

Model order reduction and machine learning for parametrized problems

Hendrik Kleikamp (University of Münster)

29.04.2025

Mathematics Münster Cluster of Excellence

Table of contents

Model order reduction for parametrized problems

Reduced basis methods

Machine learning and model order reduction

Adaptive model hierarchies

Model order reduction for parametrized problems

Motivation – Parametrized problems

Given:

- ► Model described by a partial differential equation depending on varying parameters
- Numerical method to solve the PDE for individual parameter values (Full order model)

μ3	μ_4
μ_1	μ_2

Motivation – Parametrized problems

Given:

- ► Model described by a partial differential equation depending on varying parameters
- Numerical method to solve the PDE for individual parameter values (Full order model)

μ3	μ_4
μ_1	μ_2

Challenges:

Multi-query context

- Solutions for many different parameter values required, e.g.
 - Parameter studies
 - Optimization

Real-time context

- Solution for specific parameter needed very quickly
- Possibly limited computational resources

Motivation – Parametrized problems

Challenges:

Multi-auery context

- Solutions for many different parameter values required, e.g.
 - Parameter studies
 - Optimization

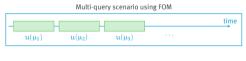
Main concept:

- Build a reduced order model only once Offline phase
- Compute reduced solutions fast for many different parameter values

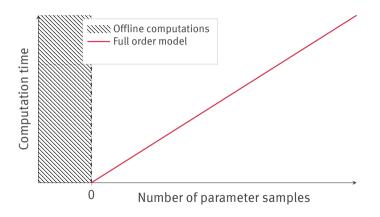
Online phase

Real-time context

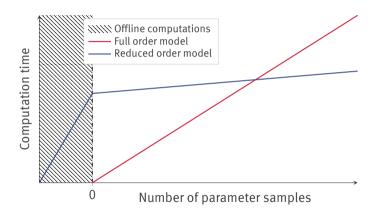
- Solution for specific parameter needed verv auickly
- Possibly limited computational resources



Multi-query scenarios Offline-online decomposition



Multi-query scenarios Offline-online decomposition



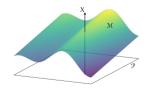
Reduced basis methods

The reduced basis model

Approximation theory

- Denote by $\mu \in \mathcal{P} \subset \mathbb{R}^p$ the parameter value.
- ▶ For each $\mu \in \mathcal{P}$, the solution to the PDE is denoted by $u(\mu) \in X$, where the solution space X is infinite or high dimensional.
- ▶ Define the solution manifold $\mathcal{M} := \{u(\mu) : \mu \in \mathcal{P}\} \subset X$.

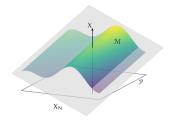
Assumption: \mathfrak{M} can be approximated well by a low dimensional linear space $X_N \subset X$.



The reduced basis model Approximation theory

- ▶ Denote by $\mu \in \mathcal{P} \subset \mathbb{R}^p$ the parameter value.
- ► For each $\mu \in \mathcal{P}$, the solution to the PDE is denoted by $\mathfrak{u}(\mu) \in X$, where the solution space X is infinite or high dimensional.
- ▶ Define the solution manifold $\mathfrak{M} := \{\mathfrak{u}(\mu) : \mu \in \mathfrak{P}\} \subset X$.

Assumption: \mathfrak{M} can be approximated well by a low dimensional linear space $X_N \subset X$.



Reduced basis (RB) method:

- Precompute snapshots $u(\mu_i)$, i = 1, ..., n
- $\qquad \qquad \textbf{Build} \; X_N \subseteq \text{span} \{ \mathfrak{u}(\mu_{\mathfrak{i}}) : \mathfrak{i} = 1, \ldots, \mathfrak{n} \}$
- ► Compute reduced solutions $u_N(\mu) \in X_N$ as approximation to $u(\mu) \in M$

Simple model problem: Thermal block

- Stationary (steady-state) heat conduction
- ▶ Domain Ω consists of blocks Ω_i , $i=1,\ldots,p$, of materials with different heat conductivity $\mu_i \in [\mu_{\text{min}},\mu_{\text{max}}]$
- ▶ Parameter values define different conductivities, i.e. $\mathcal{P} \coloneqq [\mu_{\text{min}}, \mu_{\text{max}}]^p$

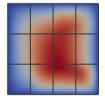
Ω_3	Ω_4
Ω_1	Ω_2

Partial differential equation:

$$\begin{split} -\nabla \cdot (\kappa(x;\mu) \nabla u(x;\mu)) &= 1, \quad x \in \Omega, \\ u(x;\mu) &= 0, \quad x \in \Gamma = \partial \Omega, \end{split}$$

with heat-conductivity

$$\kappa(x;\mu) := \sum_{q=1}^p \mu_q \chi_{\Omega_q}(x).$$



Problem

For $\mu \in \mathcal{P}$ we seek the solution $\mathfrak{u}(\mu) \in X$ of

$$a(u(\mu), \nu; \mu) = f(\nu; \mu)$$
 for all $\nu \in X$.

Problem

For $\mu\in \mathcal{P}$ we seek the solution $\mathfrak{u}(\mu)\in X$ of

$$\alpha(u(\mu), \nu; \mu) = f(\nu; \mu) \qquad \text{ for all } \nu \in X.$$

Abstract formulation

X real separable Hilbert space

$$X \coloneqq H^1_0(\Omega)$$

Problem

For $\mu \in \mathcal{P}$ we seek the solution $\mathfrak{u}(\mu) \in X$ of

$$a(u(\mu), \nu; \mu) = f(\nu; \mu)$$
 for all $\nu \in X$.

Abstract formulation

X real separable Hilbert space

$$\mathcal{P} \subset \mathbb{R}^p$$
 parameter domain

$$X := H_0^1(\Omega)$$

$$\mathcal{P} \coloneqq [\mu_{\mathsf{min}}, \mu_{\mathsf{max}}]^p$$

Problem

For $\mu \in \mathcal{P}$ we seek the solution $\mathfrak{u}(\mu) \in X$ of

$$a(u(\mu), \nu; \mu) = f(\nu; \mu)$$

for all $v \in X$.

Abstract formulation

X real separable Hilbert space $\mathcal{P} \subset \mathbb{R}^p$ parameter domain

$$\alpha(\,\cdot\,,\,\cdot\,;\mu)\colon X\times X\to\mathbb{R}$$
 bilinear form

$$X \coloneqq H^1_0(\Omega)$$

$$\mathcal{P} := [\mu_{\mathsf{min}}, \mu_{\mathsf{max}}]^{\mathsf{p}}$$

$$a(\mathfrak{u}, \mathfrak{v}; \mathfrak{\mu}) \coloneqq \int_{\Omega} \kappa(x; \mathfrak{\mu}) \nabla \mathfrak{u}(x; \mathfrak{\mu}) \cdot \nabla \mathfrak{v}(x) \, dx$$

Problem

For $\mu \in \mathcal{P}$ we seek the solution $\mathfrak{u}(\mu) \in X$ of

$$a(u(\mu), \nu; \mu) = f(\nu; \mu)$$

for all $v \in X$.

Abstract formulation

X real separable Hilbert space

 $\mathcal{P} \subset \mathbb{R}^p$ parameter domain

$$\alpha(\,\cdot\,,\,\cdot\,;\mu)\colon X\times X\to\mathbb{R}$$
 bilinear form

 $f(\cdot; \mu) \colon X \to \mathbb{R}$ linear functional

$$X := H_0^1(\Omega)$$

$$\mathcal{P} \coloneqq [\mu_{\mathsf{min}}, \mu_{\mathsf{max}}]^p$$

$$a(\mathfrak{u},\mathfrak{v};\mu)\coloneqq\int_{\Omega}\kappa(x;\mu)\nabla\mathfrak{u}(x;\mu)\cdot\nabla\mathfrak{v}(x)\,\mathrm{d}x$$

$$f(v; \mu) := \int_{\Omega} v(x) dx$$

Galerkin projection

- ▶ Approximation in a subspace $\bar{X} \subset X$ of X.
- Galerkin projection: $\bar{u}(\mu) \in \bar{X}$ is given by

$$\alpha(\bar{u}(\mu),\nu;\mu) = f(\nu;\mu) \qquad \text{ for all } \nu \in \bar{X}.$$

Galerkin projection

- ▶ Approximation in a subspace $\bar{X} \subset X$ of X.
- Galerkin projection: $\bar{u}(\mu) \in \bar{X}$ is given by

$$\alpha(\bar{u}(\mu),\nu;\mu)=f(\nu;\mu)\qquad\text{ for all }\nu\in\bar{X}.$$

- **Standard numerical analysis:**
 - X infinite dimensional space (e.g. Sobolev space)
 - $\bar{X} = X^h$ discrete space with high dimension (e.g. finite element space)

Galerkin projection

- ▶ Approximation in a subspace $\bar{X} \subset X$ of X.
- Galerkin projection: $\bar{\mathfrak{u}}(\mu) \in \bar{X}$ is given by

$$\alpha(\bar{u}(\mu),\nu;\mu)=f(\nu;\mu)\qquad\text{ for all }\nu\in\bar{X}.$$

- Standard numerical analysis:
 - X infinite dimensional space (e.g. Sobolev space)
 - ullet $ar{X} = X^h$ discrete space with high dimension (e.g. finite element space)
- Reduced basis method:

Usually: Assume that X^h is "good enough" so that the discretization error can be neglected.

- $ightharpoonup X = X^h$ high dimensional "truth" space
- ullet $\bar{X} = X_N$ low dimensional reduced basis space

Reduced solution

Given an RB space $X_N \subset X$, define the reduced solution $u_N(\mu) \in X_N$ such that

$$\alpha(u_N(\mu), \nu_N; \mu) = f(\nu_N; \mu) \quad \text{for all } \nu_N \in X_N.$$

Reduced solution

Given an RB space $X_N \subset X$, define the reduced solution $u_N(\mu) \in X_N$ such that

$$\alpha(u_N(\mu),\nu_N;\mu)=f(\nu_N;\mu)\quad\text{for all }\nu_N\in X_N.$$

Standard theory for Galerkin projections:

ightharpoonup Well-posedness: Lax-Milgram (continuity and coercivity is directly inherited from X to X_N)

Reduced solution

Given an RB space $X_N \subset X$, define the reduced solution $u_N(\mu) \in X_N$ such that

$$\alpha(u_N(\mu), \nu_N; \mu) = f(\nu_N; \mu) \quad \text{for all } \nu_N \in X_N.$$

Standard theory for Galerkin projections:

- Well-posedness: Lax-Milgram (continuity and coercivity is directly inherited from X to X_N)
- ► A priori error estimate using Céa's lemma:

$$\|u(\mu) - u_N(\mu)\|_X \leqslant \frac{\gamma(\mu)}{\alpha(\mu)} \inf_{\nu_N \in X_N} \|u(\mu) - \nu_N\|_X$$

- Quasi-optimality of the solution
- lacktriangle Approximation error determined by approximation quality (w.r.t. \mathfrak{M}) of the reduced space X_N
- Reproduction of solutions: $u(\mu) \in X_N \Longrightarrow u_N(\mu) = u(\mu)$

• Given: Reduced basis $\Phi_N = \{\phi_1, \dots, \phi_N\} \subset X$ such that $X_N = \text{span}\{\phi_1, \dots, \phi_N\}$.

- Given: Reduced basis $\Phi_N = {\{\phi_1, \dots, \phi_N\}} \subset X$ such that $X_N = \text{span} {\{\phi_1, \dots, \phi_N\}}$.
- For a parameter $\mu \in \mathcal{P}$, compute system matrix

$$\mathbf{A}_{N}(\mu) \coloneqq \left[\alpha(\phi_{j}, \phi_{i}; \mu)\right]_{i,j=1}^{N} \in \mathbb{R}^{N \times N}$$

and right-hand side vector

$$\boldsymbol{f}_N(\boldsymbol{\mu}) \coloneqq \left[f(\phi_i; \boldsymbol{\mu}) \right]_{i=1}^N \in \mathbb{R}^N.$$

- ▶ Given: Reduced basis $\Phi_N = {\{\phi_1, ..., \phi_N\}} \subset X$ such that $X_N = \text{span}{\{\phi_1, ..., \phi_N\}}$.
- For a parameter $\mu \in \mathcal{P}$, compute system matrix

$$\mathbf{A}_{N}(\mu) \coloneqq [\alpha(\phi_{j}, \phi_{i}; \mu)]_{i,j=1}^{N} \in \mathbb{R}^{N \times N}$$

and right-hand side vector

$$\mathbf{f}_{N}(\mu) \coloneqq [f(\phi_{i}; \mu)]_{i=1}^{N} \in \mathbb{R}^{N}.$$

Solve small linear system

$$\mathbf{A}_{N}(\mu)\mathbf{u}_{N}(\mu) = \mathbf{f}_{N}(\mu)$$

for reduced coefficients $\mathbf{u}_N(\mu) \in \mathbb{R}^N$.

- Given: Reduced basis $\Phi_N = {\{\phi_1, \dots, \phi_N\}} \subset X$ such that $X_N = \text{span} {\{\phi_1, \dots, \phi_N\}}$.
- For a parameter $\mu \in \mathcal{P}$, compute system matrix

$$\mathbf{A}_{N}(\mu) \coloneqq \left[\alpha(\phi_{j}, \phi_{i}; \mu)\right]_{i,j=1}^{N} \in \mathbb{R}^{N \times N}$$

and right-hand side vector

$$\mathbf{f}_{N}(\mu) \coloneqq [f(\phi_{i}; \mu)]_{i=1}^{N} \in \mathbb{R}^{N}.$$

► Solve small linear system

$$\mathbf{A}_{N}(\mu)\mathbf{u}_{N}(\mu) = \mathbf{f}_{N}(\mu)$$

for reduced coefficients $\mathbf{u}_{N}(\mu) \in \mathbb{R}^{N}$.

▶ **Issue:** Assembling $\mathbf{A}_{N}(\mu)$ requires high dimensional computations!

Parameter separability / Affine parameter dependence

Assumption: We have

$$\begin{split} \alpha(\mathfrak{u},\nu;\mu) &= \sum_{q=1}^{Q_{\mathfrak{a}}} \theta_{\mathfrak{q}}^{\mathfrak{a}}(\mu) \alpha_{\mathfrak{q}}(\mathfrak{u},\nu) & \text{for all } \mathfrak{u},\nu \in X, \mu \in \mathfrak{P}, \\ f(\nu;\mu) &= \sum_{q=1}^{Q_{\mathfrak{q}}} \theta_{\mathfrak{q}}^{\mathfrak{f}}(\mu) f_{\mathfrak{q}}(\nu) & \text{for all } \nu \in X, \mu \in \mathfrak{P}. \end{split}$$

with "small" Q_{α} , Q_{f} .

- Fulfilled for the thermal block problem.
- Necessary for efficient offline-online decomposition.
- ► Can be approximated for non-affine problems (empirical interpolation).

- Offline phase:
 - Generate reduced space X_N with basis $\{\varphi_i\}_{i=1}^N$.

Offline phase:

- Generate reduced space X_N with basis $\{\varphi_i\}_{i=1}^N$.
- Precompute parameter-independent quantities:

$$\begin{split} \boldsymbol{A}_{N,q} &\coloneqq [\boldsymbol{\alpha}_q(\phi_j,\phi_i)]_{i,j=1}^N \in \mathbb{R}^{N\times N}, \\ \boldsymbol{f}_{N,q} &\coloneqq [\boldsymbol{f}_q(\phi_i)]_{i=1}^N \in \mathbb{R}^N, \end{split}$$

$$q = 1, \ldots, Q_{\alpha}$$

$$\mathsf{q}=\mathsf{1},\ldots,\mathsf{Q}_\mathsf{f}.$$

- Offline phase:
 - Generate reduced space X_N with basis $\{\varphi_i\}_{i=1}^N$.
 - Precompute parameter-independent quantities:

$$\begin{split} \boldsymbol{A}_{N,q} &\coloneqq [\boldsymbol{\alpha}_q(\phi_j,\phi_i)]_{i,j=1}^N \in \mathbb{R}^{N\times N}, & q = 1,\dots,Q_\alpha, \\ \boldsymbol{f}_{N,q} &\coloneqq [\boldsymbol{f}_q(\phi_i)]_{i=1}^N \in \mathbb{R}^N, & q = 1,\dots,Q_f. \end{split}$$

- Online phase:
 - Assemble parameter-dependent system:

$$\boldsymbol{A}_N(\boldsymbol{\mu}) = \sum_{q=1}^{Q_\alpha} \theta_q^\alpha(\boldsymbol{\mu}) \, \boldsymbol{A}_{q,N}, \qquad \boldsymbol{f}_N(\boldsymbol{\mu}) = \sum_{q=1}^{Q_f} \theta_q^f(\boldsymbol{\mu}) \, \boldsymbol{f}_{q,N}.$$

Offline phase:

- Generate reduced space X_N with basis $\{\varphi_i\}_{i=1}^N$.
- Precompute parameter-independent quantities:

$$\begin{split} \boldsymbol{A}_{N,q} &\coloneqq [\alpha_q(\phi_j,\phi_i)]_{i,j=1}^N \in \mathbb{R}^{N\times N}, & q = 1,\dots,Q_\alpha, \\ \boldsymbol{f}_{N,q} &\coloneqq [f_q(\phi_i)]_{i=1}^N \in \mathbb{R}^N, & q = 1,\dots,Q_f. \end{split}$$

Online phase:

Assemble parameter-dependent system:

$$\boldsymbol{A}_N(\boldsymbol{\mu}) = \sum_{q=1}^{Q_\alpha} \boldsymbol{\theta}_q^\alpha(\boldsymbol{\mu}) \, \boldsymbol{A}_{q,N}, \qquad \boldsymbol{f}_N(\boldsymbol{\mu}) = \sum_{q=1}^{Q_f} \boldsymbol{\theta}_q^f(\boldsymbol{\mu}) \, \boldsymbol{f}_{q,N}.$$

- Reduced solution:
 - 1. Solve $\mathbf{A}_N(\mu)\mathbf{u}_N(\mu) = \mathbf{f}_N(\mu)$ with $\mathbf{u}_N(\mu) = [\alpha_i(\mu)]_{i=1}^N \in \mathbb{R}^N$.
 - 2. Set $u_N(\mu) = \sum_{i=1}^N \alpha_i(\mu) \varphi_i$.

A posteriori error estimation

- Consider the error $e(\mu) := u(\mu) u_N(\mu) \in X$.
- ▶ Define the residual $r(\cdot; \mu) \in X'$ via

$$r(\nu;\mu) \coloneqq f(\nu;\mu) - a(u_N(\mu),\nu;\mu) \qquad \text{for } \nu \in X.$$

A posteriori error estimation

- Consider the error $e(\mu) := u(\mu) u_N(\mu) \in X$.
- ▶ Define the residual $r(\cdot; \mu) \in X'$ via

$$r(\nu;\mu) \coloneqq f(\nu;\mu) - \alpha(u_N(\mu),\nu;\mu) \qquad \text{for } \nu \in X.$$

Error-residual relation:

$$\alpha(e(\mu),\nu;\mu)=r(\nu;\mu)\qquad\text{ for all }\nu\in X.$$

A posteriori error bound:

$$\|\mathbf{u}(\mathbf{\mu}) - \mathbf{u}_{N}(\mathbf{\mu})\|_{X} \leqslant \Delta(\mathbf{\mu}) \coloneqq \frac{\|\mathbf{r}(\cdot; \mathbf{\mu})\|_{X'}}{\alpha(\mathbf{\mu})}.$$

- ightharpoonup X infinite dim. (standard FEM theory): $\|\cdot\|_{X'}$ is not computable
- $ightharpoonup X = X^h$ (finite dim.): $\|\cdot\|_{(X^h)'}$ is computable

Basis generation

Weak greedy algorithm

- Main idea: Use $X_N = \text{span}\{u(\mu_i)\}$, but choose "the right" snapshots $u(\mu_i)$ to incorporate into the reduced space.
- "Greedy" procedure: Iteratively choose worst approximated snapshot and add it to the reduced basis.
- Use a posteriori error estimator to determine next parameter for which to compute the snapshot.

Basis generation

Weak greedy algorithm

- ▶ Main idea: Use $X_N = \text{span}\{u(\mu_i)\}$, but choose "the right" snapshots $u(\mu_i)$ to incorporate into the reduced space.
- "Greedy" procedure: Iteratively choose worst approximated snapshot and add it to the reduced basis.
- Use a posteriori error estimator to determine next parameter for which to compute the snapshot.

Proper orthogonal decomposition

- Widely used method for "compression" of data sets.
- In other contexts known as Karhunen-Loève Decomposition, Principal Component Analysis or Truncated Singular Value Decomposition.
- Main idea: Represent a given (large) data set by a smaller orthonormal basis which is optimal in a least-squares sense.

Machine learning and model order reduction

Learning the map from parameters to reduced coefficients [Hesthaven/Ubbiali'18]

<u>Recall:</u> Representation of the reduced solution in a reduced basis $\phi_1, \ldots, \phi_N \in X$:

$$u_N(\mu) = \sum_{i=1}^{N} \boxed{\alpha_i(\mu)} \phi_i$$

Learning the map from parameters to reduced coefficients [Hesthaven/Ubbiali'18]

Recall: Representation of the reduced solution in a reduced basis $\varphi_1, \ldots, \varphi_N \in X$:

$$u_N(\mu) = \sum_{i=1}^{N} \boxed{\alpha_i(\mu)} \phi_i$$

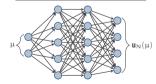
Observation: Only coefficients are required to characterize the reduced solution!

Learning the map from parameters to reduced coefficients [Hesthaven/Ubbiali'18]

Recall: Representation of the reduced solution in a reduced basis $\varphi_1, \ldots, \varphi_N \in X$:

$$u_N(\mu) = \sum_{i=1}^{N} \left[\alpha_i(\mu) \right] \phi_i$$

- **Observation:** Only coefficients are required to characterize the reduced solution!
- Hesthaven/Ubbiali'18: Approximate coefficients $\mathbf{u}_N(\mu) = [\alpha_i(\mu)]_{i=1}^N$ by machine learning:



$$\tilde{\alpha}_i(\mu) \approx \alpha_i(\mu) \qquad \Longrightarrow \qquad$$

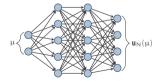
$$\tilde{\alpha}_i(\mu) \approx \tilde{\alpha}_i(\mu) \approx \tilde{\alpha}_i(\mu) \qquad \Longrightarrow \qquad \tilde{u}_N(\mu) \coloneqq \sum_{i=1}^N \tilde{\alpha}_i(\mu) \, \phi_i \approx u_\mu^N(\mu)$$

Learning the map from parameters to reduced coefficients [Hesthaven/Ubbiali'18]

Recall: Representation of the reduced solution in a reduced basis $\varphi_1, \ldots, \varphi_N \in X$:

$$u_N(\mu) = \sum_{i=1}^{N} \left[\alpha_i(\mu) \right] \varphi_i$$

- **Observation:** Only coefficients are required to characterize the reduced solution!
- Hesthaven/Ubbiali'18: Approximate coefficients $\mathbf{u}_{N}(\mu) = [\alpha_{i}(\mu)]_{i=1}^{N}$ by machine learning:



$$\tilde{\alpha}_i(\mu) \approx \alpha_i(\mu) \qquad \Longrightarrow \qquad$$

$$\tilde{\alpha}_i(\mu) \approx \tilde{\alpha}_i(\mu) \approx \tilde{\alpha}_i(\mu) \qquad \Longrightarrow \qquad \tilde{u}_N(\mu) \coloneqq \sum_{i=1}^N \tilde{\alpha}_i(\mu) \, \phi_i \approx u_\mu^N(\mu)$$

Error estimation possible using the error estimator of the RB model ($\tilde{u}_N(\mu) \in X_N$).

Adaptive model hierarchies

Adaptive model hierarchies¹

Universität Münster

- Availability of different models with different advantages and disadvantages, such as
 - ► Full order model
 - Reduced basis model
 - Machine learning surrogate
 - ▶ .

¹ Joint work with Bernard Haasdonk, Mario Ohlberger, Felix Schindler and Tizian Wenzel

Adaptive model hierarchies¹

- Availability of different models with different advantages and disadvantages, such as
 - ► Full order model
 - Reduced basis model
 - Machine learning surrogate
- Typical strategy: Train a suitable surrogate offline and use it online.

¹Joint work with Bernard Haasdonk, Mario Ohlberger, Felix Schindler and Tizian Wenzel

Adaptive model hierarchies1

Universität MN Münster

- Availability of different models with different advantages and disadvantages, such as
 - ► Full order model
 - Reduced basis model
 - Machine learning surrogate
 - **>** ...
- ► Typical strategy: Train a suitable surrogate offline and use it online.
- ▶ Idea: Train surrogates adaptively and try to leverage their advantages.

¹ Joint work with Bernard Haasdonk, Mario Ohlberger, Felix Schindler and Tizian Wenzel

Adaptive model hierarchies¹

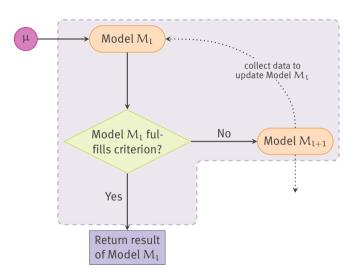
Universität Minster

- Availability of different models with different advantages and disadvantages, such as
 - ► Full order model
 - Reduced basis model
 - Machine learning surrogate
 - **>** ...
- ► Typical strategy: Train a suitable surrogate offline and use it online.
- ▶ **Idea:** Train surrogates adaptively and try to leverage their advantages.
 - ⇒ Combine all available models in an adaptive and certified hierarchy!

¹Joint work with Bernard Haasdonk, Mario Ohlberger, Felix Schindler and Tizian Wenzel

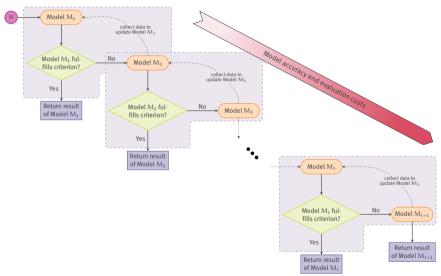
Description of the main building block Multi-fidelity assumptions

- ► Model M₁ can be solved faster than Model M₁₊₁
- Model M₁₊₁ is more accurate than Model M₁
- Model M₁ can be improved by means of information from Model M₁₊₁



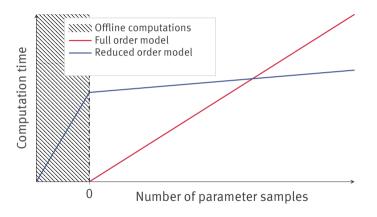
General definition of an adaptive model hierarchy

Combination of several components in multiple stages



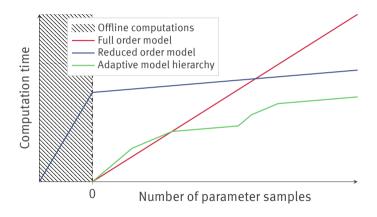
Adaptive model hierarchy for parametrized problems

Adaptivity vs. offline-online decomposition



Adaptive model hierarchy for parametrized problems

Adaptivity vs. offline-online decomposition



Live Demo

Thank you for your attention!

Links to papers on adaptive model hierarchies

References

Reduced basis methods:

- M. Ohlberger and S. Rave. Reduced basis methods: Success, limitations and future challenges, (2016). Proceedings of the Conference Algoritmy, 1–12.
- B. HAASDONK. Chapter 2: Reduced basis methods for parametrized PDEs-A tutorial introduction for stationary and instationary problems, (2017). In: Model Reduction and Approximation, Society for Industrial and Applied Mathematics (SIAM).

Machine learning in model order reduction:

- J.S. HESTHAVEN, S. UBBIALI. Non-intrusive reduced order modeling of nonlinear problems using neural networks, (2018). J. Comput. Phys., 363:55–78.
- K. LEE AND K.T. CARLBERG. Model reduction of dynamical systems on nonlinear manifolds using deep convolutional autoencoders, (2020). J. Comput. Phys., 404:108973.

Adaptive model hierarchies:

- B. HAASDONK, H. KLEIKAMP, M. OHLBERGER, F. SCHINDLER, AND T. WENZEL. A new certified hierarchical and adaptive RB-ML-ROM surrogate model for parametrized PDEs, (2023). SIAM J. Sci. Comput., 45(3):A1039–A1065.
- H. KLEIKAMP. Application of an adaptive model hierarchy to parametrized optimal control problems, (2024). Proceedings of the Conference Algoritmy, 66–75.