

Nonlinear model order reduction for hyperbolic conservation laws by means of diffeomorphic transformations of space-time domains

Model Reduction and Surrogate Modeling (MORE) 2022 Hendrik Kleikamp, Mario Ohlberger, Stephan Rave

September 20, 2022

Outline

Introduction and motivation

Basics from image registration

Model order reduction in the Lie algebra

Numerical experiments

Outlook

Motivation: Transport dominated parametrized problems

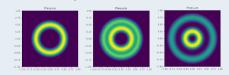
Problems and difficulties

- ► Slowly decaying Kolmogorov *N*-width of the solution manifold [Ohlberger/Rave'16, Greif/Urban'19]
- Parameter dependent shock evolution and topology
- Complex shock interactions

Linear methods are not sufficient!

Examples

Acoustics equations:



► Euler equations:

Motivation: Transport dominated parametrized problems

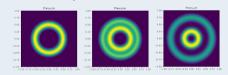
Problems and difficulties

- ► Slowly decaying Kolmogorov *N*-width of the solution manifold [Ohlberger/Rave'16, Greif/Urban'19]
- Parameter dependent shock evolution and topology
- Complex shock interactions

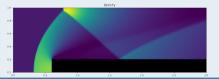
Linear methods are not sufficient!

Examples

Acoustics equations:



► Euler equations:



Simple example: Burgers' equation in 1d

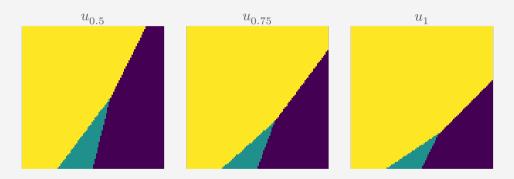
Consider the parametrized equation

$$\begin{split} \partial_t u_\mu(t,x) + \frac{\mu}{2} \partial_x u_\mu(t,x)^2 &= 0, & (t,x) \in [0,1] \times [0,1], \\ u_\mu(0,x) &= u_0(x), & x \in [0,1], \end{split}$$

with piecewise constant initial condition

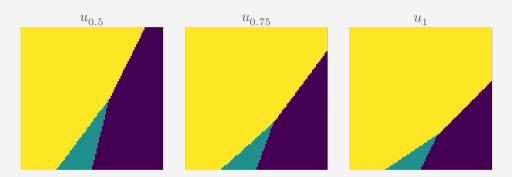
$$u_0(x) = \begin{cases} 2, & \text{if } x \le 1/4, \\ 1, & \text{if } 1/4 < x \le 1/2, \\ 0, & \text{if } 1/2 < x. \end{cases}$$

How do solutions for different parameters look like?



--- Transform underlying space-time domain to match snapshots?

How do solutions for different parameters look like?



 \longrightarrow Transform underlying space-time domain to match snapshots?

- ► Shock interaction already incorporated in space-time solutions (no need to treat them separately).
- Diffeomorphic transformations (that can be represented in a reduced space, see below) of the underlying space-time domain to match snapshots to each other.
- ▶ Choose a (fixed) reference snapshot that can be transformed into all other solutions.
- ▶ Apply ideas and concepts from (medical) image registration.

- ► Shock interaction already incorporated in space-time solutions (no need to treat them separately).
- ▶ Diffeomorphic transformations (that can be represented in a reduced space, see below) of the underlying space-time domain to match snapshots to each other.
- ▶ Choose a (fixed) reference snapshot that can be transformed into all other solutions.
- ▶ Apply ideas and concepts from (medical) image registration.

- ► Shock interaction already incorporated in space-time solutions (no need to treat them separately).
- ▶ Diffeomorphic transformations (that can be represented in a reduced space, see below) of the underlying space-time domain to match snapshots to each other.
- ► Choose a (fixed) reference snapshot that can be transformed into all other solutions.
- ▶ Apply ideas and concepts from (medical) image registration.

- Shock interaction already incorporated in space-time solutions (no need to treat them separately).
- ▶ Diffeomorphic transformations (that can be represented in a reduced space, see below) of the underlying space-time domain to match snapshots to each other.
- ► Choose a (fixed) reference snapshot that can be transformed into all other solutions.
- ▶ Apply ideas and concepts from (medical) image registration.

Outline

Introduction and motivation

Basics from image registration

Model order reduction in the Lie algebra

Numerical experiments

Outlook

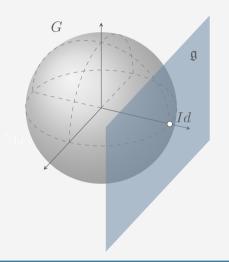
Lie groups and Lie algebras

Lie group

A group G such that group multiplication and inversion are smooth maps, i.e. G is a manifold.

Lie algebra

The tangent space $\mathfrak{g}=T_{Id}G$ to a Lie group G at the identity element $Id\in G$.



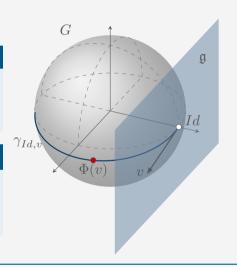
Lie groups and Lie algebras

Geodesic curve

Smooth curve $\gamma_{p,v}\colon I\to G$, I an open interval, $\gamma_{p,v}(0)=p\in G$, $\gamma'_{p,v}(0)=v\in T_pG$, that (locally) minimizes lengths.

Unit time geodesic

Following geodesic from the identity in direction $v\in\mathfrak{g}$ for unit time defines a mapping $\Phi\colon\mathfrak{g}\to G$, $\Phi(v)=\gamma_{Id}\,_v(1)$.



Lie groups and Lie algebras in image registration

- ▶ Diffeomorphism group G on \mathbb{R}^n forms a Lie group.
- ▶ Lie algebra g is the space of smooth vector fields.
- ▶ Diffeomorphism group acts on underlying space by transforming it.
- ► Attention: Diffeomorphism group is infinite dimensional! (Theory is much harder in general, e.g. exponential map and geodesics do not coincide.)

Lie groups and Lie algebras in image registration

- ▶ Diffeomorphism group G on \mathbb{R}^n forms a Lie group.
- ▶ Lie algebra g is the space of smooth vector fields.
- ▶ Diffeomorphism group acts on underlying space by transforming it.
- ► Attention: Diffeomorphism group is infinite dimensional! (Theory is much harder in general, e.g. exponential map and geodesics do not coincide.)

Geodesics in the diffeomorphism group

▶ Euler-Poincaré differential equation to determine time-dependent velocity field $v_t \colon \Omega \to \mathbb{R}^d$, $\Omega \subset \mathbb{R}^d$, as

$$\frac{\partial v_t}{\partial t} = -K \left[(Dv_t)^T \cdot Lv_t + D(Lv_t) \cdot v_t + Lv_t \cdot \operatorname{div} v_t \right], \qquad \boxed{v_0 = v \in \mathfrak{g},}$$

where L is a differential operator of the form $L=(Id-\alpha\Delta)^s$ with inverse $K=L^{-1}$.

lacktriangle Diffeomorphism $\phi_t\colon\Omega o\Omega$, given as flow of velocity field v_t , i.e.

$$\frac{\partial \phi_t}{\partial t} = v_t \circ \phi_t, \qquad \phi_0 = Id.$$

▶ Knowledge of v sufficient to compute $\Phi(v) := \phi_1!$ → Main idea of **geodesic shooting** [Miller/Trouvé/Younes'06]

Geodesics in the diffeomorphism group

▶ Euler-Poincaré differential equation to determine time-dependent velocity field $v_t \colon \Omega \to \mathbb{R}^d$, $\Omega \subset \mathbb{R}^d$, as

$$\frac{\partial v_t}{\partial t} = -K \left[(Dv_t)^T \cdot Lv_t + D(Lv_t) \cdot v_t + Lv_t \cdot \operatorname{div} v_t \right], \qquad \boxed{v_0 = v \in \mathfrak{g},}$$

where L is a differential operator of the form $L=(Id-\alpha\Delta)^s$ with inverse $K=L^{-1}$.

lacktriangle Diffeomorphism $\phi_t\colon\Omega\to\Omega$, given as flow of velocity field v_t , i.e.

$$\frac{\partial \phi_t}{\partial t} = v_t \circ \phi_t, \qquad \phi_0 = Id.$$

► Knowledge of v sufficient to compute $\Phi(v) := \phi_1!$ — Main idea of **geodesic shooting** [Miller/Trouvé/Younes'06]

Geodesics in the diffeomorphism group

▶ Euler-Poincaré differential equation to determine time-dependent velocity field $v_t : \Omega \to \mathbb{R}^d$, $\Omega \subset \mathbb{R}^d$, as

$$\frac{\partial v_t}{\partial t} = -K \left[(Dv_t)^T \cdot Lv_t + D(Lv_t) \cdot v_t + Lv_t \cdot \operatorname{div} v_t \right], \qquad \boxed{v_0 = v \in \mathfrak{g},}$$

where L is a differential operator of the form $L=(Id-\alpha\Delta)^s$ with inverse $K=L^{-1}$.

lacktriangle Diffeomorphism $\phi_t\colon\Omega o\Omega$, given as flow of velocity field v_t , i.e.

$$\frac{\partial \phi_t}{\partial t} = v_t \circ \phi_t, \qquad \phi_0 = Id.$$

- Knowledge of v sufficient to compute $\Phi(v) := \phi_1!$
 - → Main idea of **geodesic shooting** [Miller/Trouvé/Younes'06].

Ideas and concepts from image registration

How to compute good choice of $v \in \mathfrak{g}$ given a "template image" $u_0 \colon \Omega \to \mathbb{R}$ and a "target image" $u_1 \colon \Omega \to \mathbb{R}$?

Minimize energy

$$E_{u_0 \to u_1}(v) \coloneqq \underbrace{(Lv,v)_{L^2(\Omega)}}_{\text{Regularization term}} + \frac{1}{\sigma^2} \underbrace{\|u_0 \circ \Phi(v)^{-1} - u_1\|_{L^2(\Omega)}^2}_{\text{Mismatch measurement}}$$

using descent methods (e.g. L-BFGS).

Ideas and concepts from image registration

How to compute good choice of $v \in \mathfrak{g}$ given a "template image" $u_0 \colon \Omega \to \mathbb{R}$ and a "target image" $u_1 \colon \Omega \to \mathbb{R}$?

Minimize energy

$$E_{u_0 \to u_1}(v) \coloneqq \underbrace{(Lv,v)_{L^2(\Omega)}}_{\text{Regularization term}} + \frac{1}{\sigma^2} \underbrace{\|u_0 \circ \Phi(v)^{-1} - u_1\|_{L^2(\Omega)}^2}_{\text{Mismatch measurement}}$$

using descent methods (e.g. L-BFGS).

Outline

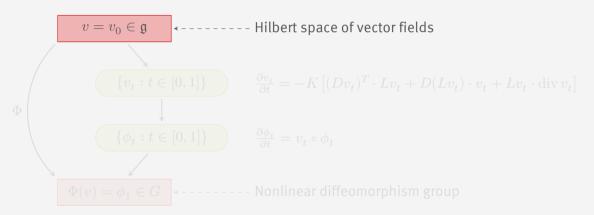
Introduction and motivation

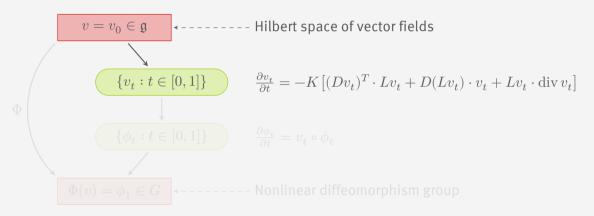
Basics from image registration

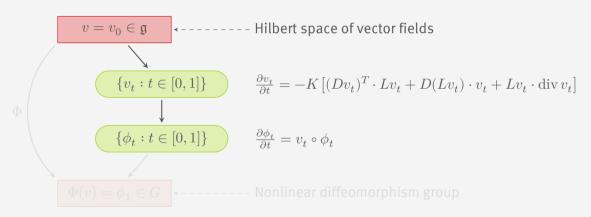
Model order reduction in the Lie algebra

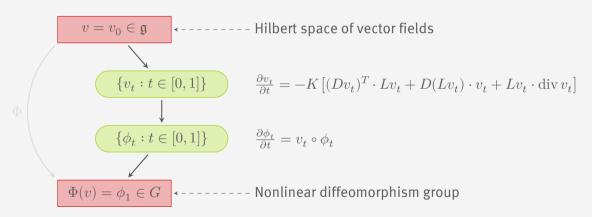
Numerical experiments

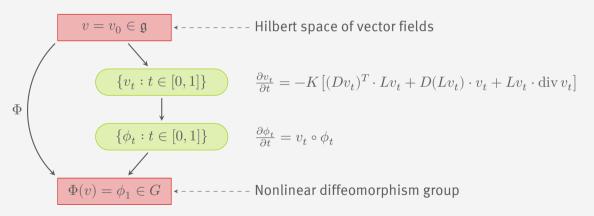
Outlook











(Linear) Model order reduction in the Lie algebra

▶ Lie algebra of smooth vector fields g forms a **Hilbert space** with inner product

$$\langle v,w\rangle_{\mathfrak{g}}:=(Lv,w)_{L^2(\Omega)}=(v,Lw)_{L^2(\Omega)}.$$

- ► We can apply well-known linear model order reduction methods in g, like **POD** [Wang/Xing/Kirby/Zhang'19] or **Greedy algorithms**!
- Motivation of the approach: Due to the smoothness of the vector fields in \mathfrak{g} , we expect a faster decay of the Kolmogorov N-width in the Lie algebra. (Hard to tackle theoretically though.)

(Linear) Model order reduction in the Lie algebra

▶ Lie algebra of smooth vector fields g forms a **Hilbert space** with inner product

$$\langle v,w\rangle_{\mathfrak{g}}:=(Lv,w)_{L^2(\Omega)}=(v,Lw)_{L^2(\Omega)}.$$

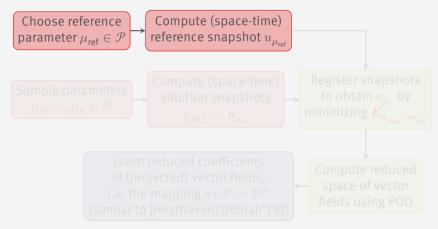
- ► We can apply well-known linear model order reduction methods in g, like **POD** [Wang/Xing/Kirby/Zhang'19] or **Greedy algorithms**!
- Motivation of the approach: Due to the smoothness of the vector fields in \mathfrak{g} , we expect a faster decay of the Kolmogorov N-width in the Lie algebra. (Hard to tackle theoretically though.)

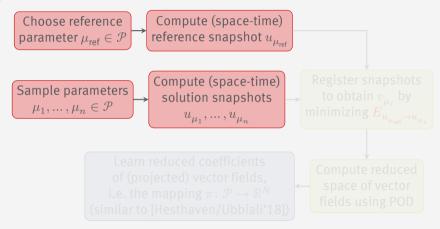
(Linear) Model order reduction in the Lie algebra

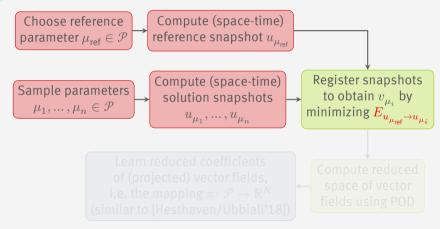
▶ Lie algebra of smooth vector fields g forms a **Hilbert space** with inner product

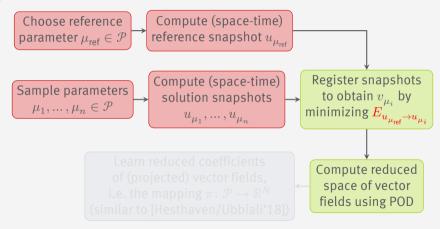
$$\langle v,w\rangle_{\mathfrak{g}}:=(Lv,w)_{L^2(\Omega)}=(v,Lw)_{L^2(\Omega)}.$$

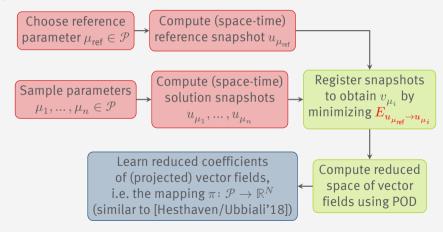
- ► We can apply well-known linear model order reduction methods in g, like **POD** [Wang/Xing/Kirby/Zhang'19] or **Greedy algorithms**!
- \blacktriangleright Motivation of the approach: Due to the smoothness of the vector fields in \mathfrak{g} , we expect a faster decay of the Kolmogorov N-width in the Lie algebra. (Hard to tackle theoretically though.)

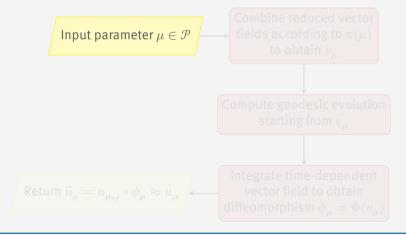


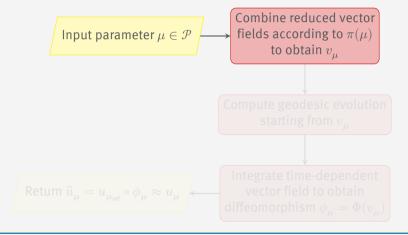


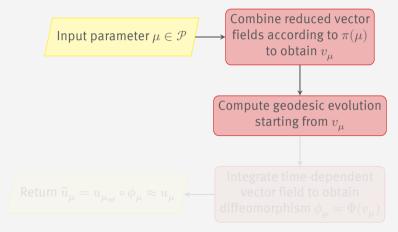


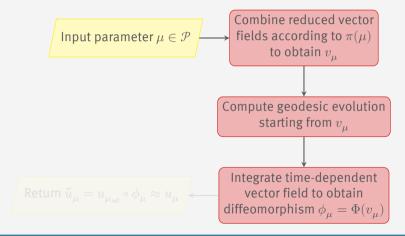


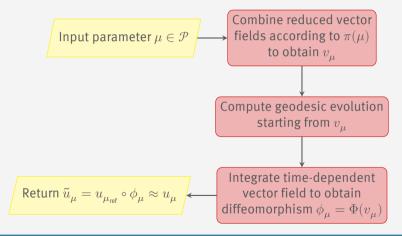












Outline

Introduction and motivation

Basics from image registration

Model order reduction in the Lie algebra

Numerical experiments

Outlook

Numerical results - Burgers' equation with two shocks

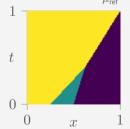
$$\begin{split} \partial_t u_\mu + \mu \partial_x u_\mu^2 &= 0, & (t,x) \in [0,T] \times \Omega, \\ u_\mu(0) &= u_0, & x \in \Omega, \end{split}$$

$$u_0(x) = \begin{cases} 2, & \text{if } x \le 1/4, \\ 1, & \text{if } 1/4 < x \le 1/2, \\ 0, & \text{if } 1/2 < x. \end{cases}$$

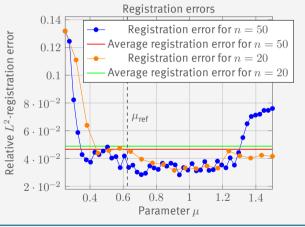
Parameter domain $\mathcal{P} = [0.25, 1.5]$ Discretization $N_x = N_t = 100$ Reference parameter $\mu_{\rm ref} = 0.625$

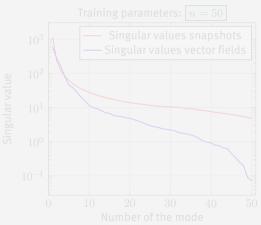
Test parameters $\mu \in \{0.5, 0.75, 1.0, 1.25\}$

Geodesic shooting implementation: https://github.com/HenKlei/geodesic-shooting

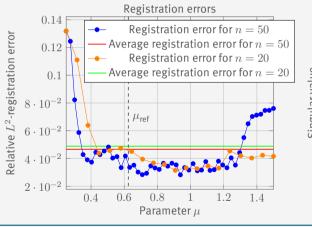


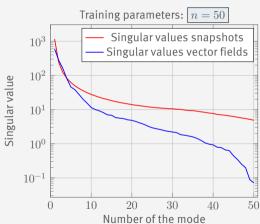
Numerical results - Registration errors and singular values



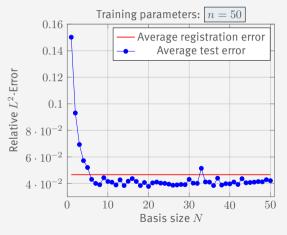


Numerical results - Registration errors and singular values

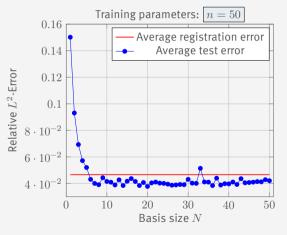


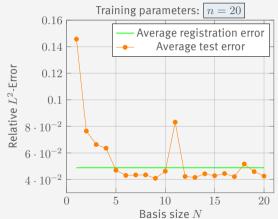


Numerical results - Errors on the test set

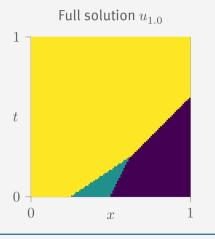


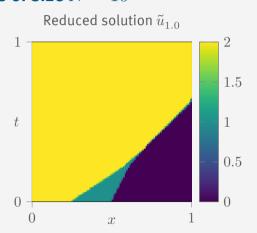
Numerical results - Errors on the test set



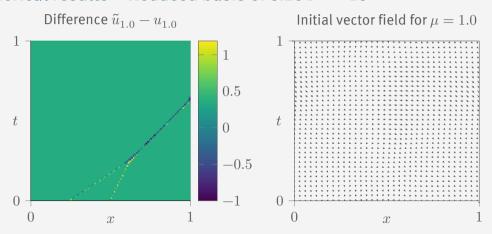


Numerical results – Reduced basis of size N=10





Numerical results – Reduced basis of size N=10



Outline

Introduction and motivation

Basics from image registration

Model order reduction in the Lie algebra

Numerical experiments

Outlook

- ▶ Theoretical investigation of reduced subspace of the Lie algebra.
- Greedy procedure instead of POD to extract vector fields.
- ▶ Residual minimization during online phase instead of learning the coefficients.
- ► Localize the approach to be able to tackle the evolution of complex shock fronts in higher dimensions.

- ▶ Theoretical investigation of reduced subspace of the Lie algebra.
- Greedy procedure instead of POD to extract vector fields.
- ▶ Residual minimization during online phase instead of learning the coefficients.
- ► Localize the approach to be able to tackle the evolution of complex shock fronts in higher dimensions.

- ▶ Theoretical investigation of reduced subspace of the Lie algebra.
- Greedy procedure instead of POD to extract vector fields.
- ▶ Residual minimization during online phase instead of learning the coefficients.
- ▶ Localize the approach to be able to tackle the evolution of complex shock fronts in higher dimensions.

- ▶ Theoretical investigation of reduced subspace of the Lie algebra.
- Greedy procedure instead of POD to extract vector fields.
- ▶ Residual minimization during online phase instead of learning the coefficients.
- ► Localize the approach to be able to tackle the evolution of complex shock fronts in higher dimensions.

Thank you for your attention!

References I

- Constantin Greif and Karsten Urban, *Decay of the kolmogorov* n-width for wave problems, Applied Mathematics Letters **96** (2019), 216–222.
- J.S. Hesthaven and S. Ubbiali, Non-intrusive reduced order modeling of nonlinear problems using neural networks, Journal of Computational Physics 363 (2018), 55–78.
- Michael Miller, Alain Trouvé, and Laurent Younes, *Geodesic shooting for computational anatomy*, Journal of mathematical imaging and vision **24** (2006), 209–228.
- Mario Ohlberger and Stephan Rave, *Nonlinear reduced basis approximation of parameterized evolution equations via the method of freezing*, Comptes Rendus Mathematique **351** (2013), no. 23, 901 906.

References II

- ______, Reduced basis methods: Success, limitations and future challenges, Proceedings of the Conference Algoritmy (2016), 1–12.
- Jian Wang, Wei Xing, Robert M. Kirby, and Miaomiao Zhang, *Data-driven model order reduction for diffeomorphic image registration*, Information Processing in Medical Imaging (Cham) (Albert C. S. Chung, James C. Gee, Paul A. Yushkevich, and Siqi Bao, eds.), Springer International Publishing, 2019, pp. 694–705.