(tn)

)
+u(tn)3

]
+ ρn+1 ,

where by a second order Taylor expansion about tn+1 the truncation error ρn+1 satisfies

|ρn+1| ≤ τ
(

1
2‖u‖C2([0,T ],C0(Ω)) + C‖u‖C1([0,T ],Ca(Ω)) + ‖u‖3

C1([0,T ],C2(Ω))

)
=: K̃τ

with a = 2 for L ≡ 1 and a = 4 for L ≡ ∇. Subtracting (12), we obtain

en+1 − en

τ
= ∆

[(
(∆+1)2−δ

)
en+1 + CL∗L(en+1− en) + u(tn)3−(un)3

]
+ ρn+1 .

Testing with τen+1 and integrating some terms by parts, we arrive at

‖en+1‖2 − (en, en+1) = τ
[
−‖∇∆en+1‖2 + 2‖∆en+1‖2 − (1 − δ)‖∇en+1‖2

− C‖L∗∇en+1‖2 + C(L∗∇en, L∗∇en+1) + (u(tn)3 − (un)3, ∆en+1) + (ρn+1, en+1)
]
,

where for simplicity we wrote ‖·‖ for the L2(Ω)-norm and (·, ·) for the corresponding inner product.
We now apply Young’s inequality (v, w) ≤ 1

2ε‖v‖2+ ε
2‖w‖2 (with appropriate ε) to all inner products,

which yields

‖en+1‖2 − ‖en‖2

2
≤τ
[
−‖∇∆en+1‖2 + 5

2‖∆en+1‖2 − (1 − δ)‖∇en+1‖2

− C(1 − 1
2α)‖L∗∇en+1‖2 + Cα

2 ‖L∗∇en‖2

+ 1
2‖u(tn)3 − (un)3‖2 + 1

2‖ρn+1‖2 + 1
2‖en+1‖2

]

for any α > 0. Since by Theorem 2.1 both u(tn) and un are bounded in L∞ by some constant

U , we have ‖u(tn)3 − (un)3‖2 ≤ K̂‖en‖2, where
√

K̂ is the Lipschitz constant of (·)3 on [−U, U ].
Furthermore, 5

2‖∆en+1‖2 ≤ 125
54 ‖en+1‖2 + ‖∇∆en+1‖2 due to

‖∆v‖2 = −(∇v,∇∆v) ≤ 1

2ε
‖∇v‖2 +

ε

2
‖∇∆v‖2

= − 1

2ε
(v,∆v) +

ε

2
‖∇∆v‖2 ≤ 1

4ε2
‖v‖2 +

1

4
‖∆v‖2 +

ε

2
‖∇∆v‖2 .
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Applying these estimates, we obtain

‖en+1‖2 − ‖en‖2

2
≤ τ

[
−(1 − δ)‖∇en+1‖2 − C(1 − 1

2α)‖L∗∇en+1‖2

+ Cα
2 ‖L∗∇en‖2 + K̂

2 ‖en‖2 + |Ω|K̃2

2 τ2 + 76
27‖en+1‖2

]

and thus by induction (choosing α such that α = (2 − 1
α) 1+K̂τ

1− 152
27

τ
)

‖en+1‖2 ≤(1+K̂τ)‖en‖2 + |Ω|K̃2τ3 + Cτ
(
α‖L∗∇en‖2 − (2− 1

α)‖L∗∇en+1‖2
)

1 − 152
27 τ

≤
(

1 + K̂τ

1 − 152
27 τ

)n+1

‖e0‖2 +
|Ω|K̃2τ3

1 − 152
27 τ

n∑

j=0

(
1 + K̂τ

1 − 152
27 τ

)j

+
Cτ

1 − 152
27 τ

(
α

(
1 + K̂τ

1 − 152
27 τ

)n

‖L∗∇e0‖2 − (2 − 1
α)‖L∗∇en+1‖2

)

≤|Ω|K̃2τ3

1 − 152
27 τ

n∑

j=0

(
1 + K̂τ

1 − 152
27 τ

)j

= |Ω|K̃2τ2

(
1+K̂τ

1− 152
27

τ

)n+1
− 1

K̂ + 152
27

.

Due to tn+1 ≤ T we have
(

1+K̂τ
1− 152

27
τ

)n+1
≤
(

1+ K̂T
n+1

1− 152T
27(n+1)

)n+1

→n→∞ exp
(
T (K̂ + 152

27 )
)

so that the factor

is bounded for τ small enough (or equivalently, n large enough), which concludes the proof.

3 Guidelines for choosing C

In this section we attempt to provide some understanding of the effect of the choice of C. First,
we consider the Swift–Hohenberg evolution, where it can be immediately seen that choosing a
large C slows the evolution; indeed, the effective time step is shown to be proportional to C−1 as
τ → ∞. Here we also present a simple condition on C to guarantee the energy stability of the
Swift–Hohenberg evolution. Next, we proceed to the more complicated phase field crystal evolution.
We emulate a calculation of Cheng and Warren [3] to understand the effect of the choice of C on
the phase field evolution, finding that the maximum effective time step is again proportional to C−1

as τ → ∞. For this reason, it is preferable to choose C as small as possible while still maintaining
the unconditional stability of the algorithm. We conclude this section by presenting some heuristic
arguments to motivate an expression for the choice of C which seems to be sufficient to give stable
numerical solutions for a wide variety of problems in the context of the phase field crystal evolution.

3.1 Swift–Hohenberg evolution

The constant C, which stabilizes the time stepping scheme, should be chosen as small as possible,
not only for accuracy reasons, but primarily because a larger C effects a slower evolution. This is
particularly easy to see for the Swift–Hohenberg case: The scheme (11) (with L ≡ 1) is equivalent
to the time discretization

un+1 − un

τ̃
= −(∆ + 1)2un+1 + δun+1 − (un)3 (15)
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with time step τ̃ = τ
1+Cτ . For the phase field crystal equation the relation is not as simple, but

qualitatively similar, and will be discussed later in this section. It therefore appears beneficial to
understand what phenomena limit the value of C. The proof of Theorem 2.1 provides a lower bound
just in terms of the initial energy E [u0], but this bound is based on a number of non-sharp estimates
and thus must be quite pessimistic. The matter seems more accessible for the Swift–Hohenberg
discretization, for which we will provide a brief analysis in the following.

Theorem 3.1 (Stability of (15)). If C > 0 is chosen such that the operator AC̃ =
[
1 − δ

C̃
+ (∆+1)2

C̃

]−1
:

L∞(Ω) → L∞(Ω) has norm ‖AC̃‖L∞ ≤ 3
2 for all C̃ ≥ C, then the discretization (15) satisfies the

following stability properties: If ‖u0‖L∞(Ω) ≤
√

C
3 and τ̃ < 1

C , then

E [un+1] ≤ E [un] ∀n ∈ N ,

‖un‖L∞(Ω) ≤ 1/
√

3τ̃ ∀n ∈ N .

Proof. Iteration (15) can be expressed as un+1 = A
1
τ̃ (un− τ̃(un)3). Obviously, ‖un‖L∞(Ω) ≤ 1/

√
3τ̃

implies ‖un+1‖L∞(Ω) ≤ ‖A 1
τ̃ ‖L∞‖un − τ̃(un)3‖L∞(Ω) ≤ 3

2 · 2
3
√

3τ̃
, which upon induction proves the

second inequality.
For the first inequality we note that (15) is equivalent to 0 = −δuE1

c [un+1] + δuE1
e [un] for the

parameter choice C = 1
τ̃ . Both E1

c and E1
e are convex on {u ∈ L∞(Ω) | ‖u‖L∞(Ω) ≤ 1/

√
3τ̃} =: M ,

and by the previous part we may assume un, un+1 ∈ M . Hence, by the usual convex-concave
splitting argument,

E [un+1] = E1
c [un+1] − E1

e [un+1]

≤ E1
c [un] − E1

e [un] + (δuE1
c [un+1] − δuE1

e [un])(un+1 − un)

= E1
c [un] − E1

e [un] = E [un] .

Remark 3.2. If C is chosen such that only ‖AC̃‖L∞ ≤ 3 for all C̃ ≥ C, then by the same proof
‖u0‖L∞(Ω) ≤ 2

√
C/3 and τ̃ < 1

C imply ‖un‖L∞(Ω) ≤ 2/
√

3τ̃ for all n ∈ N, however, we can no
longer guarantee E [un+1] ≤ E [un].

The above implies that unconditional stability of scheme (11) (given appropriate input data)

is already guaranteed if we choose C such that all C̃ > C satisfy ‖AC̃‖L∞ ≤ 3
2 (for L∞ and en-

ergy stability) or even only ‖AC̃‖L∞ ≤ 3 (for L∞ stability). It turns out that ‖AC̃‖L∞ →C̃→∞∥∥F
[
1/(1 + | · |4)

]∥∥
L1(Rd)

=
∥∥F−1

[
1/(1 + | · |4)

]∥∥
L1(Rd)

(see appendix A), where F denotes the

Fourier transform on Rd. For d = 1, 2, 3, this number is smaller than 3
2 so that an appropriate C

can indeed be found.
While the proof of Theorem 2.1 only provides lower bounds on C but no intuition of what effects

might limit its choice, the analysis of the operator AC gives a hint as to under which circumstances
a violation of the bounds may cause problems. The proof of LemmaA.1 in the appendix shows
that the operator AC can be expressed as a convolution with a continuous function hC . Hence,
AC increases the L∞ norm most if it is applied to sign(hC(−·)) : Ω → {−1, 1}. Consequently,
an iteration (15) yields the largest L∞ norm if initialized with discontinuous step functions. This
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effect is similar to the Gibbs phenomenon. Indeed, AC acts like a low pass filter which damps all
frequencies larger than 4

√
C. Hence, application to a step function results in local overshoots near

the discontinuity.

3.2 Phase field crystal evolution

Though the phase field crystal model is more difficult to analyze than Swift–Hohenberg, we present
some heuristic calculations which suggest that the situation with regard to the choice of C is similar
in this case. As suggested by the work of Cheng and Warren [3], we calculate the Fourier space
“effective time step,” which gives the effective time step for a given Fourier mode k as compared
to the equivalent explicit Euler time stepping scheme. The Euler scheme for (2) is

un+1 − un

τE
= ∆

(
(∆ + 1)2un − δun + (un)3

)
, (16)

where τE is the Euler time step. The update for the kth Fourier mode is seen to be

ûn+1[k] − ûn[k]

τE
= −|k|2

(
(−|k2| + 1)2ûn[k] − δûn[k] + (̂un)3[k]

)
, (17)

where the hat denotes the Fourier coefficient, û[k] ≡
∫
Ω u(x)e−ik·x dx. The unconditionally stable

algorithm (12) can be expressed in an analogous form,

ûn+1[k] − ûn[k]

τeff [k]
= −|k|2

(
(−|k|2 + 1)2ûn[k] − δûn[k] + (̂un)3[k]

)
, (18)

where the effective time step for the kth Fourier mode is given by

τeff [k] =
τ

1 + τ |k|2 ((1 − |k|2)2 + Cξ + δ)
(19)

with ξ = 1 if L ≡ 1 and ξ = |k|2 if L ≡ ∇. Assuming δ ≪ C, for the dominant modes k, with
|k| ≈ 1, one obtains

τeff [k] ≈ τ

1 + Cτ
, (20)

suggesting that the maximum effective time step for the dominant modes is τeff [k] = C−1 as τ → ∞,
as was observed for all frequencies in the Swift–Hohenberg evolution.

To provide guidelines for the choice of C which have proved reliable in a variety of numerical
simulations, we consider (12) in the limit that τ → ∞, i. e. the left-hand side of the equation
approaches 0. What remains may be rearranged as

∆

(
L∗L − δ

C
+

(∆ + 1)2

C

)
un+1 = ∆

(
L∗Lun − 1

C
(un)3

)
. (21)

As periodic boundary conditions preclude linear terms, the above is solvable up to ūn+1. However,
the phase field crystal model in question fixes ū throughout the evolution. In Fourier space, this
gives the nearly-pointwise (up to the nonlinear term (un)3) updates

ûn+1[k] =





ûn[0] k = 0,
cun[k]− 1

Cξ
(̂un)3[k]

1− δ
Cξ

+
(−|k|2+1)2

Cξ

otherwise.
(22)
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The denominator indicates that high-frequency modes — those with |k| ≫ 4
√

C for L ≡ 1 and
|k| ≫

√
C for L ≡ ∇ — are immediately damped out.

First, we consider the case L ≡ 1. For k ≈ 1, we test the ansatz un(x) = A sin(k · x), with
(un(x))3 = 3

4A3 sin(k · x) − 1
4A3 sin(3k · x), which gives

ûn+1[k] ≈ A
1 − 3A2

4C

1 − δ
C

. (23)

To prevent this coefficient from alternating signs at each discrete time step, we propose to choose
C ≥ 3

4A2 for A the maximum amplitude among all Fourier modes k ≈ 1 of the initial data u0.
Furthermore, the denominator indicates that C should be chosen such that C > δ to prevent
blowup of the dominant |k| ≈ 1 modes. Finally, for the reasons suggested in Theorem 3.1, we also
recommend C ≥ 3‖u0‖2

L∞(Ω). Together, these conditions suggest that C could be chosen as, for
example,

C = max

(
2δ, max

|k|≈1

3

4
|û0[k]|2, 3‖u0‖2

L∞(Ω)

)
. (24)

Our heuristic analysis suggests that it is necessary that C be chosen with this scaling with respect
to the initial data and parameters; furthermore, numerical experiments suggest that this choice of
C is also sufficient for a wide range of numerical experiments.

In the case that L ≡ ∇, we observe that the update (22) is equivalent to the case of L ≡ 1
with a frequency-dependent “constant” C|k|2. Supposing that u is smooth, the smallest non-zero
frequency supported in one dimension by the periodic boundary conditions is k = (2π)/ℓ, where
ℓ denotes the domain length. Thus, if (24) is sufficient to guarantee unconditional stability for
L = 1, choosing

C =

(
ℓ

2π

)2

max

(
2δ, max

|k|≈1

3

4
|û0[k]|2, 3‖u0‖2

L∞(Ω)

)
(25)

in the case that L ≡ ∇ must also be sufficient. Numerical experiments again suggest that this
choice for C is approximately necessary. This condition is obviously much more severe than the
condition of (24), and for this reason we always take L ≡ 1 in the numerical simulations presented
in Section 5.

We conclude this discussion with a few observations. First, while the heuristic calculations are
essentially performed in one dimension, our numerical experiments suggest that C may be chosen
in a dimension-independent way. Next, we consider the particular case of normally distributed
initial data with mean µ, and standard deviation σ. In this case, ‖u0‖L∞(Ω) ≈ |µ| + 5σ, however,
numerical experiments suggest that the optimal C ≪ 3(|µ| + 5σ)2. We suggest that the guidelines
presented are based on “worst-case” estimates. In the numerical experiments of Section 5 with this
sort of initial data, we choose C much smaller than the guidelines here suggest and numerically
find energy stability. Finally, we remind the reader that these guidelines are based on heuristic
calculations and empirical observations, and we do not guarantee these to be sufficient conditions
for energy stability of the schemes proposed in (12) for all possible initial conditions.

4 Spatial discretization

Until this point, the discussion has been focused on time discrete but spatially continuous func-
tions un(x). Here we first describe the spatial discretization we employ to obtain a fully discrete
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description of the proposed algorithm. Next, we present spatially discrete versions of Theorems
2.1 and 2.3. These new theorems verify that the spatial discretization does not interfere with the
existence of a C > 0 guaranteeing the energy stablity of the proposed algorithm.

4.1 Finite difference approximation

For simplicity of exposition, we work on a uniform grid discretizing Ω = [0, ℓ)d in d dimensions with
m grid points in each direction (with a total of M = md grid points) and grid spacing h, so that
ℓ = mh. It is trivial to allow ℓ, m, and h to depend on dimension. We apply periodic boundary
conditions and denote the discrete approximation of u(t,x) at t = nτ and x = jh by Un

j for n ∈ N,

j ∈ {0, . . . , m − 1}d.
We discretize the spatial Laplacian using the standard second difference to define

∆hUj =
d∑

i=1

Uj+ei
− 2Uj + Uj−ei

h2
, (26)

where ei is the ith standard unit basis vector, and ∆hUj = ∆u(jh)+O(h2) for u ∈ C4(Ω). Here, the
index arithmetic is to be interpreted in Z/mZ, taking account of the periodic boundary conditions.
The temporally and spatially discretized Swift–Hohenberg and phase field crystal evolution are now
given by (11) and (12) with U replacing u and (26) in place of ∆u.

It is entirely straightforward to solve the discrete linear systems defined in this way. The matrix
to be inverted is sparse and constant-coefficient, and so needs only be computed once. Its inverse
could thus be precomputed, however, sparsity is lost following inversion so that the inverse contains
M × M non-zero entries. The matrix-vector product then requires M2 operations to compute at
each time step, in addition to the M2 memory requirement. These requirements quickly become
impracticable as m grows, particularly in the physically-relevant case where d = 3.

As our preferred alternative, we remind the reader of the discrete Fourier transform (DFT),
defined by

Û [k] =
∑

j

Uj exp(−2πik · j/m) (27)

for k ∈ {0, . . . , m − 1}d, and observe that

∆̂p
hU [k] =

(
2

h2

d∑

i=1

(cos(2πki/m) − 1)

)p

Û [k] = F [k]pÛ [k] (28)

for p = 1, 2, . . ., and the discretization (26). Making use of the DFT, we obtain the following
expression for the update of the kth Fourier coefficient by the discretized version of (11) and (12),

Ûn+1[k] =
Ûn[k] + τ(−F [k])ι

(
C(−F [k])σÛn[k] − (̂Un)3[k]

)

1 + τ(−F [k])ι
(
(F [k] + 1)2 + C(−F [k])σ − δ

) (29)

with ι =

{
0, if discretizing (11),

1, if discretizing (12),
σ =

{
0, if L ≡ 1,

1, if L ≡ ∇.

This update is pointwise in Fourier space. The computation of the Fourier and inverse Fourier
transforms is the most expensive part of the computation but can be done via the Fast Fourier
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Transform in O(M log M) operations. The main limitation of this approach is that it requires
periodic boundary conditions, which may not be desirable in all applications. For example, in the
study of grain boundaries via the PFC method, one might impose Dirichlet boundary conditions
to enforce desired grain orientations.

To demonstrate the scheme’s simplicity, below we provide a simple Matlab implementation of
(29) in 2D with ι = 1 and σ = 0 for given values of tau, m, h, C and initial condition u.

[X,Y] = meshgrid(0:m-1,0:m-1);

F = 2/h^2 * (cos(2*pi/m*X) + cos(2*pi/m*Y) - 2);

denom = 1 - tau*F.*((F+1).^2+C-delta);

for i = 1:n

u = real(ifft2( (fft2(u)+tau*F.*fft2(u.^3-C*u)) ./ denom ));

end

4.2 Transfer of stability and error analysis

Let us denote a spatially discretized function by U = (Uj)j and the M -dimensional space of such
functions by Vh. For U, V ∈ Vh we define the inner product

(U, V )h = hd
∑

j

Uj · Vj (30)

and the discrete Lp-norm

‖U‖p
Lp

h

= (|U |p,1)h , ‖U‖L∞
h

= max
j

|Uj| , (31)

where 1 denotes the discretized function which is constantly one. Let us introduce the discrete
gradient

∇hUj =
1

h
(Uj − Uj−e1 , . . . , Uj − Uj−ed

)T , (32)

where again the index −1 shall be interpreted as m − 1. One can easily verify the integration by
parts formula

(∇hU,∇hV )h = −(U,∆hV )h . (33)

Finally, there are constants ν̃, γ̃ > 0 with

‖U‖2
L2

h
+ ‖∇hU‖2

L2
h

+ ‖∆hU‖2
L2

h
≥ γ̃‖U‖2

L∞
h

, (34)

‖∇hU‖2
L2

h
≥ ν̃‖U − (U,1)h/|Ω|‖2

L2
h
, (35)

a discrete Sobolev and Poincaré inequality, the proofs of which can be performed analogously to
the proofs of the corresponding results in [12].

The spatially discrete version of the free energy is now given as

Eh[U ] =
1

2
‖∆hU + U‖2

L2
h
− δ

2
‖U‖2

L2
h

+
1

4
‖U‖4

L4
h
. (36)

Replacing the differential operators, inner products, and norms in the proof of Theorem 2.1 by their
discrete counterparts, we arrive at the following stability result.
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Theorem 4.1 (Stability of (29)). Assume δ < 1. For any U0 : Ω → R with finite energy Eh there
exists a C > 0 such that the fully discrete scheme (29) is stable for any τ > 0 in the sense

Eh[Un+1] ≤ Eh[Un] ∀n ∈ N ,

∃U > 0 : ‖Un‖L∞
h

(Ω) ≤ U ∀n ∈ N .

Likewise, the proof of the error estimate Theorem 2.3 can be transferred one-to-one, noting that
the truncation error for temporal and spatial discretization can be bounded by

|ρn+1
j | ≤ τ

1

2
‖u‖C2([0,T ],C0(Ω)) + h2‖u‖C0([0,T ],C8(Ω))

+ τh2C‖u‖C1([0,T ],Ca(Ω)) + τh2‖u‖3
C1([0,T ],C4(Ω)) =: K̃(τ + h2)

with a = 4 for L ≡ 1 and a = 6 for L ≡ ∇.

Theorem 4.2 (Error estimate of (29)). Suppose the Swift–Hohenberg or phase field crystal equation
is solved by a smooth spatially periodic function u : [0, T ]×Ω → R for some T ∈ (0,∞), and denote
the solution to (29) by Un, n = 0, 1, . . ., where U0 = (u(0, jh))j and C is chosen according to the
previous theorem. Then, there exists a constant K > 0 independent of τ and h such that (for τ, h
small enough)

‖(u(nτ, jh))j − Un‖L2
h
≤ K(τ + h2)

for all n with nτ ≤ T .

5 Numerical validation

The primary goal of this section is to present some numerical experiments validating this algorithm.
We present several simple simulations in one, two, and three spatial dimensions. We demonstrate
the numerical convergence of the algorithm as τ → 0 and also compare its evolution for large τ to an
alternative linear scheme from the literature. We then show the ability of the algorithm to preserve
a coexistence solution in one dimension, and perform fairly large, sufficiently resolved two- and
three-dimensional simulations. Next, we present a series of small simulations in three dimensions
demonstrating various types of microstructure that can be obtained in three dimensions even with
fairly low spatial resolution.

5.1 Numerical convergence test

Though this work is primarily concerned with demonstrating the unconditional stability of the
proposed algorithm, it is also important to understand the convergence properties of the algorithm
as τ → 0. To that end, we performed a numerical convergence test on the two-dimensional devel-
oping periodic structure displayed in Figure 1(a). The parameters of the simulation are ℓ = 24π,
m = 500, C = 1, δ = 1/2, ū = 1/4, and the total simulation time is 1. Twelve tests were run,
with τ = 21−p for the pth test. The results, shown in Table 1, are indicative of linear convergence
to some unknown exact solution. Figure 1(b–c) demonstrates that the relative error in energy
dissipation and the discrete L2

h error with respect to the most refined computed solution decrease
approximately linearly for the intermediary tests. It is expected that if the exact solution were
known and compared to, this linear convergence would continue through the more refined tests.
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Figure 1: (a) The initial microstructure for the numerical convergence test. (b) Relative error in
energy dissipation and (c) L2

h error, as compared to the most refined solution. The line with slope
−1 is provided as a guide for the eye, suggestive of linear convergence to some (unknown) exact
solution.

n τ ∆Eh 1 − ∆Eh/∆E∗
h ‖Un − U∗‖L2

h

1 1 1.8755 4.472 × 10−1 1.356 × 10−1

2 1/2 2.3964 2.936 × 10−1 9.199 × 10−2

4 1/4 2.8001 1.746 × 10−1 5.620 × 10−2

8 1/8 3.0651 9.646 × 10−2 3.163 × 10−2

16 1/16 3.2201 5.079 × 10−2 1.684 × 10−2

32 1/32 3.3044 2.594 × 10−2 8.652 × 10−3

64 1/64 3.3484 1.296 × 10−2 4.336 × 10−3

128 1/128 3.3709 6.317 × 10−3 2.117 × 10−3

256 1/256 3.3823 2.959 × 10−3 9.927 × 10−4

512 1/512 3.3881 1.271 × 10−3 4.264 × 10−4

1024 1/1024 3.3909 4.239 × 10−4 1.423 × 10−4

2048 1/2048 3.3924 0 0

Table 1: Each test ran n iterations at time step τ for total evolution time 1. ∆Eh is the total
discrete energy dissipated throughout the evolution. Reference values ∆E∗

h and U∗ refer to the
most refined simulation. By approximately n = 8, convergence in 1 − ∆Eh/∆E∗

h and ‖Un − U∗‖L2
h

appear approximately linear (compare Figure 1).
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5.2 Comparison to an alternative linear scheme

In [3], Cheng and Warren propose a linear scheme for the phase field crystal evolution, given by

un+1 − un

τ
= ∆

[
(1 − δ)(a1u

n + (a1 − 1)un+1)

+ 2(a2∆un + (a2 − 1)∆un+1) + (a3∆
2un + (a3 − 1)∆2un+1) + (un)3

]
, (37)

where from a linear stability analysis they derive the conditions

a1 <
1

2
− 3ū2

2(1 − δ)
, a2 ≥ 1

2
, a3 ≤ 1

2

for the weights a1, a2, a3. The underlying motivation is to evolve the phase field crystal model in
steps as large as possible, where each time step only requires the solution of a linear system of
equations. From this efficiency perspective it makes sense to compare (37) to our newly proposed
scheme with regard to the number of effective time steps needed to evolve to a similar state. Figure 2
shows solutions un for both schemes after different numbers n of time steps. The top row depicts
the evolution of our scheme, while the bottom two rows are simulated via the algorithm from [3],
using two different sets of numerical parameters: The first set has been chosen experimentally to
maximize the effective crystal evolution per time step (Figure 2, middle row), whereas the second
set appears to achieve the fastest energy decrease (bottom row).

Remarkably, despite the large time step size and the inevitably associated inaccuracy, all three
simulations evolve through very similar states. It cannot be expected that these states occur after
the same number of time steps, though, as the schemes might have very different effective time
steps for large τ (compare the discussion in Section 3). Apparently, while each step of (37) with
the first parameter set evolves the crystal almost as far as our scheme does, the energy hardly
decreases due to high frequency modes which are only slowly damped. The second parameter set
immediately smoothes out these high frequencies and thus leads to a low energy level as quickly as
our method, however, the system is seen to evolve much more slowly. In all three cases, a further
increase of the nominal time step size τ does not have any visible effect on the results.

5.3 Coexistence in one dimension

Elder and Grant [4] studied the approximate phase diagrams for the phase field crystal model
(δ = −r in their notation) via one-mode approximations. They demonstrated that, for any δ > 1/4,
there is a range of values of ū for which it is energetically favorable to choose a solution that is
essentially piecewise, corresponding to a liquid solution in one region and a periodic solution in the
other. We numerically demonstrate the ability of our algorithm to preserve such solutions.

In this one-dimensional simulation, we take as parameters ℓ = 28π, m = 1000, ū = 1/2, and
δ = 3/4. We compare three different initial conditions for u: a constant liquid state (u1 = 1/2),
a one-mode approximation of a periodic state (u2 = 1/2 + 1/25 sin(x)), and a coexistence state
chosen so that the appropriate mean ū is maintained and the function is continuous:

u3 =

{
2/5 + 3/5 sin(x), if 6π + sin−1

(
1
3

)
≤ x < 20π + sin−1

(
1
3

)
,

3/5, otherwise.
(38)

Discrete versions of these initial conditions are superimposed in Figure 3(a). The proposed al-
gorithm is run for 1000 iterations with τ = 1 and C = 1 with each initial condition, generating
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n=5, E=39.23 n=10, E=39.17 n=15, E=38.94 n=20, E=38.71 n=25, E=38.54

n=7, E=58.42 n=14, E=56.21 n=21, E=54.37 n=28, E=53.05 n=35, E=52.06

n=265, E=39.23 n=530, E=39.16 n=795, E=38.90 n=1060, E=38.69 n=1325, E=38.53

Figure 2: Comparison of our new scheme (12) (top row: L ≡ 1, C = .05, τ = 105) with the linear
scheme from [3] (middle row: a1 = 0.45, a2 = 0.5, a3 = 0.5, τ = 105; bottom row: a1 = 0.45,
a2 = 1, a3 = 0, τ = 105). We show density snapshots after different numbers n of time steps,
starting from the same initial condition. The parameters for the middle and bottom row have
been chosen optimally to give the fastest evolution and the fastest energy decrease, respectively.
Parameters were chosen as in [3]: δ = 0.025, ū = 0.07, ℓ = 128, m = 128.
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Figure 3: (a) The initial microstructures for a one-dimensional simulation of coexistence. (b) At
t = 1000, the liquid solution remains stationary while the periodic solution changes minimally. The
calculated energy density for each remains εh = 0.0469 to four decimal places. The coexistence
solution has changed significantly and has a final calculated energy density εh = 0.0437. In each
plot, U1 is the black curve, U2 the blue curve, and U3 the red curve.

the resulting microstructure seen in Figure 3(b). The initial and final discrete energy densities
(εh = Eh/ℓ) for both U1 and U2 are 0.0469 to four decimal places. U1 clearly remains stationary,
which is not surprising, given that the liquid is a stationary solution. The apparent amplitude of U2

shrinks slightly (to approximately 0.03), and the details of the profile are expected to change some,
though any changes from the one-mode approximation are not easily visible. It is expected that
after a longer simulation time, numerical perturbations will cause the system to leave this periodic
profile in favor of the coexistence state. The initial discrete energy density of U3 is calculated as
0.0767 (and is unbounded as h → 0 as u3 is not everywhere differentiable), but the final energy
density is calculated to be 0.0437, less than the calculated energy of the liquid or periodic solutions.

5.4 Medium-scale simulation of grain coarsening in 2D

The phase field crystal model is also able to describe a classic phenomenon known as grain coarsen-
ing: If the initial condition u0 contains crystals of different orientation with interfaces in between
(compare Figure 4, bottom), then these interfaces move during the evolution in such a way that
large crystals or grains increase in size on the expense of small grains, which shrink until they
finally disappear. Such simulations of polycrystals typically involve a large amount of atoms and
can easily be performed using the proposed scheme. A very basic Matlab implementation already
yields the result shown in Figure 4 in just two hours computation time on a single processor. Due to
the scheme’s simplicity, a highly parallel implementation could readily be programmed on a GPU,
which would increase the simulation speed even much more.

5.5 Well-resolved three-dimensional simulation

To demonstrate the efficiency of our algorithm, we present a small but well-resolved three-dimensional
simulation. We choose m = 100, ℓ = 10π, τ = 1, δ = 1/2, and C = 5. The initial data is normally
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Figure 4: Simulation of grain coarsening (same parameters as Figure 2 except ℓ = 4097, m = 4097,
∼ 3.7 · 105 atoms). The coloring helps to distinguish regions of different lattice orientation, the
bottom image shows a zoom-in. The result is shown after 50, 100, and 500 time steps. Simulation
time on single processor was 2 h and 12 min.
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Ū Microstructure εh(U) εh(Ū)

0.1 1-periodic −4.30 × 10−3 3.78 × 10−3

0.2 2-periodic 9.87 × 10−3 1.54 × 10−2

0.3 3-periodic 3.44 × 10−3 3.58 × 10−2

0.4 liquid 6.64 × 10−2 6.64 × 10−2

Table 2: Comparison of the calculated discrete energy density εh for the various types of microstruc-
ture displayed in Figure 6 to the discrete energy density of the liquid solution for δ = 1/4. In each
of the periodic cases, the calculated energy density for the periodic solution is less than the energy
associated with the liquid solution.

distributed with mean Ū = 0.02 and standard deviation 0.2. 10,000 time steps are performed. Fig-
ure 5 shows the microstructural evolution through time. Initially, U appears to rapidly approach
the liquid solution U ≡ Ū , but structure quickly emerges and then on a much slower time scale
appears to form rolls. The energy is numerically calculated to decrease at each time step.

5.6 Phase portrait in three-dimensions

Here we present a series of minimally-resolved calculations in three dimensions to demonstrate that
this algorithm can find the various types of microstructure expected to exist in three dimensions
with quite minimal computational effort. We choose m = 40 and ℓ = 8π, so that h = π/5. We
fix δ = 1/4, τ = 1, C = 1, and compute until t = 10, 000. We choose normally distributed initial
data Ψ0 with mean 0 and standard deviation 1, and vary the mean ū by setting U0 = Ψ0 + Ū .
We explore the choices Ū = 0.1, 0.2, 0.3, and 0.4, finding four distinct types of microstructure. In
analogy with the striped and hexagonal phases found in two dimensions, there are three periodic
phases, with one-, two-, and three-dimensional periodicity, respectively. For large Ū , we obtain
the constant liquid microstructure. See Figure 6 for the various periodic phases. Table 2 compares
the energy of the periodic solutions to the calculated energy of the liquid solution with the same
parameter choices and demonstrates that the periodic solutions are, indeed, energetically favorable
to the liquid solution where they appear.
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Figure 5: Microstructure from 3D simulation at (a) initial condition, (b) t = 10, (c) t = 100, (d)
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A The limit of ‖AC‖L∞ as C → ∞
For simplicity we will assume Ω = [0, ℓ]d ⊂ Rd. Let us introduce the functions

g̃κ(x) = κd
∑

k∈Nd

′′ cos(κk1x1) · · · cos(κkdxd)

1 + κ4(k2
1 + · · · + k2

d)
2

,

gκ(x) =

{
g̃κ(x) , x ∈ [0, π

κ ]d ,

0 else,

g(x) =

∫

[0,∞)d

cos(k1x1) · · · cos(kdxd)

1 + (k2
1 + · · · + k2

d)
2

dk ,

where ki denotes the ith component of the vector k.
∑′′

k∈Nd is an abbreviation for
∑′

k1∈N . . .
∑′

kd∈N,

where the prime indicates that the first summand (ki = 0) is weighted with 1
2 . For x ∈ [0, π

κ ]d,
gκ(x) is the trapezium rule quadrature for g(x) on a uniform d-dimensional grid with spacing
κ, and one can readily show gκ →κ→0 g pointwise, since the integrand decays quickly enough
in k. Let us furthermore introduce the d-dimensional Fourier transform F : L2(Rd) → L2(Rd),
F [u](k) =

∫
Rd u(x)e−i2πk·x dx, then we observe

g(x) =
1

2d

∫

Rd

e−ik·x

1 + |k|4 dk =
1

2d
F
[

1

1 + | · |4
]( x

2π

)
.

Lemma A.1. If gκ → g in L1([0,∞)d) as κ → 0, then ‖AC‖L∞ →
∥∥F
[
1/(1 + | · |4)

]∥∥
L1(Rd)

as

C → ∞.

Proof. Let F̂ : L2(Ω;C) → l2(Zd;C), F̂ [u](k) = 1
ℓd

∫
Ω u(x)e−i2πk·x

ℓ dx, denote the semi-discrete

Fourier transform. For u ∈ L2(Ω) we have F̂ [ACu](k) = F̂ [u](k)
[
1 − δ

C +
(| 2π

ℓ
k|2−1)2

C

]−1

and thus

ACu = hC ∗ u for

hC(x) =
1

ℓd

∑

k∈Zd

ei2πk·x
ℓ

1 − δ
C +

(| 2π
ℓ

k|2−1)2

C

=

(
2

ℓ

)d∑

k∈Nd

′′ cos(2π
ℓ k1x1) · · · cos(2π

ℓ kdxd)

1 − δ
C +

(( 2π
ℓ

)2(k2
1+···+k2

d
)−1)2

C

.
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Due to the high decay rate of its Fourier coefficients hC is continuous, and furthermore ‖AC‖L∞ =

‖hC‖L1(Ω). We split up hC according to hC = hC
1 +hC

2 with hC
1 (x) = ( 4

√
C/π)dg̃(2π)/(ℓ 4√C)( 4

√
Cx). It

is straightforward to show that the L2(Ω)-norm (and thus also the L1(Ω)-norm) of the remainder hC
2

converges to zero as C → ∞ so that limC→∞ ‖AC‖L∞ = limC→∞ ‖hC
1 ‖L1(Ω). Finally, abbreviating

κ = 2π

ℓ 4√C
,

‖hC
1 ‖L1(Ω) = 1

πd ‖g̃κ‖L1([0, 2π
κ

]d) =
(

2
π

)d ‖gκ‖L1([0,∞)d) −→
C→∞
κ→0

(
2
π

)d ‖g‖L1([0,∞)d)

= 2d‖F [1/(1 + | · |4)]‖L1([0,∞)d) = ‖F [1/(1 + | · |4)]‖L1(Rd) ,

where we have applied a change of variables in the first equality on either side of the limit and
where we have exploited the evenness and 2π

κ -periodicity of g̃κ.

Due to the pointwise convergence gκ → g, by Lebesgue’s theorem it would be sufficient to
majorize all gκ by an L1(Ω) function in order to verify the conditions of the previous lemma.
However, such a function is not easily found. In 1D, one can find a direct proof of the L1-convergence
gκ → g (see below). In higher dimensions, similar methods can probably be applied (using higher-
dimensional Euler–Maclaurin formulae [10]), however, the resulting equations will become highly
complicated.

Lemma A.2. In 1D (d = 1), gκ → g in L1([0,∞)) as κ → 0.

Proof. Define fx,κ(k) = κ cos(kκx)
1+(kκ)4

. For x ∈ [0, π
κ ], the classical second order Euler–Maclaurin

formula yields

|gκ(x) − g(x)| =

∣∣∣∣
∫ ∞

0

B2(k − ⌊k⌋)
2

(fx,κ)′′(k) dk

∣∣∣∣ ,

where B2 is the second Bernoulli polynomial. It is known that B2(k − ⌊k⌋)/2 =
∑∞

n=1
cos(2πnk)

(2πn)2
.

Using this fact, after some algebra we arrive at

|gκ(x) − g(x)| =
∣∣∣
∞∑

n=1

1

(2πn)2

∫ ∞

0

[(
20k̂4−12
(1+k̂4)2

k̂2κ2 − y2
)

cos( 2πn−y
κ

k̂)+cos( 2πn+y
κ

k̂)

2(1+k̂4)

+ 8yκk̂3 − sin( 2πn−y
κ

k̂)+sin( 2πn+y
κ

k̂)

2(1+k̂4)2

]
dk̂
∣∣∣

for y = xκ and k̂ = kκ. Now,

∫ ∞

0
|gκ(x) − g(x)|dx =

∫ π
κ

0
|gκ(x) − g(x)|dx +

∫ ∞

π
κ

|g(x)|dx .

Using g(x) = π
2 e−x/

√
2 sin(π

4 + x√
2
), the second integral approaches zero as κ → ∞. The first integral
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becomes

∫ π

0

∣∣∣
∞∑

n=1

1

(2πn)2

∫ ∞

0

[(
20k̂4−12
(1+k̂4)2

k̂2κ − y2

κ

)
cos( 2πn−y

κ
k̂)+cos( 2πn+y

κ
k̂)

2(1+k̂4)

+ 8yk̂3− sin( 2πn−y
κ

k̂)+sin( 2πn+y
κ

k̂)

2(1+k̂4)2

]
dk̂
∣∣∣ dy

≤
∞∑

n=1

1

(2πn)2

∫ (2n+1)π

(2n−1)π

∣∣∣
∫∞
0 cos( y

κ k̂) 10k̂4−6
(1+k̂4)3

k̂2κdk̂
∣∣∣+
∣∣∣
∫∞
0 cos( y

κ k̂) π2

2(1+k̂4)κ
dk̂
∣∣∣

+
∣∣∣
∫∞
0 sin( y

κ k̂) 4πk̂3

(1+k̂4)2
dk̂
∣∣∣ dy

The inner integrals in k̂ may all be viewed as Fourier coefficients of certain functions at the frequency
y
κ . Since these functions are integrable, their Fourier coefficients decay to zero as the frequency
goes to infinity. Hence, all inner integrals uniformly converge to zero as κ → ∞, and so does the
complete term.
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