Übungen zur Vorlesung

Partielle Differentialgleichungen 2

WiSe 19/20, Blatt 1

Übung: Donnerstag, 17.10.2019

Aufgabe 1

Consider the Hilbert space l^2 defined by

$$l^{2} = \left\{ x = (x_{k})_{k=1}^{\infty} : x_{k} \in \mathbb{R} \ \forall k \in \mathbb{N}, \ \sum_{k=1}^{\infty} x_{k}^{2} < +\infty \right\}$$

with scalar product

$$(x,y) = \sum_{k=1}^{\infty} x_k y_k.$$

(a) Define by

$$(e^n)_k = \begin{cases} 1 & \text{if } n = k, \\ 0 & \text{otherwise} \end{cases}$$

a sequence of orthonormal vectors. Show that $A = \{e^n\}_{n \in \mathbb{N}}$ satisfies $\overline{\operatorname{span}(A)} = l^2$.

(b) Consider the sequence $x^n = ne^n$ for $n \in \mathbb{N}$. Show that $\lim_{n \to \infty} (x^n, e^m) = 0$ for all $m \in \mathbb{N}$, but that x^n does not converge weakly.

Aufgabe 2

Let $1 and let <math>\varphi \in C_c^{\infty}(\mathbb{R}^n), \varphi \neq 0$.

- (a) Fix $\alpha > 0$ and define $\varphi_j^{\alpha}(x) = j^{\alpha}\varphi(jx)$. Check for which $\alpha > 0$ the sequence $\{\varphi_j^{\alpha}\}_j$ converges weakly (resp. strongly) in $L^p(\mathbb{R}^n)$ as $j \to \infty$ to some function $\varphi_{\infty}^{\alpha}$.
- (b) Fix $\tau \in \mathbb{R}^n$, $\tau \neq 0$, and define $\varphi_j^{\tau}(x) = \varphi(x+j\tau)$. Does the sequence $\{\varphi_j^{\tau}\}_j$ converge weakly (resp. strongly) in $L^p(\mathbb{R}^n)$ as $j \to \infty$ to some function φ_{∞}^{τ} ?

Aufgabe 3

Let $1 and let <math>\Omega \subset \mathbb{R}^n$ be open and bounded. Let $\{u_j\}_j \subset W^{1,p}(\Omega)$ be such that

$$\sup_{j\in\mathbb{N}}||u_j||_{W^{1,p}(\Omega)}<+\infty.$$

Prove, upon extracting a subsequence, that there exists $u \in W^{1,p}(\Omega)$ such that $u_j \rightharpoonup u$ in $W^{1,p}(\Omega)$ as $j \to \infty$.

Aufgabe 4

Let $\Omega \subset \mathbb{R}^n$ be open. We denote by $H^{-1}(\Omega)$ the dual space of the Hilbert space $H_0^1(\Omega)$ (which we do not identify with itself!), equipped with the operator norm.

(a) Let $f^0, f^1, \ldots, f^n \in L^2(\Omega)$. Prove that the application

$$f(u) = \int_{\Omega} \left(f^0 u + \sum_{k=1}^n f^k \partial_k u \right) dx, u \in H_0^1(\Omega)$$
 (1)

defines a linear and continuous operator $f \in H^{-1}(\Omega)$.

- (b) Let $f \in H^{-1}(\Omega)$. Show that there exist $f^0, f^1, \ldots, f^n \in L^2(\Omega)$, such that f is given by (1). *Hinweis*. Use the Riesz' Representation Theorem.
- (c) Prove that the operator norm on $H^{-1}(\Omega)$ can be written equivalently in the following form:

$$||f||_{H^{-1}(\Omega)} = \inf \left\{ \left(\sum_{k=0}^{n} ||f^k||_{L^2(\Omega)}^2 \right)^{1/2} : f^0, f^1, \dots, f^n \in L^2(\Omega) \right\}.$$