

Nonlinear model order reduction for parametrized hyperbolic conservation laws in a space-time domain

CMAM 2022 – Minisymposium on "Numerical methods for wave propagation problems" Hendrik Kleikamp, Mario Ohlberger, Stephan Rave

August 29, 2022

Parametrized PDEs and model order reduction I

PDEs depending on additional parameter μ , for instance

$$-\nabla \cdot a(\mu) \nabla u_{\mu} = f(\mu)$$
$$u_{\mu} = g(\mu)$$

$$\label{eq:condition} \begin{split} & \text{in } \Omega_{\mu}, \\ & \text{on } \partial \Omega_{\mu} \end{split}$$

$$\begin{split} \partial_t u_\mu + \nabla_x \cdot f(u_\mu;\mu) &= 0 &\quad \text{in } (0,T) \times \Omega, \\ u_\mu(0) &= u_0 &\quad \text{in } \Omega \end{split}$$

Examples for parameters

- ▶ Diffusion coefficients
- ► Boundary conditions
- ▶ Domain shapes
- ► Sources and sinks
- ► Advection velocities

Applications:

- ▶ Many-query scenarios, i.e. solve for many parameters $\mu \in \mathcal{P}$.
- ▶ Real-time solution, i.e. solve in real-time for new parameter $\mu \in \mathcal{P}$.

Parametrized PDEs and model order reduction I

PDEs depending on additional parameter μ , for instance

$$\begin{split} -\nabla \cdot a(\mu) \nabla u_{\mu} &= f(\mu) &\quad \text{ in } \Omega_{\mu}, \\ u_{\mu} &= g(\mu) &\quad \text{ on } \partial \Omega_{\mu} \end{split}$$

$$\label{eq:condition} \begin{split} & \text{in } \Omega_{\mu}, \\ & \text{on } \partial \Omega_{\mu} \end{split}$$

$$\begin{split} \partial_t u_\mu + \nabla_x \cdot f(u_\mu;\mu) &= 0 &\quad \text{in } (0,T) \times \Omega, \\ u_\mu(0) &= u_0 &\quad \text{in } \Omega \end{split}$$

Examples for parameters:

- Diffusion coefficients
- Boundary conditions
- Domain shapes
- Sources and sinks
- Advection velocities

Applications:

- Many-query scenarios, i.e. solve for many parameters $\mu \in \mathcal{P}$.
- Real-time solution, i.e. solve in real-time for new parameter $\mu \in \mathcal{P}$.

Parametrized PDEs and model order reduction II

Problem: Solving the high-fidelity model is too costly!

Idea: Compute a *Reduced Order Model* in a (potentially costly) offline phase that can be cheaply evaluated in the online phase.

Standard approach for elliptic and parabolic PDEs

- ▶ Compute (offline) a reduced space $V_N \subset V_h$ with dim $V_N \ll \dim V_h$.
- ightharpoonup Perform Galerkin projection of the full-order model onto V_N .
- lacktriangle Perform hyper-reduction to obtain a reduced order model independent of $\dim V_h$.
- lacktriangle Solve a small system with size depending only on $\dim V_N$ during the online phase.

 \longrightarrow Search for solutions in the reduced space V_N !

Parametrized PDEs and model order reduction II

Problem: Solving the high-fidelity model is too costly!

Idea: Compute a *Reduced Order Model* in a (potentially costly) offline phase that can be cheaply evaluated in the online phase.

Standard approach for elliptic and parabolic PDEs:

- ▶ Compute (offline) a reduced space $V_N \subset V_h$ with $\dim V_N \ll \dim V_h$.
- lacktriangle Perform Galerkin projection of the full-order model onto V_N .
- lacktriangle Perform hyper-reduction to obtain a reduced order model independent of $\dim V_h$.
- lacktriangle Solve a small system with size depending only on $\dim V_N$ during the online phase.

 \longrightarrow Search for solutions in the reduced space V_N !

Parametrized PDEs and model order reduction II

Problem: Solving the high-fidelity model is too costly!

Idea: Compute a *Reduced Order Model* in a (potentially costly) offline phase that can be cheaply evaluated in the online phase.

Standard approach for elliptic and parabolic PDEs:

- ▶ Compute (offline) a reduced space $V_N \subset V_h$ with $\dim V_N \ll \dim V_h$.
- lacktriangle Perform Galerkin projection of the full-order model onto V_N .
- lacktriangle Perform hyper-reduction to obtain a reduced order model independent of $\dim V_h$.
- lacktriangle Solve a small system with size depending only on $\dim V_N$ during the online phase.

 \longrightarrow Search for solutions in the reduced space V_N !

How good can linear approaches be?

Kolmogorov N-width

The Kolmogorov N-width $d_N(\mathcal{M})$ of a set \mathcal{M} is defined as

$$d_N(\mathcal{M}) = \inf_{\dim(V) = N} \mathrm{dist}(V, \mathcal{M}).$$

It measures the approximability of \mathcal{M} by linear subspaces of dimension N.

Consider the Kolmogorov N-width of the solution manifold $\mathcal{M} = \{u_{\mu} : \mu \in \mathcal{P}\}$:

▶ Elliptic, affinely decomposed problems [Ohlberger/Rave'16]:

$$d_N(\mathcal{M}) \le Ce^{-cN^{1/Q}}$$

How good can linear approaches be?

Kolmogorov N-width

The Kolmogorov N-width $d_N(\mathcal{M})$ of a set \mathcal{M} is defined as

$$d_N(\mathcal{M}) = \inf_{\dim(V) = N} \operatorname{dist}(V, \mathcal{M}).$$

It measures the approximability of \mathcal{M} by linear subspaces of dimension N.

Consider the Kolmogorov N-width of the solution manifold $\mathcal{M} = \{u_{\mu} : \mu \in \mathcal{P}\}$:

▶ Elliptic, affinely decomposed problems [Ohlberger/Rave'16]:

$$d_N(\mathcal{M}) \le Ce^{-cN^{1/Q}}$$

Transport dominated problems

► Transport problems or wave equations [Ohlberger/Rave'16, Greif/Urban'19]:

$$d_N(\mathcal{M}) \sim C N^{-1/2}$$

Simplest example: The linear transport equation

$$\begin{split} \partial_t u_\mu(t,x) + \mu \cdot \partial_x u_\mu(t,x) &= 0, \\ u_\mu(0,x) &= u^0(x) \end{split}$$

Transport dominated problems

► Transport problems or wave equations [Ohlberger/Rave'16, Greif/Urban'19]:

$$d_N(\mathcal{M}) \sim CN^{-1/2}$$

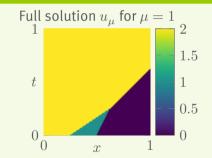
Simplest example: The linear transport equation

$$\begin{split} \partial_t u_\mu(t,x) + \mu \cdot \partial_x u_\mu(t,x) &= 0, \\ u_\mu(0,x) &= u^0(x). \end{split}$$

Another difficulty: Shocks and their interaction

Example - Burgers equation

$$\begin{split} \partial_t u_\mu + \frac{\mu}{2} \partial_x u_\mu^2 &= 0, \qquad (t,x) \in [0,T] \times \Omega, \\ u_\mu(0) &= u_0, \qquad x \in \Omega, \\ u_0(x) &= \begin{cases} 2, & \text{if } x \leq 1/4, \\ 1, & \text{if } 1/4 < x \leq 1/2, \\ 0, & \text{if } 1/2 < x. \end{cases} \end{split}$$

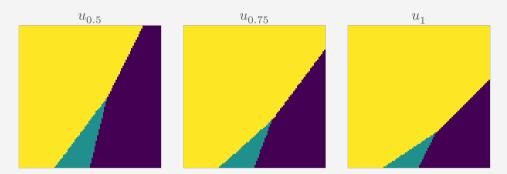


How do solutions for different parameters look like?



--- Transform underlying space-time domain to match snapshots?

How do solutions for different parameters look like?



---- Transform underlying space-time domain to match snapshots?

- ► Shock interaction already incorporated in space-time solutions (no need to treat them separately).
- ▶ Diffeomorphic transformations (that can be represented in a reduced space, see below) of the underlying space-time domain to match snapshots to each other.
- ▶ Choose a (fixed) reference snapshot that can be transformed into all other solutions.
- ▶ Apply ideas and concepts from (medical) image registration.

- ► Shock interaction already incorporated in space-time solutions (no need to treat them separately).
- ▶ Diffeomorphic transformations (that can be represented in a reduced space, see below) of the underlying space-time domain to match snapshots to each other.
- ▶ Choose a (fixed) reference snapshot that can be transformed into all other solutions.
- ▶ Apply ideas and concepts from (medical) image registration.

- ► Shock interaction already incorporated in space-time solutions (no need to treat them separately).
- ▶ Diffeomorphic transformations (that can be represented in a reduced space, see below) of the underlying space-time domain to match snapshots to each other.
- ► Choose a (fixed) reference snapshot that can be transformed into all other solutions.
- ▶ Apply ideas and concepts from (medical) image registration.

- ► Shock interaction already incorporated in space-time solutions (no need to treat them separately).
- ▶ Diffeomorphic transformations (that can be represented in a reduced space, see below) of the underlying space-time domain to match snapshots to each other.
- ► Choose a (fixed) reference snapshot that can be transformed into all other solutions.
- ► Apply ideas and concepts from (medical) image registration.

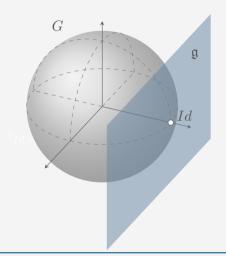
Lie groups and Lie algebras

Lie group

A group G such that group multiplication and inversion are smooth maps, i.e. G is a manifold.

Lie algebra

The tangent space $\mathfrak{g}=T_{Id}G$ to a Lie group G at the identity element $Id\in G$.



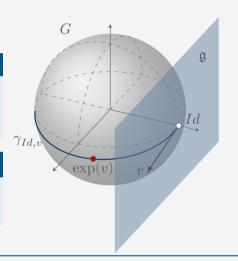
Lie groups and Lie algebras

Geodesic curve

Smooth curve $\gamma_{p,v}\colon I\to G$, I an open interval, $\gamma_{p,v}(0)=p\in G$, $\gamma'_{p,v}(0)=v\in T_pG$, that (locally) minimizes lengths.

Exponential map

Maps the Lie algebra into the Lie group, i.e. $\exp \colon \mathfrak{g} \to G$, by $\exp(v) = \gamma_{Id,v}(1)$.



Lie groups and Lie algebras in image registration

- ightharpoonup Diffeomorphism group G on \mathbb{R}^n forms a Lie group.
- Lie algebra g is the space of smooth vector fields.
- ▶ Diffeomorphism group acts on underlying space by transforming it.
- ▶ Attention: Diffeomorphism group is infinite dimensional! (Theory is much harder in general, e.g. exponential map and geodesics do not coincide.)

Lie groups and Lie algebras in image registration

- ightharpoonup Diffeomorphism group G on \mathbb{R}^n forms a Lie group.
- ▶ Lie algebra g is the space of smooth vector fields.
- ▶ Diffeomorphism group acts on underlying space by transforming it.
- ► Attention: Diffeomorphism group is infinite dimensional! (Theory is much harder in general, e.g. exponential map and geodesics do not coincide.)

$$\frac{\partial \phi_t}{\partial t} = v_t \circ \phi_t.$$

- ▶ Differential operator $L = (Id \alpha \Delta)^s$, with inverse $K = L^{-1}$.
- ightharpoonup Geodesic evolution of v_t is given by EPDiff equation

$$\frac{\partial v_t}{\partial t} = -K \left[(Dv_t)^T \cdot Lv_t + D(Lv_t) \cdot v_t + Lv_t \cdot \operatorname{div} v_t \right]$$

- ▶ Knowledge of v_0 sufficient to compute ϕ_1 !
 - → Main idea of *geodesic shooting* [Miller/Trouvé/Younes'06].

$$\frac{\partial \phi_t}{\partial t} = v_t \circ \phi_t.$$

- lacktriangle Differential operator $L=(Id-\alpha\Delta)^s$, with inverse $K=L^{-1}$.
- ightharpoonup Geodesic evolution of v_t is given by EPDiff equation

$$\frac{\partial v_t}{\partial t} = -K \left[(Dv_t)^T \cdot Lv_t + D(Lv_t) \cdot v_t + Lv_t \cdot \operatorname{div} v_t \right].$$

- ▶ Knowledge of v_0 sufficient to compute ϕ_1 !
 - → Main idea of *geodesic shooting* [Miller/Trouvé/Younes'06].

$$\frac{\partial \phi_t}{\partial t} = v_t \circ \phi_t.$$

- ▶ Differential operator $L = (Id \alpha \Delta)^s$, with inverse $K = L^{-1}$.
- Geodesic evolution of v_t is given by EPDiff equation

$$\frac{\partial v_t}{\partial t} = -K \left[(Dv_t)^T \cdot Lv_t + D(Lv_t) \cdot v_t + Lv_t \cdot \operatorname{div} v_t \right].$$

- ▶ Knowledge of v_0 sufficient to compute ϕ_1 !
 - → Main idea of *geodesic shooting* [Miller/Trouvé/Younes'06].

$$\frac{\partial \phi_t}{\partial t} = v_t \circ \phi_t.$$

- ▶ Differential operator $L = (Id \alpha \Delta)^s$, with inverse $K = L^{-1}$.
- Geodesic evolution of v_t is given by EPDiff equation

$$\frac{\partial v_t}{\partial t} = -K \left[(Dv_t)^T \cdot Lv_t + D(Lv_t) \cdot v_t + Lv_t \cdot \operatorname{div} v_t \right].$$

- Knowledge of v_0 sufficient to compute ϕ_1 !
 - → Main idea of *geodesic shooting* [Miller/Trouvé/Younes'06].

Ideas and concepts from image registration

How to compute v_0 given a "template image" $u_0 \colon \Omega \to \mathbb{R}$ and a "target image" $u_1 \colon \Omega \to \mathbb{R}$?

Minimize energy

$$\underline{E_{u_0 \to u_1}}(v_0) \coloneqq \underbrace{(Lv_0, v_0)_{L^2(\Omega)}}_{\text{Regularization term}} + \frac{1}{\sigma^2} \underbrace{\|u_0 \circ \phi_1^{-1} - u_1\|_{L^2(\Omega)}^2}_{\text{Mismatch measurement}}$$

using descent methods (e.g. L-BFGS).

(Linear) Model order reduction in the Lie algebra

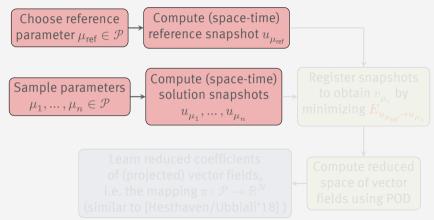
- Lie algebra of smooth vector fields $\mathfrak g$ forms Hilbert space with inner product $\langle v,w\rangle_{\mathfrak g}:=(Lv,w)_{L^2(\Omega)}=(v,Lw)_{L^2(\Omega)}$.
- ► We can apply well-known linear model order reduction methods in g, like POD [Wang/Xing/Kirby/Zhang'19] or Greedy algorithms!
- ▶ Motivation of the approach: Due to the smoothness of the vector fields in g, we expect a faster decay of the Kolmogorov N-width in the Lie algebra. (Hard to tackle theoretically though.)

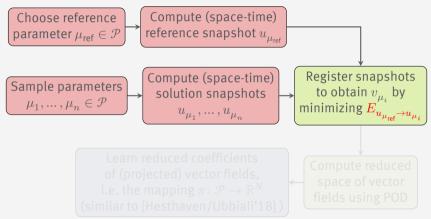
(Linear) Model order reduction in the Lie algebra

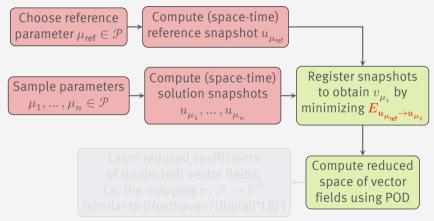
- Lie algebra of smooth vector fields $\mathfrak g$ forms Hilbert space with inner product $\langle v,w\rangle_{\mathfrak g}:=(Lv,w)_{L^2(\Omega)}=(v,Lw)_{L^2(\Omega)}$.
- ► We can apply well-known linear model order reduction methods in g, like POD [Wang/Xing/Kirby/Zhang'19] or Greedy algorithms!
- ▶ Motivation of the approach: Due to the smoothness of the vector fields in g, we expect a faster decay of the Kolmogorov N-width in the Lie algebra. (Hard to tackle theoretically though.)

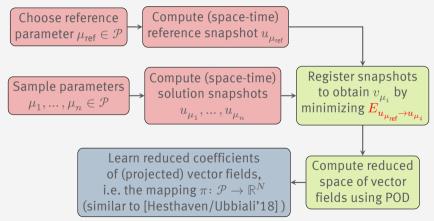
(Linear) Model order reduction in the Lie algebra

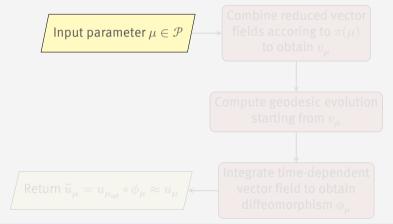
- Lie algebra of smooth vector fields $\mathfrak g$ forms Hilbert space with inner product $\langle v,w\rangle_{\mathfrak g}:=(Lv,w)_{L^2(\Omega)}=(v,Lw)_{L^2(\Omega)}$.
- ► We can apply well-known linear model order reduction methods in g, like POD [Wang/Xing/Kirby/Zhang'19] or Greedy algorithms!
- ▶ Motivation of the approach: Due to the smoothness of the vector fields in g, we expect a faster decay of the Kolmogorov N-width in the Lie algebra. (Hard to tackle theoretically though.)

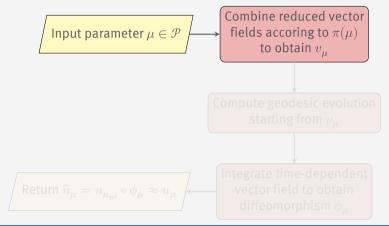


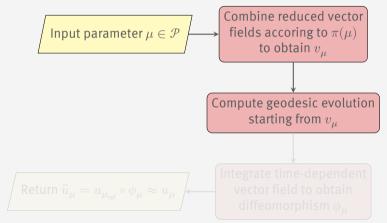




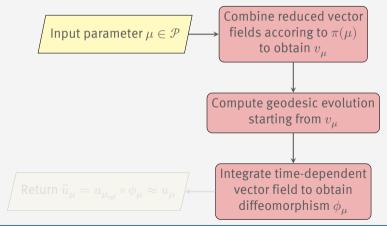




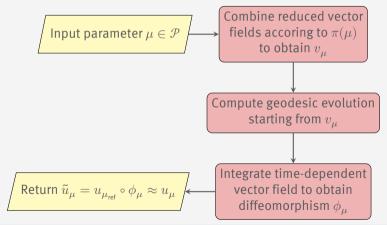




Online procedure



Online procedure

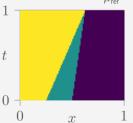


$$\begin{split} \partial_t u_\mu + \mu \partial_x u_\mu^2 &= 0, & (t,x) \in [0,T] \times \Omega, \\ u_\mu(0) &= u_0, & x \in \Omega, \end{split}$$

Parameter domain	$\mathcal{P} = [0.25, 1.5]$
Discretization	$N_x = N_t = 100$
Training parameters	n = 50
Reference parameter	$\mu_{\rm ref} = 0.25$
Reduced dimension	N = 10

 $u_0(x) = \begin{cases} 2, & \text{if } x \le 1/4, \\ 1, & \text{if } 1/4 < x \le 1/2, \\ 0, & \text{if } 1/2 < x. \end{cases}$

Reference solution $u_{\mu_{\mathrm{ref}}} = u_{0.25}$



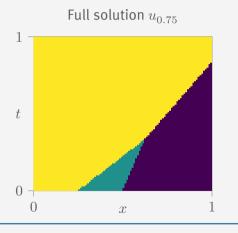
Geodesic shooting implementation: https://github.com/HenKlei/geodesic-shooting

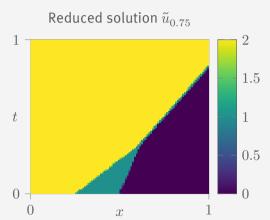
Offline phase

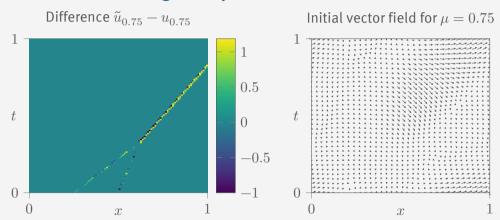
Average relative L^2 -error on the n training snapshots: 5.1%.

Online phase

Average relative L^2 -error for parameter $\mu \in \{0.5, 0.75, 1, 1.25\}$: 5.5%.







- ► Theoretical investigation of reduced subspace of the Lie algebra.
- Greedy procedure instead of POD to extract vector fields.
- (Efficient) residual minimization during online phase instead of learning the coefficients.
- Compute mapping only for a small set of landmarks (e.g. empirical quadrature points) using Hamiltonian formulation of landmark matching problem.
- Localize the approach to be able to tackle the evolution of complex shock fronts in higher dimensions.

- ► Theoretical investigation of reduced subspace of the Lie algebra.
- ► Greedy procedure instead of POD to extract vector fields.
- (Efficient) residual minimization during online phase instead of learning the coefficients.
- Compute mapping only for a small set of landmarks (e.g. empirical quadrature points) using Hamiltonian formulation of landmark matching problem.
- Localize the approach to be able to tackle the evolution of complex shock fronts in higher dimensions.

- ► Theoretical investigation of reduced subspace of the Lie algebra.
- ► Greedy procedure instead of POD to extract vector fields.
- ► (Efficient) residual minimization during online phase instead of learning the coefficients.
- Compute mapping only for a small set of landmarks (e.g. empirical quadrature points) using Hamiltonian formulation of landmark matching problem.
- Localize the approach to be able to tackle the evolution of complex shock fronts in higher dimensions.

- ▶ Theoretical investigation of reduced subspace of the Lie algebra.
- ► Greedy procedure instead of POD to extract vector fields.
- (Efficient) residual minimization during online phase instead of learning the coefficients.
- Compute mapping only for a small set of landmarks (e.g. empirical quadrature points) using Hamiltonian formulation of landmark matching problem.
- Localize the approach to be able to tackle the evolution of complex shock fronts in higher dimensions.

- ► Theoretical investigation of reduced subspace of the Lie algebra.
- ► Greedy procedure instead of POD to extract vector fields.
- ► (Efficient) residual minimization during online phase instead of learning the coefficients.
- Compute mapping only for a small set of landmarks (e.g. empirical quadrature points) using Hamiltonian formulation of landmark matching problem.
- ► Localize the approach to be able to tackle the evolution of complex shock fronts in higher dimensions.

Thank you for your attention!

References I

- Constantin Greif and Karsten Urban, *Decay of the kolmogorov* n-width for wave problems, Applied Mathematics Letters **96** (2019), 216–222.
- J.S. Hesthaven and S. Ubbiali, Non-intrusive reduced order modeling of nonlinear problems using neural networks, Journal of Computational Physics 363 (2018), 55–78.
- Michael Miller, Alain Trouvé, and Laurent Younes, *Geodesic shooting for computational anatomy*, Journal of mathematical imaging and vision **24** (2006), 209–228.

References II

- Mario Ohlberger and Stephan Rave, *Nonlinear reduced basis approximation of parameterized evolution equations via the method of freezing*, Comptes Rendus Mathematique **351** (2013), no. 23, 901 906.
- ______, Reduced basis methods: Success, limitations and future challenges, Proceedings of the Conference Algoritmy (2016), 1–12.
- Jian Wang, Wei Xing, Robert M. Kirby, and Miaomiao Zhang, *Data-driven model order reduction for diffeomorphic image registration*, Information Processing in Medical Imaging (Cham) (Albert C. S. Chung, James C. Gee, Paul A. Yushkevich, and Siqi Bao, eds.), Springer International Publishing, 2019, pp. 694–705.