

Nonlinear model order reduction for parametrized transport-dominated PDEs using registration-based methods

Young Mathematicians in Model Order Reduction (YMMOR) 2023 Hendrik Kleikamp, Mario Ohlberger, Stephan Rave

March 22, 2023

Outline

Introduction and motivation

Basics from image registration

Model order reduction in the space of (smooth) vector fields

Numerical experiments

Outlook

Motivation: Transport dominated parametrized problems

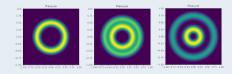
Problems and difficulties

- ► Slowly decaying Kolmogorov *N*-width of the solution manifold [Ohlberger/Rave'16, Greif/Urban'19]
- ► Parameter dependent shock evolution and topology
- Complex shock interactions

Linear methods are not sufficient!

Examples

► Acoustics equations:



► Euler equations:

Motivation: Transport dominated parametrized problems

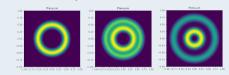
Problems and difficulties

- ► Slowly decaying Kolmogorov *N*-width of the solution manifold [Ohlberger/Rave'16, Greif/Urban'19]
- ► Parameter dependent shock evolution and topology
- ► Complex shock interactions

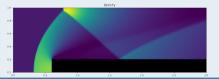
Linear methods are not sufficient!

Examples

Acoustics equations:



► Euler equations:



Simple example: Burgers' equation in 1d

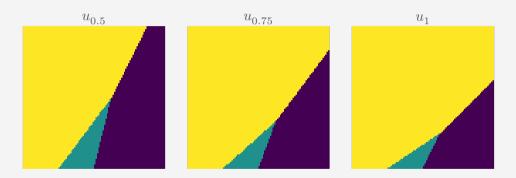
Consider the parametrized equation

$$\begin{split} \partial_t u_\mu(t,x) + \frac{\mu}{2} \partial_x u_\mu(t,x)^2 &= 0, & (t,x) \in [0,1] \times [0,1], \\ u_\mu(0,x) &= u_0(x), & x \in [0,1], \end{split}$$

with piecewise constant initial condition

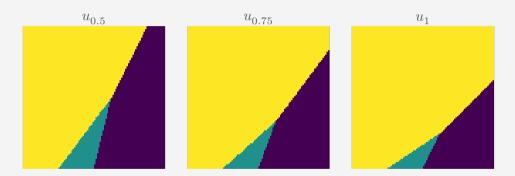
$$u_0(x) = \begin{cases} 2, & \text{if } x \leq 1/4, \\ 1, & \text{if } 1/4 < x \leq 1/2, \\ 0, & \text{if } 1/2 < x. \end{cases}$$

How do solutions for different parameters look like?



--- Transform underlying space-time domain to match snapshots?

How do solutions for different parameters look like?



 \longrightarrow Transform underlying space-time domain to match snapshots?

- ► Shock interaction already incorporated in space-time solutions (no need to treat them separately).
- Diffeomorphic transformations (that can be represented in a reduced space, see below) of the underlying space-time domain to match snapshots to each other.
- ▶ Choose a (fixed) reference snapshot that can be transformed into all other solutions.
- ▶ Apply ideas and concepts from (medical) image registration.

- ► Shock interaction already incorporated in space-time solutions (no need to treat them separately).
- ▶ Diffeomorphic transformations (that can be represented in a reduced space, see below) of the underlying space-time domain to match snapshots to each other.
- ▶ Choose a (fixed) reference snapshot that can be transformed into all other solutions.
- ▶ Apply ideas and concepts from (medical) image registration.

- Shock interaction already incorporated in space-time solutions (no need to treat them separately).
- ▶ Diffeomorphic transformations (that can be represented in a reduced space, see below) of the underlying space-time domain to match snapshots to each other.
- ▶ Choose a (fixed) reference snapshot that can be transformed into all other solutions.
- ▶ Apply ideas and concepts from (medical) image registration.

- Shock interaction already incorporated in space-time solutions (no need to treat them separately).
- ▶ Diffeomorphic transformations (that can be represented in a reduced space, see below) of the underlying space-time domain to match snapshots to each other.
- ▶ Choose a (fixed) reference snapshot that can be transformed into all other solutions.
- ▶ Apply ideas and concepts from (medical) image registration.

Outline

Introduction and motivation

Basics from image registration

Model order reduction in the space of (smooth) vector fields

Numerical experiments

Outlook

Image registration

- ► *Main application:* Medical imaging to align images and to detect deviations from expected states.
- ▶ Goal: Given a "template image" $u_0 \colon \Omega \to \mathbb{R}$ and a "target image" $u_1 \colon \Omega \to \mathbb{R}$, find a transformation $\Phi \colon \Omega \to \Omega$, such that

$$u_0 \circ \Phi^{-1} \approx u_1.$$

- ► In our approach:
 - lacktriangle Apply diffeomorphism $\Phi \in G$ from diffeomorphism group G as transformation.
 - ▶ Diffeomorphism induced by *vector field* $v \in g$ (see below).

Image registration

- ► *Main application:* Medical imaging to align images and to detect deviations from expected states.
- ▶ Goal: Given a "template image" $u_0 \colon \Omega \to \mathbb{R}$ and a "target image" $u_1 \colon \Omega \to \mathbb{R}$, find a transformation $\Phi \colon \Omega \to \Omega$, such that

$$u_0 \circ \Phi^{-1} \approx u_1.$$

- ► In our approach:
 - lacktriangle Apply diffeomorphism $\Phi \in G$ from diffeomorphism group G as transformation.
 - ▶ Diffeomorphism induced by *vector field* $v \in g$ (see below).

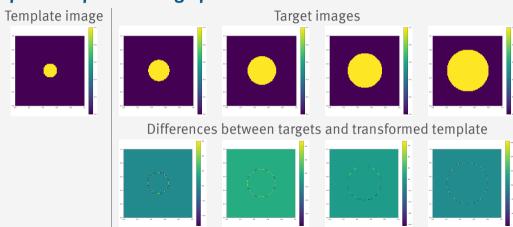
Image registration

- ► *Main application:* Medical imaging to align images and to detect deviations from expected states.
- ▶ Goal: Given a "template image" $u_0 \colon \Omega \to \mathbb{R}$ and a "target image" $u_1 \colon \Omega \to \mathbb{R}$, find a transformation $\Phi \colon \Omega \to \Omega$, such that

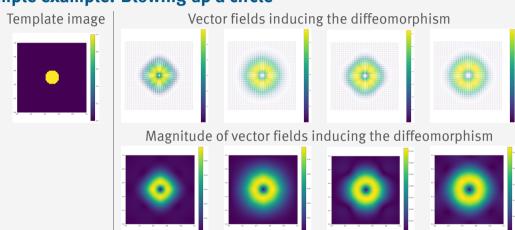
$$u_0 \circ \Phi^{-1} \approx u_1$$
.

- ▶ In our approach:
 - lacktriangle Apply $diffeomorphism \ \Phi \in G$ from diffeomorphism group G as transformation.
 - ▶ Diffeomorphism induced by *vector field* $v \in \mathfrak{g}$ (see below).

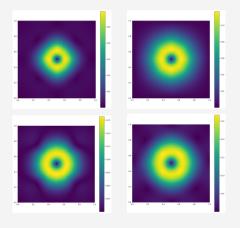
Simple example: Blowing up a circle

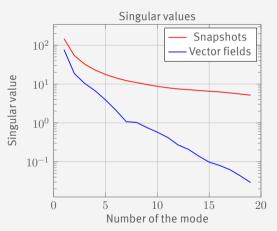


Simple example: Blowing up a circle



Simple example: Blowing up a circle





Geodesics in the diffeomorphism group

▶ Euler-Poincaré differential equation to determine time-dependent velocity field $v_t : \Omega \to \mathbb{R}^d$, $\Omega \subset \mathbb{R}^d$, as

$$\frac{\partial v_t}{\partial t} = -K \left[(Dv_t)^T \cdot Lv_t + D(Lv_t) \cdot v_t + Lv_t \cdot \operatorname{div} v_t \right], \qquad \boxed{v_0 = v \in \mathfrak{g},}$$

where L is a differential operator of the form $L=(Id-\alpha\Delta)^s$ with inverse $K=L^{-1}$.

▶ Diffeomorphism ϕ_t : $\Omega \to \Omega$, given as flow of velocity field v_t , i.e.

$$\frac{\partial \phi_t}{\partial t} = v_t \circ \phi_t, \qquad \phi_0 = Id.$$

► Knowledge of v sufficient to compute $\Phi(v) := \phi_1!$ \longrightarrow Main idea of **geodesic shooting** [Miller/Trouvé/Younes'06]

Geodesics in the diffeomorphism group

▶ Euler-Poincaré differential equation to determine time-dependent velocity field $v_{\star} \colon \Omega \to \mathbb{R}^d$, $\Omega \subset \mathbb{R}^d$, as

$$\frac{\partial v_t}{\partial t} = -K \left[(Dv_t)^T \cdot Lv_t + D(Lv_t) \cdot v_t + Lv_t \cdot \operatorname{div} v_t \right], \qquad \boxed{v_0 = v \in \mathfrak{g},}$$

where L is a differential operator of the form $L=(Id-\alpha\Delta)^s$ with inverse $K=L^{-1}$.

▶ Diffeomorphism ϕ_t : $\Omega \to \Omega$, given as flow of velocity field v_t , i.e.

$$\frac{\partial \phi_t}{\partial t} = v_t \circ \phi_t, \qquad \phi_0 = Id.$$

► Knowledge of v sufficient to compute $\Phi(v) := \phi_1!$ \longrightarrow Main idea of **geodesic shooting** [Miller/Trouvé/Younes'06]

Geodesics in the diffeomorphism group

▶ Euler-Poincaré differential equation to determine time-dependent velocity field $v_t : \Omega \to \mathbb{R}^d$, $\Omega \subset \mathbb{R}^d$, as

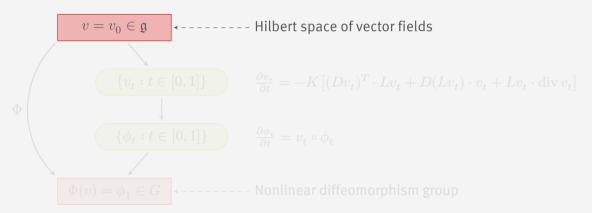
$$\frac{\partial v_t}{\partial t} = -K \left[(Dv_t)^T \cdot Lv_t + D(Lv_t) \cdot v_t + Lv_t \cdot \operatorname{div} v_t \right], \qquad \boxed{v_0 = v \in \mathfrak{g},}$$

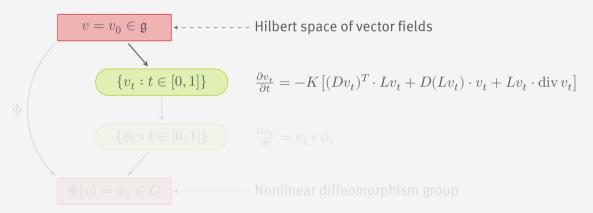
where L is a differential operator of the form $L=(Id-\alpha\Delta)^s$ with inverse $K=L^{-1}$.

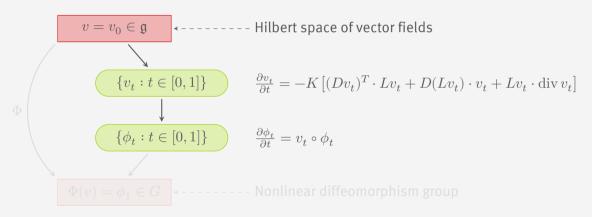
lacktriangle Diffeomorphism $\phi_t\colon\Omega\to\Omega$, given as flow of velocity field v_t , i.e.

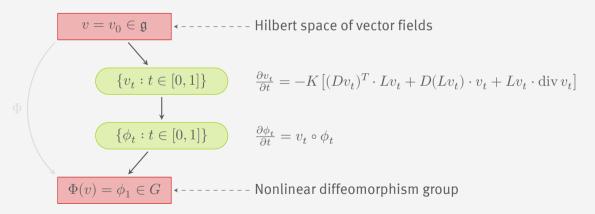
$$\frac{\partial \phi_t}{\partial t} = v_t \circ \phi_t, \qquad \phi_0 = Id.$$

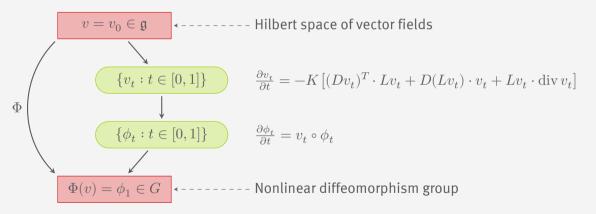
- ▶ Knowledge of v sufficient to compute $\Phi(v) := \phi_1!$
 - → Main idea of **geodesic shooting** [Miller/Trouvé/Younes'06].











Computing the vector field

How to compute good choice of $v \in \mathfrak{g}$ given a "template image" $u_0 \colon \Omega \to \mathbb{R}$ and a "target image" $u_1 \colon \Omega \to \mathbb{R}$?

Minimize energy

$$E_{u_0 \rightarrow u_1}(v) \coloneqq \underbrace{(Lv,v)_{L^2(\Omega)}}_{\text{Regularization term}} + \frac{1}{\sigma^2} \underbrace{\|u_0 \circ \Phi(v)^{-1} - u_1\|_{L^2(\Omega)}^2}_{\text{Mismatch measurement}}$$

using descent methods (e.g. L-BFGS).

Computing the vector field

How to compute good choice of $v \in \mathfrak{g}$ given a "template image" $u_0 \colon \Omega \to \mathbb{R}$ and a "target image" $u_1 \colon \Omega \to \mathbb{R}$?

Minimize energy

$$\underline{\pmb{E_{u_0 \to u_1}}}(v) \coloneqq \underbrace{(Lv, v)_{L^2(\Omega)}}_{\text{Regularization term}} + \frac{1}{\sigma^2} \underbrace{\|u_0 \circ \Phi(v)^{-1} - u_1\|_{L^2(\Omega)}^2}_{\text{Mismatch measurement}}$$

using descent methods (e.g. L-BFGS).

Outline

Introduction and motivation

Basics from image registration

Model order reduction in the space of (smooth) vector fields

Numerical experiments

Outlook

(Linear) Model order reduction in the space of smooth vector fields

► Smooth vector fields g form a **Hilbert space** with inner product

$$\langle v,w\rangle_{\mathfrak{g}}\coloneqq (Lv,w)_{L^2(\Omega)}=(v,Lw)_{L^2(\Omega)}.$$

- ► We can apply well-known linear model order reduction methods in g, like **POD** [Wang/Xing/Kirby/Zhang'19] or **Greedy algorithms**!
- ▶ Motivation of the approach: Due to the smoothness of the vector fields in g, we expect a faster decay of the Kolmogorov N-width in the space of vector fields. (Hard to tackle theoretically though.)

(Linear) Model order reduction in the space of smooth vector fields

► Smooth vector fields g form a **Hilbert space** with inner product

$$\langle v,w\rangle_{\mathfrak{g}}\coloneqq (Lv,w)_{L^2(\Omega)}=(v,Lw)_{L^2(\Omega)}.$$

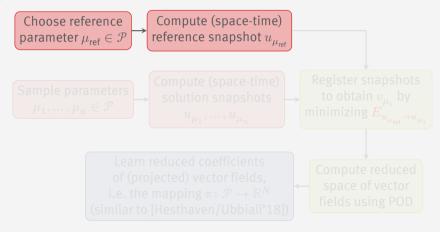
- ► We can apply well-known linear model order reduction methods in g, like **POD** [Wang/Xing/Kirby/Zhang'19] or **Greedy algorithms**!
- ▶ Motivation of the approach: Due to the smoothness of the vector fields in g, we expect a faster decay of the Kolmogorov N-width in the space of vector fields. (Hard to tackle theoretically though.)

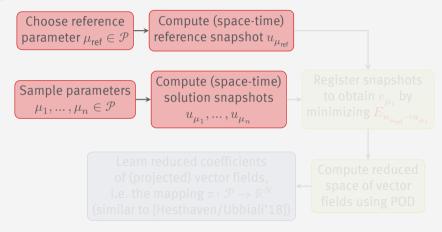
(Linear) Model order reduction in the space of smooth vector fields

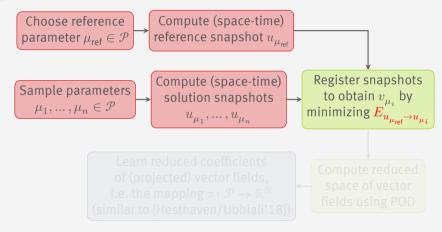
► Smooth vector fields g form a **Hilbert space** with inner product

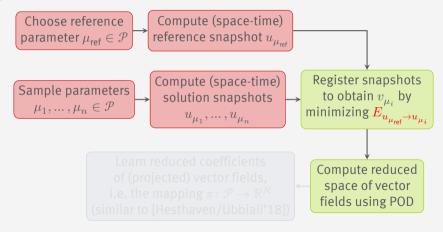
$$\langle v,w\rangle_{\mathfrak{g}}:=(Lv,w)_{L^2(\Omega)}=(v,Lw)_{L^2(\Omega)}.$$

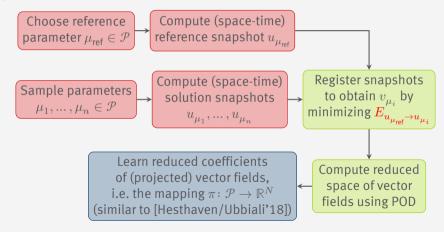
- ► We can apply well-known linear model order reduction methods in g, like **POD** [Wang/Xing/Kirby/Zhang'19] or **Greedy algorithms**!
- ▶ Motivation of the approach: Due to the smoothness of the vector fields in g, we expect a faster decay of the Kolmogorov *N*-width in the space of vector fields. (Hard to tackle theoretically though.)

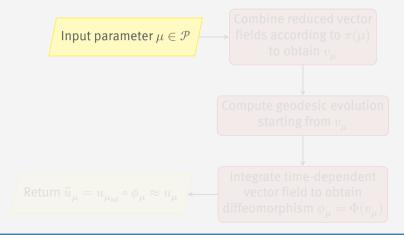


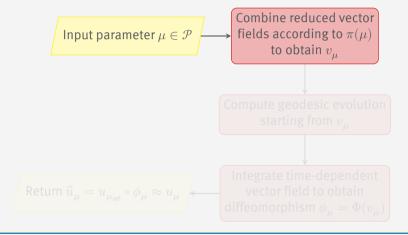


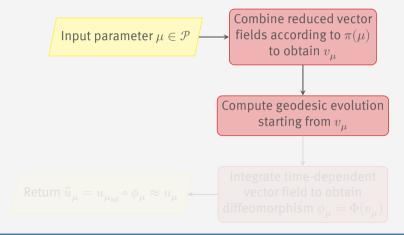


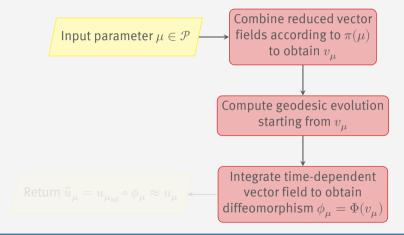


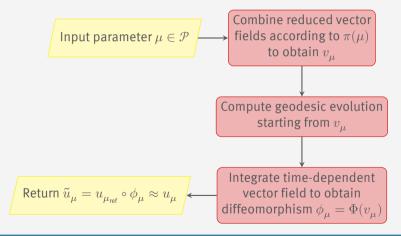












Outline

Introduction and motivation

Basics from image registration

Model order reduction in the space of (smooth) vector fields

Numerical experiments

Outlook

Numerical results - Burgers' equation with two shocks

$$\begin{split} \partial_t u_\mu + \mu \partial_x u_\mu^2 &= 0, & (t,x) \in [0,T] \times \Omega, \\ u_\mu(0) &= u_0, & x \in \Omega, \end{split}$$

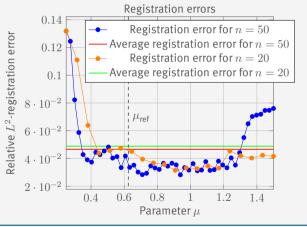
$$u_0(x) = \begin{cases} 2, & \text{if } x \le 1/4, \\ 1, & \text{if } 1/4 < x \le 1/2, \\ 0, & \text{if } 1/2 < x. \end{cases}$$

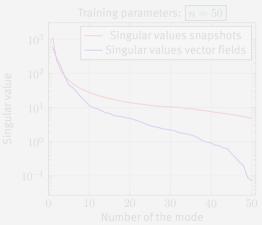
 $\begin{array}{ll} \text{Parameter domain} & \mathcal{P} = [0.25, 1.5] \\ \text{Discretization} & N_x = N_t = 100 \\ \text{Reference parameter} & \mu_{\text{ref}} = 0.625 \\ \text{Num. of training samples} & n \in \{20, 50\} \\ \end{array}$

Reference solution $u_{\mu_{\mathrm{ref}}} = u_{0.625}$ t

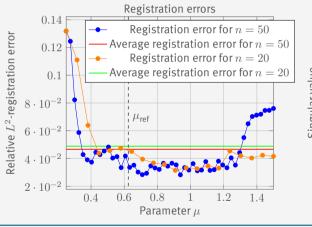
Geodesic shooting implementation: https://github.com/HenKlei/geodesic-shooting

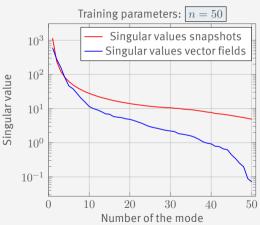
Numerical results - Registration errors and singular values



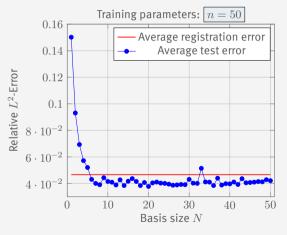


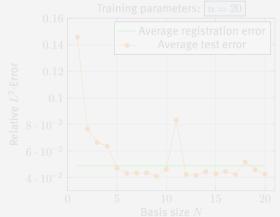
Numerical results - Registration errors and singular values



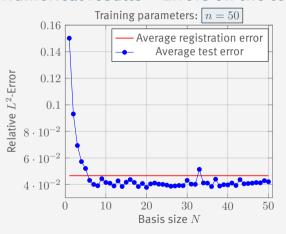


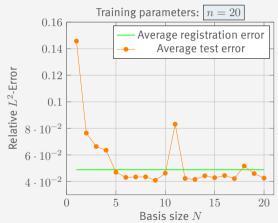
Numerical results - Errors on the test set



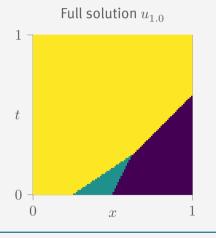


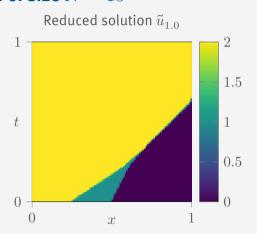
Numerical results - Errors on the test set



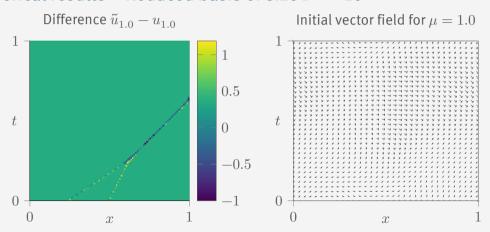


Numerical results – Reduced basis of size N=10





Numerical results – Reduced basis of size N=10



Outline

Introduction and motivation

Basics from image registration

Model order reduction in the space of (smooth) vector fields

Numerical experiments

Outlook

- ► Examples in higher space dimensions (registration becomes harder).
- Greedy procedure instead of POD to extract vector fields.
- ▶ Residual minimization during online phase instead of learning the coefficients.
- ► Localize the approach to be able to tackle the evolution of complex shock fronts in higher dimensions.

- Examples in higher space dimensions (registration becomes harder).
- Greedy procedure instead of POD to extract vector fields.
- ▶ Residual minimization during online phase instead of learning the coefficients.
- ► Localize the approach to be able to tackle the evolution of complex shock fronts in higher dimensions.

- Examples in higher space dimensions (registration becomes harder).
- Greedy procedure instead of POD to extract vector fields.
- ▶ Residual minimization during online phase instead of learning the coefficients.
- ► Localize the approach to be able to tackle the evolution of complex shock fronts in higher dimensions.

- Examples in higher space dimensions (registration becomes harder).
- Greedy procedure instead of POD to extract vector fields.
- ▶ Residual minimization during online phase instead of learning the coefficients.
- ► Localize the approach to be able to tackle the evolution of complex shock fronts in higher dimensions.

Thank you for your attention!

References I

- Constantin Greif and Karsten Urban, *Decay of the kolmogorov* n-width for wave problems, Applied Mathematics Letters **96** (2019), 216–222.
- J.S. Hesthaven and S. Ubbiali, *Non-intrusive reduced order modeling of nonlinear problems using neural networks*, Journal of Computational Physics **363** (2018), 55–78.
- Michael Miller, Alain Trouvé, and Laurent Younes, *Geodesic shooting for computational anatomy*, Journal of mathematical imaging and vision **24** (2006), 209–228.
- Mario Ohlberger and Stephan Rave, *Nonlinear reduced basis approximation of parameterized evolution equations via the method of freezing*, Comptes Rendus Mathematique **351** (2013), no. 23, 901 906.

References II

- Proceedings of the Conference Algoritmy (2016), 1–12.
- Jian Wang, Wei Xing, Robert M. Kirby, and Miaomiao Zhang, *Data-driven model order reduction for diffeomorphic image registration*, Information Processing in Medical Imaging (Cham) (Albert C. S. Chung, James C. Gee, Paul A. Yushkevich, and Siqi Bao, eds.), Springer International Publishing, 2019, pp. 694–705.