
Numerische Lineare Algebra im WS 2018/2019

Frank Wübbeling
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Kapitel 0

Einleitung

Der vorliegende Text entstand als Begleitmaterial zur Vorlesung Numerische Linea-
re Algebra im Wintersemester 2018/1019. Die Vorlesung richtet sich an Studierende
des Bachelorstudiengangs Mathematik im dritten Semester sowie Studierende in
den Lehramtsstudiengängen Mathematik. Für die Korrektheit des Textes wird kei-
nerlei Garantie übernommen, vermutlich sind noch reichlich Schreibfehler enthal-
ten. Für Bemerkungen und Korrekturen bin ich dankbar.
Macht es Sinn, der großen, bereits existierenden Zahl von Skripten zu Einführungs-
veranstaltungen der Numerischen Mathematik noch ein weiteres hinzuzufügen? Die
Antwort ist wohl ja, denn zumindest die Auswahl der Themen und vor allem Schwer-
punkte im breiten Spektrum geschieht subjektiv durch den Dozenten.
Da der Großteil der Studierenden heute kaum noch einen physikalischen Hinter-
grund hat, habe ich auf die Darstellung der Beziehungen zwischen Angewandter
Mathematik und Physik, wie sie in den klassischen Lehrbüchern und Vorlesungen
üblich war, größtenteils verzichtet. Übungen zu den einzelnen Kapiteln finden sich
im Netz, ebenso eine ausführliche (subjektive) Literaturliste.
Ich habe mich bemüht, zu den vorgestellten Algorithmen eine Beispiel–Implemen-
tation in Matlab zu liefern. Einige Programme nutzen dabei die Imaging–Toolbox
oder die SymbolicMath–Toolbox. Die zugehörigen Dateien sind in der PDF–Datei
enthalten. Klick auf die jeweilige Textstelle öffnet die Beispielimplementation in
Matlab. Ebenso sind alle Bilder beigefügt, Klick liefert jeweils das zugehörige Bild.
Dies funktioniert in Acrobat (Reader) und in einigen anderen PDF–Readern, in vielen
PublicDomain–Readern aber nicht.

Billerbeck, im Herbst 2018
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Kapitel 1

Angewandte Mathematik

Angewandte Mathematik überträgt mathematische Konzepte auf die Realität und
macht sie so für praktische Probleme nutzbar. Das Zusammenspiel zwischen Theo-
rie (Mathematik) und Praxis (Anwendung) ist der Reiz dieser Disziplin und bildet die
Grundlage für die modernen Naturwissenschaften (Physik, Biologie, Chemie, Geo-
physik, Medizin, ...), aber auch für andere Gebiete wie die analytischen Wirtschafts-
wissenschaften.
Wichtige Aufgaben sind dabei

Simulation: Ein Prozess wird auf dem Rechner nachgebildet, z.B. in der Wettervor-
hersage oder der Klimaforschung.

Optimierung: Es werden optimale Parameter für einen beeinflussbaren Prozess ge-
sucht, z.B. in der Produktionsplanung oder der Strahlentherapie.

Ursachenforschung: Ermittlung von Größen, die nur indirekt gemessen werden
können, z.B. in der Tomographie oder beim Scharfrechnen von geglätteten
Bildern.

Die Vorgehensweise bei der Lösung eines Problems mit Hilfe der Mathematik ist:

1. Genaue Formulierung des Problems

2. Übertragung in die Mathematik (Modellierung)

3. Vereinfachung des Modells, so dass es lösbar wird (Diskretisierung)

4. Design eines Lösungswegs (Algorithmus)

5. Implementation des Algorithmus

6. Interpretation
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7. Anwendung

Die numerische Mathematik ist dabei für die Schritte 3-5 zuständig. Jeder der ma-
thematischen Schritte unterliegt dabei einer Untersuchung mit analytischen Metho-
den:

• Wie genau ist das Modell?

• Wie genau ist das vereinfachte Modell?

• Liefert der Algorithmus das richtige Ergebnis?

• Was passiert bei Messfehlern?

• Wie effizient (schnell) ist der Algorithmus?

Wir betrachten einige Beispiele.

Beispiel 1.1 (Computertomographie)
Ein Röntgenbild zeigt immer zweidimensionale Schattenbilder. Eine dreidimensio-
nale Lagebeziehung (etwa: liegt der Tumor vor oder hinter dem Knochen?) kann
man den Bildern nicht entnehmen. Mitte des letzten Jahrhunderts kam die Idee auf,
viele Röntgenbilder aufzunehmen und daraus eine dreidimensional Darstellung zu
berechnen. Ein einfaches mathematisches Modell: Sei R die Position der Röntgen-
quelle, P eine Position auf der Fotoplatte. Sei weiter g(x), g : R3 7→ R die Stärke,
mit der ein Röntgenstrahl am Punkt x geschwächt wird.
Die Helligkeit der Fotoplatte am Punkt P ist umso größer, je weniger der Röntgen-
strahl auf seinem (geraden) Weg von R nach P geschwächt wurde: Ging der Strahl
durch Knochen (dort ist g groß), so bleibt die Fotoplatte schwarz, ging er durch Luft,
so wird die Platte weiß. Auf diese Weise bekommen wir eine zweidimensionale Pro-
jektion von g auf die Fotoplatte. Wir hätten aber gern nicht die Projektion, sondern g
selbst - die Fragestellung ist daher: Wie berechnet man g aus seinen zweidimensio-
nalen Projektionen?
Mathematisch ist die Schwärzung proportional zum Linienintegral von g über die
Linie zwischen R und P . Die mathematische Fragestellung lautet daher: Kann man
eine Funktion vonRn nachR aus Linienintegralen über die Funktion berechnen? Die-
se pure mathematische Fragestellung wurde weitgehend schon 1905 von Radon bei
der Untersuchung der später nach ihm benannten Radon–Transformation beant-
wortet, der sogar eine Inversionsformel angeben konnte. Leider kann man zeigen,
dass diese Inversionsformel nicht praktikabel ist (ihre direkte Implementation ist
langsam und liefert große Fehler), siehe hierzu die Diskussionen in Natterer [2001]
und Natterer and Wübbeling [2001].
Sehr erfolgreich war dagegen eine viel einfachere Vorgehensweise: Man teilt den
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gesamten Raum in Würfel (Voxel) auf und nimmt an, dass g auf jedem Voxel konstant
ist. Man macht sich schnell klar (am einfachsten in 2D), dass die Werte in jedem
Voxel dann Lösung eines linearen Gleichungssystems sind, das nur noch invertiert
werden muss. Effiziente Verfahren zur Lösung dieses Gleichungssystems (das ca.
5123 Unbekannte hat) bilden heute den Kern der meisten Computertomographie–
Geräte. Eine genauere Diskussion finden Sie zuhauf in der Literatur, z.B. in Natterer
and Wübbeling [2001].

Abbildung 1.1: Röntgenbild/Tomographie eines Überraschungseis. Nur in der Tomo-
graphie sind Details erkennbar.

Beispiel 1.2 Berechnung der Ableitung einer Funktion
Die Funktion f sei auf dem Intervall I differenzierbar. Ihre Ableitung an der Stelle
x ∈ I ist, wenn sie existiert, definiert als

f ′(x) = lim
h7→0, h 6=0

f(x+ h)− f(x)

h
.

Diese Definition ist für die Praxis, in der die Ableitung etwa als Geschwindigkeit als
Ableitung der zurückgelegten Wegstrecke auftritt, nutzlos, wenn nur diskrete (end-
lich viele) Funktionsauswertungen vorliegen. Es liegt in diesem Fall nahe, die Ablei-
tung durch die Approximation

f ′(x) ∼ f(x+ h)− f(x)

h

für ein kleines h zu ersetzen (Modellvereinfachung, Diskretisierung). Der Fehler die-
ses Modells kann für zweimal stetig differenzierbare Funktionen einfach angegeben
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werden. Mit der Taylorentwicklung und dem Lagrange-Restglied gilt

f(x+ h) = f(x) + hf ′(x) +
h2

2
f ′′(ξ)

mit einem ξ zwischen x und x+ h. Der maximale Fehler kann also abgeschätzt wer-
den durch ∣∣∣∣f ′(x)− f(x+ h)− f(x)

h

∣∣∣∣ ≤ |h|2 ||f ′′||∞ (1.1)

Entsprechend zeigt man für viermal stetig differenzierbare Funktionen eine Approxi-
mationsformel für die zweite Ableitung:∣∣∣∣f ′′(x)− f(x+ h)− 2f(x) + f(x− h)

h2

∣∣∣∣ ≤ h2

12
||f ′′′′||∞ (1.2)

Hierbei steht natürlich jeweils die Unendlichnorm für das Betragsmaximum auf I.
Nach dieser Analyse scheint klar: Je kleiner das h, desto besser das Ergebnis. Dies
berücksichtigt aber natürlich die Messfehler nicht. Ist h sehr klein, so führt offen-
sichtlich schon ein kleiner Fehler im Zähler zu riesigen Fehlern. Ist h zu groß, ist der
Modellfehler, den wir angegeben haben, zu groß. Diesen Zusammenhang werden
wir im nächsten Kapitel genauer untersuchen.

Beispiel 1.3 Wärmeleitung in einem isolierten Stab
Als Beispiel für ein komplexeres Anwendungsproblem betrachten wir einen wärme-
isolierten Stab, der an beiden Enden auf eine feste Temperatur gebracht wird. Der
Stab befinde sich im Intervall [0, π] auf der x-Achse und sei homogen. Die Anfang-
stemperatur zum Zeitpunkt t = 0 sei bekannt. Es bezeichne T (x, t) die Temperatur
zum Zeitpunkt t an der Stelle x, t ≥ 0, x ∈ [0, π]. Mögliche Fragestellungen:

1. Bestimme den Temperaturverlauf T unter Berücksichtung einer externen Wär-
mequelle q(x, t).

2. Nach längerer Zeit stellt sich ein fester Endzustand T0(x) ein. Bestimme T0.

Zunächst benötigen wir eine Mathematisierung (Modellierung). Unter Vernachlässi-
gung vieler physikalischer und mathematischer Gesichtspunkte und aller Konstan-
ten können wir diese leicht motivieren. Sei dazu [a, b] ein beliebiges Teilintervall von
[0, π] und t2 > t1 ≥ 0. Sei weiter

Q(t) =

∫ b

a

T (x, t)dx

die Wärmeenergie im Intervall [a, b] zum Zeitpunkt t. Es ist anschaulich, dass die
Wärmeenergie, die zu einem Zeitpunkt t durch einen Punkt x läuft, proportional zur

9



Ableitung von T nach x ist: Ist die Ableitung 0, so ändert sich nichts, und es wird
auch keine Wärme verschoben. Ist die Ableitung groß, hat man einen großen Tem-
peraturunterschied links und rechts des Punkts, und Wärmeenergie fließt durch die-
sen Punkt in einer Richtung, die vom Vorzeichen des Unterschieds abhängt (Fourier-
sches Gesetz).
Zunächst gilt mal

Q(t2)−Q(t1) =

∫ b

a

T (x, t2)− T (x, t1) =

∫ b

a

∫ t2

t1

Tt(x, t)dtdx

Da sich Q nur durch Zufluss oder Abfluss von Energie am linken oder rechten Rand
oder durch externe Wärmezufuhr ändert, gilt

Q(t2)−Q(t1) =

∫ t2

t1

Tx(b, t)− Tx(a, t)dt+

∫ t2

t1

∫ b

a

q(x, t)dxdt

=

∫ t2

t1

∫ b

a

Txx(x, t) + q(x, t)dxdt

wobei Tx für die partielle Ableitung von T nach x steht und q(x, t) für die Stärke
einer externen Wärmequelle zum Zeitpunkt t an der Stelle x.
Für b 7→ a und t2 7→ t1 konvergiert nach dem Mittelwertsatz der Integralrechnung

1

(b− a)(t2 − t1)

∫ b

a

∫ t2

t1

Tt(x, t)dtdx 7→ Tt(a, t1)

und

1

(b− a)(t2 − t1)

∫ t2

t1

∫ b

a

Txx(x, t) + q(x, t)dxdt 7→ Txx(a, t1) + q(a, t1)

und damit gilt für alle x ∈ [0, π], t ≥ 0

Tt(x, t) = Txx(x, t) + q(x, t). (1.3)

Eine genauere Herleitung bekommen Sie zum Beispiel in der Vorlesung Modellie-
rung.
Wir haben damit den kompletten physikalischen Vorgang in einer mathematischen
Beschreibung verstecken können, in einer Gleichung, die für alle x und t erfüllt sein
muss und die die Ableitungen der gesuchten Funktion T enthält (partielle Differen-
tialgleichung, Wärmeleitungsgleichung). Streng analytisch kann man nun zeigen:
Die Wärmeleitungsgleichung mit bekanntem Temperaturverlauf T (x, 0) = t0(x) und
festen Temperaturen am Rand (T (0, t) = C1, T (π, t) = C2) hat eine eindeutige
Lösung (mit Bedingungen an q).
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Sätze dieser Art sind Inhalt der Vorlesung partielle Differentialgleichungen.
Für den Endzustand T0(x) gilt, dass der Temperaturverlauf von der Zeit nicht mehr
abhängt, also (T0)t = 0, er erfüllt damit

− (T0)′′ = q (1.4)

und die Randbedingung (stationäre Wärmeleitungsgleichung).
Für sehr einfache Funktionen q lässt sich der Endzustand T0 direkt angeben. Wir
setzen der Einfachheit halber C1 = C2 = 0, am linken und rechten Ende des Stabes
wird also auf 0 Grad gekühlt.
Eine in der Physik beliebte Methode, Aufgaben dieser Art zu lösen, bestimmt
zunächst einmal die Eigenvektoren (Eigenfunktionen) der Abbildung auf der linken
Seite der Differentialgleichung, also der zweiten Ableitung. Wir suchen also nicht–
verschwindende Funktionen uk mit uk(0) = uk(π) = 0 und (uk)xx = λkuk. Man zeigt
leicht, dass

uk(x) = sin kx, λk = −k2

für k ∈ N dies leisten. Sei nun

T0(x) =
∑
k

akuk(x)

eine Lösung der Differentialgleichung. Dann gilt

q(x) = −(T0)xx(x) = −
∑
k

akλkuk(x) =
∑
k

akk
2 sin kx.

Umgekehrt gilt: Hat q eine solche Reihenentwicklung, so ist
∑

k akuk(x) eine (die)
Lösung der stationären Wärmeleitungsgleichung. Die Koeffizienten lassen sich mit
Hilfe der Fouriertransformation berechnen.
Damit ist das Problem mathematisch eigentlich komplett gelöst: Wir haben gezeigt,
dass es eine eindeutige Lösung gibt, und können diese sogar aus der Fourierrei-
hendarstellung von q direkt berechnen. Sei etwa q die charakteristische Funktion
des Intervalls [π/2− ε, π/2 + ε] für ein 1 > ε > 0. Dann gilt

q(x) =
∑
k

Ak sin(kx), Ak =
2

π

∫ π/2+ε

π/2−ε
sin(ky)dy =

2

kπ
cos(ky)

∣∣∣π/2+ε
π/2−ε .

und die Lösung des stationären Wärmeleitungsproblems ist

T0(x) =
∞∑
k=1

Ak
k2

sin(kx).

11



Wir können die Lösung also exakt angeben. Dies geht aber offensichtlich nur, weil
wir die Wärmequelle unrealistisch vereinfacht haben. Möglicherweise ist diese nur
gemessen und besitzt keine geschlossene Darstellung - in diesem Fall können wir
auch die Fourierreihe nicht berechnen und die analytische Lösung wird wertlos.
Bemerkung: Die so erzielte Lösung ist zwar physikalisch absolut sinnvoll, aber nicht
differenzierbar und damit keine Lösung der Differentialgleichung. Dies zeigt, dass
unsere mathematische Modellierung nicht vollständig ist.
Es gibt aber eine sehr einfache numerische Lösung für unser Problem durch Dis-
kretisierung. Hierzu verteilen wir zunächst N + 1 Gitterpunkte xk gleichmäßig im
Intervall [0, π], also xk = kh, h = π/N , k = 0 . . . N . Wir beschränken uns darauf,
Näherungen uk für T0(xk) zu bestimmen. Mit 1.4 gilt an jedem Gitterpunkt

−T ′′0 (xk) = q(xk).

Wir approximieren die Differentialgleichung mit 1.2, also

−uk−1 + 2uk − uk+1 = h2q(xk), k = 1 . . . N − 1.

Zusätzlich wissen wir wegen der Randbedingung u0 = T0(0) = 0 und uN = T0(π) =
0. Insgesamt erhalten wir damitN −1 lineare Gleichungen für dieN −1 Unbekann-
ten u1 bis uN−1:

−0 + 2u1 − u2 = h2q(x1)
−u1 + 2u2 − u3 = h2q(x2)
−u2 + 2u3 − u4 = h2q(x3)

...
−uN−3 + 2uN−2 − uN−1 = h2q(xN−2)
−uN−2 + 2uN−1 − 0 = h2q(xN−1)

(1.5)

oder in Matrixschreibweise

1

h2



2 −1
−1 2 −1

−1 2 −1
. . . . . . . . .
−1 2 −1

−1 2





u1

u2

u3

...
uN−2

uN−1


=



q(x1)
q(x2)
q(x3)

...
q(xN−2)
q(xN−1)


(1.6)

Zur numerischen Lösung müssen wir also nur die Matrix invertieren und das Glei-
chungssystem lösen. Dies ist in Matlab schnell getan, Abbildung 1 zeigt den Ver-
gleich zweier Lösungen, die jeweils mit der analytischen und diskreten Methode er-
zielt wurden. Bei großem N (hoher Auflösung) sind die Kurven praktisch gleich.
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Abbildung 1.2: Analytische/Diskrete Lösung der stationären Wärmeleitungsglei-
chung

Abbildung 1.3: Vergleich der diskreten/analytischen Lösung der stationären Wärme-
leitungsgleichung
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heatanalytic.jpg: Analytische/Diskrete Lösung der stationären Wärmeleitungsgleichung
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Matlab Figure heatanalytic.fig: Analytische/Diskrete Lösung der stationären Wärmeleitungsgleichung
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heatdiscrete.jpg: Analytische/Diskrete Lösung der stationären Wärmeleitungsgleichung
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Matlab Figure heatdiscrete.fig: Analytische/Diskrete Lösung der stationären Wärmeleitungsgleichung
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Frank Wuebbeling
heatcompare.jpg: Vergleich der diskreten/analytischen Lösung der stationären Wärmeleitungsgleichung
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� �
f u n c t i o n [ x , y ] = a n a l y t i s c h ( N , M )

%A n a l y t i s c h e Loesung der s t a t i o n a e r e n Waermele i tungsgle ichung
%f u e r einen an den Raendern gekuehl ten , i s o l i e r t e n Stab , der i n
%der M i t t e erwaermt wird
%N = Anzahl der Auswertungspunkte , M = Reihen=Auswertungsgrenze
� �
Listing 1.1: Analytische Lösung der stationären Wärmeleitungsgleichung (Waerme-
leitung/analytisch.m)

� �
f u n c t i o n [ x , y ] = d i s k r e t ( N )

%D i s k r e t e Loesung der s t a t i o n a e r e n Waermele i tungsgle ichung f u e r
%einen an den Raendern gekuehl ten , i s o l i e r t e n Stab , der i n der
%M i t t e erwaermt wird . N = Anzahl der Auswertungspunkte

h= p i /N ;
� �
Listing 1.2: Diskrete Lösung der stationären Wärmeleitungsgleichung (Waermelei-
tung/diskret.m)

� �
f u n c t i o n d o i t 1 d

%T r e i b e r f u e r a n a l y t i s c h , d i s k r e t
g l o b a l e p s i l o n ;
e p s i l o n = 0 . 5 ;
N=200;
c l o s e a l l ;
� �
Listing 1.3: Rahmen zur stationären Wärmeleitungsgleichung (Waermeleitung/-
doit1d.m)

Wir halten also fest: Zur Diskretisierung praktischer Probleme müssen am Ende
meist (große) lineare Gleichungssysteme gelöst werden. Dies möglichst genau und
effizient zu tun, wird den Großteil dieser Vorlesung einnehmen.
Bemerkung: Die Cramersche Regel wäre aus mathematischer Sicht hierzu bereits
absolut ausreichend, leider ist sie weder effizient noch liefert ihre direkte Implemen-
tation genaue Werte.
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function [x,y] = analytisch( N, M )

%Analytische Loesung der stationaeren Waermeleitungsgleichung

%fuer einen an den Raendern gekuehlten, isolierten Stab, der in

%der Mitte erwaermt wird

%N - Anzahl der Auswertungspunkte, M - Reihen-Auswertungsgrenze



h=pi/N;

x=(0:N)*h;

y=zeros(size(x));

global epsilon;

for k=1:M

    a=(cos(k*(pi/2-epsilon))-cos(k*(pi/2+epsilon)))*2/pi/(k^3);

    y=y+a*sin(k*x);

end

plot(x,y);

title(['Analytische Lösung mit Auswertung der Reihe bis Glied  ' num2str(M) '.']);

end
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function [x,y] = diskret( N )

%Diskrete Loesung der stationaeren Waermeleitungsgleichung fuer

%einen an den Raendern gekuehlten, isolierten Stab, der in der 

%Mitte erwaermt wird. N - Anzahl der Auswertungspunkte



h=pi/N;

x=(1:N-1)*h;

A=2*diag(ones(N-1,1))-diag(ones(N-2,1),1)-diag(ones(N-2,1),-1);

A=A/(h*h);

g=q(x)';

y=A\g;

plot(x,y);

title(['Diskrete Lösung mit ' num2str(2*N) ' Diskretisierungspunkten.']);

end

function g=q(x)

global epsilon;

g=zeros(size(x));

g(abs(x-pi/2)<epsilon)=1;

end
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function doit1d

%Treiber fuer analytisch, diskret

global epsilon;

epsilon=0.5;

N=200;

close all;

[x,ydiskret]=diskret(N);

savepic('heatdiscrete');

figure;

[x1,yanalytisch]=analytisch(N,N);

savepic('heatanalytic');

figure;

plot(x,ydiskret,x1,yanalytisch,x,ydiskret-spline(x1,yanalytisch,x'));

title('Vergleich der Lösungen');

legend('Diskret','Analytisch','Differenz');

savepic('heatcompare');

end

function savepic(name)

 if exist('vorlsavepic','file')

     vorlsavepic(name);

 end

end
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Warnung: Dies ist eine reine Motivation. Das analytische Modell durch ein diskretes
zu ersetzen, scheint hier eine gute Idee zu sein. Tatsächlich kann aber natürlich erst
eine genaue mathematische Analyse zeigen, ob das Ergebnis brauchbar ist bzw. mit
welchem Fehler die diskrete Lösung behaftet ist. Zur Warnung schauen wir uns da-
her auch noch die zeitabhängige Wärmeleitungsgleichung an. Wir diskretisieren die
Zeit an den Zeitpunkten tk = kdt, k ∈ N0. Sei u(tk, x) die gesuchte Näherung für die
Temperatur am Punkt x zum Zeitpunkt tk. Mit Hilfe der Formel für die Diskretisierung
der ersten Ableitung erhalten wir also

u(tk+1, x) = u(tk + dt, x) = u(tk, x) + dt(uxx + q).

Wir können also eine Approximation für die Temperatur zum Zeitpunkt tk+1 ange-
ben, wenn wir die Temperatur zum Zeitpunkt tk kennen. Für t = 0 ist die Tempera-
tur bekannt (hier konstant 0), zur Berechnung der zweiten Ableitung verwenden wir
wieder unsere Formel für die Diskretisierung der zweiten Ableitung, und wir erhal-
ten sofort die im Programm implementierte Formel. Um unser Programm zu testen,
lassen wir es für einige Zeit laufen und vergleichen den Endzustand mit dem vorher
berechneten aus der stationären Wärmeleitungsgleichung.

Abbildung 1.4: Vergleich der stationären Lösung mit der zeitabhängigen Lösung
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Matlab Figure heattime1.fig: Vergleich der stationären Lösung mit der zeitabhängigen Lösung



� �
f u n c t i o n [ x , y ] = d i s k r e t t i m e ( NT , N , T )

%Loesung der Waermele i tungsgle ichung i n der Z e i t ,
%d i s k r e t i n O r t und Raum .
%NT = Z e i t s c h r i t t e pro Sekunde , N = R a u m s c h r i t t e ,
%T = E n d z e i t . Achtung : S t a b i l i t a e t s b e d i n g u n g beachten !
� �
Listing 1.4: Lösung der zeitabhängigen Wärmeleitungsgleichung (Waermeleitung/-
diskrettime.m)

Alles ist so, wie wir es erwarten: Der Endzustand liegt nah an der Lösung der stati-
onären Gleichung. Wir wollen nun etwas genauer werden und erhöhen die Diskre-
tisierung auf der Raumachse wenig, statt 80 wählen wir nun 100 Diskretisierungs-
punkte und lassen unsere Simulation wieder laufen.

Abbildung 1.5: Vergleich der stationären Lösung mit der zeitabhängigen Lösung, in-
stabil
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function [x,y] = diskrettime( NT,N,T )

%Loesung der Waermeleitungsgleichung in der Zeit,

%diskret in Ort und Raum.

%NT - Zeitschritte pro Sekunde, N - Raumschritte,

%T - Endzeit. Achtung: Stabilitaetsbedingung beachten!



if (nargin<3)

T=10;

end

if (nargin<1)

NT=1300;

N=80;

end

NT=round(T*NT);

disp=round(NT/100);

dt=T/NT;

h=pi/N;

%Stabilitätskonstante (<1/2)

dt/(h*h)

x=((1:N-1)*h)';

A=(-2*diag(ones(N-1,1))+diag(ones(N-2,1),1)+diag(ones(N-2,1),-1))/(h*h);

y=zeros(size(x));

for i=1:NT

    y=y+dt*(A*y+q(x));

    if (mod(i,disp)==1)

    plot(x,y);

    if (max(y)<1)

        ylim([0,1]);

    end

    t=i*dt;

    title (['Temperaturverlauf zum Zeitpunkt t=' num2str(t)]);

    drawnow;    

    end

end

end

function g=q(x)

global epsilon;

if(numel(epsilon)==0)

    epsilon=0.5;

end

g=zeros(size(x));

g(abs(x-pi/2)<epsilon)=1;

end
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Matlab Figure heattime2.fig: Vergleich der stationären Lösung mit der zeitabhängigen Lösung, instabil



� �
f u n c t i o n [ o u t p u t a r g s ] = d o i t t i m e ( )

%T r e i b e r f u e r d i s k r e t t i m e
g l o b a l e p s i l o n ;
e p s i l o n = 0 . 5 ;
c l o s e a l l ;
[ x1 , y1 ]= d i s k r e t t i m e ( 1 3 0 0 , 8 0 , 3 0 ) ;
� �
Listing 1.5: Lösung der zeitabhängigen Wärmeleitungsgleichung mit instabilen Pa-
rametern (Waermeleitung/doittime.m)

Das ist definitiv nicht, was wir erwarten. Eine Verbesserung der Approximation führt
zu einem völlig chaotischen (in der Numerik: instabilen) Verhalten. Dies zeigt deut-
lich, dass blinde Diskretisierung ohne zusätzliche mathematische Analyse zu unsin-
nigen Ergebnissen führen kann.
Die genaue Erklärung für dieses Phänomen erhalten Sie in den Vorlesungen Nume-
rische Analysis und Numerik Partieller Differentialgleichungen.
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function [ output_args ] = doittime(  )

%Treiber fuer diskrettime

global epsilon;

epsilon=0.5;

close all;

[x1,y1]=diskrettime(1300,80,30);

figure;

[x2,y2]=analytisch(80,200);

[x3,y3]=diskret(80);

plot(x3,y3,x2,y2,x1,y1);

legend('Diskret','Analytisch','Diskret (Zeit)');

title('Vergleich stationär - zeitabhängig');

ylim([0,1]);

 if exist('vorlsavepic','file')

     vorlsavepic('heattime1');

 end

 waitforbuttonpress;

[x4,y4]=diskrettime(1300,100,0.5);

plot(x4,y4,x2,y2,x1,y1);

legend('Diskret','Analytisch','Diskret (Zeit)');

title('Vergleich stationär - zeitabhängig');

 if exist('vorlsavepic','file')

     vorlsavepic('heattime2');

 end

end
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Kapitel 2

Grundlagen der LA und der Fehlerrechnung

2.1 Lineare Algebra

Wir erinnern zunächst an einige Grundbegriffe der linearen Algebra. Wir be-
schränken uns grundsätzlich auf die Betrachtung von Vektorräumen über K = R
oder K = C. Seien also im Folgenden immer U und V Vektorräume über K.

2.1.1 Normierte Vektorräume

Grundlegend für alle numerischen Überlegungen ist der Begriff der Norm, denn nur
so lassen sich Fehler messen.

Definition 2.1 (normierte Vektorräume)
Sei V ein Vektorraum. || · || : V 7→ R≥0 heißt Norm, falls

1) ||αx|| = |α|||x|| ∀α ∈ K, x ∈ V .

2) ||x|| = 0⇔ x = 0.

3) ||x+ y|| ≤ ||x||+ ||y|| ∀x, y ∈ V.

(V, || · ||) heißt normierter Vektorraum.

Beispiel 2.2 Sei V = Rn, p ∈ [1,∞], v = (v1, . . . , vn) ∈ V .

||v||p :=

(
n∑
i=1

|vi|p
)1/p

(p <∞), ||v||∞ = max
i
|vi|

heißt p–Norm (und ist eine Norm).
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Beispiel 2.3 Sei V = C0(I) der Raum der stetigen Funktionen auf einer kompakten
Teilmenge I ⊂ Rn, f ∈ V .

||f ||p =

(∫
I

|f(x)|pdx
)1/p

(p <∞), ||f ||∞ = sup
x∈I
|f(x)|

heißt p–Norm (und ist eine Norm).

Definition 2.4 (Banachraum) Sei (V, || · ||) normierter Vektorraum. V heißt
vollständig oder Banachraum, falls jede Cauchyfolge in V einen Grenzwert in V be-
sitzt (bzgl. || · || ).

Beispiel 2.5
(C0(I), || · ||2) ist nicht vollständig.
(C0(I), || · ||∞) ist vollständig.

Definition 2.6 (Vektorräume mit Skalarprodukt, euklidische Vektorräume)
(·, ·) : V × V 7→ K heißt Skalarprodukt, falls

1) (v, v) ≥ 0 und (v, v) = 0⇔ v = 0 ∀v ∈ V .

2) (u, v) = (v, u) ∀u, v ∈ V .

3) (·, v) ist linear für alle festen v ∈ V .

Üblicherweise wird auf euklidischen Räumen die induzierte Norm

||v|| = (v, v)1/2, v ∈ V

benutzt. V heißt dann Prä–Hilbertraum. Ist V mit dieser Norm vollständig, so heißt
V Hilbertraum.

Beispiel 2.7

1) Sei V = Cn. Dann ist
(u, v) = utv, u, v ∈ V

ein Skalarprodukt.

2) Sei V = C0(I). Dann ist

(f, g) =

∫
I

f(x)g(x)dx, f, g ∈ V

ein Skalarprodukt.
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Wir werden beide stillschweigend als Standard–Skalarprodukte auf den jeweiligen
Räumen verwenden. Die induzierte Norm ist jeweils || · ||2.

Satz 2.8 (Cauchy–Schwarz)
Sei V ein Vektorraum mit Skalarprodukt. Dann gilt

|(u, v)|2 ≤ ||u||2||v||2 ∀u, v ∈ V

und Gleichheit genau dann, wenn u und v linear abhängig sind.

Beweis: Falls v = 0, so ist der Satz richtig. Sei also v 6= 0. Es gilt

0 ≤ || ||v||2u− (u, v)v||2 = ||v||4(u, u)− 2|(u, v)|2||v||2 + |(u, v)|2(v, v)

und damit
|(u, v)|2 ≤ ||u||2||v||2

und Gleichheit genau dann, wenn u = λv. �

Vorlesungsnotiz: Beim Auflösen muss der Skalar aus dem zweiten Argument
geholt werden und wird komplex konjugiert. Evtl. ||u + v||2 = (u + v, u + v) =
||u||2 + 2Re(u, v) + ||v||2, und hier steht im gemischten Term (u, v)(v, u).

Die wichtigste Folgerung ist

Satz 2.9 Sei V ein Vektorraum mit Skalarprodukt. Dann ist

||v|| = (v, v)1/2, v ∈ V

eine Norm.

Beweis:

||u+ v||2 = ||u||2 + 2Re(u, v) + ||v||2 ≤ ||u||2 + 2||u|| ||v||+ ||v||2 = (||u||+ ||v||)2.

�

Satz 2.10 Sei V endlichdimensional und seien || · || und ||| · ||| zwei Normen auf V .
Dann sind || · || und ||| · ||| äquivalent, d.h. ∃C1, C2 > 0:

C1|||v||| ≤ ||v|| ≤ C2|||v||| ∀v ∈ V.
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Beweis: Sei (v1, . . . , vn) eine Basis von V , v ∈ V , v =
∑

k αkvk. Es sei

||v||∞ := maxk|αk|

und || · || eine beliebige Norm. Wir zeigen, dass || · || und || · ||∞ äquivalent sind, und
damit sind alle Normen äquivalent.
Zunächst gilt

||v|| ≤
∑
k

|αk| ||vk|| ≤ nmax
k
||vk||︸ ︷︷ ︸

C2

max
k
|αk| = C2||v||∞.

Sei nun
C1 = inf

||v||∞=1
||v||.

Angenommen, C1 = 0. Dann ex. eine Folge mit ||vk||∞ = 1, ||vk|| ≤ 1
k

. Die Folge ist
beschränkt bzgl. || · ||∞, hat also eine konvergente Teilfolge vj 7→ v bezüglich || · ||∞
und damit

||vj − v|| ≤ C2||vj − v||∞ 7→ 0.

Also konvergiert vj gegen v auch bezüglich || · ||. Da ||vj|| ≤ 1
j
, gilt v = 0. Damit gilt

wegen der Stetigkeit der Norm

1 = ||vj||∞ 7→ ||v|| = 0.

Dies ist ein Widerspruch. Es gilt also C1 > 0.
Sei nun 0 6= v ∈ V beliebig. Dann gilt

||v|| = || v

||v||∞
|| ||v||∞ ≥ C1||v||∞

und dies war zu zeigen. �

Eine wichtige Folgerung dieses Satzes ist: Wenn eine Folge in endlichdimensionalen
Räumen konvergiert bezüglich einer Norm, so konvergiert sie gegen den gleichen
Grenzwert bezüglich aller Normen.

2.1.2 Lineare Operatoren

Wir werden in dieser Vorlesung im wesentlichen Matrizen als Spezialfall linearer
Operatoren untersuchen. Im folgenden steht T immer für eine allgemeine lineare
Abbildung zwischen Vektorräumen, A für eine Abbildung zwischen endlichdimen-
sionalen Räumen (die wir immer sofort mit einer Matrix identifizieren).
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Definition 2.11 (lineare Operatoren) Seien U , V Vektorräume. T : U 7→ V heißt
linear genau dann, wenn

T (αx+ y) = αTx+ Ty, ∀α ∈ K, x, y ∈ U.
Sind U und V endlichdimensional, so kann T durch eine Matrix A bezüglich vorge-
gebener Basen dargestellt werden. Falls U = V und T in zwei verschiedenen Basen
durch die Matrizen A und B dargestellt wird, so heißen A und B ähnlich, und es
gibt eine Matrix X mit

A = XBX−1.

Die Menge aller linearen Operatoren L(U, V ) bildet auf natürliche Weise selbst wie-
der einen Vektorraum.

Definition 2.12 (induzierte Operatornorm)
Seien (U, || · ||U) und (V, || · ||V ) normierte Vektorräume. Sei T ∈ L(U, V ). Dann heißt

||T || := sup
u∈U,u 6=0

||Tu||V
||u||U

= sup
u∈U,u 6=0

||T u

||u||U
||V = sup

u∈U,||u||U=1

||Tu||V

(induzierte, verträgliche) Operatornorm von T .

Es könnte natürlich sein, dass ||T || =∞. Dies müssen wir ausschließen und unter-
suchen zunächst, was das bedeutet.

Satz 2.13 (Eigenschaften der induzierten Norm)
Seien (U, || · ||U) und (V, || · ||V ) normierte Vektorräume. Sei T ∈ L(U, V ). T ist stetig
genau dann, wenn

||T || <∞.
Es gilt

||Tu||V ≤ ||T || ||u||U ∀u ∈ U
und

||T1T2|| ≤ ||T1|| ||T2|| ∀T2 ∈ L(U, V ), T1 ∈ L(V,W ).

Beweis:
||Tu||V = ||T u

||u||U
||V ||u||U ≤ ||T || ||u||U (u 6= 0).

||T1T2|| = sup
||u||U=1

||T1T2u|| ≤ sup
||u||U=1

||T1|| ||T2u||V = ||T1|| ||T2||.

Wegen der Linearität reicht es, die Stetigkeit in 0 nachzuweisen. Sei uk eine Nullfol-
ge und ||T || beschränkt. Dann ist

||Tuk|| ≤ ||T || ||uk||
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und damit ebenfalls Nullfolge. Sei nun ||T || unbeschränkt. Dann gibt es eine Folge
uk von Vektoren mit Norm 1 in U , so dass ||Tuk||V ≥ k. Dann ist wk = uk/||Tuk||V
eine Nullfolge, aber ||Twk||V = 1, also ist Twk keine Nullfolge und T nicht stetig. �

Satz 2.14 (Norm von Operatoren) Seien (U, || · ||U) und (V, || · ||V ) normierte Vek-
torräume, B(U, V ) der Vektorraum der stetigen linearen Operatoren von U nach V ,
also

B(U, V ) = {T ∈ L(U, V ) : ||T || <∞}.

Dann ist || · || Norm auf B(U, V ).

Satz 2.15 (Stetigkeit linearer Abbildungen auf endlichdim. Vektorräumen)
Es sei (U, || · ||U) und (V, || · ||V ) normierte Vektorräume, n := dimU < ∞, und
A ∈ L(U, V ). Dann ist ||A|| <∞ und somit A stetig.

Beweis: Es sei uk eine Basis von U . Wir definieren auf U die Supremumsnorm

||
∑
k

αkuk||∞ := max
k
|αk|.

Da U endlichdimensional ist, sind || · ||∞ und || · ||U äquivalent, also gibt es ein C2

mit
||u||∞ ≤ C2||u||U ∀u ∈ U.

Sei u =
∑

k αkuk, u 6= 0. Dann gilt

||Au||V ≤ ||
∑
k

αkAuk||V ≤ nmax
k
||Auk||V︸ ︷︷ ︸
C1

max
k
|αk| = C1||u||∞ ≤ C1C2||u||U .

und damit
||Au||V
||u||U

≤ C1C2 <∞.

Für unendlichdimensionale Zielräume gilt dieser Satz nicht notwendig. So ist etwa
die Ableitung als lineare Abbildung von (C1, || · ||∞) nach (C0, || · ||∞) nicht stetig
(Übungen). �

|| · || heißt Operatornorm und ist die Standardnorm auf B(U, V ).
In endlichdimensionalen Banachräumen wird das Infimum angenommen. Um zu
zeigen, dass || · || eine induzierte Matrixnorm ist, ist also zu zeigen:

1. ||Av|| ≤ ||A|| ||v||∀v ∈ V
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2. ∃v ∈ V : ||Av|| = ||A|| ||v||.

Wir berechnen die Operatornorm an zwei Beispielen, || · ||∞ und später || · ||2.

Beispiel 2.16 Sei A = (Ak,j) ∈ Rn×m nicht die Nullmatrix. Wir bestimmen ||A||∞.
Sei dazu u = (uk) ∈ Rm beliebig. Dann gilt:

||Au||∞ = ||
∑
j

Ak,juj||∞ = max
k
|
∑
k

Ak,juj| ≤ max
k

∑
j

|Ak,j| ||u||∞

und damit ||A|| ≤ maxk
∑
|Ak,j|.

Zu zeigen ist noch, dass diese Grenze angenommen wird. Sei k̃ der Index, an dem
das Zeilenmaximum angenommen wird, also

max
k

∑
j

|Ak,j| =
∑
j

|Ak̃,j|.

Sei u ∈ Rn mit uj = sgn(Ak̃,j) mit der Definition

sgn(x) =


1 x > 0

0 x = 0

−1 x < 0

Mit dieser Definition gilt x sgn(x) = |x|, also für unser u mit ||u|| = 1:

||A||∞ ≥ ||Au||∞ ≥ (Au)k̃ =
∑
j

Ak̃,juj =
∑
j

|Ak̃,j| = max
k

∑
j

|Ak,j|.

Bemerkung: Alternativ kann man Normen auf dem Vektorraum der Matrizen definie-
ren durch

||A|| = (
∑
k,j

|Ak,j|p)
1
p bzw. ||A|| = max

k,j
|Ak,j|

für p < ∞. Für p = 2 heißt diese Norm Frobenius–Norm. Der Vorteil dieser Normen
ist, dass sie schnell auszurechnen sind. Der Nachteil ist, dass sie nicht notwendig
verträglich sind mit der Vektorraumnorm (d.h. es gilt nicht ||Av|| ≤ ||A|| ||v||). Für
die Zwecke dieser Vorlesung sind sie damit im Allgemeinen unbrauchbar.

Korollar 2.17 Sei Ak eine Folge von Matrizen. Ak konvergiert gegen A in einer be-
liebigen Norm || · || auf dem Vektorraum der Matrizen genau dann, wenn alle Matri-
xelemente gegeneinander konvergieren.

Beweis: Äquivalenz zur Unendlichnorm der Koeffizienten. �
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Definition 2.18 (Adjungierte Abbildung)
Seien (U, (·, ·)U) und (V, (·, ·)V ) Vektorräume mit Skalarprodukt. Sei T ∈ L(U, V ),
T ∗ ∈ L(V, U). Falls

(Tu, v)V = (u, T ∗v)U∀u ∈ U, v ∈ V,

so heißt T ∗ die zu T adjungierte Abbildung.
Falls U = V und T = T ∗, so heißt T selbstadjungiert.

Es gilt: Jede stetige Abbildung besitzt eine Adjungierte (ohne Beweis).

Beispiel 2.19 Sei U = Cn, V = Cm, A ∈ L(U, V ) (also A (n × m)–Matrix, wobei
wir immer unzulässigerweise die Matrizen mit den Abbildungen identifizieren, die
sie darstellen). U und V seien versehen mit dem Standardskalarprodukt. Dann gilt
für u ∈ U , v ∈ V

(Au, v) = utAtv = ut(Atv) = (u,Atv)

und damit A∗ = At, über R natürlich A∗ = At. Matrizen mit der Eigenschaft

A = A∗ = At

heißen hermitesch, reelle Matrizen mit der Eigenschaft

A = A∗ = At

heißen symmetrisch.

Satz 2.20 (Rechenregeln für adjungierte Operatoren)

1. (T1T2)∗ = T ∗2 T
∗
1 .

2. (T ∗)∗ = T .

3. TT ∗ und T ∗T sind selbstadjungiert.

Beweis: Durch einfaches Nachrechnen. �

Definition 2.21 (Eigenwerte und Eigenvektoren)
Sei T ∈ L(U,U). v ∈ U , v 6= 0. v heißt Eigenvektor zum Eigenwert λ ∈ C, falls
Tv = λv.
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Definition 2.22 (Diagonalisierbarkeit)
Sei T ∈ L(U,U), dimU < ∞. T heißt diagonalisierbar, falls U eine Basis aus
Eigenvektoren vk von T besitzt. Es gilt

D = W−1TW, W = (v1v2 · · · vn), T = diag(λk).

Satz 2.23 Selbstadjungierte Operatoren haben reelle Eigenwerte. Eigenvektoren zu
unterschiedlichen Eigenwerten stehen senkrecht aufeinander.

Beweis: Sei T selbstadjungiert. Sei Tx = λx, x 6= 0. Dann gilt

λ(x, x) = (λx, x) = (Tx, x) = (x, Tx) = (x, λx) = λ(x, x)

und wegen (x, x) 6= 0 gilt λ = λ.
Sei Tx = λ1x, Ty = λ2y, λ1 6= λ2, x 6= 0, y 6= 0. Dann gilt

λ1(x, y) = (Tx, y) = (x, Ty) = λ2(x, y) = λ2(x, y)

und damit wegen λ1 6= λ2: (x, y) = 0. �

Definition 2.24 (Positiv definite Operatoren)
Sei U Vektorraum mit Skalarprodukt, T ∈ L(U,U). T heißt (symmetrisch) positiv
definit, wenn T selbstadjungiert ist und

(Tu, u) > 0 ∀u ∈ U, u 6= 0.

Gilt nur≥, so heißt T positiv semidefinit.

Satz 2.25 Sei U Vektorraum mit Skalarprodukt, T ∈ L(U,U) symmetrisch positiv
definit. Dann ist

(u, v)T := (Tu, v), u ∈ U, v ∈ U

ein Skalarprodukt auf U .

Satz 2.26 Sei T ∈ L(U, V ). T ∗T ist positiv semidefinit. Falls T injektiv ist, so ist T
positiv definit.

Beweis: T ∗T ist selbstadjungiert, und (T ∗Tx, x) = (Tx, Tx) ≥ 0. �

Den Satz über die Jordan–Normalform kennen Sie aus der Linearen Algebra I. Bitte
machen Sie sich klar, dass Ihre Formulierung der folgenden entspricht.

26



Satz 2.27 (Jordan–Normalform)
SeiA eine (n×n)–Matrix. v heißt Hauptvektor k. Stufe zum Eigenwert λ vonA, falls

(A− λI)kv = 0, (A− λI)k−1v 6= 0.

Hauptvektoren erster Stufe sind Eigenvektoren.

1. Jede Matrix besitzt eine Basis aus Hauptvektoren vj.

2. Sei J die Darstellung von A in dieser Basis, also

J = B−1AB, B = (v1v2 · · · vn).

Dann ist J (fast) eine Diagonalmatrix, möglicherweise mit einigen Einsen
oberhalb der Hauptdiagonalen, auf der die Eigenwerte von A stehen.

Satz 2.28 SeiA hermitesche (n×n)–Matrix. Dann istA diagonalisierbar. U besitzt
eine Orthonormalbasis aus Eigenvektoren von A.

Beweis: Zu zeigen ist: Alle Hauptvektoren sind Eigenvektoren, also Hauptvektoren
erster Stufe. Sei (A− λI)2v = 0. Dann gilt

0 = ((A− λI)2v, v) = ((A− λI)v, (A− λI)v) = ||(A− λI)v||2

und damit schon (A − λI)v = 0, es gibt also keine Hauptvektoren höherer Stu-
fe, und die Jordan–Normalform ist eine Diagonalmatrix. Es gibt also eine Basis
aus Eigenvektoren. Die Eigenvektoren zu unterschiedlichen Eigenwerten stehen be-
reits senkrecht aufeinander nach 2.23. In den Eigenräumen zum gleichen Eigenwert
wählt man eine ONB als Basis. �

Korollar 2.29 Die Matrix A sei hermitesch. A ist positiv definit (semidefinit) genau
dann, wenn alle Eigenwerte von A positiv (nichtnegativ) sind.

Satz 2.30 Eine hermitesche Matrix ist genau dann positiv definit (semidefinit),
wenn alle ihre Hauptminoren positiv (nichtnegativ) sind.

Mit diesen Vorbemerkungen können wir nun leicht die 2–Norm einer Matrix berech-
nen. Sei A ∈ Cm×n und B = A∗A.

Definition 2.31 Sei A ∈ Cn×n. Dann heißt

ρ(A) = max{|λk| : λk Eigenwert von A}

Spektralradius von A.
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Satz 2.32 Sei A ∈ Cm×n. Dann gilt

||A||2 = ρ(AtA)1/2.

Beweis: B = AtA ist symmetrisch positiv semidefinit, also besitzt Cn eine Ortho-
normalbasis aus Eigenvektoren vk zu Eigenwerten λk vonB. Sei v =

∑
k µkvk ∈ Cm,

also ||v||2 =
∑

k |µk|2. Dann gilt

||Av||22 = (Av,Av) = (A∗Av, v)

= (
∑
k

µkλkvk,
∑
j

µjvj)

=
∑
k

λk|µk|2

≤ ρ(B)
∑
k

|µk|2

= ρ(B)||v||22.

Sei nun noch λ ein betragsmaximaler Eigenwert vonB und v ein zugehöriger Eigen-
vektor. Dann gilt

||Av||22 = (Av,Av) = (A∗Av, v) = λ||v||2 = ρ(B)||v||22.

Also gilt

||A||2 = sup
v 6=0

||Av||2
||v||2

= ρ(A∗A)1/2.

�

Zum Abschluss zitieren wir noch einen letzten Satz, der bei der Fehlerrechnung eine
große Rolle spielt.

Satz 2.33 (Neumannsche Reihe)
Sei (V, || · ||) ein Banachraum, T : V 7→ V linear mit ||T || < 1 (induzierte Norm).
Dann ist (I − T ) invertierbar, und

(I − T )−1 =
∞∑
k=0

T k.

Beweis: Wegen ||T || < 1 sind für jedes v ∈ V die Partialsummen von
∑∞

k=0 T
kv

eine Cauchyfolge, also konvergiert die Summe für jedes v gegen einBv ∈ V . Es gilt

(I − T )Bv = lim
n 7→∞

(I − T )
n∑
k=0

T kv = lim
n7→∞

(v − T n+1v) = v.

�
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Korollar 2.34 Seien V Banachraum, T ∈ L(V, V ) invertierbar, ∆T ∈ L(V, V ) und
T−1 sei stetig. Weiter sei q = ||T−1|| ||∆T || < 1. Dann ist (T + ∆T ) invertierbar und

||(T + ∆T )−1|| ≤ ||T
−1||

1− q
.

Beweis:
(T + ∆T ) = T (I − (−T−1∆T ))

ist invertierbar nach 2.33.

||(T + ∆T )−1|| = ||
∞∑
k=0

(−T−1∆T )kT−1||

≤ ||T−1||
∞∑
k=0

qk

= ||T−1|| 1

1− q

�

Dieser Satz lässt sich so interpretieren: Die Matrix T sei invertierbar. Bekannt ist
eine Approximation T ′ mit einem Fehler ||T − T ′|| < ε. Falls ε klein genug ist, so ist
auch T ′ invertierbar.

Korollar 2.35 Die Menge der invertierbaren (n× n)–Matrizen ist offen.

2.2 Fehler beim numerischen Rechnen

Fehler können beim numerischen Rechnen an mindestens vier Stellen entstehen:

1. Der Modellierungsfehler entsteht dadurch, dass wir ein (womöglich verein-
fachtes) mathematisches Modell zugrunde legen, das nicht die gesamte An-
wendung umsetzt. Beispiel: Im CT–Beispiel haben wir keine Streuung berück-
sichtigt.

2. Der Diskretisierungsfehler entsteht dadurch, dass wir nicht die exakte ma-
thematische Formel implementieren. Beispiel: Approximation des Differen-
tialquotienten durch einen Differenzenquotienten wie in 1.1.

3. Der Messfehler bewirkt, dass unsere Eingangsdaten nur eine endliche Genau-
igkeit haben.
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4. Der Rechenfehler entsteht durch Rundung bei der Durchführung der Rech-
nung.

Im Rahmen dieser Vorlesung werden wir uns nur mit den Punkten drei und vier
beschäftigen. Der Messfehler dominiert dabei üblicherweise den Rechenfehler.

Definition 2.36 (absoluter und relativer Fehler)
Sei x ∈ V , (V, || · ||) normierter Vektorraum, x̃ eine Näherung für x. Dann heißt

||∆x||, ∆x = (x− x̃)

absoluter Fehler von x̃. Falls x 6= 0, so heißt

||∆x||
||x||

relativer Fehler von x̃.

Natürlich hängen alle diese Definitionen von der verwendeten Norm ab. Im Allge-
meinen gibt die Anwendung eine Norm vor.
Üblicherweise spielt der absolute Fehler eine untergeordnete Rolle, wir werden im-
mer den relativen Fehler betrachten.
Auf einem Rechner kann immer nur eine Teilmenge M der reellen bzw. komple-
xen Zahlen darstellen. Üblicherweise wird dabei die Zahlendarstellung nach dem
Standard IEEE 754 (1985) benutzt, der auch Regeln für die Rundung, Rechnung und
Fehlerbehandlung festsetzt. Selbst neueste Prozessoren setzen den Standard um
oder besitzen zumindest einen Schalter, mit dem man IEEE–Kompatibilität erzwin-
gen kann (etwa im Intel–Compiler: “fp-model precise”).

Definition 2.37 (Gleitkommazahlendarstellung und Runden nach IEEE 754)
Seien b >= 2 (Basis), p >= 1 (Mantissenlänge), r >= 1 (Exponentlänge) für ein
Format fest gewählte ganze Zahlen. Dann ist die Menge M der Maschinenzahlen
definiert durch

M :=

{
±

(
p∑

k=1

mkb
−k

)
b±e, mk, e ∈ Z, 0 ≤ mk ≤ b− 1, |e| < br

}
.

Die Zahlen m ∈M haben die b-adische normalisierte Darstellung

m = ±0.m1m2m3 . . .mpb
±e

mit m1 6= 0 (oder m = 0).
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eps =
b−p+1

2

heißt Maschinengenauigkeit (und ist eine Matlab–Funktion).
Eine Funktion rd : R 7→M heißt Rundungsfunktion, falls

|rd(x)− x| = min
y∈M
|y − x|.

rd(x) ist nicht eindeutig, zu jedem Format gehört also auch immer eine Rundungs-
funktion (IEEE definiert round-to-zero, round-to-infinity, . . . ).

Beispiel 2.38

b = 10, p = 2, r = 1 (human format).
0.12 · 10−9 ist Maschinenzahl.
−0.99 · 108 ist Maschinenzahl.
−0.234 · 1010 ist keine Maschinenzahl (Exponent und Mantisse zu lang).
Üblicherweise schreibt man E10 für 1010 usw.

b = 2, p = 23, r = 7.
Dies ist der single precision–Standard, er belegt im Rechner 1 + 23 + 1 + 7 = 32
Bits. Es gilt eps = 2−23 ∼ 10−7.

b = 2, p = 52, r = 10.
Dies ist der double precision–Standard, er belegt im Rechner 1 + 52 + 1 + 10 = 64
Bits. Es gilt eps = 2−52 ∼ 10−16.

Wir vernachlässigen in unseren Betrachtungen den Einfluss des Exponenten, setzen
also r = ∞. Falls die Beschränkung etwa in double precision auf 10308 als größte
Zahl problematisch ist, kann dieses Problem durch Skalierung aller Größen gelöst
werden. Nach IEEE–Standard wird ein Programm abgebrochen, wenn der Exponent
zu groß (Overflow) oder zu klein (Underflow, zu nah an 0) wird. Dies wird allerdings
von aktuellen Compilern im Allgemeinen nicht mehr beachtet.
Mit dieser Einschränkung wird nur die 0 auf 0 gerundet, und es gilt für x 6= 0

Satz 2.39 (Abschätzung des Rundungsfehlers)

|rd(x)− x
rd(x)

| ≤ eps

und

|rd(x)− x
x

| ≤ eps .
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Beweis: Sei m eine Maschinenzahl in normalisierter Darstellung, m 6= 0. Wenn x ∈
R zum gerundet wird, darf sich x in der b–adischen Darstellung maximal um b/2 an
der p+ 1. Stelle hinter dem Komma von m unterscheiden,also

|x−m| ≤ beb−p−1b/2.

Da m1 6= 0 (m ist normalisiert), gilt

|m| ≥ b−1be

und damit ∣∣∣∣m− xm

∣∣∣∣ ≤ beb−p−1b/2

b−1be
= eps .

Der zweite Teil folgt genauso, mit einer Fallunterscheidung für m = 0.1be (Übun-
gen). �

M ist nicht abgeschlossen bezüglich der arithmetischen Operationen. Im human
format etwa gilt:

0.1 ∈M, 0.1 10−4 ∈M, 0.1 + 0.1 10−4 = 0.1001 6∈M.

Wir müssen also nach jeder Operation runden.

Definition 2.40 ( Maschinenoperationen)
Auf M ×M sind die Abbildungen⊕,	,� und� nach M definiert durch

m1 ⊕m2 = rd(m1 +m2)

usw. Offensichtlich gilt ∣∣∣∣(m1 ⊕m2)− (m1 +m2)

m1 +m2

∣∣∣∣ ≤ eps

für m1 +m2 6= 0 usw.

Bemerkung: M ist nicht assoziativ bezüglich der Maschinenoperationen. Im human
format gilt:

(10−30 ⊕ 1)	 1 = 0

aber
10−30 ⊕ (1	 1) = 10−30
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2.3 Fehlerverstärkung

Uns interessiert besonders, wie stark ein Eingangsfehler (Messfehler oder Run-
dungsfehler) das Ergebnis beeinflusst. Sei also f eine stetig differenzierbare Funkti-
on auf I ⊂ R, die im Punkt x ausgewertet werden soll. Statt x sei nur eine Näherung
x̃ mit relativem Fehler ε bekannt. Wir berechnen den relativen Fehler von ỹ = f(x̃)
zu y = f(x). Mit Taylorentwicklung und Lagrange–Restglied oder auch einfacher
mit dem Mittelwertsatz gilt

f(x̃) = f(x) + f ′(ξ)(x̃− x)

und damit für x 6= 0 und f(x) 6= 0∣∣∣∣f(x̃)− f(x)

f(x)

∣∣∣∣ ≤ ∣∣∣∣f ′(ξ)f(x)

x̃− x
x

x

∣∣∣∣ ≤Mε

mit

M = max
ξ∈[x̃,x]

|f ′(ξ)|
∣∣∣∣ x

f(x)

∣∣∣∣ .
Der Fehler in der Ausgangsvariablen wird also höchstens um den Faktor M ver-
größert. M heißt Verstärkungsfaktor oder Konditionszahl und wird, falls der Fehler
|x̃− x| klein ist, häufig durch

M̃ =

∣∣∣∣f ′(x)

f(x)
x

∣∣∣∣
abgeschätzt. Allgemein gilt für f : Rn 7→ R

Satz 2.41 Sei f auf einer konvexen und kompakten Menge I ⊂ Rn stetig differen-
zierbar. Seien x, x̃ ∈ I, x 6= 0, f(x) 6= 0. Dann gilt∣∣∣∣f(x̃)− f(x)

f(x)

∣∣∣∣ ≤ n∑
j=1

∣∣∣∣(∂f/∂xj)(ξ)f(x)

x̃j − xj
xj

xj

∣∣∣∣ ≤ n∑
j=1

Mj
|x̃j − xj|
|xj|

mit

Mj = max
ξ∈[x̃,x]

∣∣∣∣ ∂f∂xj (ξ)

∣∣∣∣ · ∣∣∣∣ xjf(x)

∣∣∣∣ .
Beweis: Betrachte die Funktion g(t) = f(x+t(x̃−x)) und wende die Vorbemerkung
an. �

Beispiel 2.42
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1. f(x, y) = x+ y

Mx =

∣∣∣∣ x

x+ y

∣∣∣∣ .
Dieser Term kann sehr groß werden, wenn der Nenner fast verschwindet, der
Zähler aber nicht, also für x ∼ −y.

2. f(x, y) = xy

Mx = max
ξ

∣∣∣∣ ξyxy
∣∣∣∣ ∼ 1

für x ∼ x̃.

Wir folgern daraus: Die Multiplikation ist problemlos, bei der Addition zweier Zahlen
x und y kann der relative Fehler explodieren, falls x ∼ −y. Dieses Phänomen heißt
Auslöschung.

Definition 2.43 (Kondition und Stabilität)

1. Ein Problem heißt gut gestellt ( gut konditioniert), wenn kleine Änderungen
in den Parametern zu kleinen Änderungen im Ergebnis führen. Ein Problem
heißt schlecht gestellt ( schlecht konditioniert), wenn kleine Änderungen in
den Parametern zu großen Änderungen im Ergebnis führen. Dieser Fehler ist
rein analytisch und unvermeidbar.

2. Ein Algorithmus zur Lösung eines Problems heißt (vorwärts–)stabil, falls er
bei kleinen Änderungen der Eingangsdaten ein Ergebnis liefert, dessen Feh-
ler ( Algorithmusfehler) in der Größenordnung des analytischen Fehlers liegt.
Ansonsten heißt er instabil.

3. Für das Problem y = f(x) betrachten wir den implementierten Algorithmus
ỹ = g(x). Falls ỹ = f(x̃) für ein x̃mit ||x− x̃||/||x|| klein, so heißt g rückwärts-
stabil. Es gilt: Rückwärtsstabile Algorithmen sind (vorwärts–) stabil.

Was im Einzelfall klein oder groß heißt, wird durch die Anwendung vorgegeben.
Beweis zur Bemerkung: Es sei x exakt bekannt, die Näherung ỹ für y = f(x) wer-
de auf einem Rechner ausgerechnet, es sei ỹ = f(x̃) und f ∈ C1. Dann ist der
unvermeidbare Fehler beschränkt durch

eps sup
ξ

∣∣∣∣f ′(ξ)f(x)
x

∣∣∣∣ .
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Für den tatsächlichen relativen Fehler gilt∣∣∣∣ ỹ − yy
∣∣∣∣ =

∣∣∣∣f(x̃)− f(x)

f(x)

∣∣∣∣ =

∣∣∣∣ x̃− xx
∣∣∣∣ · ∣∣∣∣xf ′(ξ)f(x)

∣∣∣∣
Liegt also der relative Fehler von x̃ zu x in der Größenordnung von eps, so ist der
Algorithmus auch vorwärtsstabil.

Korollar 2.44

1. Falls die Konditionszahlen einer Funktion f klein sind, so ist die Auswertung
von f gut gestellt.

2. Die Auswertung der Multiplikation ist ein gut gestelltes Problem.

3. Die Auswertung der Addition ist ein schlecht gestelltes Problem, falls die Ar-
gumente unterschiedliches Vorzeichen und (fast) gleichen Betrag haben.

Zur Illustration der Stabilität betrachten wir f(x) = x. Offensichtlich hat f den
Verstärkungsfaktor 1, der unvermeidbare Fehler ist gleich dem Eingangsfehler. Zur
Auswertung von f benutzen wir den Algorithmus

y = (x⊕ 1)	 1.

Oben haben wir bereits gesehen, dass für x = 10−30 der Fehler 100% beträgt, un-
abhängig vom Fehler in x. Dieser Algorithmus ist also sicherlich nicht stabil, wir
haben durch die Addition der 1 eine künstliche Auslöschung erzeugt.
Häufig ist die Auslöschung aber nicht so offensichtlich. So gilt etwa

Satz 2.45 Die direkte Implementation der pq–Formel zur Lösung quadratischer Glei-
chungen ist instabil.

Beweis: Es lassen sich leicht p, q angeben, so dass der Algorithmusfehler beliebig
viel größer ist als der unvermeidbare Fehler, siehe Übungen. �

Ein häufig angewandter Trick zur Auswertung schwieriger Funktionen ist die Reihen-
entwicklung. In der numerischen Behandlung gewöhnlicher Differentialgleichungen
tauchen häufig Terme der Form

√
1 + ε2 − 1

für kleine ε > 0 auf. Würde man diesen Term so ausrechnen, wie er dort steht,
würde ε2 komplett in der 1 aufgehen, und das Ergebnis wäre 0 unabhängig von ε.
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Andererseits ist die Konditionszahl der Funktion fast 1, der Fehler ist also nicht un-
vermeidbar. Wir nutzen in diesen Fällen die Taylorreihe der Wurzel und erhalten

√
1 + ε2 − 1 = 1 +

1

2
ε2 − 1

8
ε̃4 − 1 ∼ 1

2
ε2

was tatsächlich für kleine ε eine gute Näherung ist.
Als letzte Anwendung werden wir den unvermeidbaren Fehler bei der Lösung eines
linearen Gleichungssystems

Ax = b

mit einer invertierbaren n×n–MatrixA und b ∈ Rn berechnen. Wir bestimmen also
eine Abschätzung für den Fehler, der entsteht, wenn die Koeffizienten der invertier-
baren Matrix A oder des Vektors b nicht genau bekannt sind, sondern statt dessen
nur Näherungen A+ ∆A und b+ ∆b zur Verfügung stehen und wir ersatzweise die
Lösung des Gleichungssystems

(A+ ∆A)x̃ = b+ ∆b

berechnen.

Abbildung 2.1: Graphische Lösung von Gleichungssystemen: Links gut gestellt,
rechts schlecht gestellt, kleine Änderungen (gestrichelte Linie) in den Koeffizienten
führen zu großer Änderung des Schnittpunkts.

Sei zunächst n = 2. Dann können wir die Lösung des Gleichungssystems als
Schnittpunkt zweier Geraden im R2 graphisch bestimmen. Kleine Änderungen in
den Koeffizienten führen zu kleinen Änderungen in der Lage der Linien. Aber: Falls
die Linien fast parallel liegen, führt eine kleine Änderung in der Lage der Linien zu
großen Änderungen beim Schnittpunkt. Die Verstärkung des Eingangsfehlers muss
also von der Richtung der Linien, also von A, abhängen.

Satz 2.46 SeiA ∈ Rn×n invertierbar. Sei x ∈ Rn undAx = b. Sei weiter ∆A ∈ Rn×n

und ∆b ∈ Rn. Es sei
k(A) = ||A|| · ||A−1||
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die Kondition von A und es gelte

q = k(A)
||∆A||
||A||

< 1.

Dann ist A+ ∆A invertierbar. Sei x̃ = x+ ∆x die Lösung von

(A+ ∆A)x̃ = (b+ ∆b).

Dann gilt für den relativen Fehler in der Lösung

||∆x||
||x||

≤ k(A)

1− q

 ||∆b||
||b||︸ ︷︷ ︸

rel.Fehler in b

+
||∆A||
||A||︸ ︷︷ ︸

rel. Fehler in A


Die relativen Fehler in A und b werden also (höchstens) um den Faktor

M = k(A)/(1− q)

verstärkt.

Für sinnvolle Anwendungen ist ||∆A|| klein gegen ||A||, also q ∼ 0 und damit M ∼
k(A).
Beweis: Nach 2.34 ist A+ ∆A invertierbar, und es gilt

||(A+ ∆A)−1|| ≤ ||A
−1||

1− q
.

Es gilt
(A+ ∆A)(x+ ∆x) = (b+ ∆b)

und damit wegen Ax = b

(A+ ∆A)∆x = ∆b−∆Ax

und
∆x = (A+ ∆A)−1(∆b−∆Ax),

also insbesondere

||∆x|| ≤ ||(A+ ∆A)−1||(||∆b||+ ||∆A|| ||x||).
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Für den relativen Fehler für x 6= 0

||∆x||
||x||

≤ ||A−1||
1− q

(
||∆b||
||x||

+ ||∆A||
)

=
k(A)

1− q

(
||∆b||
||A|| ||x||

+
||∆A||
||A||

)
≤ k(A)

1− q

(
||∆b||
||b||

+
||∆A||
||A||

)
wegen ||b|| = ||Ax|| ≤ ||A|| ||x||. �
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Kapitel 3

Direkte Verfahren zur Lösung linearer
Gleichungssysteme

Fast jedes praktische Problem führt am Ende nach langer Modellierung auf ein li-
neares Gleichungssystem. Deshalb ist ihre Lösung von fundamentaler Bedeutung
für die Angewandte Mathematik. Wir betrachten zunächst direkte Verfahren, die in
endlicher Zeit eine Lösung liefern, gegenüber iterativen Verfahren, bei denen eine
Folge ausgerechnet wird, die gegen die Lösung konvergiert. Direkte Verfahren sind
dabei typischerweise langsam für große Matrizen und spielen heute eine unterge-
ordnete Rolle.
Eine gute Quelle für klassische Algorithmen und Analysen zu diesem Bereich ist das
Buch von Golub und van Loan, Matrix Computations.

3.1 Gauß–Elimination und LR–Zerlegung

Die Gauß–Elimination sollte bereits aus der Schule bekannt sein. Wir rechnen trotz-
dem zur Einführung ein Mikro–Beispiel.
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3 x1 + 2 x2 + x3 = 8
6 x1 + 5 x2 − 4 x3 = 12 ≡ A(1)x = b(1)

−3 x1 + x2 − 2 x3 = −3

3 x1 + 2 x2 + x3 = 8
x2 − 6 x3 = −4 ≡ A(2)x = b(2)

3 x2 − x3 = 5

3 x1 + 2 x2 + x3 = 8
x2 − 6 x3 = −4 ≡ A(3)x = b(3)

17 x3 = 17

Durch Rückwärtseinsetzen ergibt sich damit

x3 = 17/17 = 1, x2 = (−4 + 6)/1 = 2, x3 = (8− 1− 2 · 2)/3 = 1.

Wir werden Algorithmen immer in einem Pseudocode formulieren.
Zu lösen sei Ax = b, A ∈ Rn×n, b ∈ Rn. Setze A(1) = A und b(1) = b. Es sei
A(k) = (a

(k)
jl ) usw.

Für i = 1 . . . n− 1
Zur Konstruktion des Gleichungssystems A(i+1)x = b(i+1)

Übernehme die ersten i Gleichungen, d.h. die ersten i Zeilen.
Für j = i+ 1 . . . n

lji =
a
(i)
ji

a
(i)
ii

falls a(i)
ii 6= 0.

Für k = i+ 1 . . . n

a
(i+1)
jk = a

(i)
jk − lji · a

(i)
ik

b
(i+1)
j = b

(i)
j − ljib

(i)
i

Setze die restlichen Einträge auf 0.
Für i = n . . . 1

xi =
(
b

(n)
i −

∑n
j=i+1 a

(n)
ij xj

)
/a

(i)
ii .

Hierbei benötigen wir die Matrizen A(k) zur Berechnung der Lösung nicht, es liegt
also nahe, jeweils A(k) mit A(k+1) zu überschreiben. Es wird also im Laufe des Algo-
rithmus kein zusätzlicher Speicherplatz benötigt.
Wir bestimmen den Aufwand zur Lösung des Systems. Wir vereinbaren zunächst:
Da Addition und Multiplikation fast immer zusammen auftreten, zählen wir sie als
eine Rechenoperation. Tatsächlich sind moderne Rechnerarchitekturen in der Lage,
diese beiden Operationen gleichzeitig durchzuführen (fused multiply add), was, wie
man sich schnell überlegt, den IEEE–Standard verletzt.
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Für das Auflösen des Gleichungssystems werden dann

n−1∑
i=1

n∑
j=i+1

(
2 +

n∑
k=i+1

1

)
=

1

6
(2n3 + 3n2 − 5n) =

1

6
n(n− 1)(2n+ 5)

Rechenoperationen und n Divisionen benötigt, wobei wir für die einzelnen Divisio-
nen jeweils einmal den Kehrwert der a(i)

ii ausrechnen und dann mit ihm multiplizie-
ren. Die Division ist nämlich tatsächlich recht aufwändig, einen Algorithmus zu ihrer
schnellen Berechnung (mit einigen Rechenoperationen) werden wir im Kapitel über
die Newton–Iteration herleiten.
Zur Durchführung des Rückwärtseinsetzens erhalten wir

n∑
i=1

(2 +
n∑

j=i+1

1) = n2/2 + 7/2n.

Alle Berechnungen dieser Art interessieren uns immer nur für große n. Dann domi-
nieren aber sofort die Terme mit hoher Potenz die mit kleiner, und nur der Leitterm
mit der höchsten Potenz ist interessant. Es würde also reichen, den größten Term
(mit einer Abschätzung für den Rest) zu kennen. Wir definieren daher die Landau-
Symbole:

Definition 3.1 ( Landau–Symbole)

1. Seien f, g : N 7→ N.

f(n) = O(g(n)) für große n⇔ ∃C > 0, n0 > 0 : |f(n)| ≤ C|g(n)| ∀n > n0.

2. Seien f, g : R 7→ R.

f(h) = O(g(h)) für kleine h⇔ ∃C > 0, h0 > 0 : |f(h)| ≤ C|g(h)| ∀0 < h < h0.

Wenn der Zusammenhang klar ist, werden wir den Zusatz weglassen.

Beispiel 3.2

1. O(nα) = O(nβ) für 0 < α ≤ β.
sin(x) = O(1) für große x.

2. O(hα) = O(hβ) für α ≥ β > 0.
sin(x) = O(1) für kleine x.
sin(x) = O(x) für kleine x.
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Mit dieser Konvention gilt

Satz 3.3 Die Auflösung einer Gleichung mit n Unbekannten mit dem Gauß–
Algorithmus benötigt n3/3 +O(n2) Rechenoperationen und n Divisionen.

Bemerkung:

1. Die Cramersche Regel rechnet die Determinanten der Matrix aus, was bei di-
rekter Berechnung die Komplexität O(n!) hat (und damit völlig unbrauchbar
ist).

2. Die Gauss–Elimination ist durchführbar genau dann, wenn alle a(i)
ii 6= 0.

3. Falls a(i)
ii = 0, aber a(i)

ki 6= 0 für ein k > i, so vertausche die k. und die i. Zeile
des Gleichungssystems (was die Lösung natürlich nicht ändert).

4. Falls a(i)
ki = 0 für alle k ≥ i, so ist xi aus den Gleichungen i bis n bereits

eliminiert. In diesem Fall hat A(i) die Form

∗
0 ∗
...

. . . . . .
0 · · · 0 ∗
0 · · · 0 0 0 ∗
...

... ∗
0 · · · 0 0 0 ∗


Entwicklung der Determinante nach der ersten Spalte zeigt sofort: Dann ist
A(i) singulär, und damit auch A. Falls A invertierbar ist, kann dieser Fall also
nicht auftreten.

Die Elimination ist auf einer Permutation des Systems aber immer ausführbar.

5. Setze R := A(n). Dann gilt

Rik = 0 für i > k.

R mit dieser Eigenschaft (alle Elemente unterhalb der Hauptdiagonalen ver-
schwinden) heißt rechte obere Dreiecksmatrix. Entsprechend heißt eine Ma-
trix L linke untere Dreiecksmatrix, falls alle Elemente oberhalb der Hauptdia-
gonalen verschwinden, d.h.

Lik = 0 für i < k.
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Falls alle Lii = 1, so heißt L normiert. Produkte von (normierten) linken un-
teren Dreiecksmatrizen sind (normierte) linke untere Dreiecksmatrizen usw.,
die Dreiecksmatrizen bilden algebraisch jeweils einen Ring.
Wir lassen in der allgemeinen Definition zu, dass Dreiecksmatrizen nicht qua-
dratisch sind, dann sind sie natürlich nicht miteinander multiplizierbar.

6. Fehleranalyse: Eine genaue Fehleranalyse ist für den Gauß–Algorithmus
schwierig. Wir betrachten nur die Berechnung von x1. x̃1 wird berechnet durch

x̃1 =
1

a11

(b1 −
n∑
k=2

a1kx̃k)︸ ︷︷ ︸
a11x1

.

Ist nun |a11x1| klein gegenüber b1, so kann dies nur dadurch entstanden sein,
dass in der Differenz Auslöschung aufgetreten ist. Fehler werden also stark
verstärkt, wenn |a11| klein ist. Wir ordnen deshalb im i. Schritt die Gleichun-
gen so an, dass das Diagonalelement in der i. Spalte unterhalb der Hauptdia-
gonalen betragsmaximal ist, dass also gilt

|a(i)
ii | = max

k≥i
|a(i)
ki |.

Diese Strategie heißt Spaltenpivotsuche und macht den Gaußalgorithmus be-
reits zu einem stabilen (in praktischen Fällen). Alternativ kann man in jedem
Schritt zusätzlich auch die Variablen umbenennen (also die Spalten von A
umordnen), so dass auf der Diagonalen das betragsmäßig größte Element der
rechten unteren Teilmatrix erscheint. Diese Strategie heißt totale Pivotsuche.

Wir rechnen dazu ein kurzes Beispiel, zunächst ohne Pivotsuche. Wir benut-
zen zur Rechnung das Human Format.

10−4 x1 + x2 = 1 + 10−4

x1 + x2 = 2

10−4 x1 + x2 = 1
(−104 ⊕ 1)︸ ︷︷ ︸

=−104

x2 = −104 ⊕ 2︸ ︷︷ ︸
=−104

und damit x̃2 = −104 � −104 = 1 und x̃1 = (1 	 1)/10−4 = 0. Da x = (1, 1)
die korrekte Lösung ist, hat x1 einen Fehler von 100% (genau wie oben vor-
ausgesagt sorgt die Auslöschung beim Rückwärtseinsetzen für einen großen
Fehler). Die Kondition der Matrix ist kleiner als drei, dieser Fehler ist also nicht
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unvermeidbar. Nun dasselbe mit Pivotsuche:

x1 + x2 = 2
10−4 x1 + x2 = 1 + 10−4

x1 + x2 = 2
(1	 10−4)︸ ︷︷ ︸

=1

x2 = 1	 2 · 10−4︸ ︷︷ ︸
=1

und wir erhalten die korrekte Lösung x2 = 1, x1 = 1.

7. Platzbedarf: Üblicherweise wird die Matrix A durch A(n) überschrieben. Die
dabei nicht mehr genutzten Einträge unterhalb der Hauptdiagonalen nutzt
man, um sich die Zahlen lji zu merken, also im i. Schritt

Aji = lji, j > i

und
Ajk = A

(i+1)
jk , k > i, j > i.

Damit ist es möglich, sofort ein weiteres Gleichungssystem Ax = b′ zu
lösen, ohne die Elimination erneut durchführen zu müssen. Tatsächlich wird
üblicherweise zunächst der Eliminationsschritt durchgeführt (mit Aufwand
n3 + O(n2)) und dann die rechte Seite eingesetzt (mit Aufwand n2 + O(n)).
Falls das Gleichungssystem permutiert wird, werden die lik mitpermutiert. Die
Permutation muss ebenfalls gespeichert werden.

8. Viele Gleichungssysteme können schneller als angegeben aufgelöst werden.
Für die Inversion einer Matrix etwa löst man die Gleichungssysteme

Axk = ek

für die Spalten xk von A−1. Durch Nutzen der Nullen auf der rechten Seite
lässt sich die Inverse in n3 +O(n2) Rechenoperationen berechnen.
Andererseits: Sei A eine Matrix, bei der nur die b Nebendiagonalen besetzt
sind, also

Aik = 0 für |i− k| > b.

Dann hatA die Bandbreite b. Die LR–Zerlegung lässt sich für kleine b in nb2 +
O(nb) Rechenoperationen berechnen. (Übungen)
Insbesondere lässt sich dieLR–Zerlegung von Tridiagonalmatrizen (Matrizen
mit Bandbreite 1) mit O(n) Rechenoperationen berechnen.
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9. Der Rechenaufwand zur Lösung eines Gleichungssystems lässt sich durch
völlig andere Methoden sogar im Exponenten der Komplexität reduzieren.
Schon 1969 zeigte Strassen in seiner damals sensationellen, nur drei Sei-
ten langen Arbeit “Gaussian Elimination is not Optimal”, dass sich der Auf-
wand zur Inversion bzw. Multiplikation von Matrizen von n3 auf nlog2 7 drücken
lässt (Beispielimplementation). Inzwischen sind weitere Algorithmen dieser
Art bekannt, allgemein wird vermutet, dass die Untergrenze für die Komple-
xität tatsächlich O(n2) ist.
Leider sind die so entstehenden Algorithmen alle instabil und bieten wegen
der großen Konstanten im O(. . .) nur für extrem große Matrizen einen theore-
tischen Vorteil.

Wir werden die Gauß–Elimination nun mit Hilfe von Elementar– und Permutations-
matrizen beschreiben.

Definition 3.4

1. Eine normierte linke untere Dreiecksmatrix L = (lkj) heißt Elementarmatrix,
wenn nur in einer Spalte unterhalb der Hauptdiagonalen Einträge ungleich 0
sind, d.h.

∃i : lkj = 0, k > j, j 6= i.

2. Eine MatrixP ∈ Rn×n heißt Permutationsmatrix, falls in jeder Zeile und Spalte
genau eine 1 auftaucht und alle anderen Einträge 0 sind, d.h.

∃σ ∈ {1 . . . n}n : σk 6= σj für k 6= j, ai,k =

{
1, k = σi
0, k 6= σi

.

Beispiel 3.5

L =



1
. . .

1
li+1,i 1

...
. . .

ln,i 1


ist Elementarmatrix.

P =


1

1
1

1

 , P t =


1

1
1

1


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sind Permutationsmatrizen zu σ = (2, 3, 4, 1) bzw. (4, 1, 2, 3). Offensichtlich gilt

PP t = P tP = I.

Bemerkung:

1. LA lässt die ersten i Zeilen von A konstant und addiert jeweils auf die Zeilen
i+ 1 bis n das lj,i–fache der i. Zeile auf.

2. Die Inverse von L ergibt sich durch Multiplizieren der Elemente unterhalb der
Hauptdiagonalen mit −1, denn um die Operation wieder rückgängig zu ma-
chen, muss die i. Zeile entsprechend wieder abgezogen werden.

3. Das Produkt zweier Elementarmatrizen L(i)L(i+1) zu den Spalten i und i+1 ist
eine normierte linke untere Dreiecksmatrix, die durch Überlagerung von L(i)

und L(i+1) entsteht.
Begründung: Statt erst ein Vielfaches der (i+ 1). und dann ein Vielfaches der
i. Zeile zu addieren, kann man beides gleichzeitig tun.

4. PA bringt die Zeilen vonA in die Reihenfolge σ.AP t bringt die Spalten in die
Reihenfolge σ. PAP t bringt Zeilen und Spalten in die vorgegebene Reihenfol-
ge, insbesondere bleiben Diagonalelemente Diagonalelemente.

5. Produkte von Permutationsmatrizen sind Permutationsmatrizen.

6. SeiLi eine Elementarmatrix zur Spalte i und P eine Permutation mit Pek = ek
für k ≤ i. Dann ist L′i = PLiP

t wieder Elementarmatrix, es gilt PLi = L′iP .
Beweis: Sei Li = (I + F ). F hat nur Einträge in der i. Spalte ab Zeile i+ 1.

PLiP
t = P (I + F )P t

= I + PFP t.

Da Rechtsmultiplikation mit P t nur die Spalten k mit k > i betrifft, dort aber
nur Nullspalten stehen, ist FP t = F . Da Linksmultiplikation nur die Zeilen
j mit j > i vertauscht, ändert F seine Form nicht und (I + PF ) ist wieder
Elementarmatrix. �

Offensichtlich sind das genau die Matrizen, die wir zur exakten Beschreibung des
Gauß–Algorithmus benötigen. Wir formulieren dies als
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Satz 3.6 ( LR-Zerlegung, engl. LU–Zerlegung)
SeiA eine n×n–Matrix. Dann gibt es eine Permutationsmatrix P zur Permutation σ,
eine normierte linke untere Dreiecksmatrix L und eine rechte obere Dreiecksmatrix
R (alles (n× n)), so dass

PA = LR.

L und R heißen LR–Zerlegung von PA.

Beweis: Wir führen die Gauss–Elimination an A = A(1) durch. Es sei A(i) bereits
berechnet. Falls a(i)

ki = 0 für alle k ≥ i, so ist xi bereits eliminiert und wir setzen
Li = I, Pi = I.
Falls mindestens ein Element der i. Spalte unter oder auf der Hauptdiagonalen
nicht Null ist, wählen wir eine Permutationsmatrix P (i), so dass die Zeilenvertau-
schung P (i)A(i) ein solches Element an die Stelle (i, i) auf der Hauptdiagonalen
bringt (z.B. ein Element mit maximalem Betrag in der Spaltenpivotsuche). P (i) lässt
dabei natürlich die ersten i Zeilen fest.
Wir wählen die lji, j > i, wie in der Gauss–Elimination als

lji =
(PA(i))ji
(PA(i))ii

und

L(i) =



1
. . .

1
−li+1,i 1

...
. . .

−ln,i 1


.

Die Matrix A(i+1) aus der Gauss–Elimination ergibt sich dann durch

A(i+1) = L(i)P (i)A(i).

Nach n − 1 Schritten erhält man so aus A(1) = A die rechte obere Dreiecksmatrix
A(n) = R. Es gilt nach den Vorbemerkungen

R = A(n) = L(n−1)P (n−1)L(n−2) · · ·L(1)P (1)A

= L′
(n−1) · · ·L′(1)

P (n−1) · · ·P (1)A

und damit
P (n−1) · · ·P (1)︸ ︷︷ ︸

=P

A = (L′(1))−1 · · · (L′(n−1))−1︸ ︷︷ ︸
=L

R
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wobeiL′−1
i ausLi durch Permutieren und Multiplizieren der Elemente unterhalb der

Hauptdiagonalen mit−1 entsteht.L ist eine unitäre linke untere Dreiecksmatrix, ih-
re Einträge unterhalb der Hauptdiagonalen ist die Überlagerung der Elementarma-
trizen, und das sind gerade die Einträge lσj ,k mit der Permutation σ zu P . �
Bemerkung:

1. Sei PA = LR. Dann kann Ax = b gelöst werden mittels

Ax = b ⇐⇒ PAx = Pb

⇐⇒ LRx = Pb

⇐⇒ Ly = Pb, Rx = y

Dabei wird y bestimmt durch Vorwärtseinsetzen (Auflösung der Gleichun-
gen von vorn nach hinten) in Ly = Pb und x durch Rückwärtseinsetzen
(Auflösung der Gleichungen von hinten nach vorn) in Rx = y.

2. Nicht jede invertierbare Matrix besitzt eine LR–Zerlegung. Sei etwa(
0 1
1 0

)
=

(
1 0
a 1

)
·
(
b c
0 d

)
=

(
b c
ab ac+ d

)
.

Dann gilt offensichtlich b = 0, also ab = 0  .

3. Es gibt singuläre Matrizen, die eine LR–Zerlegung besitzen.(
0 0
0 0

)
=

(
1 0
0 1

)
·
(

0 0
0 0

)
4. Die LR–Zerlegung mit Spaltenpivotsuche und Vorwärts–Rückwärtseinsetzen

ist für praktische Zwecke ein gutartiger Algorithmus zur Bestimmung der
Lösung eines linearen Gleichungssystems.

5. Der Aufwand zur Berechnung der LR–Zerlegung beträgt n3/3 + O(n2) Re-
chenoperationen (+n Divisionen). Der Aufwand für das Einsetzen beträgt
n2 +O(n).

Satz 3.7 ( Eindeutigkeit der LR–Zerlegung) Sei A eine invertierbare n × n–Matrix.
Falls A eine LR–Zerlegung besitzt, so ist diese Zerlegung eindeutig.

Beweis: A besitze die LR–Zerlegungen (L,R) und (L′, R′). Da A invertierbar ist,
sind auch die Dreiecksmatrizen invertierbar. Es gilt

A = LR = L′R′ =⇒ (L′)−1L = R′R−1 =: Z.
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Z ist Produkt linker unterer normierter Dreiecksmatrizen, also selbst wieder nor-
mierte linke untere Dreiecksmatrix. Andererseits ist Z Produkt rechter oberer Drei-
ecksmatrizen, also selbst wieder rechte obere Dreiecksmatrix. Damit ist Z Diago-
nalmatrix und hat, weil sie normiert ist, 1 auf der Hauptdiagonalen, ist also die Ein-
heitsmatrix. Damit gilt

L = L′ undR = R′.

�

Satz 3.8 (Existenz der LR–Zerlegung)

1. SeiA eine n×n–Matrix. Alle Hauptminoren vonA, d.h. die Determinanten al-
ler quadratischen Teilmatrizen, die in der linken oberen Ecke beginnen, seien
ungleich 0. Dann besitzt A eine LR–Zerlegung.

2. Sei A symmetrisch positiv definit. Dann besitzt A eine LR–Zerlegung.

Beweis:
zu 1.: In den Übungen.
Zu 2.: Die Hauptminoren positiv definiter Matrizen sind positiv. �

� �
f u n c t i o n [ A , P , Q ] = LR ( A , p i v o t )

%LR Compute LU decomposi t ion . A c c e p t s y m b o l i c i n p u t f o r p i v o t =0
% A = r e t u r n R on upper r i g h t , r e t u r n L on l o w e r l e f t
% d i a g o n a l o f L i s 1
% p i v o t =0: No p i v o t i n g , throw e r r o r when 0 appears on d i a g o n a l
% p i v o t = 1 : Column p i v o t i n g , i f 0 appears on d i a g o n a l
� �

Listing 3.1: LR–Zerlegung (LR-Zerlegung/LR.m)

� �
f u n c t i o n B = checkLR ( A , P , Q )

%CHECKLR check o u t p u t o f LR decomposi t ion
%i n p u t arguments as i n LR o u t p u t arguments
%B i s LR
[ n m]= s i z e ( A ) ;
B=zeros ( n ,m) ;
� �

Listing 3.2: Berechnung von A aus der LR–Zerlegung (LR-Zerlegung/checkLR.m)
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function [ A,P,Q ] = LR( A, pivot )

%LR Compute LU decomposition. Accept symbolic input for pivot=0

% A - return R on upper right, return L on lower left

% diagonal of L is 1

% pivot=0: No pivoting, throw error when 0 appears on diagonal

% pivot=1: Column pivoting, if 0 appears on diagonal

% pivot=2: column search (default)

% pivot=3: total search

% P - return column order (pivot>0)

% Q - return row order (pivot=2)



%We accept non-quadratic A.

n=size(A,1);

m=size(A,2);

if (nargin<2)

    pivot=2;

end

P=1:n; 

Q=1:m;

for i=1:n-1

%pivot search

 switch pivot

     case 0

         %if (abs(A(i,i))<eps)

         %    'LR: 0 on diagonal without pivoting.';

         %    return;

         %end

     case {1,2}

         if (pivot==2)|(abs(A(i,i))<eps)

             maxcol=i;

             for k=i+1:n

                 if (abs(A(k,i))>abs(A(maxcol,i)))

                     maxcol=k;

                 end

             end

             %Permute and store permutation in P

             A([maxcol i],:)=A([i maxcol],:);

             P([maxcol i])=P([i maxcol]);

         end

     case 3

         maxk=i;

         maxl=i;

         for k=i:n

             for l=i:m

                 if (abs(A(k,l))>abs(A(maxk,maxl)))

                     maxk=k;

                     maxl=l;

                 end

             end

         end

         %Permute and store order in P,Q

         A(:,[i maxl])=A(:,[maxl i]);

         A([i maxk],:)=A([maxk i],:);

         P([i maxk])=P([maxk i]);

         Q([i maxl])=Q([maxl i]);

 end

 %elimination step

 %if (abs(A(i,i))>eps)

 for k=i+1:n

  l=A(k,i)/A(i,i);

  A(k,i)=l;

  A(k,i+1:m)=A(k,i+1:m)-l*A(i,i+1:m);

 end

 %end

end

end
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� �
f u n c t i o n B = LRSolve ( A , B , P , Q )

%LRSOLVE S o l v e AX=B . A , P , Q are from LR .
%B can be a m a t r i x o f v e c t o r s .
%Permute r i g h t hand s i d e v e c t o r s .
[ n m]= s i z e ( A ) ;
i f ( s i z e ( B , 1 ) ˜ =m)
� �

Listing 3.3: Lösung eines LGS mit der LR–Zerlegung (LR-Zerlegung/LRSolve.m)

� �
f u n c t i o n [ o u t p u t a r g s ] = d o i t ( N , p i v o t )

%DOIT S o l v e random l i n e a r e q u a t i o n o f s i z e N
%Remember : P i v o t i n g e f f e c t does not show w i t h random m a t r i c e s .

i f ( nargin <1)
N=128;
� �

Listing 3.4: Lösung eines zufälligen LGS mit der LR–Zerlegung (LR-
Zerlegung/doit.m)

3.2 Cholesky–Zerlegung

Für symmetrisch positiv definite Matrizen (die in der Praxis häufig auftauchen) lässt
sich der Aufwand für die LR–Zerlegung halbieren. Sei A also eine reelle n × n–
Matrix und s.p.d. Man könnte erwarten, dass symmetrische Matrizen eine Zerlegung
der Form

A = LLt

haben für eine Dreiecksmatrix L. Für die übliche LR–Zerlegung ist das im allge-
meinen falsch, denn L ist dabei normiert. Für die Zerlegung von symmetrischen
Matrizen verzichten wir daher auf die Normierung.
Sei A = LR die LR–Zerlegung von A (A ist positiv definit, also besitzt sie eine
LR–Zerlegung, und diese ist eindeutig, denn A ist als positiv definite Matrix inver-
tierbar). Wegen 0 6= detA = detL detR sind die Rii invertierbar. Sei D die Diago-
nalmatrix mit Dii = Rii. Dann ist D−1R eine normierte rechte obere Dreiecksmatrix
und

A = At = (LDD−1R)t = (D−1R)t(LD)t
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function B = checkLR( A,P,Q )

%CHECKLR check output of LR decomposition

%input arguments as in LR output arguments

%B is LR

[n m]=size(A);

B=zeros(n,m);

if (nargin<2)

    P=1:n;

end

if (nargin<3)

    Q=1:m;

end

for i=1:n

    for k=1:m

        sum=0;

        for j=1:min(i,k)

            %Observe 1 on main diagonal of L

            if (j==i)

                sum=sum+A(j,k);

            else

                sum=sum+A(i,j)*A(j,k);

            end

        end

        B(i,k)=sum;

    end

    %Reverse sorting.

end

B(P,:)=B(:,:);

B(:,Q)=B(:,:);
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function B = LRSolve( A,B,P,Q )

%LRSOLVE Solve AX=B. A,P,Q are from LR.

%B can be a matrix of vectors.

%Permute right hand side vectors.

[n m]=size(A);

if (size(B,1)~=m)

    'Dimensions do not match.'

    return;

end

B=B(P,:);

if (n~=m)

    'Matrix is not quadratic. Continuing anyway.'

end

if (abs(prod(diag(A)))<n*eps)

    'Matrix is close to singular. Continuing anyway.'

end



%Forward

for i=2:n

    for l=1:i-1

    B(i,:)=B(i,:)-A(i,l)*B(l,:);

    end

end



%Backward

for i=n:-1:1

    for l=i+1:n

        B(i,:)=B(i,:)-A(i,l)*B(l,:);

    end

    if (abs(A(i,i))>eps)

        B(i,:)=B(i,:)/A(i,i);

    else

        %No solution, set x_i=0.

        B(i,:)=0;

    end

end



%Permute variables.

B(Q,:)=B(:,:);

end
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function [ output_args ] = doit( N, pivot )

%DOIT Solve random linear equation of size N

%Remember: Pivoting effect does not show with random matrices.



if (nargin<1)

    N=128;

end

if (nargin<2)

    pivot=0;

end

%Choose a matrix with high condition

while true

 A=rand(N);

 if (cond(A)>1000)

     break;

 end

end

x=rand(N,N);

b=A*x;

[ALR,P,Q]=LR(A,pivot);

A2=checkLR(ALR,P,Q);

MaxErrorOfLR=max(abs(A2(:)-A(:)))

x2=LRSolve(ALR,b,P,Q);

MaxErrorOfSolution=max(x2(:)-x(:))

end
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eine LR–Zerlegung. Wegen der Eindeutigkeit gilt also L = (D−1R)t, und insbeson-
dere

0 < (Ax, x) = (LRx, x) = (Rx,Ltx) = (Rx,D−1Rx).

Einsetzen von R−1ek liefert Dkk > 0, wir können also die Wurzel aus den Diagonal-
elementen ziehen. Sei D′ die Diagonalmatrix mit D′ii = 1/

√
Rii. Dann gilt

A = LR = (D−1R)tR = RtD−1R = RtD′D′R = (D′R)t(D′R),

A lässt sich also tatsächlich als Produkt von zueinander transponierten Dreiecks-
matrizen schreiben. Wir halten dieses Ergebnis fest in

Satz 3.9 ( Cholesky–Zerlegung)
SeiA eine symmetrisch positiv definite (n×n)–Matrix. Dann gibt es eine linke untere
(nicht notwendig normierte) (n× n)–Dreiecksmatrix L, so dass

A = LLt.

Bei der Berechnung der Cholesky–Zerlegung kann also die ganz normale LR–Zerle-
gung berechnet werden. Die Elemente oberhalb der Hauptdiagonalen müssen aber
wegen der Symmetrie nicht mitgezogen werden, es ergibt sich insgesamt also der
halbe Aufwand. Da Zeilenvertauschungen die Symmetrie zerstören würden, muss
dabei ohne Pivotsuche gearbeitet werden, sie ist aber bei s.p.d.–Matrizen tatsäch-
lich auch nicht notwendig.
Der Algorithmus lässt sich leicht angeben. Seien ak die Spalten der zu zerlegenden
Matrix A und lk die Spalten von L. L ist linke untere Dreiecksmatrix, d.h. (lk)j = 0
für j > k. Wegen

(
a1 a2 . . . an

)
= A = LLt =

(
l1 l2 · · · ln

)


lt1
lt2
...
ltn



=


. . .
...

. . .

· · · . . .




. . . · · ·
. . .

...
. . .


gilt in der ersten Spalte

a1 = (l1)1l1

und damit
(l1)1 =

√
(a1)1
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und

l1 =
1

(l1)1

a1.

Entsprechend für die k. Spalte

ak =
k∑
i=1

(lk)ili

und damit

(lk)klk = ak −
k−1∑
i=1

(lk)ili,

also

(lk)k =

√√√√(ak)k −
k−1∑
i=1

(lk)i(li)k

und

lk =
1

(lk)k

(
ak −

k−1∑
i=1

(lk)ili

)
.

Satz 3.10 ( Aufwand der Cholesky–Zerlegung)
Die Cholesky–Zerlegung lässt sich mit n3/6 + O(n2) Rechenoperationen, n Divisio-
nen und n Wurzelberechnungen berechnen.

Beweis: Übungen. �

� �
f u n c t i o n L = c h o l e s k y ( A )

%CHOLESKY Compute C h o l e s k y decomposi t ion o f A .
%A i s assumed t o be symmetric , o n l y t he l o w e r l e f t i s used .
%We make sure t h a t t he f u n c t i o n can be used on s y m b o l i c i n p u t .
L=zeros ( s i z e ( A ) ) ;
i f ( ˜ i s n u m e r i c ( A ) )
� �

Listing 3.5: Cholesky–Zerlegung (Cholesky/cholesky.m)
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function L = cholesky( A )

%CHOLESKY Compute Cholesky decomposition of A.

%A is assumed to be symmetric, only the lower left is used.

%We make sure that the function can be used on symbolic input.

L=zeros(size(A));

if (~isnumeric(A))

    L=sym(L);

end

[n n]=size(A);

for k=1:n

    L(k,k)=A(k,k);

    if (k>1)

    L(k,k)=L(k,k)-dot(L(k,1:k-1),L(k,1:k-1));

    end

    if (isnumeric(A))

    if (L(k,k)<=0)

        'Matrix is not s.p.d.'

    end

    end

    L(k,k)=sqrt(L(k,k));

    if (k<n)

    L(k+1:n,k)=A(k+1:n,k);

    for (i=1:k-1)

        L(k+1:n,k)=L(k+1:n,k)-L(k,i)*L(k+1:n,i);

    end

    L(k+1:n,k)=L(k+1:n,k)/L(k,k);

    end

    if (~isnumeric(A))

    L=simplify(L);

    end

end

end
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� �
f u n c t i o n A = t e s t c h o l e s k y ( L )

%TESTCHOLESKY Compute L L ˆ t
%Should compute t h i s d i r e c t l y .
%A=L * L ’ ;
[ n n ]= s i z e ( L ) ;
A=zeros ( s i z e ( L ) ) ;
� �
Listing 3.6: Berechnung von A aus der Choleskyzerlegung (cholesky/testcholes-
ky.m)

� �
f u n c t i o n B= s o l v e c h o l e s k y ( L , B )

%SOLVECHOLESKY S o l v e l i n e a r e q u a t i o n using C h o l e s k y
%decomposi t ion .
[ n n ]= s i z e ( L ) ;

%Forward
f o r i =1 : n
� �
Listing 3.7: Berechnung der Lösung eines LGS aus der Choleskyzerlegung (choles-
ky/solvecholesky.m)

� �
f u n c t i o n d o i t ( n )

%DOIT Generate random nxn s . p . d . m a t r i x , compute i t s C h o l e s k y
% decomposit ion , s o l v e a random system .
i f ( nargin <1)

n=3;
end
� �
Listing 3.8: Lösung eines zufälligen LGS mit der Choleskyzerlegung (cholesky/-
doit.m)
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function A = testcholesky( L )

%TESTCHOLESKY Compute L L^t

%Should compute this directly.

%A=L*L';

[n n]=size(L);

A=zeros(size(L));

for i=1:n

    for k=1:n

        sum=0;

        for j=1:min(i,k)

            sum=sum+L(i,j)*L(k,j);

        end

        A(i,k)=sum;

    end

end
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function B=solvecholesky( L,B )

%SOLVECHOLESKY Solve linear equation using Cholesky 

%decomposition.

[n n]=size(L);

%Forward

for i=1:n

    for j=1:i-1

        B(i,:)=B(i,:)-L(i,j)*B(j,:);

    end

    B(i,:)=B(i,:)/L(i,i);

end

%Backward

for i=n:-1:1

    for j=i+1:n

        B(i,:)=B(i,:)-L(j,i)*B(j,:);

    end

    B(i,:)=B(i,:)/L(i,i);

end

end
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function doit( n )

%DOIT Generate random nxn s.p.d. matrix, compute its Cholesky 

% decomposition, solve a random system.

if (nargin<1)

    n=3;

end

A=rand(n);

A=A*A';

L=cholesky(A);

A1=testcholesky(L);

MaxErrorOfCholesky=max(abs(A(:)-A1(:)))

x=rand(n,1);

b=A*x;

x1=solvecholesky(L,b);

MaxErrorOfSolution=max(abs(x(:)-x1(:)))

end
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3.3 QR–Zerlegung

Bei der LR–Zerlegung schreibt man eine Matrix als Produkt von Matrizen, für die
das Gleichungssystem Qx = b leicht gelöst werden kann. Statt Dreiecksmatrizen
könnte man dazu auch unitäre Matrizen Q mit der Eigenschaft

Q−1 = Qt

nutzen. Dies ist die Idee hinter der QR–Zerlegung.
Im gesamten Kapitel beschäftigen wir uns der Übersichtlichkeit wegen nur mit re-
ellen Matrizen im Rn und dem Standard–Skalarprodukt. Alle Sätze sind geeignet
sofort auch auf komplexe Vektorräume übertragbar.

Satz 3.11 ( unitäre Matrizen)

1. SeiQ ∈ Rn×n.Q ist genau dann unitär mitQtQ = QQt = I, wenn die Spalten
und Zeilen von Q eine Orthonormalbasis bilden.

2. Sei v ∈ Rn, v 6= 0. Dann beschreibt die Spiegelmatrix

Q(v) = (I − 2
vvt

vtv
)

eine Spiegelung an der Hyperebene x · v = 0. Q(v) ist unitär. Q(v) heißt
Householder–Spiegelung.

3. Sei ϕ ∈ R, 1 ≤ i < k ≤ n. Dann beschreibt die Matrix

R(ϕ) =


cosϕ − sinϕ
sinϕ cosϕ

1
. . .

1


eine Rotation um ϕ in der (x1, x2)–Ebene. Sei nun P eine Permutationsmatrix
mit Permutation σ, i = σ1, k = σ2. Dann beschreibt

Rik(ϕ) = PR(ϕ)P t

eine Rotation um ϕ in der (xi, xk)–Ebene und heißt Givens–Rotation. Rik(ϕ)
ist unitär.

Beweis:
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1. Seien qk die Spalten von Q. Dann ist

(qi, qj) = qtiqj = (QtQ)ij = (I)ij = δij

mit dem Kronecker–δ, also ist {qk} Orthonormalsystem (und umgekehrt).

2. Sei w Element der Spiegelebene, also wtv = 0. Dann gilt

Q(v)v = (I − 2
vvt

vtv
)v = v − 2v

vtv

vtv
= −v

Q(v)w = (I − 2
vvt

vtv
)w = w − 2v

vtw

vtv
= w

und Q ist Spiegelmatrix an der Ebene. Q(v) ist symmetrisch, und es gilt

(Q(v)Q(v))v = v, (Q(v)Q(v))w = w

nach der Vorbemerkung, also ist Q unitär. Wir halten auch noch gleich fest,
dass die Multiplikation Q(v)y schnell ausgeführt werden kann:

Q(v)y = (I − 2
vvt

vtv
)y = y − 2v

vty

vtv

und dies ist mit 2n Rechenoperationen (gegenüber n2 für die normale Matrix–
Vektor–Multiplikation) berechenbar, wenn vtv berechnet ist.

3. Durch Nachrechnen.

�

Satz 3.12 ( Gram–Schmidtsches Orthonormalisierungsverfahren, kurz Schmidt-
sches Orthonormalisierungsverfahren)
Seien a1, . . . , an ∈ Rm linear unabhängig, also insbesoderem ≥ n. Seien qk und q̃k
im Rm mit

q̃1 = a1, q1 =
q̃1

|| ˜q1||
und

q̃k = ak −
k−1∑
j=1

(qj, ak)qj, qk =
q̃k
||q̃k||

, k = 2 . . . n.

Dann bilden die qk ein Orthonormalsystem, und es gilt für die lineare Hülle

< q1, . . . , qk >=< a1, . . . , ak >, k = 1 . . . n.

Weiter sei Q die Matrix mit den Spalten qk, A die Matrix mit den Spalten ak. Dann
gibt es eine rechte obere (n× n)–Dreiecksmatrix R mit A = QR. Die Spalten von Q
bilden ein Orthonormalsystem. Falls m = n, so ist Q unitär.
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Beweis: Der Satz sei für a1 . . . ak−1 bereits bewiesen, q1 . . . qk−1 stehen also senk-
recht aufeinander. Sei l < k. Dann gilt

(q̃k, ql) = (ak −
k−1∑
j=1

(qj, ak)qj, ql)

= (ak, ql)− (ql, ak)(ql, ql)

= 0.

q̃k und damit auch qk stehen also senkrecht auf allen ql mit l < k.
qk liegt nach Definition und Induktionsvoraussetzung in der linearen Hülle <
a1, . . . , ak >. Andererseits gilt

ak = q̃k +
k−1∑
j=1

(qj, ak)qj

und damit gilt auch
< q1, . . . , qk >=< a1, . . . , ak > .

Es gibt also für jedes qk Koeffizienten rl,k, k = 1 . . .m, l = 1 . . . k, so dass

ak =
k∑
l=1

rlkql

oder
A = QR

mit der rechten oberen Dreiecksmatrix Rlk = rl,k für k < l und 0 sonst. �
Mit dieser Methode lassen sich also zumindest invertierbare Matrizen A in ein Pro-
dukt aus einer unitären und einer rechten oberen Dreiecksmatrix zerlegen. Das Glei-
chungssystem Ax = b löst man dann durch

Ax = b⇐⇒ QRx = b⇐⇒ Qy = b, y = Rx

und damit y = Qtb und x kann durch Rückwärtseinsetzen bestimmt werden.
Wir erweitern die Aussage zu

Satz 3.13 ( Definition und Existenz der QR–Zerlegung)
Sei A eine (m× n)–Matrix.

1. Falls m = n, so gibt es eine unitäre n × n–Matrix Q und eine (n × n) rechte
obere Dreiecksmatrix R, so dass A = QR.

2. Falls m > n, so gibt es eine m × n–Matrix Q mit QtQ = In und eine (n × n)
rechte obere Dreiecksmatrix R, so dass A = QR.
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3. Falls m < n, so gibt es eine unitäre m × m–Matrix Q und eine (m × n)–
Matrix R, deren Elemente unterhalb der Hauptdiagonalen verschwinden, so
dass A = QR.

Diese Zerlegung heißt QR–Zerlegung von A.

Beweis: Sei zunächst m ≥ n und seien ak die Spalten von A.
Das Schmidtsche Orthogonalisierungsverfahren auf den ak versagt, falls q̃k = 0.
In diesem Fall wählen wir für qk irgendeinen normierten Vektor, der zu q1. . . . , qk−1

orthogonal ist. Dies ist möglich, da m ≥ n. Die Spalten der Matrix Q = (q1, . . . , qn)
stehen also senkrecht aufeinander, es gilt

QtQ = In.

ak liegt in der linearen Hülle < q1, . . . , qk >, also gibt es wie beim Schmidtschen
Orthogonalisierungsverfahren ein R mit A = QR. Es gilt Rkk = 0 falls q̃k = 0.
Für m < n wenden wir diese Methode auf die Vektoren a1, . . . , am an und erhal-
ten wieder (a1, . . . , am) = QR. q1, . . . , qm ist eine Basis, damit liegen die Vek-
toren am+1 . . . an in ihrer linearen Hülle, es gilt (am+1, . . . , an) = QB für eine
(n× (n−m))–Matrix B und damit

(a1, . . . , an) = Q[R;B].

�
Anders als bei der LR–Zerlegung existiert die QR–Zerlegung also auch ohne Per-
mutation, und mit der obigen Erweiterung sogar für nicht–quadratische Matrizen.� �
f u n c t i o n [ Q R ] = ONV ( A )

%ONV Compute QR decomposi t ion o f A based on Schmidt
%o r t h o n o r m a l i z a t i o n . C u r r e n t l y works on r e a l i n p u t o n l y !
%F a i l s i n t he case o f s i n g u l a r A .
[ n m]= s i z e ( A ) ;
Q=zeros ( n ,m) ;
� �

Listing 3.9: QR–Zerlegung nach Schmidt (QR/ONV.m)

� �
f u n c t i o n A = testONV ( Q, R )

%TESTONV compute A from i t s Schmidt decomposi t ion
A=Q*R ;
end
� �
Listing 3.10: Berechnung von A aus der QR–Zerlegung nach Schmidt (QR/te-
stONV.m)
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function [Q R] = ONV( A )

%ONV Compute QR decomposition of A based on Schmidt 

%orthonormalization. Currently works on real input only!

%Fails in the case of singular A.

[n m]=size(A);

Q=zeros(n,m);

R=zeros(m,m);

maxA=max(abs(A(:)));



for i=1:min(n,m)

    q=A(:,i);

    for k=1:i-1

        q=q-dot(q,Q(:,k))*Q(:,k);

    end

    if (norm(q)<maxA*eps)

        'Matrix is too close to singular.' %#ok<*NOPRT>

        return

    end

    q=q/norm(q);

    Q(:,i)=q;

end

R=Q'*A;

A1=Q*R;

if (n>=m)

I1=eye(m);

I2=Q'*Q;

else

    I1=eye(n);

    I2=Q*Q';

end

MaxErrorOfQR=max(abs(A1(:)-A(:)))

MaxErrorOfQ=max(abs(I1(:)-I2(:)))

end





Frank Wuebbeling
QR–Zerlegung nach Schmidt



� �
f u n c t i o n B = solveONV ( Q, R , B )

%SOLVEONV Use ONV decomposi t ion f o r s o l u t i o n o f l i n e a r e q u a t i o n s
[ n n ]= s i z e (Q ) ;
B=Q’ * B ;
f o r i =n :=1 :1

f o r k= i + 1 : n
� �
Listing 3.11: Berechnung der Lösung eines LGS aus derQR–Zerlegung nach Schmidt
(QR/solveONV.m)

� �
f u n c t i o n [ o u t p u t a r g s ] = doitONV ( n )

%DOITONV s o l v e random e q u a t i o n o f s i z e n
i f ( nargin <1)

n=3;
end
A=rand ( n ) ;
� �

Listing 3.12: Lösung eines zufälligen LGS nach Schmidt (QR/doitONV.m)

Die ganze Rechnung hat aber einen Haken. Nehmen wir an, die Dimension von A
sei sehr groß. Bei der Berechnung von q̃k ziehen wir von ak die Anteile in den ortho-
gonalen Richtungen qj, j < k, ab. Dabei wird die Norm von ak jedes Mal kleiner.
Die Norm von q̃k ist also kleiner, häufig viel kleiner, als die von ak (es sei denn,
die Matrix A war schon unitär). Dies kann nur durch die Subtraktionen entstanden
sein, also durch Auslöschung. Auslöschung ist für das Schmidtsche Orthogonalisie-
rungsverfahren also unvermeidlich, es ist instabil.
Wir brauchen also ein alternatives Verfahren und nutzen dazu die Householder–
Spiegelungen. Gegeben sei eine (m×n)–Matrix A. Wie bei der LR–Zerlegung wol-
len wir im ersten Schritt die Matrix mit einer (jetzt unitären) Matrix von links multi-
plizieren, so dass die Elemente unterhalb der Hauptdiagonalen in der ersten Spalte
eliminiert werden. Wir suchen also eine unitäre Matrix Q1, so dass

Q1A =


α1 ∗
0 ∗
...

...
0 ∗


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function A = testONV( Q,R )

%TESTONV compute A from its Schmidt decomposition

A=Q*R;

end
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function B = solveONV( Q,R,B )

%SOLVEONV Use ONV decomposition for solution of linear equations

[n n]=size(Q);

B=Q'*B;

for i=n:-1:1

    for k=i+1:n

        B(i,:)=B(i,:)-R(i,k)*B(k,:);

    end

    B(i,:)=B(i,:)/R(i,i);

end







Frank Wuebbeling
Berechnung der Lösung eines LGS aus der QR–Zerlegung nach Schmidt


function [ output_args ] = doitONV( n )

%DOITONV solve random equation of size n

if (nargin<1)

    n=3;

end

A=rand(n);

x=rand(n,1);

b=A*x;

[Q R]=ONV(A);

A1=testONV(Q,R);

MaxErrorOfONV=max(abs(A1(:)-A(:)));

x1=solveONV(Q,R,b);

MaxErrorOfSolution=max(abs(x(:)-x1(:)));

end





Frank Wuebbeling
Lösung eines zufälligen LGS nach Schmidt

http://en.wikipedia.org/wiki/Alston_Scott_Householder


Seien a1, . . . , an die Spalten von A. Da unitäre Abbildungen längenerhaltend sind,
gilt schon mal ||a1||2 = ||Q1a1||2 = |α1|. Wir wollenQ als Spiegelungsmatrix wählen
und betrachten das Problem zunächst im R2 (Abbildung 3.1). Offensichtlich gibt es
zwei Möglichkeiten, einen gegebenen Vektor auf ein Vielfaches des Einheitsvektor
abzubilden, nämlich die Spiegelung an den Geraden

a1 ± ||a1||e1

mit den Normalvektoren
a1 ∓ ||a1||e1.

Wir lassen die Wahl des Vorzeichens zunächst offen und setzen

σ ∈ {1,−1}, α1 = σ||a1||2 =
√
at1a1, v1 = a1 − α1e1.

a1 + ||a1||e1

x1

a1 − ||a1||e1

a1

x2

Abbildung 3.1: a1 kann auf ||a1||e1 und−||a1||e1 gespiegelt werden.

Wie erwartet gilt
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Q(v1)a1 = (I − 2
v1v

t
1

vt1v1

)a1

= a1 − 2
(a1 − α1e1)ta1

(a1 − α1e1)t(a1 − α1e1)
(a1 − α1e1)

= a1 − 2
α2

1 − α1(a1)1

α2
1 − 2α1(a1)1 + α2

1

(a1 − α1e1)

= α1e1.

Der Spaltenvektor a1 wird durch die Linksmultiplikation mit Q(v1) also auf ein Viel-
faches des Einheitsvektors abgebildet. MitA(1) = A steht inQ(v1)A(1) in der ersten
Spalte unterhalb der Hauptdiagonalen 0. Wir streichen nun die erste Zeile und Spal-
te von Q(v1)A(1) und erhalten eine neue Matrix A(2). Falls noch Zeilen und Spalten
übrigbleiben, führen wir dieselbe Rechnung auf der neuen Matrix A(2) durch. Wir
erhalten eine Matrix Q(v2)′, so dass Q(v2)A(2) in der ersten Spalte unterhalb der
Hauptdiagonalen verschwindet.
Wir ergänzenQ(v2)′ in der linken oberen Ecke mit einer Einheitsmatrix zu einer (m×
m)–Matrix Q(v2) und erhalten damit

Q(v2)Q(v1)A =

(
1 0
0 Q(v2)′

)
Q(v1)A(1)

=

(
1 0
0 Q(v2)′

)(
α1 ∗
0 A(2)

)

=

 α1 ∗ ∗
0 α2 ∗
0 0 ∗


Sei k = min(n,m). Wir führen diese Schritte insgesamt k-mal durch und streichen
dabei in Schritt i (i− 1) Zeilen und Spalten. Für i = k bleibt nichts übrig, und es gilt

Q(vk) · · ·Q(v2)Q(v1)A =: R

und (m× n)–Matrix mit Rij = 0 für j < i.
Wir multiplizieren noch von links mit den Transponierten und erhalten insgesamt

A = Q(v1)t · · ·Q(vk)
t︸ ︷︷ ︸

=:Q

R.

Dies ist eine Zerlegung von A in eine unitäre Matrix Q und eine Matrix mit 0 unter-
halb der Hauptdiagonalen. Häufig wird auch diese QR–Zerlegung von A genannt.
Um mit der obigen Definition konsistent zu bleiben: Fürm > n sind die Zeilen n+ 1
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bism vonR leer. In diesem Fall können wir wir die letztenm−n Spalten vonQ und
die letzten m − n Zeilen von R ändern, ohne dass sich QR ändert. Dann erhalten
wir in jedem Fall eine QR–Zerlegung in der oben definierten Form.
Dieser Algorithmus versagt, falls vk = 0 für σ = 1 und σ = −1. Dann ist aber die
erste Spalte von A(k) komplett 0, und die gewünschte Dreiecksform ist bereits her-
gestellt. Wir können also für Q(vk) eine beliebige unitäre Matrix wählen, üblicher-
weise Q(vk) = I. Der Householder–Algorithmus liefert also immer zwei Matrizen Q
und R mit A = QR.
Zur Wahl von σ: Natürlich wählen wir σ so, dass bei der Berechnung von a1 − α1e1

keine Auslöschung auftritt. Dies ist dann der Fall, wenn σ = − sgn(a11).
Dieser Algorithmus zur Herstellung derQR–Zerlegung heißt Householder–Algorith-
mus.
Es gilt

Satz 3.14 ( Stabilität des Householder–Algorithmus)
Der Householder–Algorithmus ist stabil.

(ohne Beweis).
Bemerkung:

1. Der Aufwand zur Berechnung der QR–Zerlegung mit Hilfe der Householder–
Matrizen beträgtmn2−n3/3+O((n+m)2) fürm ≥ n und ist damit für n = m
doppelt so hoch wie bei der LR–Zerlegung (n3/3 vs. 2n3/3) (Übungen).

2. Sei A = QR und A invertierbar. Dann kann die Lösung von Ax = b berechnet
werden mit

Ax = b⇐⇒ QRx = b⇐⇒ Rx = Qtb

und Rückwärtseinsetzen.

3. Üblicherweise wird die Matrix Q weder abgespeichert noch überhaupt ausge-
rechnet, sondern nur die Vektoren vk. Diese werden zusammen mit der rech-
ten oberen Dreiecksmatrix R in die Originalmatrix A geschrieben. Die Haupt-
diagonale mit den αk kommt dabei in einen Extra–Vektor.Qw für einen Vektor
w wird dann über die Definition von Q mit Hilfe der vk berechnet, was nach
den Vorbemerkungen sehr schnell geht.

4. Sei A = QR. Dann ist

AtA = RtQtQR = RtR.

RtR ist also Cholesky–Zerlegung von AtA.
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� �
f u n c t i o n [ A , a lphavec ] = householder ( A )

%HOUSEHOLDER compute QR decomposi t ion o f A by householder
%o p e r a t i o n s . R always has A s i z e ( d i f f e r e n t from s c r i p t ) .
[m n ]= s i z e ( A ) ;
mi=min ( n ,m) ;
alphavec=zeros ( mi , 1 ) ;
� �

Listing 3.13: QR–Zerlegung nach Householder (QR/householder.m)

� �
f u n c t i o n A = h o u s e h o l d e r t e s t ( QR , alphavec )

%HOUSEHOLDERTEST
%compute A from i t s QR decomposi t ion
%U n e f f i c i e n t . Use computeQR t o compute Q and R ,
%Then compute i t s p r o d u c t .
[m n ]= s i z e ( QR ) ;
� �
Listing 3.14: Berechnung von A aus seiner Householderzerlegung (QR/househol-
dertest.m)

� �
f u n c t i o n B = h o u s e h o l d e r s o l v e ( QR , alphavec , B )

%HOSUEHOLDERSOLVE
[m n ]= s i z e ( QR ) ;
B=applyQt ( QR , B ) ;
f o r i =n :=1 :1

f o r k= i + 1 : n
� �
Listing 3.15: Berechnung der Lösung eines LGS aus der Householder–Zerlegung
(QR/householdersolve.m)

� �
f u n c t i o n [ o u t p u t a r g s ] = d o i t h o u s e h o l d e r ( m, n )

%DOITHOUSEHOLDER S o l v e random l i n e a r e q u a t i o n w i t h householder
i f ( nargin <1)

m=3;
end
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function [A, alphavec] = householder( A )

%HOUSEHOLDER compute QR decomposition of A by householder

%operations. R always has A size (different from script).

[m n]=size(A);

mi=min(n,m);

alphavec=zeros(mi,1);

for i=1:mi

    alpha=sign(A(i,i))*norm(A(i:end,i));

    alphavec(i)=-alpha;

    v=A(i:end,i);

    v(1)=v(1)+alpha;

    normv=norm(v,2); %this can be done simpler

    v=v/normv;

    A(i:end,i:end)=A(i:end,i:end)-2*v*(v'*A(i:end,i:end));

    A(i:end,i)=v;

end

end





Frank Wuebbeling
QR–Zerlegung nach Householder


function A = householdertest( QR, alphavec )

%HOUSEHOLDERTEST 

%compute A from its QR decomposition

%Unefficient. Use computeQR to compute Q and R,

%Then compute its product.

[m n]=size(QR);

R=QR;

for i=1:n

    for k=i+1:m

        R(k,i)=0;

    end

    R(i,i)=alphavec(i);

end

A=applyQ(QR,R);

end



function [Q,R]=computeQR(QR,alphavec)

[m n]=size(QR);

R=QR;

for i=1:n

    for k=i+1:m

        R(k,i)=0;

    end

    R(i,i)=alphavec(i);

end

Q=applyQ(QR,eye(m));

end



function B=applyQ(QR,B)

[m n]=size(QR);

for i=m:-1:1

    v=QR(i:end,i);

    B(i:end,:)=B(i:end,:)-2*v*(v'*B(i:end,:));

end

end

Frank Wuebbeling
Berechnung von A aus seiner Householderzerlegung


function B = householdersolve( QR, alphavec, B )

%HOSUEHOLDERSOLVE

[m n]=size(QR);

B=applyQt(QR,B);

for i=n:-1:1

    for k=i+1:n

        B(i,:)=B(i,:)-QR(i,k)*B(k,:);

    end

    B(i,:)=B(i,:)/alphavec(i);

end

end

function B=applyQt(QR,B)

[m n]=size(QR);

for i=1:m

    v=QR(i:end,i);

    B(i:end,:)=B(i:end,:)-2*v*(v'*B(i:end,:));

end

end

Frank Wuebbeling
Berechnung der Lösung eines LGS aus der Householder–Zerlegung



i f ( nargin <2)
� �
Listing 3.16: Lösung eines zufälligen LGS mit der Householderzerlegung (QR/doi-
thouseholder.m)

Satz 3.15 (Eindeutigkeit der QR–Zerlegung Sei A ∈ R(n,n) invertierbar. Seien A =
QR = Q′R′ zweiQR–Zerlegungen vonA. Dann gibt es eine (n×n)–Diagonalmatrix
D mit |Dii| = 1, i = 1 . . . n, Q = Q′D, R = D−1R′. Falls Rii > 0 und R′ii > 0,
i = 1 . . . n, so ist R = R′ und Q = Q′.

Beweis: Übungen. �

Zum Abschluss sollte man einmal eine größere QR–Zerlegung von Hand rechnen,
um sich wirklich im Klaren zu sein, wie das funktioniert. Im Anhang findet sich ein
durchgerechnetes Beispiel für eine symbolische 7x5–Matrix.

Satz 3.16 (Hessenbergform)
Sei A eine n × n–Matrix. Dann gibt es eine unitäre (n × n)–Matrix Q, so dass für
H := QAQt gilt

Hik = 0

für i > k + 1. H heißt dann Hessenbergmatrix. Falls A symmetrisch ist, so ist H
sogar eine Bandmatrix der Bandbreite 1.
H ist ähnlich zu A, besitzt also dieselben Eigenwerte. Die QR–Zerlegung von H
kann schnell berechnet werden.

Beweis: Wir streichen die erste Zeile vonA und erhalten eine MatrixA(1). Wir führen
darauf einen Householderschritt aus. Dies liefert eine unitäre (n− 1, n− 1)–Matrix
Q′1. Wir ergänzen wie bei Householder diese Matrix zu einer unitären (n, n)–Matrix
Q1. Nach Konstruktion ist dann Q1A eine Matrix mit (möglicherweise) von Null ver-
schiedenen Elementen in der ersten und zweiten Zeile der ersten Spalte, darunter
stehen nur Nullen. Das ist gerade die geforderte Form. Rechtsmultiplikation mit Qt

1

zerstört dies nicht, d.h. Q1AQ
t
1 hat in der ersten Spalte die richtige Form.

Wir streichen nun die erste Spalte und Zeile von A und führen den Algorithmus wie
bei Householder rekursiv durch. Dies liefert eine Folge von Matrizen Q1 . . . Qn−1,
und es gilt

H = Qn−1Qn−2 . . . Q1︸ ︷︷ ︸
=:Q

AQt
1 . . . Q

t
n−1
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function [ output_args ] = doithouseholder( m,n )

%DOITHOUSEHOLDER Solve random linear equation with householder

if (nargin<1)

    m=3;

end

if (nargin<2)

    n=m;

end

A=rand(m,n);

[QR,alphavec]=householder(A);

A1=householdertest(QR,alphavec);

MaxErrorOfQRDec=max(abs(A(:)-A1(:)))

x=rand(n,1);

b=A*x;

x1=householdersolve(QR,alphavec,b);

MaxErrorOfSolution=max(abs(x(:)-x1(:)))

end





Frank Wuebbeling
Lösung eines zufälligen LGS mit der Householderzerlegung




A =






a11 a12 a13 a14 a15


a21 a22 a23 a24 a25


a31 a32 a33 a34 a35


a41 a42 a43 a44 a45


a51 a52 a53 a54 a55


a61 a62 a63 a64 a65


a71 a72 a73 a74 a75






a1 =






a11


a21


a31


a41


a51


a61


a71






, α1 = ±||a1||, ṽ1 =






a11 + α1


a21


a31


a41


a51


a61


a71






, v1 = ṽ1/||ṽ1|| =






w1


w2


w3


w4


w5


w6


w7






Q1 = (I − 2v1v
t
1) =






1− 2w1w1 −2w1w2 −2w1w3 −2w1w4 −2w1w5 −2w1w6 −2w1w7


−2w2w1 1− 2w2w2 −2w2w3 −2w2w4 −2w2w5 −2w2w6 −2w2w7


−2w3w1 −2w3w2 1− 2w3w3 −2w3w4 −2w3w5 −2w3w6 −2w3w7


−2w4w1 −2w4w2 −2w4w3 1− 2w4w4 −2w4w5 −2w4w6 −2w4w7


−2w5w1 −2w5w2 −2w5w3 −2w5w4 1− 2w5w5 −2w5w6 −2w5w7


−2w6w1 −2w6w2 −2w6w3 −2w6w4 −2w6w5 1− 2w6w6 −2w6w7


−2w7w1 −2w7w2 −2w7w3 −2w7w4 −2w7w5 −2w7w6 1− 2w7w7






Q1A =






−α1 r12 r13 r14 r15


0 b11 b12 b13 b14


0 b21 b22 b23 b24


0 b31 b32 b33 b34


0 b41 b42 b43 b44


0 b51 b52 b53 b54


0 b61 b62 b63 b64











Q1A =






−α1 r12 r13 r14 r15


0 b11 b12 b13 b14


0 b21 b22 b23 b24


0 b31 b32 b33 b34


0 b41 b42 b43 b44


0 b51 b52 b53 b54


0 b61 b62 b63 b64






ṽ2 =






b11 + α2


b21


b31


b41


b51


b61






, v2 = ṽ2/||ṽ2||, Q2 =






1 0 · · · 0
0
... (I − 2v2v


t
2)


0






Q2Q1A =






−α1 r12 r13 r14 r15


0 −α2 r23 r24 r25


0 0 c11 c12 c13


0 0 c21 c22 c23


0 0 c31 c32 c33


0 0 c41 c42 c43


0 0 c51 c52 c53











Q2Q1A =






−α1 r12 r13 r14 r15


0 −α2 r23 r24 r25


0 0 c11 c12 c13


0 0 c21 c22 c23


0 0 c31 c32 c33


0 0 c41 c42 c43


0 0 c51 c52 c53






ṽ3 =






c11 + α3


c21


c31


c41


c51






, v3 = ṽ3/||ṽ3||, Q3 =






1 0 0 · · · 0
0 1 0 · · · 0
0 0
...


... (I − 2v3v
t
3)


0 0






Q3Q2Q1A =






−α1 r12 r13 r14 r15


0 −α2 r23 r24 r25


0 0 −α3 r34 r35


0 0 0 d11 d12


0 0 0 d21 d22


0 0 0 d31 d32


0 0 0 d41 d42











Q3Q2Q1A =






−α1 r12 r13 r14 r15


0 −α2 r23 r24 r25


0 0 −α3 r34 r35


0 0 0 d11 d12


0 0 0 d21 d22


0 0 0 d31 d32


0 0 0 d41 d42






Q4 =






1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0
0 0 0 (I − 2v4v


t
4)


0 0 0
0 0 0






Q4Q3Q2Q1A =






−α1 r12 r13 r14 r15


0 −α2 r23 r24 r25


0 0 −α3 r34 r35


0 0 0 −α4 r45


0 0 0 0 e12


0 0 0 0 e22


0 0 0 0 e32











Q4Q3Q2Q1A =






−α1 r12 r13 r14 r15


0 −α2 r23 r24 r25


0 0 −α3 r34 r35


0 0 0 −α4 r45


0 0 0 0 e12


0 0 0 0 e22


0 0 0 0 e32






Q5 =






1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0
0 0 0 0 (I − 2v5v


t
5)


0 0 0 0






Q5Q4Q3Q2Q1A =






−α1 r12 r13 r14 r15


0 −α2 r23 r24 r25


0 0 −α3 r34 r35


0 0 0 −α4 r45


0 0 0 0 −α5


0 0 0 0 0
0 0 0 0 0









Frank Wuebbeling
QR-Beispiel

http://de.wikipedia.org/wiki/Karl_Hessenberg


ist Hessenbergmatrix.
Beweis zum Aufwand: In den Übungen. �

Bemerkung: Falls man auf die Idee kommt, einfach den normalen Householder–
Algorithmus anzuwenden und QAQt bildet, erhält man zwar mit QA sogar eine
rechte obere Dreiecksmatrix, die Rechtsmultiplikation mit Qt zerstört diese Form
aber wieder.� �
f u n c t i o n [ A , Q ] = hessenberg ( A )

%HESSENBERG Compute Hessenberg form o f a m a t r i x .
%Assume A i s q u a d r a t i c .
%Q i s t he t r u e m a t r i x Q, not i n v e c t o r form .
[ n n ]= s i z e ( A ) ;
Q=eye ( n ) ;
� �

Listing 3.17: Hessenbergform einer Matrix (QR/hessenberg.m)

� �
f u n c t i o n A = h e s s e n b e r g t e s t ( H , Q )

%HESSENBERGTEST Compute A from i t s Hessenberg r e p r e s e n t a t i o n
A=Q’ * H*Q;
end
� �
Listing 3.18: Berechnung einer Matrix aus ihrer Hessenbergform (QR/hessenberg-
test.m)

� �
f u n c t i o n [ A alphavec ] = QRhessenberg ( A )

%QRHESSENBERG compute QR decomposi t ion o f Hessenberg m a t r i x .
%QR i s s t o r e d as i n householder .
%v should be computed d i r e c t l y .
[m n ]= s i z e ( A ) ;
mi=min ( n ,m)=1;
� �
Listing 3.19: Berechnung der QR–Zerlegung einer Hessenbergmatrix (QR/QRhessen-
berg.m)
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function [ A, Q ] = hessenberg( A )

%HESSENBERG Compute Hessenberg form of a matrix.

%Assume A is quadratic.

%Q is the true matrix Q, not in vector form.

[n n]=size(A);

Q=eye(n);

for i=2:n-1    

    v=A(i:end,i-1);

    alpha=sign(A(i,i-1))*norm(v);

    v(1)=v(1)+alpha;

    normv=norm(v,2); %this can be done simpler

    v=v/normv;

    A(i:end,:)=A(i:end,:)-2*v*(v'*A(i:end,:));

    A(:,i:end)=A(:,i:end)-2*(A(:,i:end)*v)*v';

    Q(i:end,:)=Q(i:end,:)-2*v*(v'*Q(i:end,:));

end
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function A = hessenbergtest( H,Q )

%HESSENBERGTEST Compute A from its Hessenberg representation

A=Q'*H*Q;

end
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function  [A alphavec] = QRhessenberg( A )

%QRHESSENBERG compute QR decomposition of Hessenberg matrix.

%QR is stored as in householder.

%v should be computed directly.

[m n]=size(A);

mi=min(n,m)-1;

alphavec=zeros(mi+1,1);

for i=1:mi

    v=A(i:i+1,i);

    alpha=sign(A(i,i))*norm(v);

    alphavec(i)=-alpha;

    v(1)=v(1)+alpha;

    normv=norm(v,2); %this can be done simpler

    v=v/normv;

    A(i:i+1,i:end)=A(i:i+1,i:end)-2*v*(v'*A(i:i+1,i:end));

    A(i:i+1,i)=v;

end

alphavec(n)=-A(n,n);

A(n,n)=1;

end
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� �
f u n c t i o n [ o u t p u t a r g s ] = QRhessenbergtest ( i n p u t a r g s )

%QRHESSENBERGTEST Summary o f t h i s f u n c t i o n goes here
% D e t a i l e d e x p l a n a t i o n goes here

end
� �
Listing 3.20: Berechnung einer Hessenbergmatrix aus ihrer QR–Zerlegung (QR/QR-
hessenbergtest.m)

� �
f u n c t i o n d o i t h e s s e n b e r g ( n )

%DOITHESSENBERG Compute Hessenberg form o f random m a t r i x
i f ( nargin <1)

n=3;
end
A=rand ( n ) ;
� �

Listing 3.21: Test der Hessenbergzerlegungen (QR/doithessenberg.m)

3.4 Übersicht: Direkte Lösung von LGS

LR–Zerlegung Cholesky–Zerlegung QR–Zerlegung
Existenz ∃P : PA = LR As.p.d⇒ A = LLt A = QR

Eindeutig Ja Ja, falls Lii > 0 Q′ = QD
(A inv.) R′ = D−1R

Lsg. LGS Vorw/Rückw. Vorw./Rückw. Rx = Qtb
Aufwand n3/3 n3/6 2n3/3

Stabil Ja (Pivot) Ja Ja
n 6= m Nein Nein Ja
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function [ output_args ] = QRhessenbergtest( input_args )

%QRHESSENBERGTEST Summary of this function goes here

%   Detailed explanation goes here





end
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function doithessenberg( n )

%DOITHESSENBERG Compute Hessenberg form of random matrix

if (nargin<1)

    n=3;

end

A=rand(n);

[H Q]=hessenberg(A);

A1=hessenbergtest(H,Q);

MaxErrorOfHessenbergForm=max(abs(A(:)-A1(:)))

tic;[Q1,alpha1]=householder(H);toc

tic;[Q2,alpha2]=QRhessenberg(H);toc

H2=householdertest(Q2,alpha2);

MaxErrorOfQRDec=max(abs(H(:)-H2(:)))

end
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Kapitel 4

Über- und unterbestimmte
Gleichungssysteme

Wir haben bereits in der Einleitung gesehen, dass im allgemeinen die Anzahl der
Gleichungen und Variablen in einem linearen Gleichungssystem nicht übereinstim-
men. Sollen etwa bei einer Landvermessung Positionen bestimmt werden, so macht
man typischerweise mehr Messungen als notwendig, um Messfehler ausgleichen
zu können. Das bekannteste Beispiel findet sich bei Gauss, der die Theorie dazu in
seinem Buch “Theoria combinationis observationum erroribus minimis obnoxiae”
veröffentlichte (die Society for Industrial and Applied Mathematics hat freundlicher-
weise für die Nicht–Lateiner eine englische Übersetzung veröffentlicht). Der alte 10
DM–Schein erinnerte an diese Arbeit von Gauss.

Abbildung 4.1: 10 DM–Schein (Quelle: Bundesbank)

Der Hintergrund dazu ist eigentlich ein statistischer, wir werden uns hier ausschließ-
lich auf die numerische Sichtweise konzentrieren (das Ergebnis ist natürlich genau
dasselbe, wie in den Übungen gezeigt wird).
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4.1 Die Methode der kleinsten Quadrate

Als Hauptbeispiel betrachten wir die polynomiale Regression: In einem Experiment
werden Messwerte yi zu Zeiten ti gemessen, i = 1 . . .m. Es wird vermutet, dass
die Ergebnisse durch ein Polynom p ∈ Pn−1 beschrieben werden können, also
yi = p(ti), i = 1 . . .m. Pn−1 ist dabei die Menge der Polynome vom Grad ≤ n − 1.
Zu bestimmen ist das Polynom p (Interpolations–/Approximationsaufgabe). Es gilt
zunächst

Satz 4.1 (Polynominterpolation)
Seien ti ∈ R paarweise verschieden, und yi ∈ R, i = 1 . . .m. Dann gilt:

1. Falls n = m, so gibt es genau ein Polynom p inPn−1 mit p(ti) = yi, i = 1 . . .m.

2. Falls n > m, so gibt es unendlich viele Polynome p in Pn−1 mit p(ti) = yi,
i = 1 . . .m.

3. Falls n < m, so gibt es höchstens ein, im Allgemeinen aber gar kein Polynom
in Pn−1 mit p(ti) = yi, i = 1 . . .m.

Beweis:
Für alle

a ∈ Rn, a = (a0, . . . , an−1)t

sei pa(t) das Polynom mit den Koeffizienten ak, also

pa(t) = a0 + a1t+ . . .+ an−1t
n−1.

Weiter sei A ∈ Rm×n mit Aik = tk−1
i , y = (y1, . . . , ym)t. Dann ist pa genau dann

Lösung der Aufgabe, wenn

Aa =

 t01 t11 · · · tn−1
1

...
...

...
t0n t1n · · · tn−1

m


 a0

...
an−1

 =

 y1

...
ym

 = y.

A heißt Vandermondematrix. Sei n = m. Wir zeigen, dass dann A injektiv und
damit invertierbar ist. Sei also a ∈ Rn mit Aa = 0. Wegen 0 = (Aa)i = pa(ti)
hat pa damit die m Nullstellen t1, . . . , tm. Da pa ein Polynom vom Grad ≤ m − 1
ist, ist nach dem Fundamentalsatz der Algebra pa das Nullpolynom, und damit
a = 0, also besteht der Kern von A nur aus 0. Damit ist A invertierbar, und die
Interpolationsaufgabe mit n = m hat genau eine Lösung.
Falls n > m, so gibt es zu wenige Messungen. Der Rang von A ist m, daraus folgt
der Satz.
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Falls m > n, so gibt es zu viele Gleichungen (Messungen). Der Rang von A
ist n. Falls die Messungen exakt sind, so kann man einfach ein Subset von m
Gleichungen wählen und die eindeutige Lösung bestimmen. Falls die Messungen
oder der polynomiale Zusammenhang nicht exakt sind, gibt es gar keine Lösung.
�

Vorlesungsnotiz: 4. November 2012

Die hier implizierte Idee, falls man zu viele Messungen hat, diese einfach wegzu-
werfen, ist natürlich nicht praxistauglich. Wir müssen davon ausgehen, dass unse-
re Werte nicht exakt sind, und wollen mit Hilfe der zusätzlichen Messungen diese
Fehler korrigieren.
Für eine numerische Lösung müssen wir also im einen Fall den Lösungsbegriff er-
weitern, damit überhaupt eine Lösung existiert, im anderen Fall aus den vielen vor-
handenen Lösungen eine auswählen.
Wir betrachten den Fall n = 2, wir vermuten also einen linearen Zusammenhang.
Dann unterscheiden wir

1. m < n, also m = 1: Jede Gerade, die durch den Punkt (t1, y1) geht, ist Lösung
der Aufgabe (unterbestimmter Fall).

2. m = n, alsom = 2: Die durch die Punkte (t1, y1) und (t2, y2) definierte Gerade
ist Lösung der Aufgabe (eindeutig bestimmter Fall).

3. m > n, also m > 2: Es gibt keine Lösung der Aufgabe (es sei denn, die
Messpunkte liegen zufällig tatsächlich auf einer gemeinsamen Geraden). Wir
modifizieren unsere Aufgabe und suchen statt dessen eine Gerade, die die
gegebenen Punkte möglichst gut approximiert (überbestimmter Fall).� �

f u n c t i o n b e i s p i e l p o l y r e g r
%BEISPIELPOLYREGR B e i s p i e l e z u r A u s g l e i c h s g e r a d e n
f o r i = 1 : 1 1

x1 ( i )= i =6;
y1 ( i )= x1 ( i ) + ( rand =0 . 5 ) * 2 ;

end
� �
Listing 4.1: Unterbestimmtes / eindeutig bestimmtes / überbestimmtes System (ue-
berbest/beispielpolyregr.m)
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function beispielpolyregr

%BEISPIELPOLYREGR Beispiele zur Ausgleichsgeraden

for i=1:11

    x1(i)=i-6;

    y1(i)=x1(i)+(rand-0.5)*2;

end

%Unterbestimmter Fall

close;

hold on;

plot(0,0,'blackX','MarkerSize',30);

x=(-100:100)/100*5;

plot(x,1*x,'red');

plot(x,-x,'green');

plot(x,0.3*x,'blue');

plot(x,0.-0.3*x,'magenta');

set(gcf,'color','white');

centaxes;

title('Unterbestimmter Fall');

axis off;

hold off;

vorlsavepic('unterbestimmt');

%Bestimmter Fall

close;

hold on;

plot(-5,-5,'blackX',5,5,'blackX','MarkerSize',30);

plot(x,x,'red');

title('Eindeutig bestimmter Fall');

centaxes;

set(gcf,'color','white');

axis off;

hold off;

vorlsavepic('bestimmt');

%Ueberbestimmter Fall

close;

hold on;

plot(x1,y1,'blackX','MarkerSize',30);

A=[x1.^0;x1];

A=A';

A1=A'*A;

y2=(A')*(y1');

addpath('../Cholesky');

L=cholesky(A1);

y3=solvecholesky(L,y2);

plot(x,y3(1)+y3(2)*x,'red');

title('Ueberbestimmter Fall');

centaxes;

set(gcf,'color','white');

axis off;

hold off;

vorlsavepic('ueberbestimmt');

end



function H = centaxes(ax)

 % CENTAXES breaks the plot up into four quadrants.

 %

 % H = CENTAXES(AX) breaks the axes with handle AX up into

 % four quadrants. The output, H, contains the handles to

 % the lines and text objects that make up the axes.

 %

 % NOTE: Written for 2-D plots only.



 % Written by John L. Galenski III - Oct. 10, 1994

 % Copyright (c) by the MathWorks, Inc. 1994



 % DISCLAIMER: This files has not been tested by the

 % MathWorks, Inc., and therefore, it is not supported.

 % It is provided as an example of how to break a plot

 % up into four quadrants.



 if nargin == 0

 ax = gca;

 end



 % Get the children of the axes

 ch = get(ax,'Children');

 X1 = 0;

 X2 = 0;

 Y1 = 0;

 Y2 = 0;

 for i = 1:length(ch);

 typ = get(ch(i),'Type');

 if ~strcmp(typ,'text');

 X = get(ch(i),'XData');

 Y = get(ch(i),'YData');

 x1 = min(X);

 x2 = max(X);

 if abs(x1) > abs(x2), X1 = abs(x1); else, X1 = abs(x2); end

 if X1 > X2, X2 = X1; end

 y1 = min(Y);

 y2 = max(Y);

 if abs(y1) > abs(y2), Y1 = abs(y1); else, Y1 = abs(y2); end

 if Y1 > Y2, Y2 = Y1; end

 end

 end





 

 % Add the lines that form the axes

 lx = line('XData',[-X2 X2],'YData',[0 0], ...

 'Color',get(gca,'XColor'));

 ly = line('XData',[0 0],'YData',[-Y2 Y2], ...

 'Color',get(gca,'YColor'));

 set(gca,'XLim',[-X2 X2],'YLim',[-Y2 Y2], ...

 'Visible','on')



 % Add the tick marks

 tl = get(gca,'TickLength');

 tl = [-tl(1) tl(1)];

 xt = get(gca,'XTick');

 yt = get(gca,'YTick');

 for i = 1:length(xt) % X-tick marks

 hxt(i) = line('XData',[xt(i) xt(i)], ...

 'YData',tl, ...

 'Color',get(gca,'XColor'));

 tx(i) = text(xt(i),1.5*tl(1),num2str(xt(i)));

 set(tx(i),'Horizontal','center','Vertical','top')

 end

 for i = 1:length(yt) % Y-tick marks

 hyt(i) = line('YData',[yt(i) yt(i)], ...

 'XData',tl, ...

 'Color',get(gca,'YColor'));

 ty(i) = text(tl(1),yt(i),num2str(yt(i)));

 set(ty(i),'Horizontal','right','Vertical','middle')

 end



 % Return output if necessary

 if nargout

 H = [lx;ly;hxt(:);tx(:);hyt(:);ty(:)];

 end

end
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Abbildung 4.2: Beispiel: Polynomiale Regression. Unterbestimmt, bestimmt, über-
bestimmt.

Im dritten Fall suchen wir ein Polynom pa ∈ Pn−1, so dass der Abstand der Punkte
(ti, yi) und (ti, pa(ti)) = (ti, (Aa)i), also ||y − Aa||, insgesamt möglichst klein ist.
Wir haben also das Problem der Lösung von

Aa = y ⇐⇒ ||Aa− y|| = 0

ersetzt durch die Bestimmung von

arg min
a
||Aa− f ||.

Wenn ||Aa− f || = 0 nicht möglich ist, dann soll es also zumindest möglichst klein
sein. Für invertierbares A sind diese Lösungen natürlich gleich. Wir erhalten eine
echte Erweiterung des Lösungsbegriffs für den Fall, dass eigentlich keine Lösung
existiert.
Wir wählen nun zur Abstandsmessung die euklidische Norm, im Kapitel über Appro-
ximation werden wir auch andere Normen betrachten.

Definition 4.2 ( kleinste Quadrate–Lösung, least squares solution) Sei A ∈ Rm×n,
b ∈ Rm. x ∈ Rn heißt kleinste Quadrate–Lösung von Ax = b genau dann, wenn

||Ax− b||22 ≤ min
y∈Rn
||Ay − b||22.

Bemerkung: Wir machen keine Voraussetzungen an m, n oder den Rang von A.
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Bemerkung: Falls Ax = b Lösungen besitzt, so sind genau diese auch die kleinste
Quadrate–Lösungen.
Bemerkung: Für m ≥ n und das Interpolationsproblem heißen die durch die klein-
ste Quadrate–Lösungen von Ax = b definierten Polynome Ausgleichspolynome
bzw. Ausgleichsgeraden (n = 2).
Leider hilft uns diese Definition nicht bei der Berechnung der kleinsten Quadrate–
Lösung. Wir geben daher eine zur Definition äquivalente Bedingung an. Sei im Fol-
genden immer A ∈ Rm×n. Wir beschränken uns hier der Einfachheit halber wieder
auf reelle Matrizen, obwohl alles sofort auch ins Komplexe übertragbar ist. Wir erin-
nern noch einmal an

1. die Definitionen

Ker(A) = {x ∈ Rn|Ax = 0} , Bild(A) = {Ax|x ∈ Rn}

und
rang(A) = dimBild(A).

2. den Rangsatz
rang(A) = rang(At).

3. den Dimensionssatz

dim Ker(A) + dim Bild(A) = n.

Lemma 4.3 Sei A ∈ Rm×n.

1. Rm = Bild(A)⊕ Ker(At) (orthogonale Summe).

2. Ker(AtA) = Ker(A).

Beweis:

1. Sei x ∈ Ker(At) ⊂ Rm, y ∈ Rn beliebig.

Atx = 0⇒ 0 = (Atx, y) = (x,Ay)

also Ker(At) ⊂ Bild(A)⊥. Sei nun x ∈ Bild(A)⊥. Dann gilt

0 = (x,AAtx) = (Atx,Atx)

und damit x ∈ Ker(At), insgesamt also Ker(At) = Bild(A)⊥.
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2. Sei AtAx = 0, dann gilt

0 = (AtAx, x) = (Ax,Ax)

und damit schon Ax = 0.

�

Satz 4.4 ( Gauss–Normalgleichung)
Sei A ∈ Rm×n, b ∈ Rm. x ∈ Rn ist genau dann kleinste Quadrate–Lösung von
Ax = b, falls

AtAx = Atb.

Diese Gleichung heißt Gausssche Normalgleichung. Die Menge der kleinste
Quadrate–Lösungen ist nicht leer.

Beweis: Nach dem Lemma gibt es b1, b2 ∈ Rm, b1 = Az, z ∈ Rn, Atb2 = 0 mit
b = b1 + b2. Sei x ∈ Rm. Dann gilt

||Ax− b||22 = ||Ax− b1︸ ︷︷ ︸
∈Bild(A)

− b2︸︷︷︸
∈Ker(At)

||22 = ||Ax− b1||22 + ||b2||22 ≥ ||Az − b1||22︸ ︷︷ ︸
=0

+||b2||22.

z ist also kleinste Quadrate–Lösung. Weiter ist ein x ∈ Rn genau dann kleinste
Quadrate–Lösung, wenn Ax = b1 = Az, also

A (x− z) = 0⇐⇒ 0 = AtA (x− z) = AtAx− AtAz = AtAx− At(b1 + b2︸︷︷︸
∈Ker(At)

),

also AtAx = Atb.
Wir skizzieren noch die Idee zu einem zweiten Beweis (nur eine Richtung). Sei x
eine kleinste Quadrate–Lösung, und y ∈ Rn beliebig. Dann hat

g(λ) = ||A(x+ λy)− b||22

ein lokales Minimum bei λ = 0, es gilt also

0 = g′(0) = ((Ax− b+ λAy)t(Ax− b+ λAy))′(0)

= 2(Ax− b, Ay) + 2λ(Ay,Ay)|λ=0

= 2(At(Ax− b), y).

Wir wählen nun y = At(Ax− b) und damit gilt

AtAx = Atb.
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�
Bemerkung: Seien x1, x2 zwei kleinste Quadrate–Lösungen. Dann gilt

x1 − x2 ∈ Ker(AtA) = Ker(A).

Die kleinste Quadrate–Lösung ist also genau dann eindeutig, wenn A den Rang n
hat. Im Allgemeinen ist sie es nicht.

Beispiel 4.5

1. Eine feste Länge L wird m–mal gemessen mit Ergebnissen l1 bis lm. Das zu-
gehörige überbestimmte Gleichungssystem lautet

L = l1
L = l2

...
L = lm

⇒


1
1
...
1

L =


l1
l2
...
lm

 .

Für die kleinste Quadrate–Lösung L erhalten wir

mL = (1, . . . , 1)


1
1
...
1

 = (1, . . . , 1)


l1
l2
...
lm

 = l1 + l2 + . . .+ lm

und damit

L =

∑m
i=1 li
m

,

also, nicht sehr überraschend, den Mittelwert der li.

2. Zu Zeitpunkten ti werden die Messwerte yi gemessen, i = 1 . . . 4.

ti −2 0 1 1
yi −2 −4 4 6

.

Es wird ein linearer Zusammenhang der Form y(t) = at + b vermutet. Wir be-
stimmen die Ausgleichsgerade. Das überbestimmte Gleichungssystem lautet

1 −2
1 0
1 1
1 1

( b
a

)
=


−2
−4

4
6

 .
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Die Normalgleichung lautet

(
1 1 1 1
−2 0 1 1

)
1 −2
1 0
1 1
1 1

( b
a

)
=

(
1 1 1 1
−2 0 1 1

)
−2
−4

4
6


also (

4 0
0 6

)(
b
a

)
=

(
4

14

)
und damit erhalten wir die Ausgleichsgerade (7/3)x+ 1.

Abbildung 4.3: Beispiel zur Ausgleichsgeraden

� �
f u n c t i o n b e i s p i e l a u s

%BEISPIELAUS B e i s p i e l A u s g l e i c h s g e r a d e aus S k r i p t
addpath ( ’ . . / Cholesky ’ ) ;
A = [ 1 =2; 1 0; 1 1 ; 1 1 ] ;
b=[=2;=4;4; 6 ] ;
b1=A ’ * b ;
� �

Listing 4.2: Lösung eines überbest. LGS (ueberbest/beispielaus.m)

Sei A die m × n–Nullmatrix. Dann ist jedes x ∈ Rn kleinste–Quadrate–Lösung von
Ax = b, denn

AtAx = 0 = Atb.

73


-4

Beispiel: Ausgleichsgerade




Frank Wuebbeling
ausgleich.jpg: Beispiel zur Ausgleichsgeraden


hgS_070000:[1x1  struct array]


		[1x6  char array]

		[1x1  double array]

		[1x1  struct array]		@ = 
	PaperUnits : [1x11  char array]
	Color : [1x3  double array]
	Colormap : [64x3  double array]
	InvertHardcopy : [1x2  char array]
	PaperPosition : [1x4  double array]
	PaperSize : [1x2  double array]
	PaperType : [1x2  char array]
	Position : [1x4  double array]
	ApplicationData : [1x1  struct array]






		[1x1  struct array]		@ = 
	type : [1x4  char array]
	handle : [1x1  double array]
	properties : [1x1  struct array]
	children : [6x1  struct array]
	special : [4x1  double array]






		[0x0  double array]



Frank Wuebbeling
Matlab Figure ausgleich.fig: Beispiel zur Ausgleichsgeraden


function beispielaus

%BEISPIELAUS Beispiel Ausgleichsgerade aus Skript

addpath('../Cholesky');

A=[1 -2; 1 0; 1 1; 1 1];

b=[-2;-4;4; 6];

b1=A'*b;

A1=A'*A;

L=cholesky(A1);

x=solvecholesky(L,b1);

plot(A(:,2),b,'.');

axis equal;

t=(-100:100)/100*3;

hold on;

plot(t,x(1)+x(2)*t,'red');

title('Beispiel: Ausgleichsgerade');

vorlsavepic('ausgleich');

end





Frank Wuebbeling
Lösung eines überbest. LGS



4.2 Die Minimum Norm–Lösung

Im allgemeinen ist die kleinste Quadrate–Lösung nicht eindeutig. Wir wählen in die-
sen Fällen eine spezielle aus, nämlich die mit kleinster Norm. Dies führt zur Defini-
tion der Minimum–Norm–Lösung.

Definition 4.6 ( Minimum Norm–Lösung, verallgemeinerte Lösung, Moore–
Penrose–Lösung)
Sei A ∈ Rm×n, b ∈ Rm. x+ ∈ Rn heißt Minimum Norm–Lösung von Ax = b genau
dann, wenn gilt

1. x+ ist kleinste Quadrate–Lösung von Ax = b.

2. x+ hat unter allen kleinste Quadrate–Lösungen vonAx = b die kleinste Norm,
d.h.

||x+|| ≤ ||x||∀x : x ist kleinste Quadrate–Lösung von Ax = b

.

Bemerkung: Wir machen keine Voraussetzungen an m, n oder den Rang von A.
Bemerkung: Für die kleinste Quadrate–Lösung und die Minimum Norm–Lösung gibt
es eine einfache geometrische Deutung. Zunächst ist klar:

Ax = b

ist lösbar genau dann, wenn b ∈ Bild(A). Falls dies nicht gilt, so projizieren wir b
orthogonal auf Bild(A), erhalten b1 und lösen statt dessen

Ax = b1.

Die so erhaltenen Lösungen sind die kleinste Quadrate–Lösungen.
Falls es mehrere Lösungen gibt: Offensichtlich trägt der Nullraum von A nichts zur
Lösung von Ax = b bei. Also projizieren wir die Lösungen auf den Ker(A)⊥(=
Bild(At) und diese Projektion ist eindeutig. Die so erhaltene Lösung ist die Mini-
mum Norm–Lösung.
Diese Definition erlaubt uns noch nicht die direkte Berechnung von x+. Die geome-
trische Überlegung legt aber die folgende Beziehung nahe. Wir geben wieder eine
zum Optimierungsproblem äquivalente nachrechenbare Bedingung an.

Satz 4.7 (Berechnung und Eindeutigkeit der Minimum Norm–Lösung)
Sei A ∈ Rm×n, b ∈ Rm. x+ ist genau dann Minimum Norm–Lösung von Ax = b,
falls gilt
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1. AtAx+ = Atb.

2. x+ ∈ Bild(At).

Die Minimum Norm–Lösung ist eindeutig bestimmt.

Beweis: Sei x eine kleinste Quadrate–Lösung von Ax = b. Nach Nach Lemma 4.3,
angewandt auf At, ist x = u+ v, u ∈ Bild(At), v ∈ Ker(A). Mit x+ := u (wir wählen
also wie in der Vorüberlegung x+ als Projektion auf Ker(A)⊥) gilt

A(x− x+) = Av = 0

und damit
AtAx+ = AtA(x+ + (x− x+)) = AtAx = b,

denn x ist kleinste Quadrate–Lösung, also ist auch x+ kleinste Quadrate–Lösung.
Sei nun x eine weitere kleinste Quadrate–Lösung. Mit der Bemerkung zu Satz 4.4
gilt

x = x+ + w, w ∈ Ker(A)

und

||x||22 = ||x+ + w||22 = || x+︸︷︷︸
∈Bild(At)

+ w︸︷︷︸
∈Ker(A)

||22 = ||x+||22 + ||w||22 ≥ ||x+||22.

Gleichheit bekommen wir genau dann, wenn w = 0, also x = x+ + w = x+, die
Minimum Norm–Lösung ist also eindeutig. �

Beispiel 4.8

1. Sei A die m × n–Nullmatrix, b ∈ Rm beliebig. Dann erfüllt jedes x ∈ Rn die
Normalengleichung

AtAx = Atb

und ist damit kleinste Quadrate–Lösung. Die Minimum Norm–Lösung ist unter
diesen die mit kleinster Norm, also x+ = 0. Offensichtlich ist x+ auch eindeu-
tig bestimmt durch die Bedingung

x+ ∈ Bild(At) = {0} .
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2. Wir suchen die Minimum Norm–Lösung des Ausgleichsproblems für eine
einzelne Messung (t1, y1) und den linearen Ansatz at + b. (a, b) ist kleinste
Quadrate–Lösung, also muss gelten(

1
t1

)(
1 t1

)( b
a

)
=

(
1
t1

)(
y1

)
also (

1 t1
t1 t21

)(
b
a

)
=

(
y1

ty1

)
oder

b+ at1 = y1.

Da in diesem Fall Lösungen von Ax = b existieren, sind genau diese natürlich
auch die kleinste Quadrate–Lösungen, den Ansatz über die Normalenglei-
chung hätten wir uns also sparen können.
Wegen

x+ ∈ Bild(At) =
{
Atu|u ∈ Rm

}
=
{

(u, t1u)t|u ∈ R
}

gilt für ein u: b = u, a = t1u und

y1 = b+ at1 = u+ t21u

und damit
u =

y1

1 + t21

und die gesuchte Gerade ist

y(t) =
y1t1

1 + t21
t+

y1

1 + t21
.

Insbesondere erfüllt diese Gerade natürlich y(t1) = y1. Tatsächlich hat die-
se Gerade eine kleinere 2–Norm auf den Koeffizienten als die eigentlich viel
naheliegendere Lösung y(t) = y1.

4.3 Die Pseudoinverse

FallsAmaximalen Rang hat (also Rang(A) = min(n,m)). so lässt sich die Minimum
Norm–Lösung durch Matrixinversion berechnen.

Satz 4.9 Pseudoinverse, Moore–Penrose–Inverse, verallgemeinerte Inverse
Die Abbildung A+ : Rm 7→ Rn, A+b = x+, ist linear. A+ heißt Pseudoinverse
(Moore–Penrose–Inverse, verallgemeinerte Inverse) von A.
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1. Falls n = m und A invertierbar, so gilt A+ = A−1.

2. Falls m > n und A injektiv (Rang(A) = n), so ist AtA invertierbar und

A+ = (AtA)−1At.

3. Falls m < n und A surjektiv (Rang(A) = m), so ist AAt invertierbar und

A+ = At(AAt)−1.

Beweis: Sei b ∈ Rm, A ∈ Rm×n.

1. Falls A invertierbar ist (Rang(A) = m = n), so ist die einzige kleinste
Quadrate–Lösung die eindeutige Lösung von Ax = b, also gilt

A+ = A−1.

2. Für m > n ist der Zielraum in der Dimension größer als der Urbildraum. A
kann also nicht surjektiv sein, aber injektiv. Sei A injektiv, d.h. Rang(A) = n.
Wegen Ker(A) = Ker(AtA) ist auch AtA injektiv, also invertierbar. x+ erfüllt
die Normalengleichung

AtAx+ = Atb

also
x+ = (AtA)−1Atb.

3. Für m < n ist der Urbildraum in der Dimension größer als der Zielraum. A
kann also nicht injektiv sein, aber surjektiv. Sei A surjektiv, d.h. Rang(A) =
m. Dann gibt es Lösungen von Az = b, und genau diese sind die kleinste
Quadrate–Lösungen.
Wegen

Rang(At) = Rang(A) = dim Bild(A) = m

ist At injektiv, also ist AAt invertierbar. Wegen x+ ∈ Bild(At) gilt x+ = Atu
für ein u ∈ Rm, also

b = Ax+ = AAtu

und damit
x+ = Atu = At(AAt)−1b.

�
Falls die Inverse vonA existiert, so giltA+ = A−1. Die Pseudoinverse hat aber auch
für die anderen Fälle einige Gemeinsamkeiten mit der Inversen.

77



Satz 4.10 (Rechenregeln der Pseudoinversen)

1. (A+)+ = A.

2. AA+A = A.

3. A+AA+ = A+.

4. AA+ und A+A sind selbstadjungiert.

Beweis: Übungen. �

Dagegen gilt im allgemeinen nicht (AB)∗ = B+A+. Sei als Beispiel

A = (1, 0), B =

(
1
1

)
, (AB) = (AB)+ = (1) : B+A+ = (

1

2
,
1

2
)

(
1
0

)
= (

1

2
).

Leider ist es ungünstig, die Minimum Norm–Lösungen mit 4.9 direkt auszurechnen.
Sei als Beispiel A invertierbar und selbstadjungiert. Angenommen, wir berechnen
die Minimum Norm–Lösung (in diesem Fall natürlich die Lösung) von Ax = b durch

AtAx = Atb.

Dann müssen wir in der euklidischen Norm mit Fehlerverstärkung in der Größenord-
nung

k2(AtA) = k2(A2) = k2(A)2

rechnen (siehe 2.46 und 2.32). Für Matrizen mit hoher Kondition ist aber

k2(A)2 >> k2(A),

dieser Algorithmus ist also nicht stabil. Generell sollte man die Berechnung vonAtA
vermeiden.
Wir nutzen daher zur Berechnung die QR–Zerlegung.

1. Sei m ≥ n, A ∈ Rm×n, Rang(A) = n und

A = QR

eine QR–Zerlegung von A, also

Q ∈ Rm×n mitQtQ = I, R ∈ Rn×nrechte obere Dreiecksmatrix.
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A hat maximalen Rang, also auch R, und damit sind R und Rt invertierbar.
x+ ist eindeutig bestimmt durch die Normalengleichung

RtQtb = Atb = AtAx+ = RtQtQRx = RtRx+.

Rt ist invertierbar, also gilt
Rx+ = Qtb

und wir erhalten x+ durch Rückwärtseinsetzen.

2. Sei m ≤ n, A ∈ Rm×n, Rang(A) = m. In diesem Fall nutzen wir die QR–
Zerlegung von At. Sei also

At = QR

eine QR–Zerlegung von At,

Q ∈ Rn×m mitQtQ = I, R ∈ Rm×mrechte obere Dreiecksmatrix.

Wie oben sind R, Rt invertierbar. Nach Satz 4.9 gilt

x+ = At(AAt)−1b = QR(RtQtQR)−1b = Q(Rt)−1b = Qy, Rty = b.

Wir erhalten y durch Vorwärtseinsetzen und daraus x+.

Bei dieser Berechnung ändert sich die Kondition in der euklidischen Norm für inver-
tierbare Matrizen nicht. Die Kondition von A berechnet sich aus den Eigenwerten
von AtA, die für R aus den Eigenwerten von RtR. Es gilt z.B. für Fall 1

AtA = RtQtQR = RtR,

insbesondere sind die Eigenwerte dieselben und damit

k2(A) = k2(R)

und die Fehlerverstärkung bei der Lösung von

Ax = b oderRx = Qtb

ist dieselbe.
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4.4 Die Singulärwertzerlegung

Eine einfache, wenn auch schwierig zu berechnende, Darstellung der kleinsten
Quadrate–Lösungen bekommt man über die Singulärwertzerlegung.
Wir nutzen den Satz, dass eine hermitesche Matrix A eine Orthonormalbasis aus
Eigenvektoren besitzt (Satz 2.28), also mit einer unitären Matrix diagonalisierbar
ist. Für allgemeine Matrizen gilt das natürlich nicht, aber wir zeigen die Existenz
einer abgeschwächten Form, die sehr ähnliche Eigenschaften besitzt.

Satz 4.11 ( Singulärwertzerlegung, Singular Value Decomposition, SVD)
Sei A ∈ Rm×n. Sei r der Rang von A.

1. Es gibt Matrizen U ∈ Rm×r, V ∈ Rn×r, Σ ∈ Rr×r mit

U tU = Ir, V
tV = Ir, Σ invertierbare Diagonalmatrix

und
A = UΣV t.

Die Spalten von U sind Eigenvektoren vonAAt, die Spalten von V sind Eigen-
vektoren vonAtA, auf der Hauptdiagonalen von Σ stehen die Wurzeln der von
Null verschiedenen Eigenwerte von AAt und AtA.

U , Σ, V heißen Singulärwertzerlegung vonA. Die Zahlen σk auf der Hauptdia-
gonalen von Σ heißen Singulärwerte, die Spalten uk, vk von U bzw. V heißen
Singulärvektoren.

Bezüglich des Standard–Skalarprodukts gilt

Ax =
r∑

k=1

σk(x, vk)uk.

2. Für die Pseudoinverse gilt
A+ = V Σ−1U t

bzw.

A+b =
r∑

k=1

1

σk
(b, uk)vk.

Beweis:

1. AtA ist hermitesch und positiv semidefinit, besitzt also eine Orthonormalba-
sis aus Eigenvektoren v1, . . . , vn zu den der Größe nach geordneten Eigenwer-
ten λ1 ≥ λ2 ≥ . . . ≥ λn ≥ 0. Es gilt

dim Ker(AtA) = dim Ker(A) = n− Rang(A) = n− r,
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also
λ1, . . . , λr > 0, λr+1, . . . , λn = 0.

Sei

σk =
√
λk > 0, k = 1 . . . r, Σ =

 σ1

. . .
σr

 .

Sei V ∈ Rn×r die Matrix mit den Spalten vk, k = 1 . . . r. Dann gilt

AtAV = V Σ2.

Wir setzen nunU = AV Σ−1. Die Spalten von V sind Eigenvektoren, also nicht
0. Wegen V Σ2 = AtAV sind also auch die Spalten vonAV und damit U nicht
0, und

AAtU = AAtAV Σ−1 = AV Σ = UΣ2.

Die Spalten von U sind also Eigenvektoren von AAt, wieder zu den Eigenwer-
ten σ2

k.

Ker(AtA) = Ker(A)⇒ Avk = 0 undV vk = 0, k = r + 1 . . . n (vj ist ONB).

(UΣV t − A)(v1 . . . vr︸ ︷︷ ︸
=V

vr+1 . . . vn) = (AV V t − A)(V vr+1 . . . vn)

= (AV − AV, 0, . . . , 0)

= 0.

Da (v1, . . . , vr, vr+1, . . . , vn) unitär, also insbesondere invertierbar, ist, gilt be-
reits

UΣV t − A = 0⇒ A = UΣV t.

Die Darstellung von Ax folgt durch Einsetzen von

x =
n∑
k=1

(x, vk)vk.

2. Sei b ∈ Rm und y = V Σ−1U tb, also

y =
r∑

k=1

1

σk
(b, uk)vk.

Wir müssen zeigen, dass y Minimum–Norm–Lösung ist, also y kleinste
Quadrate–Lösung und y ∈ Bild(At). Wegen

vk = σ−2
k AtAvk
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liegen die vk im Bild von At, also auch y.
Es gilt

AtAy = V ΣU tUΣV tV Σ−1U tb = V ΣU tb = Atb,

also ist y auch kleinste Quadrate–Lösung von Ax = b und damit Minimum
Norm–Lösung.

�

Beispiel 4.12

1. Zu zeigen: AA+ und A+A sind symmetrisch.
Beweis: Sei UΣV t die SVD von A. Dann ist z.B.

AA+ = UΣV tV Σ−1U t = UU t.

2. Bestimme das Polynom vom Grad kleiner oder gleich n− 1, das durch (t1, y1)
geht und die kleinste 2–Norm auf den Koeffizienten aufweist.
Lösung: Wir suchen die Minimum Norm–Lösung für die lineare Gleichung

n−1∑
k=0

akt
k
1 = y1.

Sei L =
√∑n−1

k=0 t
2k
1 . Es gilt

A = (t01 . . . t
n−1
1 ) = 1︸︷︷︸

=:U

· L︸︷︷︸
=:Σ

· (t01 . . . tn−1
1 )/L︸ ︷︷ ︸

=:V t

= UΣV t,

wobei U in seiner einzigen Spalte einen Vektor der Norm 1 enthält, Σ eine
Diagonalmatrix ist mit Eintrag L und V in der einzigen Spalte einen Vektor
der Norm 1 enthält. U , Σ und V erfüllen also die Anforderungen an die Sin-
gulärwertzerlegung, und es gilt

A+ = V Σ−1U t =
1

L2

 t01
...

tn−1
1


im Einklang mit Beispiel 4.8. Die Lösung ist

p(t) =
y1

L2
(1 + t1t+ t21t

2 + . . .+ tn−1
1 tn−1).
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Dieser Satz liefert also eine einfache explizite Darstellung für die Pseudoinver-
se. Leider ist sie zum Nachweis analytischer Eigenschaften sehr nützlich, für das
praktische Rechnen aber unbrauchbar. Um sie zu nutzen, muss zunächst die Sin-
gulärwertzerlegung berechnet werden, es müssen also die Eigenwerte und Eigen-
vektoren von AtA und AAt ausgerechnet werden. Aktuell haben wir dazu noch gar
keinen Algorithmus. Wir werden einen kennenlernen, der aber eine Serie von QR–
Zerlegungen berechnet, also in jedem Fall aufwändiger ist als die direkte Berech-
nung der kleinste Quadrate–Lösung mit Hilfe derQR–Zerlegung. Aus diesem Grund
warnt die klassische Linpack–Bibliothek im Users Guide: We warn the user that alt-
hough the pseudo–inverse occurs frequently in the literature of various fields, there
is seldom any need to compute it explicitly.
Zusätzlich erlaubt die Singulärwertzerlegung, aus der linearen Algebra bekannte
Begriffe numerisch zu interpretieren. Der numerische Rang einer Matrix etwa ist de-
finiert als die Anzahl der Singulärwerte, die größer sind als eine Schranke ε. Wir
betrachten dazu die Matrizen

A =

(
a a
a a

)
, Ã =

(
a+ ε a
a a

)
Diese Matrizen sind numerisch für kleine ε nicht unterscheidbar, die eine kann
durch Rundung der anderen entstehen, sie haben aber für a 6= 0 die Ränge 1 und
2. Der Rang ist also numerisch nicht berechenbar. A hat aber wie oben berechnet
einen Singulärwert 0, Ã hat zwar keinen Singulärwert 0, aber einen sehr kleinen,
beide hätten also den gleichen numerischen Rang 1.
Wir halten fest, dass die Berechnung der Eigenwerte positiv (semi–)definiter Ma-
trizen numerisch eine besonders große Rolle spielt (nämlich zur Berechnung der
Singulärwertzerlegung).
Zum Abschluss betrachten wir noch eine erweiterte Form der Pseudoinversen, die
Tikhonov–Inverse. Nehmen wir an, die Kondition einer MatrixA in der 2–Norm, also
der Quotient aus größtem und kleinstem Singulärwert, sei sehr groß (etwa wie in der
Matrix Ã aus dem letzten Beispiel). Mit der Darstellung der Pseudoinversen nach
4.11 ist auch klar, woher dieser Fehler stammt: 1

σk
wird groß, also werden Fehler in

b dann stark verstärkt, und die Pseudoinverse wird unbrauchbar. In diesen Fällen
wird 4.2 leicht modifiziert.

Definition 4.13 ( Tikhonov–Inverse)
Sei A ∈ Rm×n, b ∈ Rm, γ > 0 fest. x+

γ ∈ Rn heißt Tikhonov–regularisierte Lösung
von Ax = b genau dann, wenn x+

γ das Funktional

g(x) = ||Ax− b||22 + γ2||x||22
für x ∈ Rn minimiert.
Die Abbildung A+

γ von b auf x+
γ heißt Tikhonov–Inverse.
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In der Definition wird bereits vorausgesetzt, dass die Tikhonov–regularisierte
Lösung eindeutig ist.

Satz 4.14 (Darstellung der Tikhonov–Inversen)
Seien A, b, γ wie in 4.13. Dann ist die Tikhonov–regularisierte Lösung von Ax = b
eindeutig, die Tikhonov–Inverse also wohldefiniert. Es gilt

(AtA+ γ2I)x+
γ = Atb

und mit den Bezeichnungen der Singulärwertzerlegung

A+
γ b = V (Σ2 + γ2I)−1ΣU tb

oder

A+
γ b =

r∑
k=1

σk
σ2
k + γ2

(b, uk)vk.

Beweis: Übungen. �

Die Reihendarstellung der Tikhonov–regularisierten Lösung zeigt ihre Auswirkung
bei Fehlern in b: Der Parameter γ > 0 verhindert, dass der fehlerverstärkende Quo-
tient vor dem Skalarprodukt zu groß wird, er begrenzt also den Einfluß von Fehlern
auf das Ergebnis. Der Nachteil ist, dass selbst bei korrektem b nicht mehr die exakte
Lösung ausgerechnet wird, sondern nur eine Approximation. Die Wahl des Regula-
risierungsparameters γ ist also entscheidend: Ist γ zu klein oder Null, so werden
Fehler zu stark verstärkt. Ist γ zu groß, wird der Approximationsfehler groß.

Korollar 4.15 (Grenzwert der Tikhonov–Inversen)
Es gilt

A+b = lim
γ 7→0

A+
γ b.

Dies ist eine alternative Definition der Pseudoinversen, die ohne die (sehr heuristi-
sche) Idee, Eindeutigkeit durch Minimierung der euklidischen Norm zu erzwingen,
auskommt.
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Kapitel 5

Iterative Lösung von Gleichungssystemen
mit Fixpunktiterationen

Wie bereits erwähnt, spielen die bisher hergeleiteten direkten Verfahren zur Lösung
von linearen Gleichungssystemen inzwischen eine untergeordnete Rolle. Der Grund
ist, dass typische große Gleichungssysteme heute Milliarden von Unbekannten und
Gleichungen beinhalten (z.B. beschrieben in einem zufälligen technischen Report
der Universität Cambridge). Eine Lösung mit Hilfe der hergeleiteten Zerlegungen
in 1027 Rechenoperationen wäre viel zu langsam. Trotzdem ist eine (approximati-
ve) Lösung möglich. Der Grund ist, dass die Gleichungssysteme typischerweise ei-
ne spezielle Struktur aufweisen, die es auszunutzen gilt. Wir kennen diese Vorge-
hensweise von Bandmatrizen (Band–LR) und symmetrischen Matrizen (Cholesky–
Zerlegung).
Die am häufigsten auftretende Struktur ist die Sparsity oder Dünne Besetzung von
Matrizen. Wird etwa bei der Wettervorhersage ein Deutschlandmodell aufgestellt,
so wird die aktuelle Wetterlage mit kurzen Zeitschritten fortgeschrieben. Unbekann-
te sind dann jeweils die Wetterverhältnisse kurze Zeit nach einem bekannten Zu-
stand. Die sind aber notwendig lokal, d.h. das Wetter in Münster wird nicht vom
Wetter in Berlin abhängen. Es werden von der großen Zahl an Variablen also nur
sehr wenige in einer Gleichung auftreten, fast alle Einträge der Matrix verschwinden.
Im oben angegebenen Report wird eine Matrix der Größe (1.2 · 109)2 beschrieben,
die aber nur 16 · 109 Einträge hat. Dies ist typischerweise bei der Behandlung von
partiellen Differentialgleichungen der Fall.
Leider kann die Gauss–Elimination diesen Vorteil nicht angemessen nutzen. Aus
A dünn besetzt folgt nämlich leider nicht, dass z.B. L und R aus der Gauss–
Elimination dünn besetzt sind.
Stellen wir uns etwa vor, dass in einer Matrix A nur die erste Spalte und erste Zeile
sowie die Diagonale ungleich 0 sind. Im ersten Schritt werden dann Vielfache der
ersten Zeile auf alle anderen Zeilen addiert, d.h. die Matrix A(2) aus der Gauss–
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Elimination ist voll besetzt, d.h. wir haben unseren strukturellen Vorteil bereits im
ersten Schritt komplett verloren.

A =



∗ ∗ ∗ · · · ∗
∗ . . . 0 . . . 0

∗ 0
. . . . . .

...
...

...
. . . . . . 0

∗ 0 . . . 0 ∗

 A(2) =


∗ ∗ · · · ∗
∗ ∗ . . . ∗
...

...
...

∗ ∗ . . . ∗


Die zusätzlich entstehenden Elemente werden als Fill–in bezeichnet. Zur Vermei-
dung des Fill–ins wurden viele Strategien zur günstigen Anordnung der Zeilen und
Spalten einer Matrix entwickelt, etwa die klassischen Algorithmen zur Bandbrei-
tenreduktion von Rosen, Cuthill und McKee (Skript TU Ilmenau), im obigen Bei-
spiel kann man durch Umkehren der Reihenfolge von Zeilen und Spalten das Pro-
blem natürlich komplett lösen. Typischerweise versagen diese Verfahren allerdings
spätestens bei der Behandlung dreidimensionaler Probleme.
In diesen Fällen verwenden wir iterative Methoden. Sie berechnen eine Folge von
Vektoren x(k), die gegen die Lösung x von Ax = b konvergieren. Dies erscheint
zunächst unattraktiv: Wir ersetzen einen Algorithmus, der sicher nach bestimmter
Zeit die exakte Lösung liefert (im Rahmen der unvermeidbaren Fehler), durch einen,
bei dem viele Zwischenlösungen berechnet werden müssen, der an einer Stelle mit
einem Restfehler zur Konvergenz abgebrochen werden muss usw. Für solche Algo-
rithmen benötigen wir mindestens drei wichtige Eigenschaften:

1. x(k) sollte einfach berechenbar sein (meist rekursiv aus x(k−1)).

2. Die Konvergenz sollte möglichst schnell sein, damit nicht zu viele Zwischen-
schritte berechnet werden müssen.

3. Wir benötigen eine Abschätzung dafür, wie nah ein Folgeglied x(k) schon an x
liegt, damit wir wissen, wann unsere Näherung ausreichend ist.

Wir müssen uns für lineare Gleichungen also fragen, welche Operationen an einer
dünn besetzten Matrix besonders einfach auszuführen sind. Dies ist vor allem die
Matrix–Vektor–Multiplikation, die gerade so viele Rechenoperationen benötigt, wie
die Matrix an Einträgen hat. Tatsächlich werden die meisten von uns hergeleiteten
Algorithmen nur Matrix–Vektor–Multiplikationen benötigen.
Wir werden als Grundlage den Banachschen Fixpunktsatz beweisen, und daraus
erste iterative Methoden für lineare und nichtlineare Probleme herleiten. Im gan-
zen Kapitel sind die Matrizen A immer quadratisch und invertierbar, wir betrachten
zunächst keine über– oder unterbestimmten Gleichungssysteme.
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5.1 Der Banachsche Fixpunktsatz

Definition 5.1 ( kontrahierend, Fixpunkt)
Seien X, Y normierte Räume, D ⊂ X.

1. Eine Funktion
g : D 7→ Y

heißt kontrahierend inD genau dann, wenn eine Konstante 0 < q < 1 existiert
mit

||g(x)− g(y)|| ≤ q||x− y|| ∀x, y ∈ D.

q heißt Kontraktionskonstante (und ist Lipschitzkonstante).

2. Sei g : D 7→ X. x ∈ D heißt Fixpunkt von g genau dann, wenn

g(x) = x.

Bemerkung: Sei g kontrahierend. Dann ist g (Lipschitz–) stetig.
Beweis: Sei xn eine gegen x konvergente Folge, dann gilt

||g(xn)− g(x)|| ≤ q||xn − x|| 7→ 0.

�

Satz 5.2 ( Banachscher Fixpunktsatz)
Sei X ein vollständiger normierter Raum (Banachraum). Sei ∅ 6= D ⊂ X abge-
schlossen, d.h. jede Cauchyfolge in D konvergiert in D.
Sei g : D 7→ D kontrahierend in D. Dann hat g genau einen Fixpunkt.

Beweis: Sei q < 1 Kontraktionskonstante von g. Seien zunächst x und y zwei Fix-
punkte von g. Dann gilt

||x− y|| = ||g(x)− g(y)|| ≤ q||x− y||,

also x = y wegen q < 1. Damit ist der Fixpunkt eindeutig.
Die Existenz zeigen wir konstruktiv und geben eine konvergente Folge an, deren
Grenzwert der Fixpunkt ist. Sei x(0) ∈ D beliebig. Wir definieren in D die Folge x(k)

durch
x(k+1) = g(x(k)).
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x(k) heißt Fixpunktiteration.
g ist kontrahierend, also gilt mit der Definition von x(k)

||x(k+1) − x(k)|| = ||g(x(k))− g(x(k−1))||
≤ q||x(k) − x(k−1)||
≤ q2||x(k−1) − x(k−2)||
...

≤ qk||x(1) − x(0)||.

Sei ε > 0 beliebig und M so groß, dass

qM

1− q
||x(1) − x(0)|| ≤ ε.

Seien l, k > M und ohne Einschränkung l ≥ k. Dann gilt

||x(l) − x(k)|| ≤ ||x(l) − x(l−1)||︸ ︷︷ ︸
≤ql−1||x1−x0||

+ ||x(l−1) − x(l−2)||︸ ︷︷ ︸
≤ql−2||x1−x0||

+ . . .+ ||x(k+1) − x(k)︸ ︷︷ ︸
≤qk||x1−x0||

||

≤ qk
l−k−1∑
j=0

qj||x(1) − x(0)||

≤ qk

1− q
||x(1) − x(0)|| (5.1)

≤ ε

nach Wahl von k undM . Also ist x(k) eine Cauchyfolge inD und hat einen Grenzwert
x ∈ D. Es gilt

||x− g(x)|| = lim ||x(k+1) − g(x)|| = lim ||g(x(k))− g(x)|| ≤ lim q||x(k) − x|| = 0,

also ist x der einzige Fixpunkt von g. �

Korollar 5.3 (Konvergenz der Fixpunktiteration)
Seien für g die Voraussetzungen aus 5.2 erfüllt, insbesondere g kontrahierend. Dann
konvergiert die Fixpunktiteration

x(k+1) = g(x(k)), x(0) ∈ D

gegen einen Fixpunkt von g.

Wenn wir die Fixpunktiteration zur approximativen Berechnung des Fixpunkts nut-
zen wollen, brauchen wir Abschätzungen, wie nah ein Folgeglied bereits am Grenz-
wert liegt.
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Korollar 5.4 Fehlerabschätzung
Seien für g die Voraussetzungen aus 5.2 erfüllt, und q sei die Kontraktionskonstante
von g. Es gilt

||x− x(k)|| = lim
l 7→∞
||x(l) − x(k)|| ≤ qk

1− q
||x(1) − x(0)||

mit (5.1).
Sei y(j) eine zweite Fixpunktiteration mit Startwert x(k). Dann lautet die Abschätzung,
angewandt auf y(0)

||x− x(k)|| = ||x− y(0)|| ≤ 1

1− q
||y(1) − y(0)|| = 1

1− q
||x(k+1) − x(k)||

oder angewandt auf y(1)

||x− x(k+1)|| = ||x− y(1)|| ≤ q

1− q
||y(1) − y(0)|| = q

1− q
||x(k+1) − x(k)||.

Mit Hilfe der ersten Abschätzung können wir im Vorhinein (a priori) eine obere
Schranke für den Konvergenzfehler angeben. Mit Hilfe der zweiten Abschätzung
können wir im Nachhinein (a posteriori), wenn wir also bereits das k+ 1. Folgeglied
berechnet haben, ebenfalls eine obere Schranke angeben. Notwendigerweise ist
die a priori–Abschätzung eine worst case–Abschätzung, während die a posteriori–
Abschätzung auf dem tatsächlichen Folgenverlauf basiert. Deshalb ist normalerwei-
se die a posteriori–Abschätzung deutlich schärfer.

Beispiel 5.5

1.
g : R 7→ R : g(x) := 0.9 cos(x)

ist kontrahierend: Seien x, y ∈ R. Dann ist nach dem Mittelwertsatz

|g(x)− g(y)| = |g′(ξ)||x− y| ≤ 0.9 |x− y|.

2.
g : R 7→ R : g(x) := cos(x)

ist nicht kontrahierend, denn

lim
π 6=x 7→π

| cos(x)− cos(π)|
|x− π|

= 1

und damit gibt es kein q < 1, das diesen Ausdruck nach oben begrenzt.
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3.
g : [−0.1, 0.1] 7→ [0.99, 1], g(x) = cos(x)

ist kontrahierend, aber keine Selbstabbildung.

4.
g : [0.6, 0.9] 7→ [0.6, 0.9], g(x) = cos(x)

ist kontrahierend und Selbstabbildung.

5.
g : R2 7→ R2, g(a, b) := (a/2− 2b, 0).

g hat nur den einen Fixpunkt (0, 0), ist aber nicht kontrahierend in der euklidi-
schen Norm, denn

||g(0, 1)||2 = ||(−2, 0)||2 > ||(0, 1)||2.

Trotzdem ist die Fixpunktiteration mit beliebigen Startwert konvergent. Sei
nämlich

x(0) = (a, b), alsox(1) = (a/2− 2b, 0)

und damit

x(k+1) =
1

2k
(a/2− 2b, 0).

Die Folge konvergiert also immer gegen den einzigen Fixpunkt (0, 0). Die Kon-
traktionseigenschaft ist also nur hinreichend, aber nicht notwendig für die
Konvergenz.
Tatsächlich können wir in diesem Fall einfach die Kontraktionseigenschaft
durch Wahl einer geeigneten Norm erzwingen. Statt der euklidischen Norm
wählen wir auf dem R2 die Norm

||(a, b)|| := max(|a− 4b|, |b|).

|| · || ist tatsächlich eine Norm, und es gilt

||g(a, b)|| = ||(a/2− 2b, 0)||

= |1
2
a− 2b|

=
1

2
|a− 4b|

≤ 1

2
max(|a− 4b|, |b|)

=
1

2
||(a, b)||.
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Anders als die Konvergenz hängt also die Kontraktionseigenschaft von der
Normwahl ab. In 5.13 werden wir uns daher fragen, wann eine Norm existiert,
so dass eine vorgelegte (lineare) Funktion kontrahierend ist.

Die Beispiele führen zu

Satz 5.6 (Abschätzung der Kontraktionskonstante für differenzierbare Funktionen)
Seien g : D 7→ Rm,D ⊂ Rn abgeschlossen, und g sei stetig differenzierbar. Es gelte

||g′(x)|| ≤ q < 1∀x ∈ D,

wobei g′(x) die Jakobimatrix von g an der Stelle x ist. Weiter sei D konvex. Dann ist
g kontrahierend mit der Kontraktionskonstante q.
Falls ||g′(x)|| ≥ 1 für ein x im Inneren von D, so ist g in einer Umgebung von x nicht
kontrahierend.

Beweis: (Nur Hinrichtung) Seien x, y ∈ D. D ist konvex, also ist die Funktion

G(λ) = g(x+ λ(y − x)), λ ∈ [0, 1]

wohldefiniert. G ist differenzierbar, es gilt

G′(λ) = g′(x+ λ(y − x))(y − x).

||g(x)− g(y)|| = ||G(0)−G(1)||

= ||
∫ 1

0

G′(λ)dλ||

≤ sup
λ∈[0,1]

||G′(λ)||

= sup
λ∈[0,1]

||g′(x+ λ(y − x))|| · ||y − x||

≤ q||x− y||

also ist g kontrahierend mit Kontraktionskonstante q. �

Korollar 5.7 Es sei der Rn versehen mit der Norm || · || und

g : (Rn, || · ||) 7→ (Rn, || · ||), g(x) := Bx+ c, B ∈ Rn×n, c ∈ Rn.

g ist genau dann kontrahierend, wenn ||B|| < 1 in der induzierten Matrixnorm. Falls
||B|| < 1, so konvergiert die Fixpunktiteration gegen einen Fixpunkt

x = (I −B)−1c.
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Beweis:
g′(x) = B.

�
Hoffentlich kommt Ihnen dieser Satz bekannt vor: Für x0 = 0 gilt

x(1) = c, x(2) = Bc+ c, x(3) = B2c+Bc+ c, . . .

Dies ist gerade die Neumannsche Reihe, deren Konvergenz gegen (I − B)−1c wir
bereits in 2.33 nachgewiesen haben.

Beispiel 5.8 Häufig ist die zielführende Formulierung der Fixpunktgleichung nicht
sofort klar. Wir suchen den Fixpunkt von tanx in [π/2, 3π/2]. Die Wahl

g(x) = tan x, g′(x) =
1

cos2 x
≥ 1

führt offensichtlich nicht zum Ziel, denn g ist dann nicht einmal kontrahierend. Wir
formen daher die Fixpunktgleichung um. Hier wählen wir

x = tan(x)⇐⇒ arctanx = x− π ⇐⇒ x = π + arctanx.

Mit

D = [
π

2
,
3π

2
], g(x) = π + arctanx, g′(x) =

1

1 + x2

bildet g D auf D ab und ist nach 5.6 kontrahierend mit Kontraktionskonstante

q =
1

1 + π2/4
∼ 0.29.

D enthält den gesuchten Fixpunkt. Wir führen die Fixpunktiteration durch mit dem
Startwert x0 = π und erhalten

k x(k) a priori a posteriori |x− x(k)| |x− x(k)|/|x− xk−1|
1 3.1416 1.3518e+ 000
2 4.4042 1.4758e− 001 1.7744e+ 000 8.9190e− 002 6.5978e− 002
3 4.4891 4.2563e− 002 1.1931e− 001 4.2900e− 003 4.8100e− 002
4 4.4932 1.2275e− 002 5.7439e− 003 2.0266e− 004 4.7239e− 002
5 4.4934 3.5401e− 003 2.7132e− 004 9.5871e− 006 4.7307e− 002
6 4.4934 1.0210e− 003 1.2804e− 005 4.7571e− 007 4.9619e− 002

.

Offensichtlich ist die a priori–Abschätzung viel zu pessimistisch, weil die Kontrakti-
onskonstante zu groß abgeschätzt wurde.
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� �
f u n c t i o n [ o u t p u t a r g s ] = t a n b e i s p ( i n p u t a r g s )

%TANBEISP
N=200;
x = ( 0 :N ) / N* 8;
p l o t ( x , tan ( x ) , x , x ) ;
y l i m ( [ =8 , 8 ] ) ;
� �

Listing 5.1: Beispiel zum Banachschen Fixpunktsatz (Banach/tanbeisp.m)

Abbildung 5.1: Bestimmung des Fixpunkts von tan(x) = x

Im Allgemeinen kann man auf keine der Voraussetzungen des Banachschen Fix-
punktsatzes verzichten, insbesondere nicht auf die Voraussetzung, dass g D in sich
selbst abbildet (s. Übungen) – es sei denn, man setzt die Existenz eines Fixpunkts
voraus. Im vierten Beispiel von 5.5 haben wir bereits gesehen, dass für cos(x) eine
Umgebung des Fixpunkts im Intervall [0, 2π] existiert, so dass cos(x) dort Selbstab-
bildung und kontrahierend ist. Solch ein Intervall lässt sich immer finden, wenn am
Fixpunkt selbst die Funktion kontrahierend ist.

Satz 5.9 ( Lokaler Konvergenzsatz)
Sei X vollständig, g : U 7→ X, U ⊂ X, kontrahierend. Sei x ein Fixpunkt von g im
Inneren von U . Dann gibt es eine Umgebung D von x, so dass die Fixpunktiteration
mit Startwerten in D gegen x konvergiert.
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function [ output_args ] = tanbeisp( input_args )

%TANBEISP 

N=200;

x=(0:N)/N*8;

plot(x,tan(x),x,x);

ylim([-8,8]);

legend('tan(x)','x');

format_ticks(gca,{'0','\pi/2','\pi','3\pi/2','2\pi'},[],[0 pi/2 pi 3*pi/2 2*pi],[-5 0 5]);

%vorlsavepic('tanbeisp');

x0(1)=pi;

xquer=fsolve(@(x)(g(x)-x),pi)

q=1/(1+pi*pi/4)

fprintf('%d&%1.4f&&&%1.4e\\\\\n',1,x0(1),abs(x0(1)-xquer));

for k=2:10

    x0(k)=g(x0(k-1));

    fprintf('%d&%1.4f&%1.4e&%1.4e&%1.4e&%1.4e\\\\\n',k,x0(k),...

    q^k/(1-q)*abs(x0(2)-x0(1)),1/(1-q)*abs(x0(k)-x0(k-1)),abs(x0(k)-xquer),abs(x0(k)-xquer)/abs(x0(k-1)-xquer));

end

end

function y=g(x)

y=atan(x)+pi;

end
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Beweis: Sei q die Kontraktionskonstante von g. Sei D eine abgeschlossene Kugel
um x mit Radius ε > 0, die ganz in U liegt. Wir zeigen: g bildet D in sich selbst ab.
Sei x ∈ D.

||g(x)− x|| = ||g(x)− g(x)||
≤ q||x− x||
≤ q · ε < ε.

Also gilt g(x) ∈ D, und die Aussage folgt mit 5.2. �

Korollar 5.10 Sei g : U 7→ Rn stetig differenzierbar, U ⊂ Rn, x ein Fixpunkt von g,
und sei

||g′(x)|| < 1.

Dann gibt es eine UmgebungD von x, so dass die Fixpunktiteration mit Startwerten
in D gegen x konvergiert.

Beweis: g′ ist stetig, also gibt es eine Umgebung U ′ von x mit

||g′(x)|| ≤ 1 + ||g′(x)||
2

< 1 ∀x ∈ U ′.

�

Definition 5.11 ( Asymptotische Konvergenzgeschwindigkeit)
Sei

lim
k 7→∞

x(k) = x.

1. Die Konvergenz heißt asymptotisch linear (von der Ordnung 1), falls es ein
q < 1, k0 > 0 gibt mit

||x(k+1) − x|| ≤ q||x(k) − x|| ∀k > k0.

Falls nicht, so heißt die Konvergenz sublinear. Falls es für jedes q ein k0 mit
der Eigenschaft gibt, so heißt die Folge superlinear.

2. Sei p > 1. Die Konvergenz heißt asymptotisch von der Ordnung p, falls es ein
C > 0, k0 > 0 gibt mit

||x(k+1) − x|| ≤ C||x(k) − x||p ∀k > k0.
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3. Sei ε(k) eine positive Nullfolge, die mit der Ordnung p konvergiert. Sei x(k) eine
Folge, die gegen x konvergiert, und es gelte

||x(k) − x|| ≤ ε(k) ∀k.

Dann heißt auch x(k) konvergent von der Ordnung p.

Beispiel 5.12

1. Fixpunktiterationen für kontrahierende Funktionen g sind asymptotisch kon-
vergent von der Ordnung 1 (a priori–Abschätzung). Wir erhalten in jedem Ite-
rationsschritt eine Verbesserung der Approximation des Grenzwerts um den
Faktor q.

2. Das Newtonverfahren (siehe übernächstes Kapitel) ist konvergent von der Ord-
nung 2 (quadratische Konvergenz). Falls im k. Schritt 1 Dezimalstelle korrekt
ist, so sind es in den nächsten 2, 4, 8, 16, die Konvergenz ist also erheblich
schneller als im linearen Fall.

Von besonderem Interesse ist die lineare Schrittfunktion

g : Rn 7→ Rn, g(x) = Bx+ c, B ∈ Rn×n, c ∈ Rn.

g ist kontrahierend genau dann, wenn ||B|| < 1 in der induzierten Matrixnorm nach
Korollar 5.7.
Hierbei hängt die Kontraktionseigenschaft wie schon in 5.5 bemerkt von der gewähl-
ten Vektorraumnorm ab, die Konvergenz der Fixpunktiteration aber nicht (nach
2.10). Zum Beispiel:

B =

(
0.9 0.2
−0.2 0.9

)
,

||B||∞ = 1.1 > 1, ||B||2 =
√
ρ(BtB) =

√
ρ

(
0.85 0

0 0.85

)
∼ 0.92 < 1

mit der Definition von ρ(B) als Betrag des betragsgrößten Eigenwerts von B (Spek-
tralradius, s. 2.31). g ist also kontrahierend bezüglich der 2–Norm, aber nicht kon-
trahierend bezüglich der ∞–Norm. Trotzdem konvergiert die Fixpunktiteration für
beide Normen. Dies ist kein Widerspruch, denn die Kontraktionseigenschaft ist hin-
reichend, aber nicht notwendig.
Offensichtlich gilt: Falls es irgendeine Norm auf dem Rn gibt, so dass ||B|| in der
induzierten Matrixnorm kleiner als 1 ist, so ist g in dieser Norm kontrahierend, und
das Fixpunktverfahren konvergiert (bezüglich jeder Norm). Wann gibt es also für ei-
ne vorgelegte Matrix eine solche Norm? Dies beantwortet
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Satz 5.13 (Infimum der induzierten Matrixnormen)
Sei B ∈ Cn×n. Dann ist

ρ(B) = inf
||·|| induzierte Matrixnorm

||B||.

Insbesondere gibt es für alle ε > 0 eine Vektorraumnorm || · ||B,ε auf dem Cn, so
dass

ρ(B) ≤ ||B||B,ε ≤ ρ(B) + ε

in der induzierten Matrixnorm.

Beweis: Sei zunächst x ein Eigenvektor von B zum Eigenwert λ mit |λ| = ρ(B), || · ||
eine Norm auf dem Cn. Dann gilt

||B|| ≥ ||Bx||
||x||

=
||λx||
||x||

= |λ| = ρ(B).

Für den Beweis der Existenz betrachten wir zunächst den einfachen Fall, dass B
symmetrisch ist. Dann gilt für die euklidische Norm

||B||2 =
√
ρ(B∗B) =

√
ρ(B2) = ρ(B)

und die Aussage ist bereits für die 2–Norm und alle ε > 0 erfüllt.
Für nicht–symmetrische Matrizen ist der Satz leider schwieriger. Sei ε > 0 fest
gewählt, D ∈ Rn×n die Diagonalmatrix mit Dii = εi−1, und sei J die Jordan–
Normalform von B. Es gibt also eine invertierbare Matrix X ∈ Cn×n mit

D =


1

ε
. . .

εn−1

 , J = XBX−1 =


λ1 σ1

λ2 σ2

. . . . . .
λn−1 σn−1

λn

 ,

wobei σk ∈ {0, 1} und die λk die Eigenwerte von B sind. Es gilt

C := D−1JD =


λ1 εσ1

λ2 εσ2

. . . . . .
λn−1 εσn−1

λn

 .

Mit ?? gilt
||C||∞ ≤ ρ(B) + ε.
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Für eine invertierbare lineare Abbildung L und jede Norm || · || ist

|||x||| := ||Lx||

ebenfalls eine Norm, also insbesondere auch

||x||B,ε := ||D−1Xx||∞.

Für die induzierte Matrixnorm gilt

||B||B,ε = sup
x 6=0

||Bx||B,ε
||x||B,ε

= sup
x 6=0

||D−1XX−1JDD−1Xx||∞
||D−1Xx||∞

= sup
y 6=0

||D−1JDy||∞
||y||∞

, y = D−1Xx

= ||C||∞
≤ ρ(B) + ε.

�

Hieraus folgern wir den Hauptsatz über die Konvergenz von Fixpunktverfahren für
lineare Gleichungssysteme.

Korollar 5.14 Sei A ∈ Rn×n. A = M − N , M invertierbar, b, x0 ∈ Rn. Die Folge
x(k) ∈ Rn sei definiert durch

x(k+1) = M−1(Nx(k) + b), alsoMx(k+1) = Nx(k) + b.

Sei B := M−1N . x(k) konvergiert genau dann für alle x0, b gegen die Lösung von
Ax = b, wenn ρ(B) < 1.

Beweis:
Sei x 6= 0 im Kern von A, also Mx = Nx oder x = M−1Nx = Bx. Also ist x
Eigenvektor von B zum Eigenwert 1 und damit ρ(B) ≥ 1.
Sei nun ρ(B) < 1, dann besteht der Kern vonA nur aus der 0 undA ist invertierbar.
Die Iteration ist von der Form

x(k+1) = Bx(k) +M−1b,

also konvergiert die Iteration nach 5.13 und 5.7 gegen einen Fixpunkt x mit

Mx = Nx+ b
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und damit
Ax = b.

Sei nun ρ(B) ≥ 1. Dann gibt es einen Eigenvektor x zum Eigenwert λ mit |λ| ≥ 1.
Setze b := 0, x(0) := x. Dann gilt

x(k) = λkx(0).

Insbesondere konvergiert die Folge in diesem Fall nicht gegen die Lösung 0. �
Mit der Wahl M = I, N = (I − B) erhalten wir wieder die Neumannsche Reihe
zurück.
Mit diesem Wissen können wir auch die seltsame Normwahl im letzten Beispiel aus
5.5 aufklären.

Beispiel 5.15
Sei wie in 5.5

g : R2 7→ R2, g(x) :=

(
1/2 −2
0 0

)
x =: Bx.

B ist diagonalisierbar und hat die Eigenvektoren (1, 0) zum Eigenwert 1/2 und (4, 1)
zum Eigenwert 0, es gilt also

J = XBX−1 =

(
1/2 0
0 0

)
, X−1 =

(
1 4
0 1

)
, X =

(
1 −4
0 1

)
.

Nach 5.13 gibt es eine Norm || · ||, so dass bezüglich der induzierten Matrixnorm gilt
||B|| < 1.
Da B diagonalisierbar ist, können wir uns das Hantieren mit der Matrix D aus 5.13
sparen, die wurde nur benötigt, um auch mit Jordan–Matrizen umgehen zu können.
Wir setzen also gleich

||(a, b)t|| := ||X(a, b)t||∞ = max(|a− 4b|, |b|).

Mit der Rechnung aus 5.5 gilt dann tatsächlich ||B|| = 1/2 und die Fixpunktiteration
zu g konvergiert gegen den einzigen Fixpunkt (0, 0)t.

Beispiel 5.16 (Chaotisches Verhalten von Fixpunktiterationen)
Abschließend betrachten wir noch Beispiel dafür, dass das Langzeitverhalten von
Fixpunktiterationen für nicht–kontrahierende Funktionen schwierig vorherzusagen
ist. Bekannt ist die Mandelbrotmenge, die aus der Konvergenzanalyse komplexer
Fixpunktiterationen kommt. Wir betrachten die noch einfachere reelle Funktion

gλ(x) := λx(1− x),
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das logistische Modell für Bevölkerungsdynamik. Hier ist die Frage interessant, ob
es stationäre Bevölkerungsdaten gibt, bei denen sich Geburten und Todeszahlen
die Waage halten, und ob diese stationären Punkte erreicht werden. Hierbei steht
λ für die Geburtenrate zwischen 0 und 4. Klarerweise konvergiert die Populations-
zahl gegen 0, wenn die Geburtenrate zu klein ist (λ < 1). Für λ zwischen 1 und 3 ist
der einzige positive Fixpunkt attraktiv (d.h. die Ableitung am Fixpunkt ist vom Betrag
kleiner als 1, also gibt es nach 5.10 eine kleine Umgebung, in der die Fixpunktitera-
tion konvergiert). Ab 3 ist der Fixpunkt abstoßend, und die Konvergenzanalyse wird
unübersichtlich.
Offensichtlich ist gλ Selbstabbildung auf dem Intervall [0, 1] für λ ∈ [0, 4]. Der Plot
zeigt für λ ∈ [0, 4] das Verhalten der Folgeglieder x1024 bis x4096.

Abbildung 5.2: Chaotisches Verhalten von Fixpunktiterationen

� �
f u n c t i o n chaos ( lambda0 , lambda1 , N ,M)

%CHAOS D i s p l a y c h a o t i c behaviour o f g ( x )= lambda x (1= x )
i f ( nargin <1)

lambda0 =0;
end
i f ( nargin <2)
� �

Listing 5.2: Chaotisches Verhalten von Fixpunktiterationen (Banach/chaos.m)
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function chaos( lambda0, lambda1, N ,M)

%CHAOS Display chaotic behaviour of g(x)=lambda x (1-x)

if (nargin<1)

    lambda0=0;

end

if (nargin<2)

    lambda1=4;

end

if (nargin<3)

    N=256;

end

if (nargin<4)

    M=256;

end

preiter=1024;

postiter=2048;

lambda=(0:N)/N*(lambda1-lambda0)+lambda0;

plot=sparse(N+1,M+1);

for i=1:N+1

    l=lambda(i);

    x=rand;

    %pre-iteration

    for j=1:preiter

        x=l*x*(1-x);

    end

    %post-iter

    for j=1:postiter

        x=l*x*(1-x);

        k=round(x*M);

        plot(N+1-i+1,k+1)=1;

    end    

end

spy(plot);

format_ticks(gca,[],{num2str(lambda1),num2str(lambda0)},[],[1 M]);

title('Chaotic behaviour of \lambda x (1-x)');

vorlsavepic('chaos');

end
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5.2 Fixpunktverfahren zur Lösung linearer Gleichungen

Wir definieren und untersuchen die klassischen Verfahren zur iterativen Lösung li-
nearer Gleichungen: Jakobi (Gesamtschrittverfahren), Gauss-Seidel (Einzelschritt-
verfahren), SOR (Successive Over–Relaxation). Wir nutzen 5.14 und zerlegen A =
M −N mit einer leicht invertierbaren Matrix M .

Definition 5.17 ( Gesamtschrittverfahren, Einzelschrittverfahren)
Zu lösen sei die lineare Gleichung Ax = b, A = (ai,j) ∈ Rn×n invertierbar, b ∈ Rn.
Wir zerlegen

A = L+D +R,

wobei L die Einträge von A unterhalb der Hauptdiagonalen enthält, R die Einträge
oberhalb der Hauptdiagonalen, D die Diagonaleinträge. Insbesondere werden
zur Berechnung der Matrizen keine Rechenoperationen benötigt. Weiter sei D
invertierbar.

1. Wir setzen in 5.14 M := D, N := −(L+R) und erhalten die Fixpunktiteration

Dx(k+1) = b− (L+R)x(k)

oder

(x(k+1))i =
1

ai,i

(
bi −

∑
j 6=i

ai,jx
(k)
j

)
.

Wir wählen also in x(k+1) die die i. Komponente so, dass die i. Gleichung des
Gleichungssystems erfüllt ist, wenn man sonst nichts ändert.
Falls x(k) konvergiert, so nach 5.14 gegen eine Lösung von Ax = b. Das Ver-
fahren heißt Gesamtschritt– oder Jakobiverfahren (GSV).

2. Wir setzen in 5.14 M := D + L, N := −R und erhalten die Fixpunktiteration

(D + L)x(k+1) = b−Rx(k)

oder

(x(k+1))i =
1

ai,i

(
bi −

∑
j>i

ai,jx
(k)
j −

∑
j<i

ai,jx
(k+1)
j

)
.

Wir wählen also in x(k+1) die i. Komponente so, dass die i. Gleichung des Glei-
chungssystems erfüllt ist, wenn man die Änderungen sequentiell berechnet
und für j < i die bereits berechneten Änderungen durchführt.
Falls x(k) konvergiert, so nach 5.14 gegen eine Lösung von Ax = b. Das Ver-
fahren heißt Einzelschritt– oder Gauss–Seidel–Verfahren (ESV).
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Bemerkung:

1. Der Aufwand zur Berechnung eines Schritts der Verfahren ist gleich der Anzahl
der von Null verschiedenen Einträge in A.

2. Das Gesamtschrittverfahren ist leicht parallelisierbar, denn alle Änderungen
werden unabhängig voneinander berechnet. Das Einzelschrittverfahren ist so
nicht parallelisierbar, denn alle Änderungen müssen nacheinander durch-
geführt werden.

3. Die Verfahren konvergieren für jeden Startwert gegen die Lösung von Ax = b,
falls

ρ(D−1(L+R)) < 1 (Gesamtschrittverfahren)

bzw.
ρ((D + L)−1R) < 1 (Einzelschrittverfahren).
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Der Unterschied zwischen den Verfahren zeigt sich am einfachsten in der Imple-
mentation. Die Routinen führen jeweils N Schritte des Verfahrens zur Lösung von
Ax = b aus.

function Gesamtschritt (n,A,b,x0,N )
x = x0
Für k = 1 . . . N

Für i = 1 . . . n

yi = 1
aii

(
bi −

∑
j 6=i aijxj

)
x = y

return x

function Einzelschritt (n,A,b,x0,N )
x = x0
Für k = 1 . . . N

Für i = 1 . . . n

xi = 1
aii

(
bi −

∑
j 6=i aijxi

)
return x

� �
f u n c t i o n x = e i n z e l s c h r i t t ( A , b , x0 , N )

%EINZELSCHRITT E i n z e l s c h r i t t v e r f a h r e n , Gauss=S e i d e l
%We should assume t h a t A i s sparse .
x=x0 ;
n=numel ( x0 ) ;
f o r i =1 :N
� �

Listing 5.3: Einzelschrittverfahren (Einzelgesamtsor/einzelschritt.m)

� �
f u n c t i o n x = g e s a m t s c h r i t t ( A , b , x0 , N )

%GESAMTSCHRITT G e s a m t s c h r i t t , J a k o b i v e r f a h r e n
%Assume t h a t A i s sparse .
n=numel ( x0 ) ;
D=diag ( A ) ;
LU=A ;
� �

Listing 5.4: Gesamtschrittverfahren (Einzelgesamtsor/gesamtschritt.m)
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function x = einzelschritt( A,b,x0,N )

%EINZELSCHRITT Einzelschrittverfahren, Gauss-Seidel

%We should assume that A is sparse.

x=x0;

n=numel(x0);

for i=1:N

    for j=1:numel(x)

        x(j)=0;

        summe=A(j,:)*x;

        x(j)=1/A(j,j)*(b(j)-summe);

    end

end
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function x = gesamtschritt( A,b,x0,N )

%GESAMTSCHRITT Gesamtschritt, Jakobiverfahren

%Assume that A is sparse.

n=numel(x0);

D=diag(A);

LU=A;

D=1./D;

LU=LU-diag(diag(A));

x=x0;

for k=1:N

    y=b-LU*x;

    for j=1:n

        y(j)=y(j)*D(j);

    end

    x=y;

end

end
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� �
f u n c t i o n d o i t ( N )

%DOIT S o l v e Ax=b using J a k o b i / Gauss=S e i d e l .
%Use d i s c r e t i z a t i o n o f L a p l a c e o p e r a t o r
%Cheat : We o f f s e t by lambda , o t h e r w i s e t he i t e r a t i o n i s
%p a i n f u l l y slow .
i f ( nargin <1)
� �

Listing 5.5: Treiber für Einzel-Gesamtschritt (Einzelgesamtsor/doit.m)

Zur Untersuchung der Konvergenzeigenschaften müssen wir die Eigenwerte einer
Matrix abschätzen. Dabei ist häufig der Satz von Gerschgorin nützlich.

Satz 5.18 ( Satz von Gerschgorin)
Sei A = (aij) ∈ Cn×n. Sei Ki ∈ C (also in der komplexen Ebene) der Kreis um das
Diagonalelement ai,i mit dem Radius der Summe der Beträge der Außerdiagonal-
elemente in Zeile i, also

ri =
∑
j 6=i

|ai,j|, Ki = {z : |z − ai,i| ≤ ri} .

Dann liegen alle Eigenwerte von A in der Vereinigung der Kreise Ki.
Falls die Vereinigung V von m Kreisen disjunkt ist zum Rest der Kreise, so liegen in
V genau m Eigenwerte von A.
Also: Sei M ⊂ {1 . . . n}, m = |M |. Weiter sei⋃

i∈M

Ki ∩
⋃
i 6∈M

Ki = ∅,

dann ist
|{λk ∈

⋃
i∈M

Ki : λk Eigenwert vonA}| = m,

wobei die Eigenwerte mit ihrer Vielfachheit im charakteristischen Polynom gezählt
werden.

Zunächst ein kurzes Beispiel. Wir betrachten

A =

 4 0 1
1 1 0
0 1 1/2

 .
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function doit( N )

%DOIT Solve Ax=b using Jakobi/Gauss-Seidel.

%Use discretization of Laplace operator

%Cheat: We offset by lambda, otherwise the iteration is

%painfully slow.

if (nargin<1)

    N=20;

end

[ A,L,D,R,N ] = setupmatrix( N );

b=rand(N*N,1);

tic;

x=A\b;

toc

M=0;

tic;

weiter=1;

x1=zeros(N*N,1);

while (weiter>0)

    x1=gesamtschritt(A,b,x1,10);

    M=M+1;

    res=norm(x1-x);

    if (res<1e-5)

        weiter=0;

    end

end

toc

M

tic;

M=0;

weiter=1;

x2=zeros(N*N,1);

while (weiter>0)

    x2=einzelschritt(A,b,x2,10);

    M=M+1;

    res=norm(x2-x);

    if (res<1e-5)

        weiter=0;

    end

end

toc

M

tic;

M=0;

weiter=1;

x3=zeros(N*N,1);

while (weiter>0)

    x3=sor(A,b,x3,10,1.6);

    M=M+1;

    res=norm(x3-x);

    if (res<1e-5)

        weiter=0;

    end

end

toc

M
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Die Gerschgorinkreise sind der Kreis K1 um 4 mit Radius 1, der Kreis K2 um 1 mit
Radius 1 und der Kreis K3 um 1/2 mit Radius 1 (alles in der komplexen Ebene,
natürlich). Dann garantiert der Satz von Gerschgorin, dass in K1 genau ein Eigen-
wert von A liegt, in K2 ∪K3 liegen zwei.
Ausdrücklich: Der Satz von Gerschgorin garantiert in diesem Fall nicht, dass in K2

bzw. K3 ein Eigenwert liegt (nur in der Vereinigung liegen zwei).

Abbildung 5.3: Gerschgorin–Kreise von A

� �
f u n c t i o n g e r s c h g o r i n

%GERSCHGORIN Demo Gerschgor in=K r e i s e
A = [ 1 3 3 ; 4 5 3 ; 7 8 2 ] ;
A=diag ( [ 1 2 3 4 ] ) + rand ( 4 ) ;
A =[5 1 0 1 ; 2 4 1 0; 0 1 4 1 ; 2 2 1 6 ] ;
A=[4 0 1 ; 1 1 0; 0 1 0 . 5 ] ;
� �
Listing 5.6: Stetige Abhängigkeit der Nullstellen und Gerschgorinkreise (Gerschgo-
rin/gerschgorin.m)

Beweis:

1. Sei λ ein Eigenwert von A. Sei x Eigenvektor von A zum Eigenwert λ mit
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function  gerschgorin

%GERSCHGORIN Demo Gerschgorin-Kreise

A=[1 3 3 ;4 5 3;7 8 2];

A=diag([1 2 3 4])+rand(4);

A=[5 1 0 1; 2 4 1 0; 0 1 4 1; 2 2 1 6];

A=[4 0 1; 1 1 0; 0 1 0.5];

A=[1 0 0; 0 i 0; 0 0 -i];

A=[1 1 0 0;0 i 1 0; 0 0 -1 1; 0 0 0 -i];



%X=rand(3)*10;

%A=inv(X)*B*X;

%eig(A);

A=A;

close all;

D=diag(diag(A));

L=A-D;

for epsilon=0:0.02:1

    draweigengersch(D+epsilon*L);

    %waitforbuttonpress;

    drawnow;

end

A

title('Gerschgorin-Kreise');

vorlsavepic('gerschgorin');



function draweigengersch(A)

E=eig(A);

if (isreal(E))

    E=complex(E);

end

plot(E,'*');

drawgerschgorin(A);

%axis([-1 5 -2 2]);



function drawgerschgorin(A)

n=size(A,1);

D=diag(A);

R=sum(abs(A))'-abs(diag(A));

for i=1:n

    circle(real(D(i)),imag(D(i)),R(i));

end







function circle(x,y,r)

if (r==0)

    r=1e-8;

end

rectangle('Position',[x-r,y-r,2*r,2*r],'Curvature',[1 1]);
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||x||∞ = 1. Es gibt also ein m mit |xm| = 1.

(A− λI)x = 0 =⇒ (am,m − λ)xm = −
∑
j 6=m

am,jxj

=⇒ |am,m − λ| ≤
∑
j 6=m

|am,j| · |xj|

=⇒ |am,m − λ| ≤
∑
j 6=m

|am,j| = rm

2. Wir zitieren den Satz: Die Nullstellen eines Polynoms hängen stetig von sei-
nen Koeffizienten ab. Falls die Eigenwerte keine mehrfachen Nullstellen des
charakteristischen Polynoms sind, so folgt das einfach mit dem Satz über im-
plizite Funktionen, andernfalls muss man etwas mehr arbeiten. Ein vollständi-
ger Beweis mit der Ordnung der Abhängigkeit findet sich in Kato [1995], Satz
II.1.7.
Sei

V =
⋃
i∈M

Ki

wie im Satz disjunkt zur Vereinigung W der restlichen Kreise. Sei weiter A =
D + L+R wie in 5.17. Wir betrachten die Matrizen

A(t) = D + t(L+R), t ∈ [0, 1], A(0) = D, A(1) = A.

A(0) = D ist Diagonalmatrix, die Eigenwerte stehen alle auf der Hauptdiago-
nalen. In V liegen nach Voraussetzung also genau ihre Eigenwerte ai,i, i ∈M .
A(t) ist stetig in t, d.h. auch die Eigenwerte hängen stetig von t ab. Die Dia-
gonalelemente von A(t) sind die von A, die Außerdiagonalelemente werden
mit t multipliziert. Nach Teil 1 liegen die Eigenwerte von A(t) also in der Ver-
einigung der Kreise um ai,i mit Radius tri, also insbesondere in V ∪W .
Wir betrachten nun die Abhängigkeit eines Eigenwerts λi(t) von t. Für die Kur-
ven λi(t), t ∈ [0, 1], gilt

(a) Sie sind stetig.

(b) Sie beginnen in einem ai,i.

(c) Die Anzahl der Kurven, die in V beginnen, ist gleich der Anzahl der Dia-
gonalelemente, die in V liegen, also gerade m.

(d) Sie enden in einem Eigenwert λi von A = A(1).

(e) Sie liegen ganz in V ∪W .
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(f) Da V und W disjunkt sind, muss die (stetige) Kurve entweder ganz in
V oder ganz in W liegen. Die Anzahl der Kurven, die in V enden, ist die
Anzahl der Kurven, die in V beginnen, also m.

Also gilt insbesondere

|{λi : λi Eigenwert vonA}| = |M |.

�
Bemerkung: Da die Eigenwerte von A und At dieselben sind, kann man den Satz
statt auf die Zeilensumme auch auf die Spaltensumme anwenden.
Häufig kann man die Abschätzung verschärfen, indem man das Kriterium statt auf
A aufDAD−1 mit einer DiagonalmatrixD anwendet (7.5).
Das Programm gerschgorin visualisiert die Kurve der Eigenwerte und die Gerschgo-
rinkreise von A(t) für A aus dem Beispiel.

Definition 5.19 ( strikte Diagonaldominanz) Sei A ∈ Rn×n. Sei

ri =
∑
i 6=k

|ai,k|

und
ri < |ai,i| ∀i ∈ {1 . . . n}.

Dann heißt A strikt diagonaldominant.

Korollar 5.20 Sei A strikt diagonaldominant. Dann ist A invertierbar, Einzel– und
Gesamtschrittverfahren zur Lösung von Ax = b konvergieren.

Beweis: Da |aii − 0| > ri, ist 0 nicht im i–ten Gerschgorinkreis enthalten, also ist 0
kein Eigenwert von A und damit A invertierbar.
Zur Konvergenz des Gesamtschrittverfahrens ist zu zeigen, dass

ρ(B) = ρ(D−1(L+R)) < 1.

Bi,i = 0, also sind alle Gerschgorinkreise Kreise um 0 mit Radius ri/|ai,i| < 1,
also sind alle Eigenwerte kleiner als 1. Die Konvergenz des Einzelschrittverfahrens
zeigen wir in 5.23 gleich mit. �

Leider ist dieses Korollar in der Praxis unbrauchbar, denn typischerweise addieren
sich bei der Diskretisierung von Differentialgleichungen in den Außerdiagonalen in
fast allen Zeilen die Beträge der Elemente zum Betrag des Diagonalelements auf, so
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dass 5.19 nur mit≤ statt < erfüllt ist (siehe z.B. in den Übungen die Diskretisierun-
gen der zweiten Ableitung). Dies reicht aber offensichtlich nicht aus, denn z.B. die
Matrix

A =

(
1 1
1 1

)
erfüllt 5.19 mit≤, ist aber offensichtlich nicht invertierbar. Wir benötigen daher

Definition 5.21 ( irreduzible Matrizen)
Sei A = (aik) ∈ Rn×n. A heißt reduzibel, falls man die Indexmenge {1 . . . n} so in
zwei nichtleere Teilmengen I1 und I2 zerlegen kann, dass

ai,k = 0∀(i, k) ∈ I1 × I2.

Also:

A reduzibel⇔ ∃ I1 6= ∅ 6= I2 : I1∪I2 = {1 . . . n}, I1∩I2 = ∅ : ai,k = 0∀ (i, k) ∈ I1×I2.

Ordnet man Zeilen und Spalten so an, dass zunächst die Indizes in I1, dann die in I2

berücksichtigt werden, so hat A mit dieser Anordnung die Darstellung

A =

(
∗ 0
∗ ∗

)
.

Falls keine solche Zerlegung existiert, so heißt A irreduzibel. Also:

∀I1, I2 : I1 6= ∅ 6= I2, I1 ∪ I2 = {1 . . . n}, I1 ∩ I2 = ∅ : ∃(i, k) ∈ I1 × I2 : ai,k 6= 0.

Definition 5.22 ( schwach diagonaldominant)
Sei A ∈ Rn×n, ri =

∑
k 6=i |ai,k|. Es sei 5.19 erfüllt mit≤, d.h.

ri ≤ |ai,i| ∀i ∈ {1 . . . n}.

Zusätzlich sei die Ungleichung mit < in einer Zeile erfüllt, d.h.

∃m : rm < |am,m|.

Weiter sei A irreduzibel. Dann heißt A schwach diagonaldominant.

Satz 5.23 ( Konvergenz von GSV und ESV bei schwacher Diagonaldominanz)
Sei A ∈ Rn×n schwach diagonaldominant. Dann konvergieren Gesamtschritt– und
Eizelschrittverfahren. Insbesondere ist A invertierbar.
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Beweis: Sei A = D + L+R wie in 5.17. Sei m die Zeile mit rm < |am,m|.

B := D−1(L+R), alsoBi,k =

{
0 i = k

ai,k
ai,i

sonst .

Sei x Eigenvektor zum Eigenwert λ von B, und ||x||∞ = 1. Sei

I1 := {i : |xi| = 1}, I2 := {1 . . . n} \ I1.

Da ||x||∞ = 1, ist I1 nichtleer. Angenommen, m ∈ I1. Dann gilt

|λ| = |(λx)m| = |(Bx)m| =
|
∑

k 6=m am,kxk|
|am,m|

≤
∑

k 6=m |am,k|
|am,m|

≤ rm
|am,m|

< 1.

Sei nun m 6∈ I1, also m ∈ I2. Dann sind I1 und I2 nichtleer, und nach Definition der
Irreduzibilität gibt es i ∈ I1, j ∈ I2 mit ai,j 6= 0. Dann gilt

|λ| = |(λx)i| = |(Bx)i| ≤
∑

k 6=i |ai,k| · |xk|
|ai,i|

<

∑
k 6=i |ai,k|
|ai,i|

≤ ri
ai,i
≤ 1.

Hier steht ein <, weil |xj| < 1 (j ∈ I2) und ai,j 6= 0. Also gilt in jedem Fall, dass das
Gesamtschrittverfahren konvergiert. Der Fixpunkt ist eindeutig, d.h. insbesondere
ist auch A invertierbar.
Wir betrachten nun das Einzelschrittverfahren, also

B = (D + L)−1R.

Für einen Eigenwert λ verschwindet das charakteristische Polynom χB(λ)

χB(λ) = det(−(D + L)−1R− λI) = det((D + L)−1) · det(−R− λ(D + L)) = 0.

A ist schwach diagonaldominant. Sei |λ| ≥ 1. Dann ist auch

C(λ) = R + λ(D + L)

mindestens schwach diagonaldominant (sogar strikt für |λ| > 1). Insbesondere ist
C(λ) damit nach Teil 1 invertierbar, ihre Determinante verschwindet also nicht, und
damit ist λ kein Eigenwert. Es gibt also keinen Eigenwert λ von B mit |λ| ≥ 1, und
damit konvergiert das Einzelschrittverfahren (Beweis nach James [1973]).
Mit der gleichen Argumentation, angewandt auf starke Diagonaldominanz, ist das
natürlich auch der Beweis für die Konvergenz des Einzelschrittverfahrens in 5.20. �

Die vorgestellten Verfahren neigen dazu, zu stark auszuschlagen. Üblicherweise
nutzt man daher für x(k+1) eine Linearkombination aus dem berechneten und x(k).
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Definition 5.24 ( Relaxierte Verfahren)
Sei A ∈ Rn×n und ω fest. Sei A = L + D + R wie in 5.17 und x(0) ∈ Rn. Die Folge
x(k) sei definiert durch

x(k+1) = (1− ω)x(k) + ωD−1
(
b− (L+R)x(k)

)
.

x(k) heißt relaxiertes Gesamtschrittverfahren.
Für das Einzelschrittverfahren definieren wir die Relaxation wieder pro Element und
erhalten

x
(k+1)
i = (1− ω)x

(k)
i + ω

(
bi −

i−1∑
j=1

ai,jx
(k+1)
j −

n∑
j=i+1

ai,jx
(k)
j

)
/ai,i

oder in Matrixschreibweise

(D + ωL)x(k+1) = (1− ω)Dx(k) + ω
(
b−Rx(k)

)
und erhalten das relaxierte Einzelschrittverfahren.

Nach der heuristischen Herleitung würde man annehmen, dass ω ∈ [0, 1] Sinn
macht. Tatsächlich nutzt man sogar ω ∈ [0, 2] für das relaxierte Einzelschrittver-
fahren und spricht von Überrelaxierung (successive over–relaxation).

Satz 5.25 ( Konvergenz von SOR, Ostrovski und Reich 1949/1954)
Sei A ∈ Rn×n symmetrisch positiv definit und ω ∈ (0, 2). Dann konvergiert das
relaxierte Einzelschrittverfahren (SOR–Verfahren).

Beweis: SeiA = L+D+Lt wie in 5.17. Die Schrittmatrix für das SOR–Verfahren ist

B = (D + ωL)−1((1− ω)D − ωLt).

Zu zeigen ist ρ(B) < 1. Sei x also Eigenvektor von B zum Eigenwert λ, also

((1− ω)D − ωLt)x = λ(D + ωL)x. (*)

Wegen
Dk,k = Ak,k = etkAek = (Aek, ek) > 0

ist D auf der Hauptdiagonalen positiv, also gilt

d := (Dx, x) > 0.

Sei
l := (Lx, x) = (x, Ltx) = (Ltx, x).
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Dann gilt
0 < (Ax, x) = (L+D + Ltx, x) = d+ 2l.

Mit (∗) und Skalarprodukt mit x gilt

(1− ω)d− ωl = λ(d+ ωl)

oder

λ =
(1− ω)d− ωl

d+ ωl
.

Es ist d(2− ω) > 0 und damit

d+ ωl > ωl − (1− ω)d = −((1− ω)d− ωl).

Andererseits ist ω(d+ 2l) > 0 und damit

d+ ωl > d− ω(d+ l) = (1− ω)d− ωl.

Insgesamt gilt also

|λ| = |(1− ω)d− ωl|
d+ ωl

< 1

und damit ist das SOR–Verfahren für 0 < ω < 2 konvergent. �

Korollar 5.26 Sei A positiv definit. Dann konvergiert das Einzelschritt–Verfahren.

Satz 5.27 ( Satz von Kahan)
Sei A = (ai,j) ∈ Rn×n, ai,i 6= 0, i = 1 . . . n, und ω 6∈ (0, 2). Dann konvergiert das
SOR–Verfahren nicht für alle b ∈ Rn und Startwerte x(0) ∈ Rn gegen die Lösung von
Ax = b.

Beweis: Wir schreiben die Schrittmatrix B des SOR–Verfahrens als

B =
(
I + ωD−1L

)−1 (
(1− ω) I − ωD−1R

)
.

Die Matrizen auf der rechten Seite sind Dreiecksmatrizen, ihre Determinante ist das
Produkt der Diagonalelemente. Es gilt also

detB = (1− ω)n.

Seien λi die Eigenwerte vonB.B ist ähnlich zu einer Jordanmatrix, auf deren Haupt-
diagonale die Eigenwerte stehen, insbesondere haben diese dieselbe Determinan-
te. Dann gilt

ρ(B)n ≥ |(λ1 · · · · · λn)| = | det(B)| = |1− ω|n.
�
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� �
f u n c t i o n x = s o r ( A , b , x0 , N , omega )

%EINZELSCHRITT E i n z e l s c h r i t t v e r f a h r e n , Gauss=S e i d e l
%We should assume t h a t A i s sparse .
x=x0 ;
n=numel ( x0 ) ;
f o r i =1 :N
� �

Listing 5.7: SOR–Verfahren (Einzelgesamtsor/sor.m)

� �
f u n c t i o n s p e k t r a l r a d i u s ( N )

%SPEKTRALRADIUS Berechne den S p e k t r a l r a d i u s von I t e r a t i o n s m a t r i z e n
i f ( nargin <1)

N=10;
end
i f ( numel ( N) >1)
� �
Listing 5.8: Vergleich der Spektralradien klassischer Verfahren (Einzelgesamtsor/-
spektralradius.m)

� �
f u n c t i o n [ A , L , D , R , N ] = s e t u p m a t r i x ( N )

%SETUP MATRIX setup m a t r i x o f d i s c r e t i z e d L a p l a c e o p e r a t o r i n 2D
i f ( nargin <1)

N=10;
end
lambda =0;
� �

Listing 5.9: Matrixgenerierung (Einzelgesamtsor/setupmatrix.m)

Abschließend geben wir ein Iterationsverfahren zur Berechnung der Minimum–
Norm–Lösung an. Dazu starten wir mit der Normalgleichung

AtAx = Atb.

Die direkte Anwendung der bisher hergeleiteten Verfahren würde die Berechnung
von AtA erfordern, was nach der Rechnung auf Seite 78 nicht zu empfehlen ist. Wir
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function x = sor( A,b,x0,N,omega )

%EINZELSCHRITT Einzelschrittverfahren, Gauss-Seidel

%We should assume that A is sparse.

x=x0;

n=numel(x0);

for i=1:N

    for j=1:numel(x)

        old=x(j);

        x(j)=0;

        summe=A(j,:)*x;

        x(j)=(1-omega)*old+omega/A(j,j)*(b(j)-summe);

    end

end
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function spektralradius( N )

%SPEKTRALRADIUS Berechne den Spektralradius von Iterationsmatrizen

if (nargin<1)

    N=10;

end

if (numel(N)>1)

    A=N;

    n=size(A,1);

    D=sparse(n,n);

    L=sparse(n,n);

    R=sparse(n,n);

    for i=1:n

        D(i,i)=A(i,i);

        for k=1:n

            if (A(i,k)~=0)

                if (k>i)

                    R(i,k)=A(i,k);

                end

                if (k<i)

                    L(i,k)=A(i,k);

                end

            end

        end

    end

else

    [A,L,D,R,N]=setupmatrix(N);

end

omega=1.6;

opts.maxit=10000;

opts.tol=0.01;

SpektralRadiusGesamt=max(eigs(inv(D)*(L+R)))

SpektralRadiusEinzel=max(abs(eigs(inv(D+L)*R)))

SpektralRadiusSOR=max(abs(eigs(inv(D+omega*L)*((1-omega)*D-omega*R),1,0,opts)))
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function [ A,L,D,R,N ] = setup_matrix( N )

%SETUP_MATRIX setup matrix of discretized Laplace operator in 2D

if (nargin<1)

    N=10;

end

lambda=0;

A=sparse(N*N,N*N);

L=sparse(N*N,N*N);

D=sparse(N*N,N*N);

R=sparse(N*N,N*N);

h=1/(N+2);

for i=1:N

    for k=1:N

        pos=(i-1)*N+k;

        D(pos,pos)=-4-lambda;

        A(pos,pos)=-4-lambda;

        if (i>1)

            A(pos,pos-N)=1;

            L(pos,pos-N)=1;

        end

        if (i<N)

            A(pos,pos+N)=1;

            R(pos,pos+N)=1;

        end

        if (k>1)

            A(pos,pos-1)=1;

            L(pos,pos-1)=1;

        end

        if (k<N)

            A(pos,pos+1)=1;

            R(pos,pos+1)=1;

        end

    end

end

end
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starten daher, indem wir die Gleichung durch Aufaddieren von x in ein Fixpunktpro-
blem transformieren, also

x = x+ At(b− Ax) =: g(x).

Wir nutzen Relaxation mit Parameter ω und erhalten

x(k+1) = (1− ω)x(k) + ω(x(k) − At(Ax(k) − b)) = x(k) − ωAt(Ax(k) − b).

Definition 5.28 ( Landweber–Verfahren)
Gesucht sei die Minimum–Norm–Lösung von Ax = b, A ∈ Rm×n, b ∈ Rm. Sei
x(0) ∈ Rn und ω > 0 fest. Dann ist das Landweberverfahren definiert durch

x(k+1) := x(k) − ωAt(Ax(k) − b).

Satz 5.29 Es sei 0 < ω < 2/||A||22 und x(0) ∈ Bild (At). Dann konvergiert das Land-
weberverfahren gegen die Minimum–Norm–Lösung.

Beweis: Sei also
g(x) := x− ωAt(Ax− b).

Wir betrachten das Verfahren auf dem Unterraum

U := Bild(At) = Kern(A) = Kern(AtA).

g ist Abbildung von U nach U , und nach Voraussetzung x(0) ∈ U . AtA hat als Abbil-
dung von U nach U keinen Eigenwert 0 (denn U steht senkrecht auf Kern(AtA)).
Das Verfahren hat die Schrittmatrix B := (I − ωAtA). Es konvergiert genau dann,
wenn ρ(B) < 1 auf U . Die Eigenwerte sind aber gerade 1 − ωλk, wobei λk die Ei-
genwerte von AtA auf U sind. Wegen

||A||22 = ρ(AtA) = maxλk

gilt dann nach Wahl von ω gerade λk ∈ (−1, 1). Damit konvergiert das Landweber-
verfahren gegen eine Lösung x der Fixpunktgleichung, also gerade

AtAx = Atb.

Wegen x(0) ∈ Bild (At) gilt auch x(k) ∈ Bild(At) und damit x ∈ Bild(At). �
Wir wollen die Fixpunktiterationen nun noch etwas uminterpretieren. Zur Herleitung
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des Landweber–Verfahrens haben wir die einfachste Form der Umwandlung einer
linearen Gleichung in ein Fixpunktproblem gewählt, wir lösen also statt

Ax = b

das äquivalente Fixpunktproblem

x = (I − A)x+ b.

Natürlich können wir genau so auch das transformierte Gleichungssystem

QAx = Qb

betrachten für eine einfach invertierbare Matrix Q (Vorkonditionierung). Die zu-
gehörige Iteration lautet dann

x(k+1) = (I −QA)x(k) +Qb.

Für A = L+D +R und Q = D−1 erhalten wir dann das Gesamtschrittverfahren

x(k+1) = −D−1(L+R)x(k) +D−1b

und für Q = (D + L)−1 das Einzelschrittverfahren

x(k+1) = −(D + L)−1Rx(k) + (D + L)−1b.

Die Konvergenz ist offensichtlich dann besonders gut, wenn I−QA besonders klei-
ne Norm hat. Im Optimalfall wäre Q = A−1, aber dann bräuchten wir natürlich gar
nicht erst zu iterieren.
Wir benötigen also eine grobe Approximation an A−1, die sich leicht berechnen
lässt. Eine Möglichkeit sind Band–Vorkonditionerer: Wir streichen alle Elemente der
Matrix A außerhalb eines Bandes der Breite p um die Hauptdiagonale. Die so ent-
stehende Bandmatrix A′ ist leicht zu invertieren, und tatsächlich gilt QA ∼ I, falls
die weggestrichenen Elemente nicht allzu groß waren (Saad [2003]).
Ein typischer Vertreter der Vorkonditionierer ist das ILU– (Incomplete LU)–
Verfahren. Hierbei wird zunächst die LR– (LU–) Zerlegung von A berechnet. Zur
Vermeidung des Fillins werden L und R nur dort berechnet, wo ohnehin schon Ein-
träge in A standen. Im Programm auf Seite 40 wird die Zuweisung zu a(i+1)

j,k also nur
durchgeführt, wenn dort schon vorher ein Eintrag ungleich 0 stand.
Es gilt dann natürlich nicht A = LR, sondern nur A ∼ LR. L und R sind einfach
invertierbar, und man wählt Q = (LR)−1. Eine genauere Analyse dieses Verfahrens
findet sich ebenfalls bei Saad [2003].
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� �
f u n c t i o n [ o u t p u t a r g s ] = IL U ( i n p u t a r g s )

%I L U I n c o m p l e t e LU
i f ( nargin <1)

N=10;
end
[ A , L , D , R , N]= s e t u p m a t r i x ( N ) ;
� �

Listing 5.10: Incomplete LU (Einzelgesamtsor/ILU.m)

Im Allgemeinen lässt sich zu den klassischen iterativen Verfahren sagen, dass sie
für praktische Zwecke ohne Vorkonditionierung zu langsam konvergieren. Die Ei-
genwerte der SchrittmatrizenB liegen ohne Vorbehandlung zu nah an 1, auch wenn
Gauss in Hanke-Bourgeois [2006], S. 78, zum Einzelschrittverfahren zitiert wird:
Ich empfehle Ihnen diesen Modus zur Nachahmung. Schwerlich werden Sie je wie-
der direct eliminiren, wenigstens nicht, wenn Sie mehr als zwei Unbekannte ha-
ben. Das indirecte Verfahren lässt sich halb im Schlafe ausführen, oder man kann
während desselben an andere Dinge denken.
Die Nutzung geeigneter, problembezogener Vorkonditionierung ist der Schlüssel
zum effizienten Einsatz von Fixpunkt–Verfahren. Noch attraktiver sind sie in Kombi-
nation mit Krylovraum–Methoden, von denen wir einige Vertreter im übernächsten
Kapitel kennenlernen werden.
Für ein Anwendungsbeispiel iterativer Methoden bei der Wettervorhersage siehe
z.B. Steppeler et al. [2003].
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function [ output_args ] = ILU( input_args )

%ILU Incomplete LU

if (nargin<1)

    N=10;

end

[A,L,D,R,N]=setupmatrix(N);

Aorig=A;

n=N*N;

m=n;

for i=1:n

    for k=i+1:n

        if (A(k,i)~=0)

            l=A(k,i)/A(i,i);

            A(k,i)=l;

            for j=i+1:m

                if (A(k,j)~=0)

                    A(k,j)=A(k,j)-l*A(i,j);

                end

            end

        end

    end

end

B=sparse(n,n);

for i=1:n

    for k=1:m

        sum=0;

        for j=1:min(i,k)

            %Observe 1 on main diagonal of L

            if (j==i)

                sum=sum+A(j,k);

            else

                sum=sum+A(i,j)*A(j,k);

            end

        end

        B(i,k)=sum;

    end

end

%Compare with matlab LU

setup.type='nofill';

[L,U]=ilu(Aorig,setup);

B=L*U;

for i=1:n

    L(i,i)=0;

end

A=L+U;



close all;

spy(A)

title('Sparse plot of ILU');

figure

spy(Aorig)

title('Sparse plot of A');

Z=inv(B)*Aorig;

spektralradius(Z);

if (N<3)

full(B)

full(Z)

full(eye(n)-Z'*Z)

end

eigs(eye(n)-Z'*Z,1)

end
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5.3 Iterative Lösung nichtlinearer Gleichungssysteme

Vorlesungsnotiz: 1.12.2012
Unsere Betrachtungen der Fixpunktverfahren waren nicht auf lineare Gleichungen
beschränkt. Wir wollen in diesem Abschnitt Newton–artige Verfahren definieren
und ihre Konvergenz untersuchen.
Die kurze Behandlung in diesem Abschnitt wird der Bedeutung der Newton–
Verfahren nicht gerecht. Tatsächlich ist das Newton–Verfahren eins der am häufig-
sten genutzten numerischen Verfahren, die Konvergenzanalyse ist aber recht über-
sichtlich.
Sei zunächst f : R 7→ R stetig differenzierbar. Wir suchen eine Nullstelle x von f .
Dazu müssen wir zunächst

f(x) = 0

in eine Fixpunkgleichung umwandeln. Es bietet sich an eine Formulierung wie

x = x− f(x) =: g(x).

Damit die zugehörige Fixpunktiteration konvergiert, muss gelten

|g′(x)| < 1⇐⇒ f ′(x) ∈ (0, 2).

Diese Bedingung legt nahe, f in der Fixpunktgleichung mit 1/f ′ zu skalieren. Dazu
gibt es eine geometrische Motivation.
Sei x(0) eine Näherung für x. Wir approximieren die Funktion f in der Nähe des Punk-
tes (x(0), f(x(0))) durch ihre Tangente, und suchen statt einer Nullstelle der Funktion
die Nullstelle der Tangente. Falls x(0) nah an x liegt, so ist diese Approximation gut.
Die Tangentenfunktion hat die Darstellung

T (x) = f(x(0)) + f ′(x(0)) · (x− x(0))

mit der Nullstelle
x(0) − f ′(x(0))−1f(x(0)).

Wir setzen also für eine gegebene Näherung

x(k+1) = g(x(k)), g(x) := x− (f ′(x))−1f(x),

und erhalten die Fixpunktiteration zu g, das Newton–Verfahren zur Bestimmung ei-
ner Nullstelle von f . So, wie wir es aufgeschrieben haben, ist das Verfahren auch in
höheren Dimensionen definiert (hier ist dann f ′(x) die Jakobimatrix).
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Definition 5.30 ( Newton–Verfahren, auch Newton–Raphson–Verfahren)
Sei f : Rn 7→ Rn differenzierbar. Sei x(0) ∈ Rn. Falls die auftretenden Ableitungen
f ′(x(k)) invertierbar sind für alle k ∈ N, so heißt die Folge mit

x(k+1) = x(k) − (f ′(x(k)))−1f(x(k))

Newton–Verfahren zur Bestimmung einer Nullstelle von f . Hierbei ist f ′(x) für n > 1
die Jakobimatrix von f an der Stelle x. Für n = 1 ist natürlich einfach

x(k+1) = x(k) − f(x(k))

f ′(x(k))

Der Einfachheit halber beschränken wir uns bei den Beweisen auf das eindimensio-
nale Verfahren, die höherdimensionalen Beweise sind immer analog (aber unüber-
sichtlicher).

Satz 5.31 ( Konvergenz des Newtonverfahrens)
Sei f : Rn 7→ Rn zweimal stetig differenzierbar. Sei x eine Nullstelle von f .

1. Sei f ′(x) invertierbar. Dann gibt es eine UmgebungU von x, so dass das New-
tonverfahren

x(k+1) = g(x(k)), g(x) := x− f(x)

f ′(x)

für x(0) ∈ U gegen x konvergiert (lokale Konvergenz). Die Ordnung der Kon-
vergenz ist quadratisch.

2. Falls f ′(x) nicht invertierbar ist, aber f ′(x) invertierbar ist in einer kleinen Um-
gebung von x für x 6= x, ist das Newtonverfahren immer noch lokal konver-
gent, aber die Konvergenz ist nur noch linear.

Beweis: Sei also n = 1.

1. f ′(x) ist invertierbar, also gibt es auch eine kleine Umgebung U ′ von x, so
dass f ′(x) invertierbar ist für x ∈ U ′ (die Menge der nicht invertierbaren Ele-
mente ist offen) und damit g auf U ′ wohldefiniert und einmal stetig differen-
zierbar ist.
Es gilt

g′(x) = 1− f ′(x) · f ′(x)− f(x)f ′′(x)

f ′(x)2
=
f(x)f ′′(x)

f ′(x)2

also insbesondere
g′(x) = 0.
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Damit sind alle Voraussetzungen aus 5.10 erfüllt, und das Newtonverfahren
konvergiert in einer kleinen abgeschlossenen Umgebung U von x.
f ′(x) ist stetig und invertierbar auf U , also gilt

C1 = sup
x∈U
||f ′(x)−1|| <∞.

f ist zweimal stetig differenzierbar, d.h.

0 = f(x) = f(x) + f ′(x)(x− x) +
1

2
f ′′(ξ)(x− x)2. (*)

f ′′ ist stetig, also gilt

C2 := sup
x∈U
||1

2
f ′′(x)|| <∞.

Für die Newton–Iteration gilt somit

||x− x(k+1)|| = ||x− x(k) + f ′(x(k))−1f(x(k))||
= ||x− x(k) + f ′(x(k))−1[−f ′(x(k))(x− x(k))

− 1

2
f ′′(ξ)(x− x(k))2)]|| (nach *)

≤ C1 · C2||x− x(k)||2.

2. Sei also
f ′(x) = f(x) = 0.

Nach l’Hospital ist g stetig fortsetzbar durch g(x) = x. Der Einfachheit halber
sei f ′′(x) 6= 0. f und f ′ sind differenzierbar, es gilt also wieder mit Taylor

f(x) = f(x) + f ′(x)(x− x) +
1

2
f ′′(x)(x− x)2 +

1

2
(f ′′(ξ(x))− f ′′(x))︸ ︷︷ ︸

=:h1(x)7→0,x 7→x

(x− x)2

und ebenso

f ′(x) = f ′(x) + f ′′(x)(x− x) + (x− x)h2(x), lim
x 7→x

h2(x) = 0.

In höheren Dimensionen ist dies einfach nur die Definition der Ableitung.
Damit gilt für x 6= x, x ∈ U , f ′′(x) 6= 0

g(x)− x = x− x−
1
2
f ′′(x)(x− x)2 + (x− x)2h1(x)

f ′′(x)(x− x) + (x− x)h2(x)

= x− x−
1
2
f ′′(x)(x− x) + (x− x)h1(x)

f ′′(x) + h2(x)
.
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Es gilt also

g′(x) = lim
x 7→x

g(x)− g(x)

x− x
= 1− 1

2
< 1

und damit haben wir auch in diesem Fall (allerdings nur lineare) Konvergenz
nach dem lokalen Konvergenzsatz und der Kontraktionskonstante q = 1/2.
Sollte auch f ′′(x) = 0 sein, so entwickelt man einfach noch einen Schritt in
der Taylorentwicklung weiter und erhält dieselbe Aussage mit q = 2/3 usw.
Achtung: Dieser Beweis geht so nur durch, falls eine Ableitung verschwindet.
Was passiert, falls alle Ableitungen verschwinden (etwa e1/(x∗x−1) auf dem
Rand)

�
Für ausreichend häufig differenzierbare Funktionen kann der Beweis auch einfacher
geführt werden. Mit den Beweisideen aus dem letzten Satz gilt

Korollar 5.32
Sei g p–mal stetig differenzierbar. Sei x ein Fixpunkt von g, und sei g(k)(x) = 0, k =
1 . . . p−1, p > 1. Dann gibt es eine UmgebungU von x, so dass die Fixpunktiteration
von g mit Anfangswerten in U mindestens mit der Ordnung p konvergiert.

Beweis: Wegen g′(x) = 0 gibt es nach 5.10 eine abgeschlossene Umgebung U von
x, so dass die Fixpunktiteration konvergiert. SeiC = supx∈U |g(p)(x)|. Mit Taylorent-
wicklung gilt, da die ersten p− 1 Ableitungen von g verschwinden,

g(x) = g(x) + g(p)(ξ)
(x− x)p

p!

und damit für die Fixpunktiteration

|x(k+1) − x| = |g(x(k))− g(x)| =
∣∣∣∣g(p)(ξ)

(x(k) − x)p

p!

∣∣∣∣ ≤ C

p!
|x(k) − x|p.

�
Um diesen Satz auf die Newtoniteration anzuwenden, muss g in der Newtonite-
ration zweimal stetig differenzierbar sein, also f dreimal stetig differenzierbar.
Tatsächlich ist nicht einmal die Existenz der zweiten Ableitung notwendig, es reicht
eine Lipschitzbedingung an f ′. Der Vollständigkeit halber sei auch dieser Beweis
hier angeführt.
Beweis: Sei f : Rn 7→ Rn. Sei x ∈ Rn eine Nullstelle von f , und f sei in einer abge-
schlossenen Umgebung U von x einmal stetig differenzierbar und die Jakobimatrix
f ′ sei dort invertierbar. Zusätzlich gelte

||f ′(x)−1(f ′(y)− f ′(x))|| ≤ C||y − x||
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(dies ist natürlich insbesondere der Fall, wenn auch f ′ noch einmal differenzierbar
ist, dann kann die Differenz gegen ||f ′′||∞||y − x|| abgeschätzt werden). Nach Defi-
nition von g und wegen f(x) = 0 ist für x ∈ U

g(x)− x = f ′(x)−1 (f(x)− f (x)− f ′(x)(x− x))

= f ′(x)−1

(∫ 1

0

f ′(x+ th)h− f ′(x)hdt
)
.

mit h = x− x und damit

||g(x)− x|| ≤ C||h||2 = C||x− x||2.

Damit ist die Newtoniteration konvergent, falls x(0) nah genug an x liegt. �

Beispiel 5.33

1. Sei f(x) = xn − a, a > 0, n ∈ N. Gesucht wird die Nullstelle x = a1/n von f .
Für das Newtonverfahren gilt

x(k+1) = x(k) − (x(k))n − a
n(x(k))n−1

=
n− 1

n
x(k) +

a

n

1

(x(k))n−1
=: g(x(k))

und

g′(x) =
n− 1

n
− a(n− 1)

n

1

xn
=
n− 1

n

(
1− a

xn

)
.

Die einzige positive Nullstelle von g′ ist x, und offensichtlich nimmt g für x > 0
dort sein Minimum x an. Es gilt also

g(x) ≥ g(x) = x∀x > 0.

Weiter ist

|g′(x)| < n− 1

n
< 1∀x > x.

Also ist g kontrahierende Selbstabbildung auf [x,∞) und das Newtonverfah-
ren konvergiert mindestens für x(0) > x. Sei nun 0 < x(0) < x, dann ist
x(1) > x und das Newtonverfahren konvergiert ebenso. Ingesamt konvergiert
das Newtonverfahren also für positive Anfangswerte. Das Verfahren ist eine
Möglichkeit, die n. Wurzel einer Zahl näherumgsweise zu berechnen und be-
kannt unter dem Namen Verfahren von Heron.
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2. Formal können wir in Beispiel 1 auch n = −1 setzen, also

f(x) = 1/x− a, g(x) = x− 1/x− a
− 1
x2

= x+ (x− ax2) = x(2− ax).

f hat den einzigen Nullpunkt x = 1/a. Die Argumente aus Beispiel 1 kehren
sich gerade um, x ist ein Maximum von g und für 0 < x < x monoton stei-
gend. Das Newtonverfahren konvergiert für x ∈ (0, 2/a).
Das sieht nicht besonders sinnvoll aus – wir erhalten eine Iteration, die ge-
gen 1/a konvergiert. Tatsächlich ist diese Formel schon seit einigen Jahren die
wohl mit riesigem Abstand am häufigsten benutzte Anwendung des Newton–
Verfahrens.
g(x) benutzt nur Multiplikationen und Additionen. Wir erhalten also ein Ver-
fahren, um den Kehrwert einer Zahl nur mit Multiplikationen und Additionen
zu realisieren. Dies ist interessant für CPU–Designer, die sich damit die kom-
plizierte Realisierung der Division in Hardware sparen können. Intel hat die
genutzten Algorithmen für seine IA64–Prozessoren offengelegt in Harrison
[2000], der Newtonschritt steht in 3.2. Leider ist die dort angesprochene Bei-
spielimplementation nicht mehr verfügbar. In groben Zügen wird zunächst ei-
ne Approximation z.B. durch einen Lookup–Table gefunden, die dann durch
wenige Schritte des Newton–Verfahrens verbessert wird.

3. Für n = 2 betrachten wir die Funktion

f : R2 7→ R2, f(x, y) =

(
x− 1

4
(cosx− sin y)

y − 1
4
(cosx− 2 sin y)

)
.

Die Jakobimatrix lautet

f ′(x, y) =

(
1 + 1/4 sinx 1/4 cos y

1/4 sinx 1 + 1/2 cos y

)
.

Das g aus der Newton–Iteration ist in der Nähe von (0.16, 0.2) kontrahieren-
de Selbstabbildung, also gibt es dort eine Nullstelle von f . Nach dem Satz
von Gerschgorin (oder dem starken Zeilensummenkriterium) ist f ′(x, y) im-
mer invertierbar, also konvergiert das Newtonverfahren bei geeignet gewähl-
ten Startwerten quadratisch. Die Iteration lautet(
x(k+1)

y(k+1)

)
=

(
x(k)

y(k)

)
− 1

det f ′(x(k), y(k))
·
(

1 + 1/2 cos y(k) −1/4 cosx(k)

−1/4 sinx(k) 1 + 1/4 sinx(k)

)
·(

x(k) − 1/4(cosx(k) − sin y(k))
y(k) − 1/4(cosx(k) − 2 sin y(k))

)
mit

det f ′(x, y) = (1 + 1/4 sinx)(1 + 1/2 cos y)− (1/4 sinx)(1/4 cos y).
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Bemerkung:

1. Natürlich invertiert man im Rn die Jakobi–Matrizen im Newtonverfahren nicht
explizit sondern nutzt statt dessen

f ′(x(k))(x(k) − x(k+1)) = f(x(k)).

2. In jedem Schritt des Newton–Verfahrens muss einmal die Funktion und ein-
mal ihre Ableitung ausgewertet werden. Im Rn muss zusätzlich ein Glei-
chungssystem gelöst werden.
Falls f ′ nicht explizit zur Verfügung steht, muss es durch Differenzen approxi-
miert werden, wir berechnen also

df

dxi
(x(k)) ∼ f(x(k))− f(x(k) + hei)

h

mit den Einheitsvektoren ei und berechnen daraus eine Approximation der
Jakobimatrix. In diesem Fall werden n+ 1 Funktionsauswertungen benötigt.

3. Ausdrücklich: Das Newtonverfahren ist im Allgemeinen nicht global konver-
gent. Falls die zugrundeliegende Funktion einen Nullpunkt x besitzt, so kon-
vergiert das Newtonverfahren gegen x, falls der Anfangspunkt nah genug an
x liegt.

Definition 5.34 (Varianten des Newtonverfahrens)
f erfülle die Voraussetzungen des Newtonverfahrens.

1. Für großes n ersetzt man im Newtonverfahren die Jakobimatrix an der Stelle
x(k) durch die Matrix an der Stelle x(0) und spart sich damit die Berechnung
der Ableitung und der Zerlegung für n > 1. Wir erhalten

f ′(x(0))(x(k) − x(k+1)) = f(x(k)).

Diese Iteration heißt vereinfachtes Newtonverfahren. Das vereinfachte New-
tonverfahren ist lokal linear konvergent.

2. Für eine Funktion f : Rn 7→ Rm ist die Jakobimatrix nicht quadratisch. Es
liegt daher nahe, die inverse Matrix durch die Pseudoinverse zu ersetzen. Wir
erhalten die Gauss–Newton–Methode

xk+1 = x(k) − f ′(x(k))+f(x(k)).
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Dies lässt sich so motivieren: Wie bei der Definition der Kleinste Quadrate–
Lösung suchen wir ein x, so dass ||f(x)|| sein Minimum annimmt. Sei x(0) eine
Näherung an dieses Minimum. Wir approximieren wieder f durch die Tangen-
te und suchen das Minimum x(1) der Funktion

G(x) := ||f(x(0)) + f ′(x(0))(x− x(0))||22.

Damit ist (x(1) − x(0)) aber kleinste Quadrate–Lösung von

f ′(x(0))z = −f(x(0)).

Gehen wir hier nun zur Minimum Norm–Lösung über, so erhalten wir gerade

x(1) = x(0) − f ′(x(0))+f(x(0)).

Modifizieren wir die Funktion G wie in 4.13 zu

G(x) := ||f(x(0)) + f ′(x(0))(x− x(0))||22 + γ2||x− x(0)||22

so bekommen wir das Verfahren

x(1) = x(0) − f ′(x(0))+
γ f(x(0))

Eine geschickte Wahl von γ liefert die weitverbreiteten Levenberg–Marquardt–
Verfahren nach Levenberg [1944] und Marquardt [1963].

3. Statt durch die Tangente kann man in einer Dimension die Funktion auch
durch die Verbindungsgerade (Sekante) zweier Punkte auf der Kurve appro-
ximieren. Hierzu wählt man zwei Startwerte x(0), x(1). Die Verbindungsgerade
der zugehörigen Punkte auf der Kurve hat die Gleichung

S(x) = f(x(0)) + (f(x(1))− f(x(0)))
x− x(0)

x(1) − x(0)
.

Die Nullstelle dieser Geraden ist

x(0) − x(1) − x(0)

f(x(1))− f(x(0))
f(x(0))

und wir erhalten das Sekantenverfahren

x(k+2) = x(k) − x(k+1) − x(k)

f(x(k+1))− f(x(k))
f(x(k)).

Das Sekantenverfahren ist lokal konvergent mit der Konvergenzordnung (1 +√
5)/2 ∼ 1.62 (Übungen).
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4. Durch Berücksichtigung von weiteren Termen in der Taylorentwicklung (neben
der Linearisierung) kann man Verfahren höherer Ordnung herleiten.

Abbildung 5.4: Newtonverfahren und Sekantenverfahren für x2−1 und Startwert 0.7

Abbildung 5.5: Vereinfachtes Newtonverfahren und typisches Verhalten bei Nicht–
Konvergenz
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� �
f u n c t i o n x0 = newtonneu ( f , df , p , x0 , N , a , b )

%NEWTONNEU Perform N s t e p s o f Newtons a l g o r i t h m .
%draw f u n c t i o n i n [ a , b } .
format long
format compact
d o p l o t =1;
� �

Listing 5.11: Newtonverfahren (Newton/newtonneu.m)

� �
f u n c t i o n y = newtonneu ( f , df , p , x0 , N , a , b )

%NEWTONNEU Perform N s t e p s o f Newtons a l g o r i t h m .
%draw f u n c t i o n i n [ a , b } .
format long
x = ( 0 : 2 0 0 ) * ( b=a )/200+ a ;
p l o t ( x , f ( x , p ) ) ;
� �

Listing 5.12: vereinfachtes Newtonverfahren (Newton/vereinfachtneu.m)

� �
f u n c t i o n y = sekanteneu ( f , p , x0 , x1 , N , a , b )

%SEKANTENEU Summary o f t h i s f u n c t i o n goes here
% D e t a i l e d e x p l a n a t i o n goes here
format long
x = ( 0 : 2 0 0 ) * ( b=a )/200+ a ;
p l o t ( x , f ( x , p ) ) ;
� �

Listing 5.13: Sekantenverfahren (Newton/sekanteneu.m)

� �
f u n c t i o n newtonneudemo ( )

%NEWTONNEUDEMO
N=40;
f =@( x , p ) x . * x=1;
d f=@( x , p ) 2* x ;
c l o s e a l l ;
� �
Listing 5.14: Steuerprogramm zum Newtonverfahren (Newton/newtonneudemo.m)
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function x0 = newtonneu( f, df, p, x0, N,a,b )
%NEWTONNEU Perform N steps of Newtons algorithm.
%draw function in [a,b}.
format long
format compact
doplot=1;
if (N<0)
    N=-N;
    doplot=0;
end
x=(0:200)*(b-a)/200+a;
if (doplot) 
plot(x,f(x,p));
line([a b],[0 0],'Color','Black');
title(['Newtonverfahren für ' func2str(f)])
end
y0=f(x0,p);
for i=1:N
    dy=df(x0,p);
    x1=x0-dy\y0;
        if (abs(x1-x0)<1e-5)
        break;
    end
    y1=f(x1,p);
    if (doplot)
    line([x0 x1],[y0 y1],'Color','Red');
    line([x0 x0],[y0 y1],'Color','Green');
    line([x0 x1],[y1 y1],'Color','Green');
    line([x0 x1],[y0 0],'Color','Black');
    end
    x0=x1;
    y0=y1;
end
if(doplot)
legend('Kurve','Tangente','Sekante','Newtonzug');
end
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function y = newtonneu( f, df, p, x0, N,a,b )
%NEWTONNEU Perform N steps of Newtons algorithm.
%draw function in [a,b}.
format long
x=(0:200)*(b-a)/200+a;
plot(x,f(x,p));
y0=f(x0,p);
    dy=df(x0,p);
for i=1:N
    x1=x0-dy\y0
        if (abs(x1-x0)<1e-5)
        break;
    end
    y1=f(x1,p);
    line([x0 x1],[y0 y1],'Color','Red');
    line([x0 x0],[y0 y1],'Color','Green');
    line([x0 x1],[y1 y1],'Color','Green');
    line([x0 x1],[y0 0],'Color','Black');
    x0=x1;
    y0=y1;
end
line([a b],[0 0],'Color','Black');

title(['Vereinfachtes Newtonverfahren für ' func2str(f)])
legend('Kurve','Sekante','Newtonzug','Newtonzug','Tangente');
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function y = sekanteneu( f, p, x0, x1, N,a,b )
%SEKANTENEU Summary of this function goes here
%   Detailed explanation goes here
format long
x=(0:200)*(b-a)/200+a;
plot(x,f(x,p));
y0=f(x0,p);
y1=f(x1,p);
for i=1:N
    if (abs(x1-x0)<1e-5)
        break;
    end
    dy=(y1-y0)/(x1-x0);
    x2=x0-dy\y0
    y2=f(x2,p);
    %[x0 x1 x2 y0 y1 y2]
    line([x1 x2],[y1 y2],'Color','Red');
    line([x1 x1 x2],[y1 y2 y2],'Color','Green');
    x0=x1;
    y0=y1;
    x1=x2;
    y1=y2;
end
line([a b],[0 0],'Color','Black');

title(['Sekantenverfahren für ' func2str(f)])
legend('Kurve','Sekante','Sekantennzug');
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� �
f u n c t i o n [ o u t p u t a r g s ] = polynewton ( p , x0 , x1 , x2 , N )

%POLYNEWTON
% Fuehre N N e w t o n s c h r i t t e f u e r p ( x )=0 aus .
% Zeichne im I n t e r v a l l [ x1 , x2 ] ,
% S t a r t w e r t x0 .
x = ( 0 : 1 0 0 ) * ( x2=x1 )/100+ x1 ;
� �

Listing 5.15: Newtonverfahren für Polynome (Newton/polynewton.m)

� �
f u n c t i o n [ o u t p u t a r g s ] = demo ( i n p u t a r g s )

%DEMO
polynewton ( [ 1 0 =4] ,0 .2 ,=3 ,3 ,10) ;
polynewton ( [ 1 4 5 3 2 1 ] , 0 . 2 , =3 , 3 , 1 0 ) ;
polynewton ( rand ( 1 0 , 1 ) , 0 . 2 , =3 , 3 , 1 0 ) ;
polynewton ( rand ( 1 0 , 1 ) , 0 . 2 , =3 , 3 , 1 0 ) ;
� �
Listing 5.16: Steuerprogramm zum Newtonverfahren für Polynome (Newton/de-
mo.m)

Ein Problem beim Newtonverfahren ist das Finden einer geeigneten Anfangsnähe-
rung. Hat man eine solche, konvergiert das Newton–Verfahren meist mit wenigen
Schritten. Für Polynome kann man mit Hilfe des Satzes von Gerschgorin Einschlie-
ßungskriterien für die Nullstellen gewinnen (Übungen).
Global konvergente Verfahren lassen sich mit Homotopiemethoden gewinnen. Eine
solche Methode haben wir bereits im Beweis zum Satz von Gerschgorin angewandt.
Gesucht sei die Nullstelle von f(x). Wir definieren eine Funktion f(x, t), t ∈ [0, 1],
mit den Eigenschaften:

1. f(x, 1) = f(x).

2. f(x, t) ist zweimal stetig differenzierbar in x.

3. Die Nullstelle x(t) von f(x, t) hängt stetig von t ab.

4. Die Nullstelle x(0) lässt sich einfach bestimmen.
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function newtonneudemo(  )
%NEWTONNEUDEMO 
N=40;
f=@(x,p) x.*x-1;
df=@(x,p) 2*x;
close all;
newtonneu(f,df,0,0.4,N,0,2);
%vorlsavepic('Newton');
figure;
sekanteneu(f,0,0.1342,0.6879867,N,0.6,1.6);
%vorlsavepic('Sekante');
figure;
vereinfachtneu(f,df,0,0.7,N,0.7,1.2);
%vorlsavepic('Vereinfacht');
figure;
p=rand(5,1)*2-1;
%p(6)=p(6)-polyval(p,0);
f=@(x,p) polyval(p,x);
df=@(x,p) polyval(polyder(p),x);
newtonneu(f,df,p,100.4,N,-2,2);
%vorlsavepic('Newtonnoconv');
%pause;
%sekanteneu(f,p,0.0234,0.98923493,N,-2,2);
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function [ output_args ] = polynewton( p,x0, x1, x2, N)
%POLYNEWTON 
%  Fuehre N Newtonschritte fuer p(x)=0 aus. 
%  Zeichne im Intervall [x1,x2],
%  Startwert x0.
x=(0:100)*(x2-x1)/100+x1;
plot(x,polyval(p,x),x,zeros(1,101));
title('Funktionsplot');
axis([x1 x2 -4 4]);
dp=polyder(p);
waitforbuttonpress;
for i=1:N
    lambda=polyval(dp,x0);
    p0=polyval(p,x0);
    xn=x0-p0/lambda;
    xmin=min([x1 x0 xn]);
    xmax=max([x2 x0 xn]);
    xmin=-max(abs(xmin),abs(xmax))-1;
    xmax=-xmin;
    ymax=max([abs(p0) abs(polyval(p,0)) abs(p0-lambda*x0)])+1;
    ymin=-ymax;
    x=(0:100)*(xmax-xmin)/100+xmin;
    plot(x,polyval(p,x),x,zeros(1,101),x,lambda*(x-x0)+p0,zeros(1,101),(0:100)/100*(ymax-ymin)+ymin);
    axis([xmin xmax ymin ymax]);
    title(strcat('Newtonschritt ',num2str(i)));
    xn-x0
    x0=xn;
    waitforbuttonpress
end
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function [ output_args ] = demo( input_args )
%DEMO 
polynewton([1 0 -4],0.2,-3,3,10);
polynewton([1 4 5 3 2 1],0.2,-3,3,10);
polynewton(rand(10,1),0.2,-3,3,10);
polynewton(rand(10,1),0.2,-3,3,10);
polynewton(rand(10,1),0.2,-3,3,10);
polynewton(rand(10,1),0.2,-3,3,10);
polynewton(rand(10,1),0.2,-3,3,10);
polynewton(rand(10,1),0.2,-3,3,10);
polynewton(rand(10,1),0.2,-3,3,10);
polynewton(rand(10,1),0.2,-3,3,10);
polynewton(rand(10,1),0.2,-3,3,10);
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Damit können wir die Nullstellen x(t) verfolgen. Sei h = 1/N und N fest. Aus-
gehend von der Nullstelle x(0) bestimmen wir mit einigen Schritten des Newton–
Verfahrens eine Näherung für x(h). Da die Nullstellen stetig von t abhängen, wird
das Newton–Verfahren schnell konvergieren, falls h klein genug ist. Ausgehend von
dieser Näherung an x(h) bestimmen wir dann eine Näherung an x(2h) usw. bis zur
Nullstelle x(1) von f(x).
Im Matlab–Beispiel wird eine Homotopiemethode gerechnet zur Bestimmung der
Nullstellen von

p(x) = x4 − 3x3 + 5x2 + x− 2

mit der Homotopiefunktion

f(x, t) = (1− t)(x4 − 1) + tp(x).

Es illustriert das große Problem der Homotopiemethoden: Will man alle Nullstel-
len einer Funktion bestimmen, muss man, sobald zwei Nullstellen zusammen– und
wieder auseinanderlaufen (Bifurkation), sicherstellen, dass man alle Zweige weiter-
verfolgt (dies ist im Programm nicht der Fall, deshalb erhält man am Ende nur drei
der vier Nullstellen).

Abbildung 5.6: Nullstellen xk(t) für f(x, t).

� �
f u n c t i o n x0=homotopyneu ( f , df , f0 , df0 , p , x0 , N ,M, a , b )

%HOMOTOPYNEU f i n d z e r o s o f f w i t h homotopy method
x = ( 0 : 2 0 0 ) * ( b=a )/200+ a ;
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Frank Wuebbeling
Homotopy.jpg: Nullstellen xk(t) für f(x,t).
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p l o t ( x , f ( x , p ) , x , f0 ( x , p ) ) ;
z=zeros ( numel ( x0 ) , N ) ;
f o r k =1:N
� �

Listing 5.17: Homotopiemethoden (Newton/homotopyneu.m)

� �
f u n c t i o n [ o u t p u t a r g s ] = homotopyneudemo ( i n p u t a r g s )

%HOMOTOPYNEUDEMO
c l o s e a l l ;
p . o r i g = [ 1 =3 5 1 2 ] ;
%p . o r i g =rand ( 5 , 1 ) * 4 0 ;
p . r e f = [ 1 0 0 0 =1] ;
� �
Listing 5.18: Steuerprogramm zu Homotopiemethoden (Newton/homotopyneude-
mo.m)
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function x0=homotopyneu( f,df,f0,df0,p,x0,N,M,a,b )
%HOMOTOPYNEU find zeros of f with homotopy method
x=(0:200)*(b-a)/200+a;
plot(x,f(x,p),x,f0(x,p));
z=zeros(numel(x0),N);
for k=1:N
    x0(1);
    alpha=k/N;
    myfun=@(x,p) alpha*f(x,p)+(1-alpha)*f0(x,p);
    mydfun=@(x,p) alpha*df(x,p)+(1-alpha)*df0(x,p);
    for i=1:numel(x0)
        x0(i)=newtonneu(myfun,mydfun,p,x0(i),M,a,b);
        y=myfun(x0(i),p);
        if (abs(y)>1e-8)
            x0(i)=x0(i)+complex(0,1e-4);
            x0(i)=newtonneu(myfun,mydfun,p,x0(i),M,a,b);
        end
        z(i,k)=x0(i);
    end
    plot(real(z(:,1:k))',imag(z(:,1:k))','.');
        z(1,1:k);
        x0(1);
        drawnow;
end
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function [ output_args ] = homotopyneudemo( input_args )
%HOMOTOPYNEUDEMO 
close all;
p.orig=[1 -3 5 1 2];
%p.orig=rand(5,1)*40;
p.ref =[1 0 0 0 -1];
x0    =[1 -1 i -i];
%plot(real(x0),imag(x0),'.');
%waitforbuttonpress;
N=100;
M=-8;
f=@(x,p)   polyval(p.orig,x);
df=@(x,p)  polyval(polyder(p.orig),x);
f0=@(x,p)  polyval(p.ref,x);
df0=@(x,p) polyval(polyder(p.ref),x);
polyval(p.ref,x0)
x0=homotopyneu(f,df,f0,df0,p,x0,N,M,-5,5)
f(x0,p)
title('Homotopiemethoden: Nullstellenkurven');
legend('Nullstelle 1','Nullstelle 2','Nullstelle 3', 'Nullstelle 4');
vorlsavepic('Homotopy');
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Kapitel 6

Krylovraumverfahrren zur Lösung linearer
Gleichungen

Die heute weitaus am häufigsten genutzten Verfahren zur iterativen Lösung linearer
Gleichungen sind die Krylovraumverfahren, und hier besonders das cg–Verfahren
(siehe z.B. den schon zitierten Artikel Steppeler et al. [2003] für die Wettervorher-
sage). Wir können hier nur einen kleinen Einblick in die Thematik geben. Eine klassi-
sche Einführung mit Einblick in die Anwendung für partielle Differentialgleichungen
finden Sie in Braess [2007], Kapitel 4 (Achtung: Der Text von 1992 wurde in der Auf-
lage von 2007 stark ergänzt), eine Einordnung in allgemeine iterative Methoden für
lineare Gleichungen in Saad [2003], und einen weiteren klassischen, gut geschrie-
benen Text in Greenbaum [1987].
Das letzte Buch hat zwei Teile: Algorithmen und Vorkonditionierer, was unsere Be-
merkung zur Bedeutung der Vorkonditionierung auf Seite 114 unterstreicht. Hier
werden auch die klassischen Iterationsverfahren nur als Vorkonditionierer ein-
geführt, so, wie wir es auf Seite 113 getan haben.
Wie immer ist dies eine persönliche Auswahl, die Zahl der Lehrbücher ist völlig
unüberschaubar. Insbesondere enthält jedes Lehrbuch zur Numerischen Linearen
Algebra inzwischen auch einen Abschnitt zu Krylovraumverfahren, z.B. auch Hanke-
Bourgeois [2006].

6.1 Gradientenverfahren

In diesem Kapitel sei zunächst immer A eine symmetrisch positiv definite n × n–
Matrix. Insbesondere ist dann auf dem Rn das Skalarprodukt mit zugehöriger
(Energie–) Norm

(x, y)A = (Ax, y)∀x, y ∈ Rn, ||x||A = (x,Ax)1/2
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wohldefiniert. Wir haben bereits in den Übungen gezeigt, dass für b ∈ Rn gilt

Ax = b⇐⇒ x = arg min
x∈Rn

f(x), f(x) :=
1

2
(x,Ax)− (b, x). (6.1)

Tatsächlich gilt für Ax = b

1

2
(x+ x,A(x+ x))− (b, x+ x) =

1

2
(x,Ax) + (x, x)

und diese Funktion nimmt ihr eindeutiges Minimum an für x = 0. Wir haben also
unser Problem durch ein Minimierungsproblem ersetzt.
Wir wollen dieses Problem wieder iterativ lösen. Sei also x(k) eine Näherung für x.
Wir verbessern diese Lösung, indem wir zunächst eine Suchrichtung d(k) und dann
einen Skalar α(k) wählen mit

x(k+1) = x(k) + α(k)d(k), f(x(k+1)) < f(x(k))

(line search–Verfahren). Damit liegt x(k+1) − x(0) in dem Untervektorraum, der von
den Vektoren d(0) . . . d(k) aufgespannt wird.
Im günstigsten Fall wählen wir α(k) so, dass die Funktion

g(α) = f(x(k) + αd(k))

für α = α(k) ihr Minimum annimmt und d(k) so, dass die Funktion am Punkt x(k) in
dieser Richtung am stärksten abfällt.
Dadurch erhalten wir die Gradientenverfahren: Wie bei Newton ersetzen wir die zu
minimierende Funktion f lokal durch eine lineare Funktion. Damit ist

f(x+ dx ) ∼ f(x) + (∇f)(x)dx .

Die größte Abnahme von f erreicht man also durch Wahl der Richtung dx =
−∇f(x).

Definition 6.1 ( Gradientenverfahren, Verfahren des steilsten Abstiegs, Steepest
Descent)
Sei f ∈ C1(Rn). Sei x(0) eine Schätzung für das Minimum von f , und seien
α(k) ∈ R+. Dann heißt

x(k+1) = x(k) + α(k)d(k), d(k) = −∇f(x(k))

Gradientenverfahren zur Minimierung von f .
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Wir betrachten nun wieder 6.1. Wir definieren das Residuum rk und den Approxima-
tionsfehler ek durch

r(k) = b− Ax(k), e(k) = x− x(k) = A−1b− x(k) = A−1r(k).

Für die Funktion f aus 6.1 gilt

f(x+ dx )− f(x) = (Ax,dx )− (dx , b) +
1

2
(dx ,dx ) = (Ax− b,dx ) +

1

2
(dx ,dx )

und damit d(k) = −∇f(x(k)) = b− Ax(k) = r(k) für das Gradientenverfahren.
Die Funktion

g(α) := f(x(k) + αd(k)) = f(x(k)) + α(Ax(k) − b, d(k)) +
1

2
α2(d(k), Ad(k)) (6.2)

nimmt ihr Minimum an für

α =
(r(k), d(k))

(d(k), Ad(k))
. (6.3)

Damit erhalten wir das Gradientenverfahren zur Lösung linearer Gleichungen

Definition 6.2 Sei A ∈ Rn×n symmetrisch positiv definit, b ∈ Rn, r(k) = b − Ax(k).
Dann heißt die Folge

x(k+1) = x(k) + α(k)r(k), α(k) =
(r(k), r(k))

(r(k), Ar(k))

Gradientenverfahren zur Lösung von Ax = b.

x(k+1) minimiert auch ||x− x||2A für x ∈ x(k) + αr(k), denn

G(α) = ||x(k)+αr(k)−x||2A = ||−e(k)+αr(k)||2A = ||e(k)||2A+2α(−Ae(k)︸ ︷︷ ︸
=−r(k)

, r(k))+α2||r(k)||2A

nimmt ebenfalls sein Minimum für α = α(k) an. Wir bekommen also in diesem
Unterraum die beste Approximation an x (gemessen in der Energienorm).
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Abbildung 6.1: Surface Plot von f in 2D und Iterationsverlauf im echten Gradienten-
verfahren

� �
f u n c t i o n [ o u t p u t a r g s ] = SteepestDescent ( i n p u t a r g s )

%STEEPESTDESCENT
A=rand ( 2 ) ;
A=(A+A ’ ) / 2 ;
lambda=min ( e i g ( A ) ) ;
i f ( lambda<0)
� �

Listing 6.1: Gradientenverfahren (Krylov/SteepestDescent.m)

Es gilt

r(k+1) = b− Ax(k+1) = b− Ax(k) − α(k)Ad(k) = (I − α(k)A)r(k)

und damit

r(k+1) = (I − α(k)A)(I − α(k−1)A)r(k−1) = (I − α(k)A) · · · (I − α(0)A)r(0)

und somit d(k) = r(k) Linearkombination von r(0), . . . , Akr(0). Nach der Vorbemer-
kung gilt damit

x(k+1) ∈ x(0) + span(r(0), . . . , Akr(0)).

Der von den Suchrichtungen r(0), . . . , Ak−1r(0) aufgespannte Unterraum V (k) heißt
KrylovraumK(k)(A, r(0)) und gibt den hier betrachteten Algorithmen seinen Namen
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Frank Wuebbeling
Gradientenverf.jpg: Surface Plot von f in 2D und Iterationsverlauf im echten Gradientenverfahren
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Matlab Figure Gradientenverf.fig: Surface Plot von f in 2D und Iterationsverlauf im echten Gradientenverfahren
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function [ output_args ] = SteepestDescent( input_args )

%STEEPESTDESCENT 

A=rand(2);

A=(A+A')/2;

lambda=min(eig(A));

if (lambda<0)

A=A+(1-lambda)*eye(2);

end

A=[1 0.0;0.0 4.7];

%A=[1 0; 0 100];

%A=[1 0; 0 1];

B=rand(2);

[Q R]=qr(B);

%A=Q'*A*Q;



x0=[1;1];

b=A*x0;

M=50;

len=5;

h=len/M;

f=zeros(2*M+1);

xm=zeros(2*M+1);

ym=zeros(2*M+1);

for i=0:2*M

    x=i*h-len+x0(1);

    for k=0:2*M

        y=k*h-len+x0(2);

        z=[x;y];

        xm(i+1,k+1)=x;

        ym(i+1,k+1)=y;

        f(i+1,k+1)=g(A,z,b);

    end

end

surf(xm,ym,f,'MeshStyle','row','EdgeColor','None');

    xlim([-len+1 len+1]);

    ylim([-len+1 len+1]);

x=[-len+1;-len+1];

for i=1:4

    d=b-A*x;

    alpha=d'*d/(d'*A*d);

    line2(x,x+alpha*d,A,b);

    %waitforbuttonpress;

    x=x+alpha*d;

end

norm(d)

title('Echtes Gradientenverfahren für lineare Gleichungen');

vorlsavepic('Gradientenverf');

view(gca,[-18.5 70]);

vorlsavepic('Gradientenverf2');

end



function out=g(A,z,b)

        out=1/2.*z'*A'*z-z'*b;

end



function line2(x,y,A,b)

line([x(1) y(1)],[x(2) y(2)],[g(A,x,b) g(A,y,b)],'Color','White');

end

Frank Wuebbeling
Gradientenverfahren



(nach Aleksey Krylov, geboren am 3.8.1863). Das interessante an den Krylov–Räum-
en ist, dass man sie durch Polynome beschreiben kann. Offensichtlich ist y genau
dann in K(k)(A, r(0)), wenn es ein Polynom p gibt mit

y = p(A)r(0).

Es ist also möglich, Eigenschaften der Polynome zum Beweis von Eigenschaften
der Krylovräume zu nutzen, dies werden wir bei der Berechnung der Konvergenzge-
schwindigkeit des cg–Verfahrens tun.

Satz 6.3 ( Konvergenz des Gradientenverfahrens)
Sei A ∈ Rn×n positiv definit. Dann gilt:

1. Das Gradientenverfahren 6.2 konvergiert.

2. Mit der Kondition κ = k(A) = ||A||2 · ||A−1||2 gilt

||ek||A ≤
(
κ− 1

κ+ 1

)k
||e0||A.

Beweis: Die Funktion G aus 6.1 nimmt für αk ihr Minimum an, und es gilt

G(α) = || − e(k) + αr(k)||2A = ||(I − αA)e(k)||2A.

A ist positiv definit, also gibt es eine unitäre Matrix U und eine Diagonalmatrix Σ
mit A = U tΣ2U. Eingesetzt in die Definition der Norm bekommen wir

||(I − αA)||2A = sup
((I − αA)x,Ax)

(x,Ax)

= sup
(ΣUx− αΣ3Ux,ΣUx)

(ΣUx,ΣUx)

= sup
((I − αΣ2)y, y)

(y, y)
, y = ΣUx

= ||I − αΣ2||22
= max

j
|1− αλj|2, λj Eigenwert vonA.

Also gilt

||e(k+1)||2A ≤ G(α)

= ||(I − αA)e(k)||2A
≤ ||(I − αA)||2A||e(k)||2A
≤ max

j
|1− λj| · ||e(k)||2A ∀α ∈ R.
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Seien λ1, λn der größte bzw. kleinste Eigenwert von A. Es gilt

κ = ||A||2 · ||A−1||2 =
λn
λ1

.

Wir setzen
α =

2

λ1 + λn

und erhalten

1− αλ1 =
λ1 + λn − 2λ1

λ1 + λn
=
λn − λ1

λ1 + λn
=
κ− 1

κ+ 1

und

1− αλn =
λ1 + λn − 2λn

λ1 + λn
=
λ1 − λn
λ1 + λn

= −κ− 1

κ+ 1
.

Insgesamt liegt also immer |1− αλk| im Intervall [−κ−1
κ+1

, κ−1
κ+1

] und wir erhalten

||e(k+1)||A ≤
κ− 1

κ+ 1
||e(k)||A

und daraus folgt die Behauptung. �

Bemerkung: Für große Konditionen bekommen wir die Kontraktionskonstante 1 −
2

κ+1
∼ 1. Die Iteration ist in diesen Fällen also extrem langsam.

Dies klärt nun auch endlich den Namen Vorkonditionierer: Die Konvergenzge-
schwindigkeit hängt von der Kondition ab. Vorkonditionierer verkleinern die Kon-
dition und beschleunigen damit die Konvergenz.
Im Bild ist gut zu sehen, dass die Iterationen hin und her springen. Die scheinbar
so günstige Wahl der d(k) liefert zwar eine konvergente, aber keine optimale Folge.
Falls wir an den Krylovräumen festhalten wollen, könnten wir unsere Iterationen
verbessern:
Wähle X(k+1) in x(0) +K(k)(A, r(0)) so, dass

||b− Ax||22

für x = X(k+1) minimiert wird. Mit Hilfe der Matrix

W (k) =
(
r(0) · · · A(k−1)r(0)

)
gilt

V (k) = {W (k)x : x ∈ Rk}

und daher gibt es ein z ∈ Rk mit

X(k+1) = x(0) +Wz.
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Nach Definition von X(k+1) minimiert z das Funktional

||b− Ax(0) − AWx||22, x ∈ Rk

und damit ist z Minimum–Norm–Lösung von AWz = b − Ax(0). Hieraus lässt sich
X(k+1) berechnen. Dies führt auf die häufig verwendeten Arnoldi– und GMRES–
Verfahren (Greenbaum [1987]). Dies sind eigentlich gar keine iterativen Verfahren
mehr. Wir werden zeigen, dass entweder die Suchrichtungen linear unabhängig
sind oder die gesuchte Lösung bereits im Suchraum enthalten ist. Wegen der Opti-
malität ist damit nach spätestens n Schritten das optimale Ergebnis erreicht.
Zur Durchführung des Verfahrens müssen dieQR–Zerlegungen der MatrizenAW (k)

berechnet werden. Dies ist sehr effizient möglich (siehe Greenbaum [1987]). Wir
werden aber eine noch effizientere Alternative über die konjugierte Gradienten–
Methode kennenlernen.

6.2 Konjugierte Richtungen und das CG–Verfahren

Sei wieder immer A ∈ Rn×n symmetrisch positiv definit.

Definition 6.4 ( konjugierte Vektoren)
Seien x, y ∈ Rn,x 6= 0 6= y. x und y heißen (A–) konjugiert genau dann, wenn

(x, y)A = (x,Ay) = 0.

Satz 6.5 Seien d(0), . . . , d(j−1) paarweise konjugiert. Sei Ax = b. Dann gilt für das
line search–Verfahren für lineare Gleichungen mit den Suchrichtungen d(k) und
gemäß Gleichung 6.3 optimalen

α(k) =
(r(k), d(k))

(d(k), Ad(k))

1. Falls j = n, so gilt
x(n) = x.

2. x(k) minimiert die Funktion

G(x) = ||x− x||A

im Unterraum x(0) + span (d(0), . . . , d(k−1)).

3. x(k) minimiert die Funktion

f(x) =
1

2
(x,Ax)− (x, b)

im Unterraum x(0) + span (d(0), . . . , d(k−1)).
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Wählt man die Suchrichtungen also konjugiert, bricht das Verfahren spätestens für
x(n) mit der exakten Lösung ab. Zum Beweis zeigen wir zunächst ein ganz kleines
Lemma, das im übernächsten Kapitel noch nützlich sein wird.

Lemma 6.6 ( Bestapproximation bzgl. der induzierten Norm)
Sei V ein euklidischer Raum mit Skalarprodukt (, ), x ∈ V und v(k), k = 0 . . . n − 1,
ein Orthonormalsystem in V . Dann gilt:

1. Falls dimV = n, so ist

x =
n−1∑
k=0

(x, v(k))v(k).

2. Sei j ≤ n.

y(j) =

j−1∑
k=0

(x, v(k))v(k)

minimiert die Funktion
G(z) = ||x− z||

für z ∈ span (v(0), . . . , v(k−1)). y(j) ist also die beste Approximation an x in
diesem Unterraum.

Beweis: (des Lemmas)

1. v(0), . . . , v(n−1) ist Basis von V , also gibt es α(k) mit x =
∑

k α
(k)v(k).

(v(l), x) = (v(l),
n−1∑
k=0

α(k)v(k)) = (v(l), α(l)v(l)) = α(l)

und daraus folgt die Behauptung.

2. Für l ≤ j gilt

(x− y(j), v(l)) = (x−
j−1∑
k=0

(x, v(k))v(k), v(l)) = (x, v(l))− (x, v(l))(v(l), v(l)) = 0.

Sei z ∈ span (v(0), . . . , v(j−1)). Dann gilt (x− y(j), y(j) − z) = 0 und

||x− z||2 = ||(x− y(j)) + (y(j)− z)||2 = ||x− y(j)||2 + ||y(j)− z||2 ≥ ||x− y(j)||2

und das war die Behauptung.
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�
Beweis: (des Satzes)

1. Die Vektoren d(k)/||d(k)||A sind eine Orthonormalbasis des Rn bzgl. (, )A, also
gilt mit dem Lemma

x− x(0) =
n−1∑
k=0

(x− x(0),
d(k)

||d(k)||A
)A

d(k)

||d(k)||A

=
n−1∑
k=0

(x− x(k),
d(k)

||d(k)||A
)A

d(k)

||d(k)||A
denn x(k) − x(0) ∈< d(0) . . . d(k−1) >

=
n−1∑
k=0

(Ax− Ax(k), d(k))

||d(k)||2A
d(k)

=
n−1∑
k=0

(r(k), d(k))

(d(k), Ad(k))
d(k)

=
n−1∑
k=0

α(k)d(k)

und damit x(n) = x.

2. Mit dem zweiten Teil des Lemmas und derselben Rechnung.

3. Übungen.

�

Da dies immer wieder missverstanden wird, hier direkt eine Warnung: Wir denken
nicht daran, Teil 1 von 6.5 wirklich zu nutzen und bis zum n. Schritt zu iterieren (an-
sonsten könnten wir gleich das Gleichungssystem mit direkten Verfahren lösen).
Viel interessanter ist Teil 2, der uns garantiert, in den untersuchten Teilräumen die
beste Approximation unserer Lösung zu finden (bezüglich der Energienorm || · ||A).
Wir möchten also ein line search–Verfahren definieren mit den folgenden Eigen-
schaften:

1. Die Suchrichtungen sollten zueinander konjugiert sein.

2. Der Raum, den die Suchrichtungen aufspannen, sollte derselbe sein wie beim
Gradientenverfahren.
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Es stellt sich also die Frage: Können wir Vektoren d(0), . . . , d(k−1) einfach so wählen,
dass sie zueinander konjugiert sind und den Krylovraum K(k)(A, r(0)) aufspannen?
Tatsächlich tut das cg–Verfahren dies mit einer einfachen Rekursion.
Die Grundidee ist, wie im Gradientenverfahren als Abstiegsrichtungen r(0), r(1) usw.
zu wählen, aber die Richtungen mit dem Schmidschen Orthogonalisierungsverfah-
ren bzgl. des Skalarprodukts (, )A zu orthogonalisieren.
Wir starten mit

Lemma 6.7 Seien d(k) paarweise konjugiert. Dann gilt

(d(i), r(k)) = 0∀i < k,

also bezüglich des euklidischen Skalarprodukts

r(k) ⊥ K(k)(A, r(0)).

Außerdem gilt bezüglich des A–Skslarprodukts

r(k) ⊥A K(k−1)(A, r(0)).

Beweis: Zunächst gilt

(d(k), r(k+1)) = (d(k), b− Ax(k+1))

= (d(k), b− A(x(k) +
(r(k), d(k))

(d(k), Ad(k))
d(k)))

= (d(k), r(k))− (d(k), Ad(k)) · (r(k), d(k))

(d(k), Ad(k))
= 0.

Daraus folgt wegen

r(k+2) = b− Ax(k+2) = b− A(x(k+1) + α(k+1)d(k+1)) = rk+1 − α(k+1)Ad(k+1)

und

(d(k), r(k+2)) = (d(k), r(k+1) − α(k+1)Ad(k+1))

= −α(k+1)(d(k), Ad(k+1)) = 0

usw. per Induktion.
Nach Definition der Krylovräume gilt

AK(k−1)(A, r(0)) ⊂ K(k)(A, r(0)).

Sei also y ∈ K(k−1)(A, r(0)), so gilt

(r(k), y)A = (r(k), Ay︸︷︷︸
∈K(k)(A,r(0))

) = 0.
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�
Mit diesem Satz bekommen wir auch einen leichten Beweis des letzten Teils von
6.7. Da

x(k) ∈ x(0) + span (d(0), . . . , d(k−1)),

sind alle Elemente aus x(0) + span (d(0), . . . , d(k−1)) von der Form

x(k) + w, w ∈ span (d(0), . . . , d(k−1)).

Dann gilt aber

f(x(k) + w) = f(x(k)) + (Ax(k), w)− (b, w)︸ ︷︷ ︸
=(−r(k),w)=0

+
1

2
(w,Aw) ≥ f(x(k)).

Wir wenden nun das Schmidtsche Orthogonalisierungsverfahren bezüglich des Ska-
larprodukts (, )A auf die r(k) an. Dies wird uns Vektoren liefern, die zueinander kon-
jugiert sind und dieselben Vektorräume aufspannen wie die r(k), also gerade die
Krylovräume. Wir setzen also d(0) = r(0) und

d(k+1) = r(k+1) −
k∑
i=0

(d(i), r(k+1))A
||d(i)||2A

d(i)

= r(k+1) − (d(k), r(k+1))A
||d(k)||2A

d(k)

= r(k+1) − (Ad(k), r(k+1))

(d(k), Ad(k))
d(k).

Die Terme in der Summe verschwinden wegen 6.7.
Damit erhalten wir

Definition 6.8 cg-Verfahren ( Verfahren der konjugierten Gradienten)
Sei A ∈ Rn×n positiv definit. Seien b, x(0) ∈ Rn. Dann heißt die Folge x(k), definiert
durch

r(0) = b− Ax(0), d(0) = r(0)

α(k) =
(d(k), r(k))

(d(k), Ad(k))

x(k+1) = x(k) + α(k)d(k)

r(k+1) = b− Ax(k+1) = r(k) − α(k)Ad(k)

β(k+1) =
(d(k), r(k+1))A
(d(k), d(k))A

=
(d(k), Ar(k+1))

(d(k), Ad(k))

d(k+1) = r(k+1) − β(k+1)d(k).

Verfahren der konjugierten Gradienten. Die Folge endet, sobald d(k) = 0.
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Tatsächlich kann man diese Definition noch etwas stabiler und effizienter hinschrei-
ben.
Für die Eigenschaften müssen wir nur die bereits bewiesenen Sätze zusammentra-
gen.

Korollar 6.9 (Eigenschaften des cg–Verfahrens)

1. Solange r(k) 6= 0, ist auch d(k) 6= 0, d.h. das Verfahren bricht genau dann ab,
wenn die korrekte Lösung erreicht ist.

2. x(k) ist Bestapproximation an die Lösung von Ax = b im Raum x(0) +
K(k)(A, r(0)), und minimiert dort auch die Funktion f aus 6.1.

Beweis: Das cg-Verfahren ist gerade so konstruiert, dass die d(k) konjugiert sind
und den Raum K(k)(A, r(0)) aufspannen, daraus folgt die zweite Aussage nach 6.5.
Nach 6.7 gilt d(k) ⊥ rk+1, falls also dk+1 = r(k+1) − β(k)d(k) = 0, so ist bereits
r(k+1) = 0 und umgekehrt. �

Natürlich müssen wir die Konvergenz des cg–Verfahrens nicht zeigen - es bricht
spätestens nach n Schritten ab. Für die Konvergenzgeschwindigkeit gilt, dass sie
mindestens so gut sein muss wie für das Gradientenverfahren 6.2, denn die dort
gelieferten Folgenglieder liegen in den Krylovräumen, in denen das cg–Verfahren
eine optimale Wahl liefert.
Wir erwarten aber natürlich, dass das cg–Verfahren bessere Konvergenzgeschwin-
digkeit liefert. Dies ist tatsächlich der Fall. Wir beginnen mit

Lemma 6.10
Sei A ∈ Rn×n s.p.d., also hat Rn eine ONB v1, . . . , vn aus Eigenvektoren von A zu
Eigenwerten λ1, . . . , λn (zum euklidischen Skalarprodukt).
Sei p ein Polynom vom Grad≤ k mit

p(0) = 1 und |p(λj)| ≤ r ∀j.

Dann gilt für das cg–Verfahren

||e(k)||A ≤ r||e(0)||A.

Beweis: Wir nutzen den schon angesprochenen Zusammenhang zwischen Polyno-
men und den Krylovräumen.
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1. Es gilt p(0)− 1 = 0, also ist

q(z) := (p(z)− 1)/z

Polynom vom Grad≤ k − 1 und es ist

1 + zq(z) = p(z).

Setzen wir wieder formal die Matrix A ein, so gilt entsprechend

I + Aq(A) = p(A).

2. Sei
y := x(0) − q(A)r(0).

Dann gilt
y ∈ x(0) +K(k)(A, r(0))

und

x− y = A−1b− x(0) + q(A)AA−1r(0)

= (I + Aq(A))e(0)

= p(A)e(0).

3. Sei e(0) =
∑n

i=1 αivi. Dann ist

x− y = p(A)

(
n∑
i=1

αivi

)

=
n∑
i=1

αip(λi)vi
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und

||x− y||2A = ||
n∑
i=1

αip(λi)vi||2A

=

(
n∑
i=1

αip(λi)vi,
n∑
i=1

αip(λi)λivi

)

=
n∑
i=1

λi(p(λi)αi)
2

≤
n∑
i=1

λir
2α2

i

= r2

(
n∑
i=1

αivi, A

n∑
i=1

αivi

)
= r2||x− x0||2A = r2||e0||2A.

4. Da x(k) die Bestapproximation in x(0) +K(k)(A, r(0)) ist, gilt

||e(k)||A = ||x(k) − x||A ≤ ||y − x||A ≤ r||e(0)||A.

�

Satz 6.11 ( Konvergenzgeschwindigkeit des cg–Verfahrens)
Für das cg–Verfahren gilt

||e(k)||A ≤ 2

(√
κ− 1√
κ+ 1

)k
||e(0)||A.

Beweis: Wir nutzen die Tschebyscheff–Polynome

Tk(x) = cos(k arccosx).

Sie besitzen mit der Eulerschen Formel die alternative Darstellung

Tk(x) =
1

2
(eik arccosx + e−ik arccosx)

=
1

2
((cos(arccosx) + i sin(arccosx))k + (cos(arccosx) + i sin(arccosx))−k)

=
1

2
((x+ i

√
1− x2)k + (x+ i

√
1− x2)−k)

=
1

2
((x+

√
x2 − 1)k + (x+

√
x2 − 1)−k)
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(für positives Vorzeichen des sin und mit einer losen Definition von
√
−a = i

√
a).

Diese Darstellung ist auch außerhalb von [−1, 1] gültig. Dort gilt dann

|Tk(x)| ≥ 1

2
(x+

√
x2 − 1)k. (6.4)

Diese überschlägige Motivation mag hier genügen, korrekt weist man nach, dass
der Ausdruck auf der rechten Seite der rekursiven Definition der Tschebyscheff–
Polynome aus den Übungen genügt.
In den Übungen wurde auch bereits gezeigt, dass Tk(x) Polynom vom Grad k ist.
Nach Definition über den arccos ist klar, dass |Tk(x)| ≤ 1 für x ∈ [−1, 1]. Seien wie-
der λ1 und λn der kleinste bzw. größte Eigenwert vonA. Wir skalieren das Argument
von Tk so, dass es für x zwischen λ1 und λn zwischen−1 und 1 liegt:

T (x) = Tk(1− 2
x− λ1

λn − λ1

)

und damit
|T (x)| ≤ 1 ∀λ1 ≤ x ≤ λn.

Nun definieren wir p so, dass p(0) = 1:

p(x) =
T (x)

T (0)

wobei

T (0) = Tk

(
λn − λ1

λn − λ1

+ 2
λ1

λn − λ1

)
= Tk

(
λn + λ1

λn − λ1

)
= Tk

(
κ+ 1

κ− 1

)
.

Für x ∈ [λ1, λn] gilt also

|p(x)| ≤ 1

T (0)
=

1

Tk(
κ+1
κ−1

)

(zur Erinnerung: κ war die Kondition von A in der euklidischen Norm, also gerade
λn/λ1). Im Nenner wollen wir die Abschätzung 6.4 einsetzen. Mit

κ+ 1

κ− 1
+

√(
κ+ 1

κ− 1

)2

− 1 =
κ+ 1 + 2

√
κ

κ− 1
=

√
κ+ 1√
κ− 1

und wegen (κ+ 1)/(κ− 1) > 1 gilt

T (0) = Tk

(
κ+ 1

κ− 1

)
≥ 1

2

(√
κ+ 1√
κ− 1

)k
.
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Damit gilt

|p(λj)| ≤
1

T (0)
≤ 2

(√
κ− 1√
κ+ 1

)k
und daraus folgt die Behauptung mit 6.10. �

Dies sieht zunächst noch nicht sehr beeindruckend aus. Tatsächlich ist diese
Abschätzung für viele Probleme viel zu pessimistisch (was man allein schon daran
sieht, dass der Fall k > n, für den die Norm des Residuums verschwindet, natürlich
gar nicht korrekt abgebildet wird).
Die Idee des cg–Verfahrens ist eigentlich leicht zu merken:

1. Es wird ein normales line search–Verfahren durchgeführt, d.h. die Funktion f
wird in jedem Iterationsschritt auf Geraden durch die letzte Iterierte minimiert.

2. Die Richtungen dieser Geraden werden zueinander orthogonal gewählt
bezüglich des A–Skalarprodukts (konjugiert). Dadurch minimiert man nicht
nur auf einer Geraden, sondern im gesamten von den Geradenrichtungen auf-
gespannten Teilraum.

3. Dies garantiert man, indem man das Schmidtsche Orthogonalisierungsverfah-
ren auf die Richtungen des Gradientenverfahrens anwendet.

4. Es stellt sich heraus, dass bei der Orthogonalisierung fast alle Terme wegfal-
len, so dass sie sehr einfach berechenbar ist.

Man nutzt wieder nicht das Problem Ax = b direkt, sondern implementiert

BAx = Bb

für eine einfach zu invertierende Matrix B mit der Eigenschaft, dass BA möglichst
kleine Kondition hat. Dies ist nicht problemlos, dennBA ist nur symmetrisch, wenn
B undA vertauschen. Am einfachsten löst man dies durch Nutzung der beidseitigen
Vorkonditionierung

BABt((Bt)−1x) = Bb.

Eine genaue Analyse des cg–Algorithmus zeigt aber, dass eine leicht angepasste
Variante des cg–Verfahrens auch fürBAx = Bb optimale Ergebnisse im Krylovraum
liefert mit derselben Konvergenzgeschwindigkeit Braess [2007]. Es sei noch einmal
darauf hingewiesen, dass erst die Wahl geeigneter Vorkonditionierer die hier vorge-
stellten Methoden wirklich effizient macht.
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Abbildung 6.2: Vergleich der Iterationszahlen von cg und Gradientenverfahren

� �
f u n c t i o n [ x , n ] = cg ( A , b , x0 , eps )

%CG cg=V e r f a h r e n wie i n der Aufgabe
i f ( nargin <1)

A= s e t u p m a t r i x ( 1 0 ) ;
end
i f ( nargin <2)
� �

Listing 6.2: Konjugierte Gradienten (Krylov/cg.m)

� �
f u n c t i o n [ x , n ] = l i n g r a d ( A , b , x0 , eps )

%l i n g r a d Gradienten=V e r f a h r e n wie i n der Aufgabe
i f ( nargin <1)

A= s e t u p m a t r i x ( 1 0 ) ;
end
i f ( nargin <2)
� �

Listing 6.3: Gradientenverfahren (Krylov/lingrad.m)
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function [ x,n ] = cg( A,b,x0,eps )

%CG cg-Verfahren wie in der Aufgabe

if (nargin<1)

    A=setupmatrix(10);

end

if (nargin<2)

    N=size(A,1);

    b=ones(N,1);

end

if (nargin<3)

    N=size(A,2);

    x0=zeros(N,1);

end

if (nargin<4)

    eps=1e-8;

end

x=x0;

r=b-A*x;

d=r;

for n=1:10000

    alpha=dot(d,r)/dot(d,A*d);

    x=x+alpha*d;

    r=b-A*x;

    beta=dot(d,A*r)/dot(d,A*d);

    d=r-beta*d;

    if (norm(r)<eps)

        break;

    end

end

end
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function [ x,n ] = lingrad( A,b,x0,eps )

%lingrad Gradienten-Verfahren wie in der Aufgabe

if (nargin<1)

    A=setupmatrix(10);

end

if (nargin<2)

    N=size(A,1);

    b=ones(N,1);

end

if (nargin<3)

    N=size(A,2);

    x0=zeros(N,1);

end

if (nargin<4)

    eps=1e-8;

end

x=x0;

for n=1:10000

    r=b-A*x;

    d=r;

    alpha=dot(d,r)/dot(d,A*d);

    x=x+alpha*d;

    if (norm(r)<eps)

        break;

    end

end

end
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� �
f u n c t i o n cgdemo

%CGDEMO
f o r i =1 :10

n= i * 2 ;
n
A= s e t u p m a t r i x ( n ) ;
� �

Listing 6.4: Treiber zu cg (Krylov/cgdemo.m)

� �
f u n c t i o n A = s e t u p m a t r i x ( N )

%SETUP MATRIX setup m a t r i x o f d i s c r e t i z e d L a p l a c e o p e r a t o r i n 2D
i f ( nargin <1)

N=10;
end
lambda =0;
� �

Listing 6.5: Aufstellung der Matrix (Krylov/setupmatrix.m)

6.3 Der Uzawa–Algorithmus: Optimierung mit Nebenbedin-

gungen

Abschließend schauen wir noch auf eine häufig auftretende Modifikation unserer
Minimierungsaufgabe aus Gleichung 6.1. Sei wieder A ∈ Rn×n s.p.d., b ∈ Rn,
B ∈ Rm×n vom Rang m < n und g ∈ Rm. Wir suchen das Minimum nur unter
den Vektoren mit Bx = g, also:
Suche x ∈ Rn mit

x = arg min
Bx=g

f(x), f(x) =
1

2
(Ax, x)− (b, x). (6.5)

Statt dessen können wir auch das Gleichungssystem(
A Bt

B 0

)(
x
λ

)
=

(
b
g

)
(6.6)

lösen. Sei nämlich (x, λ) eine Lösung von 6.6. Wir betrachten f(x+x) mitB(x+x) =
g, also Bx = 0:
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function cgdemo

%CGDEMO 

for i=1:10

    n=i*2;

    n

    A=setupmatrix(n);

    x=rand(n*n,1);

    b=A*x;

    x0=zeros(n*n,1);

    [x1,n1]=cg(A,b,x0);

    [x2,n2]=lingrad(A,b,x0);

    vec1(i)=n1;

    vec2(i)=n2;

    vec3(i)=n*n;

    vec4(i)=condest(A);

end

plot(vec3,vec1,vec3,vec2,vec3,vec4);

legend('#it cg','#it grad','cond(A)');

vorlsavepic('vergleichcg');

end
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function A = setupmatrix( N )

%SETUP_MATRIX setup matrix of discretized Laplace operator in 2D

if (nargin<1)

    N=10;

end

lambda=0;

A=sparse(N*N,N*N);

h=1/(N+2);

for i=1:N

    for k=1:N

        pos=(i-1)*N+k;

        A(pos,pos)=-4-lambda;

        if (i>1)

            A(pos,pos-N)=1;

        end

        if (i<N)

            A(pos,pos+N)=1;

        end

        if (k>1)

            A(pos,pos-1)=1;

        end

        if (k<N)

            A(pos,pos+1)=1;

        end

    end

end

end





Frank Wuebbeling
Aufstellung der Matrix



f(x+ x) =
1

2
(A(x+ x), x+ x)− (b, x+ x)

= f(x) + (Ax, x) + (x,Ax)− (b, x)

≥ f(x) + (Ax− b, x)

= f(x)− (Btλ, x)

= f(x)− (λ,Bx) = f(x).

Wir notieren

Korollar 6.12 Sei x ∈ Rn. Falls es ein λ ∈ Rm gibt, so dass (x, λ) 6.6 lösen, so löst
x auch das Minimierungsproblem 6.5.

Uzawa schreibt dies als Fixpunktgleichung. Sei Ĉ leicht invertierbare positiv defini-
te Matrix imRm×m (z.B. eine Diagonalmatrix oder ein Vielfaches der Einheitsmatrix).(

x
λ

)
=

(
A−1(b−Btλ)

λ+ Ĉ−1(Bx− g)

)
.

Die dadurch definierte Fixpunktiteration für λ lautet

λ(k+1) = λ(k) + Ĉ−1(BA−1(b−Btλ(k))− g).

Dieses Verfahren ist konvergent, falls die Eigenwerte der Iterationsmatrix

G = I − Ĉ−1BA−1Bt

zum Betrag kleiner als 1 sind. Sei u ein Eigenvektor von G zum Eigenwert µ. Dann
gilt

Ĉu−BA−1Btu = µĈu

und damit
(1− µ) (u, Ĉu)︸ ︷︷ ︸

>0

= (u,BA−1Btu)︸ ︷︷ ︸
>0

und damit µ < 1. Wir wählen nun Ĉ so groß, dass Ĉ − BA−1Bt s.p.d. ist. Dann
liegen alle Eigenwerte von G zwischen 0 und 1, und das Uzawa–Verfahren ist kon-
vergent.
Üblicherweise definiert man noch eine zusätzliche s.p.d. Vorkonditionsmatrix C ∈
Rn×n. Dann gilt

BtC−1Bx = BtC−1g
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und nutzt zur Definition des Augmented Lagrangian–Verfahrens die Fixpunktiterati-
on zu (

x
λ

)
=

(
(A+BC−1Bt)−1(b+BtC−1g −Btλ)

λ+ Ĉ−1(Bx− g)

)
.

Die Gleichung in λ lässt sich auch als Gradientenverfahren interpretieren. Also hat
das Uzawa–Verfahren in dieser Form dieselben Probleme wie das normale Gradien-
tenverfahren. Mit denselben Methoden wie beim cg–Verfahren lässt sich auch hier
eine Methode der konjugierten Richtungen entwickeln (Braess [2007]).
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Kapitel 7

Numerische Berechnung von Eigenwerten

Die Berechnung der Eigenwerte einer Matrix spielt in der Numerik eine große Rolle,
z.B.

1. Bestimmung optimaler Iterationsparameter (max. Eigenwert einer hermite-
schen Matrix).

2. Bestimmung der Kondition einer Matrix (wie oben, zusätzlich Bestimmung
des kleinsten Eigenwerts).

3. Bestimmung von Eigenschwingungen einer Brücke. Dies lässt sich (stark ver-
einfacht) so erklären: Eine Brücke reagiere auf eine Belastung L von außen
mit einer Stressverteilung p = AL. Falls x ein Eigenvektor zu einem Eigenwert
von A größer als 1 ist, so wird die wirkende Belastung durch die Brücke nicht
verteilt (als Gegendruck), sondern sogar noch verstärkt. Die Belastung kann
sich also immer weiter aufbauen.
In der Matlab–Demo truss lässt sich das an einem sehr einfachen zweidimen-
sionalen Beispiel beobachten. Insbesondere sieht man, dass für höhere Mo-
den (kleinere Eigenwerte) die Eigenschwingungen eine komplexe Struktur zei-
gen. Eine genauere Analyse dieses Beispiels finden Sie in Hanke-Bourgeois
[2006], Kapitel V.22.
Diese Untersuchung ist keineswegs akademisch. Immer wieder gern zitiertes
Standardbeispiel ist die Tacoma Narrows Bridge, bei der eine (gar nicht so
große) kontinuierliche Windanregung in der falschen Frequenz zu großen Aus-
lenkungen und letztlich zur Zerstörung der Brücke führte. Der Film zeigt, dass
die Brücke keineswegs nur einfach schwingt, sondern zusätzlich eine Torsi-
onsstruktur hat (wie wir sie nach der Matlab–Analyse erwarten würden). Eine
mehrmals überarbeitete mathematische Untersuchung dieser Zerstörung fin-
den Sie unter anderem in McKenna [1999].
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Aus diesem Grund sind Eigenwertanalysen in der Statik unerlässlich. Die Tat-
sache, dass es nur wenige Beispiele für solche Komplettzerstörungen gibt,
zeigt, dass dieses Problem gelöst ist (und andererseits dieses Phänomen nur
recht selten auftritt).

Wir bemerken, dass insbesondere ein Interesse daran besteht, große oder kleine
Eigenwerte von (hermiteschen) Matrizen zu berechnen.
Zur Motivation beginnen wir mit einer Idee zur Berechnung eines Eigenvektors, die
uns später zu allen numerischen Verfahren führen wird. Wir wollen natürlich wieder
iterativ vorgehen. SeiA eine n×n–Matrix. Da auch bei reellen Matrizen Eigenwerte
und Eigenvektoren komplex sein könnten, ist es bei allgemeinen Matrizen keine
Vereinfachung, sich auf reelle Matrizen zu beschränken, wir nehmen diese komplex
an. Bei hermiteschen beschränken wir uns der Einfachheit halber wieder auf reelle
(symmetrische) Matrizen.
Wie bei den Krylov–Räumen starten wir mit einem Vektor x(0) und wenden Potenzen
der n× n–Matrix A auf x(0) an. Wir setzen

x(j) = Ajx(0), alsox(j+1) = Ax(j).

Zur Vereinfachung nehmen wir zunächst an, dass der Cn eine Basis aus Eigenvekto-
ren yk zu Eigenwerten λk, k = 1 . . . n, besitzt. In allen Betrachtungen seien unsere
Eigenwerte immer der Größe des Betrages nach geordnet, d.h. |λk| ≥ |λk+1|. Es sei

x(0) =
n∑
k=1

αkvk

mit α1 6= 0. Dann ist

x(j) = Aj
n∑
k=1

αkvk =
n∑
k=1

αkλ
j
kvk = λj1

(
α1v1 +

n∑
k=2

αk

(
λk
λ1

)j
vk

)
︸ ︷︷ ︸

=:w(j)

(7.1)

Es sei nun λ1 der betragsmäßig echt größte Eigenwert, d.h. |λ1| > |λ2|. Dann ist
klar, dass in der Darstellung 7.1 die Summe für j 7→ ∞ verschwindet, also w(j)

gegen α1v1 konvergiert. Für große j wird also x(j) zu einem Vielfachen des ersten
Eigenvektors y1. Um zu einer Konvergenz zu kommen, müsste man nun nur noch
die x(j) normieren, was den Faktor vor w(j) eliminiert. Hierzu kann man z.B. einen
Vektor x̃ fest wählen und die Vektoren

y(j) =
1

(x(j), x̃)
x(j) =

1

λj1(w(j), x̃)
λj1w

(j) →j 7→∞
1

(v1, x̃)
v1
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betrachten (mit der Voraussetzung, dass (x̃, v1) 6= 0). Für die Bestimmung des Ei-
genwerts betrachtet man entsprechend den Quotienten

a(j) =
(x(j+1), x̃)

(x(j), x̃)
=
λj+1

1 (w(j+1), x̃)

λj1(w(j), x̃)
→j 7→∞ λ1

mit derselben Bedingung. Dies ist die Potenzmethode (Vektoriteration). Wir werden
diese später genauer untersuchen und eine bessere Bedingung zur Konvergenz an-
geben, halten aber schon mal fest:

Definition 7.1 ( Potenzmethode, Vektoriteration nach von Mises)
Die Folge a(j) heißt Potenzmethode zur Bestimmung des betragsmaximalen Eigen-
werts von A.

Korollar 7.2 ( Konvergenz der Potenzmethode, einfache Version)
Die Potenzmethode konvergiert, falls

1. Die Matrix A eine Basis aus Eigenvektoren besitzt.

2. A einen einzigen echt betragsmäßig größten Eigenwert besitzt, d.h.

|λ1| > |λk|, k = 2 . . . n.

3. α1 6= 0.

4. (x̃, v1) 6= 0.

In diesem Fall gilt lim y(j) = 1
(x̃,v1)

v1, lim a(j) = λ1.

Bedingung 3 und 4 spielen numerisch keine Rolle (s. auch Beispiel in den Übungen),
dies werden wir nicht weiter betrachten. Bedingung 1 und 2 dagegen sind proble-
matisch. Wir werden bei dem echten Beweis der Potenzmethode zeigen, dass ein
alternativer Beweis im Fall 1. immerhin noch (langsame) Konvergenz beweist, im
Fall 2. versagt die Potenzmethode in der vorgelegten Form, falls unterschiedliche
betragsmaximale Eigenwerte existieren.
Zusätzlich lösen wir hier natürlich nur ein Teilproblem: Etwa zur Berechnung der Sin-
gulärwertzerlegung benötigen wir alle Eigenwerte einer Matrix, das wird hier nicht
geliefert. Zunächst schauen wir auf die Kondition des Eigenwertproblems.
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7.1 Kondition des Eigenwertproblems

Zunächst betrachten wir den Spezialfall, dass A hermitesch ist, und geben ein Ein-
schließungskriterium an.

Satz 7.3 Es sei A ∈ Cn×n hermitesch. Weiter seien λ und x Näherungen für einen
Eigenwert von A mit zugehörigem Eigenvektor, und es sei d := Ax − λx das Resi-
duum. Dann gibt es einen Eigenwert von A mit

|λi − λ| ≤
||d||2
||x||2

.

Beweis: A ist hermitesch, also hat der Cn eine Orthonormalbasis v1, . . . , vn mit zu-
gehörigen Eigenwerten λ1, . . . , λn. Nach Satz 6.6 gilt

x =
n∑
k=1

ckvk, ck = (x, vk), ||x||22 =
n∑
k=1

|ck|2

und

d = Ax− λx =
n∑
k=1

ck(λk − λ)vk.

Sei λi der zu λ nächste Eigenwert, also

|λi − λ| ≤ |λk − λ|, k = 1 . . . n.

Damit ist

||d||22 =
n∑
k=1

|ck|2|λk − λ|2 ≥
n∑
k=1

|ck|2|λi − λ|2 = ||x||22|λi − λ|2.

�

Für die Störungstheorie ist interessant

Korollar 7.4 Statt der hermiteschen Matrix A sei nur eine Näherung Ã = A + S
bekannt. x sei Eigenvektor von Ã zum Eigenwert λ. Dann gibt es einen Eigenwert λi
von A mit

|λi − λ| ≤
||Sx||2
||x||2

≤ ||S||2.

Beweis: Wir wenden den Satz auf A an und erhalten die Existenz eines Eigenwerts
λi mit

|λi − λ| ≤
||Ax− λx||2
||x||2

=
||Ax− Ãx||2
||x||2

=
||Sx||2
||x||2

≤ ||S||2.
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�
Damit ist der Fehler in den berechneten Werten nicht größer als die Norm der
Störung.
Leider sind die Verhältnisse für nicht–diagonalisierbare Matrizen viel schlechter.
Falls ν die Dimension des größten Jordankästchens von A ist, so liegen die Fehler
in der Größenordnung ||B||1/ν , den Beweis finden Sie wieder im Artikel Kato [1995].
Genauer gilt

Satz 7.5 Sei A ∈ Cn×n mit Eigenwerten λ1, . . . , λn, und J = X−1AX die Jordan–
Normalform von A. Sei ν die Dimension des größten Jordankästchens von J . Sei
Aε = A + εF , ε < 1.Dann liegen sämtliche Eigenwerte von Ã in der komplexen
Ebene in der Vereinigung der Kreise

Kl = {z ∈ C : |z − λl| ≤ ε1/ν(1 + k∞(X))||F ||∞.

Dabei ist k∞(X) die Kondition von X in der Unendlichnorm, also

k∞(X) = ||X||∞||X−1||∞.

Der Satz sagt also: Für kleine Störungen geht der Fehler bei der Berechnung der
Eigenwerte nicht notwendig linear mit dem Fehler in der Matrixnorm gegen 0 (wie
bei Hermiteschen Matrizen), sondern nur mit ν–ten Wurzel. Für diagonalisierbare
Matrizen erhalten wir wieder einen linearen Zusammenhang.
Beweis: Mit der Formulierung des Satzes ist schon klar, dass der Beweis über die
Gerschgorin–Kreise laufen muss, und nutzen diesen Beweis als Übung für den Um-
gang mit dem Satz von Gerschgorin 5.18. Wir betrachten (ohne Einschränkung) den
Fall, dass J nur aus einem Jordankästchen besteht, also ν = n, andernfalls teilt
man die Betrachtung in kleine Teilmatrizen auf, was sie unübersichtlich, aber nicht
spannender macht.
Es gilt

A+ εF = X(J + εX−1FX︸ ︷︷ ︸
=:G

)X−1.

Dann gilt
||G||∞ ≤ ||X||∞||F ||∞||X−1||∞ = k∞(X)||F ||∞.

Sei nun δ = ε1/n. Wir würden gern den Satz von Gerschgorin anwenden, tun wir
das aber auf J , so erhalten wir immer einen Radius von mindestens 1 für die
Gerschgorinkreise – Gerschgorin liefert für nicht–diagonalisierbare Matrizen sehr
schlechte Abschätzungen, wenn man ihn direkt anwendet. Wir skalieren J daher
so, wie wir es schon einmal getan haben.
Sei D ∈ Cn×n die Diagonalmatrix mit δk−1 auf der Hauptdiagonalen (siehe 5.13).
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Ebenfalls wie dort betrachten wir die Matrix D−1JD.

D =


1

δ
. . .

δn−1

 , D−1JD =


λ δ

λ δ
. . . . . .

λ δ
λ

 .

Sei G = (gi,j), dann gilt entsprechend

|(D−1GD)i,j| = |gi,jδj−i| ≤ |gi,jδ1−n| = |gi,j|δ/ε.

Wir wenden den Satz von Gerschgorin 5.18 auf die Matrix

G′ = D−1(J + εG)D = D−1JD + εD−1GD

an, diese hat dieselben Eigenwerte wie J + εG und damit wie Aε.
Auf der Hauptdiagonalen von G′ stehen die Einträge λ + εgi,i. Die Summe der Be-
träge auf der Nebendiagonale ist

ri ≤ δ + εδ/ε
∑
j 6=i

|gi,j| = δ

(
1 +

∑
j 6=i

|gi,j|

)
.

5.18 garantiert nun, dass jeder Eigenwert µ vonAε in einem dieser Kreise liegt, also
gibt es ein i mit

|µ− (λ+ εgi,i)| ≤ ri.

Damit ist aber

|µ− λ| ≤ ε|gi,i|+ ri

≤ δ

(
1 +

n∑
j=1

|gi,j|

)
(ε < δ wegen ε < 1)

≤ δ(1 + ||G||∞) (nach ??)

≤ δ(1 + k∞(X)||F ||∞)

und das war die Behauptung. �

Dieser Beweis ist ein schönes Beispiel für die schon beim Satz von Gerschgo-
rin gemachte Bemerkung, dass sich beim Übergang zu ähnlichen Matrizen die
Gerschgorin–Abschätzungen erheblich verschärfen können.
Der Vollständigkeit halber erwähnen wir noch eine in der Numerik häufig genutzte
Abschätzung für die Eigenwerte hermitescher Matrizen.
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Definition 7.6 ( Rayleigh–Quotient)
Sei A ∈ Cn×n hermitesch. Dann heißt

RA : Cn 7→ R, RA(x) :=
(Ax, x)

(x, x)

Rayleigh–Quotient von A.

Satz 7.7 ( Courantsches Minimum–Maximum–Prinzip)
Sei A ∈ Cn×n hermitesch. Seien λ1, . . . , λn die Eigenwerte von A, hier ausnahms-
weise ihrer Größe nach geordnet, also λk ≥ λk+1. Dann gilt

λj = min
U n+1−j–dimensionaler Unterraum von Cn

max
06=x∈U

RA(x).

Beweis: Wir nutzen den Satz nicht, daher hier ohne Beweis. Sie finden ihn z.B. in
Schaback and Wendland [2004], Satz 15.3. �

7.2 Potenzmethode

In der Vorbemerkung haben wir bereits die Potenzmethode hergeleitet und den Be-
weis für ihre Konvergenz in einem einfachen Fall geführt. Wir sind nun etwas genau-
er und betrachten zusätzlich nicht–diagonalisierbare Matrizen.

Satz 7.8 ( Konvergenz der Potenzmethode: Allgemeine Version)
Sei A ∈ Cn×n, x(0) ∈ Cn, x̃ ∈ Cn. Wir definieren die Vektoriteration durch

x(j) = Ajx(0), a(j) =
(x(j+1), x̃)

(x(j), x̃)
.

Es seien λ1, . . . , λn die Eigenwerte vonA (gezählt mit ihrer Vielfachheit im charakte-
ristischen Polynom). Die Eigenwerte seien so angeordnet, dass

|λ1| = |λ2| = . . . = |λr| > |λr+1| ≥ ... ≥ |λn|.

Falls λ1 = λ2 = . . . = λr, so konvergiert die Potenzmethode für fast alle Werte von
x(0) und x̃ gegen λ1. Falls es zusätzlich r linear unabhängige Eigenvektoren zum
Eigenwert λ1 gibt, so gilt

|a(j) − λ1| ≤ C(λr/λr+1)j,

sonst gilt nur
|a(j) − λ1| ≤ C/j

jeweils für ein C > 0.
Falls es ein k gibt mit |λ1| = |λk|, aber λ1 6= λk, so konvergiert die Potenzmethode
im allgemeinen nicht.
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Die genaue Konvergenzbedingung legen wir im Beweis fest. Wir schauen zunächst
auf einige Beispiele.

Beispiel 7.9 Wir geben immer die Jordannormalform der Matrix an.

1.

J =

4
1

1

 .

Die Matrix ist diagonalisierbar, es gibt also eine Basis aus Eigenvektoren, die
Potenzmethode konvergiert schnell mit der Rate (1/4)j.

2.

J =

4
4

1

 .

Die Matrix ist diagonalisierbar, es gibt also ein linear unabhängiges System
aus Eigenvektoren, es gibt zwei gleiche betragsmaximale Eigenwerte, die Po-
tenzmethode konvergiert wieder mit der Rate (1/4)j.

3.

J =

4 1
4

1

 .

Zum maximalen Eigenwert 4 gibt es nur einen Eigenvektor, deshalb ist die Kon-
vergenz langsam wie 1/j.

4.

J =

4
4
−4

 .

Die Matrix hat zwei unterschiedliche betragsmaximale Eigenwerte, die Potenz-
methode konvergiert im allgemeinen nicht.

Hier nun einige typische Beispielverläufe im Diagramm. Zunächst bei eindeutigem
betragsmaximalem Eigenwert und Diagonalisierbarkeit (7.1):
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Abbildung 7.1: Schnelle Konvergenz der Potenzmethode. Links: Folge a(j), rechts:
log |λ1 − a(j)||

Die Folge konvergiert. Die Konvergenz geht mit (λ2/λ1)j. Rechts plotten wir den
Logarithmus der Abweichung |λ1 − a(j)|. Wegen log(|λ2/λ1|j) = j log |λ2/λ1|
erwarten wir, dass dieser linear ist in den Iterationen, dies ist tatsächlich der Fall.

Abbildung 7.2: Langsame Konvergenz der Potenzmethode.

Hier sind nicht ausreichend viele Eigenvektoren zum betragsmaximalen Eigenwert
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PotenzFast.jpg:  Schnelle Konvergenz der Potenzmethode. Links: Folge a(j), rechts: log|1-a(j)||
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vorhanden, die Matrix ist nicht diagonalisierbar. Wir erwarten langsame Konver-
genz, dies ist der Fall, der Logarithmus ist sub–linear (7.2).

Abbildung 7.3: Divergenz der Potenzmethode.

Hier haben wir zwei unterschiedliche betragsmaximale Eigenwerte, wir erwarten,
dass die Folge divergiert (und zwar hin– und herspringt) (7.3). Dies ist der Fall.� �
f u n c t i o n [ v l , pos ] = Potenz ( A , x , N , d , f i l e n a m e )

%POTENZ Potenzmethode
n= s i z e ( A , 1 ) ;
i f ( nargin <3)

N=x ;
x=rand ( n , 1 ) ;
� �

Listing 7.1: Potenzmethode (Eigenwerte/Potenz.m)

� �
f u n c t i o n [ o u t p u t a r g s ] = demopotenz ( q )

%DEMOPOTENZ
n =10;
format compact ;
D=diag ( s o r t ( rand ( n , 1 ) , 1 , ’ descend ’ ) ) ;
%D(2 ,2)==D ( 1 , 1 ) ;

157


Potenzmethode: Berechneter Eigenwert

Eigenwert

Il
10 20 30 40 50 60 70 80 90 100
Iteration



Frank Wuebbeling
PotenzNoConv.jpg: Divergenz der Potenzmethode.


hgS_070000:[1x1  struct array]


		[1x6  char array]

		[1x1  double array]

		[1x1  struct array]		@ = 
	PaperUnits : [1x11  char array]
	Color : [1x3  double array]
	Colormap : [64x3  double array]
	InvertHardcopy : [1x2  char array]
	PaperPosition : [1x4  double array]
	PaperSize : [1x2  double array]
	PaperType : [1x2  char array]
	Position : [1x4  double array]
	ApplicationData : [1x1  struct array]






		[1x1  struct array]		@ = 
	type : [1x4  char array]
	handle : [1x1  double array]
	properties : [1x1  struct array]
	children : [5x1  struct array]
	special : [4x1  double array]






		[0x0  double array]



Frank Wuebbeling
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function [ vl,pos ] = Potenz( A,x,N,d,filename )
%POTENZ Potenzmethode
n=size(A,1);
if (nargin<3)
    N=x;
    x=rand(n,1);
end
if (nargin<4)
    d=x;
end
ref=max(abs(eig(A)));
pos=zeros(N,1);
for i=1:N
    y=A*x;
    lambda=dot(y,d)/dot(x,d);
    vl(i)=lambda;
    pos(i)=norm(lambda-ref);
    if (i>1)
        pos2(i-1)=pos(i)/pos(i-1);
    end
    x=y;
end
plot(vl);
title('Potenzmethode: Berechneter Eigenwert');
xlabel('Iteration');
ylabel('Eigenwert');
if (nargin==5)
%    vorlsavepic(filename);
end
waitforbuttonpress;
%plot(pos);
%title('Potenzmethode - Abweichung von \lambda_1');
%waitforbuttonpress;
semilogy(pos);
title('Potenzmethode - Abweichung von \lambda_1 (logplot)');
xlabel('Iteration');
ylabel('Abweichung');
if (nargin==5)
%    vorlsavepic([filename 'logplot']);
end
waitforbuttonpress;
%plot(pos2);
%title('Potenzmethode - Faktor der linearen Konvergenz');
%L=sort(abs(eig(A)));
%L(n-1)/L(n)
%waitforbuttonpress
%axis([0 N 0 5]);
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� �
Listing 7.2: Treiber für Potenzmethode (Eigenwerte/demopotenz.m)

Beweis: Falls wir r linear unabhängige Eigenvektoren zum Eigenwert λ1 haben, so
kann der Beweis wie in der Einleitung geführt werden, die Konvergenzgeschwindig-
keit der w(j) und damit der a(j) ist O(λr+1/λ1)j, die genaue Konvergenzbedingung
haben wir bereits angegeben.
Ebenso: Falls unterschiedliche Eigenwerte mit gleichem Maximalbetrag existieren,
so konvergieren die Vektoren w(j) aus der Einleitung nicht, und wir erhalten auch
keine Konvergenz.
Der einzige interessante Fall: Was passiert bei nicht–diagonalisierbaren Matrizen?
Um Bezeichnungswirrwarr zu vermeiden, beschränken wir uns auf die Betrachtung
des folgenden Falls (alle anderen sind mit derselben Idee zu führen):A ist nicht dia-
gonaliserbar, aber ihre Jordannormalform J = X−1AX hat nur eine 1 an der Stelle
(1, 2), und es sei |λ1| > |λ3|, also

J =


λ1 1

λ1

λ3

. . .
λn

 .

Seien vk die Spalten von X. Wegen

(v1, . . . , vn)


λ1 1

λ1

λ3

. . .
λn

 = XJ = AX = (Av1, . . . , Avn)

gilt
Avk = λkvk (k 6= 2); Av2 = v1 + λ1v2.

Also gilt insbesondere

Ajvk = λjkvk(k 6= 2); Ajv2 = λj1v2 + jλj−1
1 v1.

Sei nun wieder

x(0) =
n∑
k=1

αkvk
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function [ output_args ] = demopotenz( q )
%DEMOPOTENZ 
n=10;
format compact;
D=diag(sort(rand(n,1),1,'descend'));
%D(2,2)=-D(1,1);
%D(1,2)=1;
Eigenwerte=diag(D)'
X=rand(n);
A=inv(X)*D*X;
x=rand(n,1);
d=x;
[v,pos]=Potenz(A,x,100,d,'PotenzFast');
Lambda1=v(100)
Lambda2=pos(81)/pos(80)*Lambda1
D(2,2)=D(1,1);
D(2,1)=1;
A=inv(X)*D*X;
[v,pos]=Potenz(A,x,100,d,'PotenzSlow');
Lambda1=v(100)
D(2,1)=0;
D(2,2)=-D(1,1);
A=inv(X)*D*X;
[v,pos]=Potenz(A,x,100,d,'PotenzNoConv');
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und wie in 7.1

x(j) = Aj
n∑
k=1

αkvk

= λj1α1v1 + λj1α2v2 + jλj−1
1 α2v1 +

n∑
k=3

αkλ
j
kvk

= jλj1

(
(α1/j + α2/λ1)v1 + (α2/j)v2 +

n∑
k=3

(αk/j)

(
λk
λ1

)j
vk

)
︸ ︷︷ ︸

=:w(j)

.

Also konvergiertw(j) gegen (α2/λ1)v1, aber nur sehr langsam (nämlich wie 1/j) und
unter der Voraussetzung, dass α2 6= 0.
Für die a(j) gilt

a(j) =
(x(j+1), x̃)

(x(j), x̃)
=
j + 1

j
λ1

(w(j+1), x̃)

(w(j), x̃)
→j 7→∞ λ1

und natürlich auch nur mit langsamer Konvergenz wie 1/j und unter der Vorausset-
zung, dass (v2, x̃) 6= 0. �

Es stellt sich die Frage, wie häufig es auftritt, dass eine Matrix tatsächlich zwei un-
terschiedliche Eigenwerte von gleichem Betrag hat. Tatsächlich ist dies oft der Fall
und liefert die Erklärung für das folgende Phänomen:
Sei A eine reelle Matrix, der betragsmaximale Eigenwert λ1 sei komplex (also nicht
reell). Sei weiter x(0) ein reeller Startvektor für die Potenzmethode, und x̃ ein reeller
Referenzvektor. Dann kann die Potenzmethode nicht konvergieren, denn alle a(j)

sind reell.
Wie passt das mit unserem Satz zusammen? Klarerweise ist für eine reelle Matrix
mit λ1 auch λ1 eine Nullstelle des (reellen) charakteristischen Polynoms, also Ei-
genwert. Da |λ1| = |λ1|, aber λ1 6= λ1, konvergiert die Potenzmethode nicht.
Eine Methode, auch bei betragsgleichen Eigenwerten zu Konvergenz zu kommen, ist
die Nutzung von Shifts. Im einfachsten Fall wird die Potenzmethode auf die Matrix
A− σI angewandt, was alle Eigenwerte und damit die Beträge verschiebt.
Eine weitere Methode ist die inverse Iteration nach Wielandt, dort wird die Potenz-
methode auf die Matrix A−1 angewandt, und bestimmt (bei Konvergenz) den be-
tragskleinsten Eigenwert von A.
Im Folgenden werden wir Verfahren zur Bestimmung aller Eigenwerte betrachten.
Eine mögliche Idee wäre: Wir bestimmen zunächst mit der Potenzmethode den be-
tragsmaximalen Eigenwert λ1.
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Dann wählen wir x0 und x̃ absichtlich so, dass die Konvergenzbedingung aus der
Einleitung verletzt wird. Das Verfahren kann in diesem Fall nicht mehr gegen λ1 kon-
vergieren, im allgemeinen wird es gegen λ2 konvergieren. Für Hermitesche Matrizen
müssen wir dazu nur x(0) orthogonal zum Eigenvektor von λ1 wählen. Schaut man
sich den typischen Iterationsverlauf an, so scheint das auch zu funktionieren (im
Beispiel 7.4 bis zum Iterationsschritt 40), aber plötzlich schlägt die Folge um und
konvergiert doch gegen λ1.
Dies ist leicht zu erklären: Da α2 sehr klein (oder sogar Null) ist, bleibt der erste
Term in der Summe in wk zunächst klein. Durch Rundungsfehler schleichen sich
aber kleine Fehler ein, die durch den Exponentialterm groß werden. Das ist auch der
Grund, warum die Konvergenzbedingungen 3 und 4 praktisch keine Rolle spielen -
man muss nur lang genug iterieren. Zur Bestimmung aller Eigenwerte können wir
die Grundidee dieses Ansatzes trotzdem weiterverwenden.

Abbildung 7.4: Konvergenz bei ungünstigem Anfangswert

� �
f u n c t i o n [ o u t p u t a r g s ] = Semikonvergenz ( i n p u t a r g s )

%SEMIKONVERGENZ
A =[5 1 0 ; 1 1 1 ; 0 1 1 ] ;
[ V D]= e i g ( A ) ;
diag ( D ) ’
D ( 2 , 2 ) / D ( 3 , 3 )
� �
Listing 7.3: Semikonvergenz für die Potenzmethode bei ungünstigen Anfangswerten
(Eigenwerte/Semikonvergenz.m)
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7.3 Der QR–Algorithmus zur Bestimmung aller Eigenwerte

einer Matrix

Die Potenzmethode und ihre Modifikationen haben den Nachteil, dass sie nur einen
Eigenwert einer Matrix bestimmen. Manchmal benötigt man aber alle (etwa für die
Singulärwertzerlegung).
Hierzu werden wir die Idee am Ende des letzten Abschnitts weiterentwickeln. Sei
zunächst einmal die Matrix A hermitesch und positiv definit mit betragsmäßig ver-
schiedenen Eigenwerten. Dann gibt es eine ONB aus Eigenvektoren. Mit der Potenz-
rechnung berechnen wir eine Näherung für λ1 und einen zugehörigen Eigenvektor
v1. Wählen wir nun x(0) senkrecht zu v1, so ist in 7.1 α1 = 0, der dominierende Term
ist damit α2λ

j
2v2, und mit derselben Betrachtung wie oben konvergiert die Potenz-

methode gegen λ2.
Leider ist dies, wie schon gesehen, nicht praktikabel. α2 ist nicht genau 0, und des-
halb setzt sich der Term in v1 am Ende doch durch. Dies lässt sich aber leicht be-
heben: In jedem einzelnen Schritt ziehen wir die Projektion auf v1 von x(j) ab und
garantieren dadurch, dass die Iteration im Orthogonalraum zu v1 stattfindet, also

x̃(j+1) = Ax(j), x(j+1) = x̃(j+1) − (x(j+1), v1)v1.

Tatsächlich erhalten wir auf diese Art eine stabile Konvergenz gegen λ2. Wir führen
diesen Gedanken nun noch fort und warten nicht, bis der erste Eigenvektor auskon-
vergiert ist, sondern ziehen die Iterationen gleichzeitig auf n Vektoren durch. Sei
also

X(0) =
(
x

(0)
1 , . . . , x(0)

n

)
.

Es sei X(j) bereits berechnet. Zunächst wenden wir die Matrix A auf alle Spalten
an, berechnen also(

x̃
(j+1)
1 , . . . , x̃(j+1)

n

)
= X̃(j+1) = AX(j) =

(
Ax

(j)
1 , Ax(j)

n

)
.

Gemäß unserer Idee führen wir für x(j)
1 eine normale Potenzmethode durch. Um

Konvergenz zu erreichen, normieren wir noch mit einem Faktor, wir wählen r(j)
1,1 =

||x̃(j+1)||, so dass
r

(j)
1,1x

(j+1)
1 = x̃

(j+1)
1

mit ||x(j+1)
1 || = 1. x(j+1)

2 soll orthogonal werden zu x(j+1)
1 . Wir wählen also r(j)

2,2 und

r
(j)
2,1 so, dass

r
(j+1)
2,2 x

(j+1)
2 = x̃

(j+1)
2 − r(j)

1,2x
(j+1)
1
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function [ output_args ] = Semikonvergenz( input_args )
%SEMIKONVERGENZ 
A=[5 1 0;1 1 1; 0 1 1];
[V D]=eig(A);
diag(D)'
D(2,2)/D(3,3)
x=rand(3,1);
d=rand(3,1);
N=80;
%Potenz(A,x,N,d);
x=V(:,1)+V(:,2);
%d=x;
d=ones(size(x));
Potenz(A,x,N,d,'Semikonvergenz');

Frank Wuebbeling
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und
(x

(j+1)
1 , x

(j+1)
2 ) = 0, ||x(j+1)

2 || = 1.

Es wird natürlich sofort klar, was wir hier tun: Wir führen einfach nur das Schmidt-
sche Orthonormalisierungsverfahren an den Spalten von X̃(j+1) durch. Wie schon in
3.12 gesehen, entspricht dies einfach der Berechnung der QR–Zerlegung von X̃(j+1),
es ist

X̃(j+1) = X(j+1)R(j) mit R(j) = (r
(j)
i,k )

(und X(j+1) ist dabei natürlich unitär, R(j) eine rechte obere Dreiecksmatrix).
Diese Idee wollen wir nun noch etwas leichter zugänglich und implementierbar ma-
chen. Wegen

X(j+1)R(j) = AX(j) gilt R(j) = (X(j+1))−1AX(j).

Wir definieren das QR–Verfahren als die Folge von Matrizen

A(j) =
(
X(j)

)−1
AX(j) =

(
X(j)

)−1
X(j+1)︸ ︷︷ ︸

=:Q(j)

(
X(j+1)

)−1
A
(
X(j)

)︸ ︷︷ ︸
=R(j)

.

A(j) ist also ähnlich zu A und hat damit dieselben Eigenwerte. Nach unserer Herlei-
tung erwarten wir, dass X(j) gegen die Eigenvektoren von A konvergiert, also sollte
A(j) gegen die Jordan–Normalform von A konvergieren. Q(j) und R(j) sind die ein-
deutige QR–Zerlegung von A(j) mit positiver Hauptdiagonale von R(j) (siehe 3.15).
A(j+1) lässt sich einfach aus A(j) berechnen. Es gilt

A(j+1) =
(
X(j+1)

)−1
AX(j+1)

=
(
X(j+1)

)−1
AX(j)

(
X(j)

)−1
X(j+1)

= R(j)Q(j)

und R(j) und Q(j) berechnen wir mit Householder. Da alle A(j) zu A ähnlich sind,
haben alle dieselben Eigenwerte wie A.
Der so entstehende Algorithmus ist einer der grundlegenden Algorithmen der linea-
ren Algebra, und wohl der mit der kuriosesten Geschichte. Er wurde 1961 publiziert
von John Francis,Francis [1961] und Francis [1962]. Francis hat nie einen Univer-
sitätsabschluss erhalten und den Algorithmus als Student entwickelt, aber dann
das Feld verlassen, ihm ist die Bedeutung erst 2007 klargeworden, als Gene Golub
ihn in Kleinarbeit aufstöberte. Golub, einer der Väter von Matlab und selbsternann-
ter Professor SVD, schreibt zum QR–Algorithmus (übrigens nicht in einem Nachruf,
Francis lebt noch im Gegensatz zu Golub (Stand 2012)):
Along with the conjugate gradient method, it provided us with one of the basic tools
of numerical analysis.
Eine Würdigung des Beitrags von Francis findet sich in Golub and Uhlig [2009].
Wir können den QR–Algorithmus so zusammenfassen (mit der Wahl X(0) = I):
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Setze A(0) := A.
Für j = 0 . . .∞

Berechne die QR–Zerlegung Q(j)R(j) von A(j)

mit positiver Hauptdiagonale von R(j).
Setze A(j+1) := R(j)Q(j).
Falls A nah genug an einer Diagonalmatrix ist, brich das Verfahren ab.

Anschließend können wir Näherungen für die Eigenwerte auf der Hauptdiagonalen
von A(j+1) ablesen.
Momentan hoffen wir natürlich nur, dass dieser Algorithmus konvergiert. Nach un-
serer Motivation vielleicht überraschend, bekommen wir eine Teilkonvergenz sogar
für nicht–hermitesche Matrizen. Wir zeigen dies für einen Spezialfall.

Satz 7.10 ( Konvergenz des QR–Algorithmus)
Sei A ∈ Cn×n. A habe betragsmäßig unterschiedliche Eigenwerte λk mit

|λ1| > |λ2| > . . . > |λn|.

Dann hat A n linear unabhängige Eigenvektoren, ist also diagonalisierbar, d.h.

D = X−1AX

mit der Diagonalmatrix

D =


λ1

λ2

. . .
λn

 .

X−1 besitze eine LR–Zerlegung X−1 = L′ · R′. Weiter sei X = Q · R die QR–
Zerlegung von X mit positiver Hauptdiagonale von R. Dann gilt für die Matrizen
des QR–Algorithmus

A
(j)
i,k 7→


λi i = k

0 i > k

? i < k

wobei das Fragezeichen dafür steht, dass in diesem Fall die Folge nicht notwendig
überhaupt konvergiert. Die Folge der Matrizen konvergiert also auf der Hauptdia-
gonalen gegen die Eigenwerte und darunter gegen 0, oberhalb treffen wir keine
Aussage.

Vorlesungsnotiz: 1.1.2013
Die Bedingungen des Satzes sind viel zu scharf, mögen hier aber ausreichen. Wir
machen zunächst einige Vorbemerkungen.
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Lemma 7.11 Mit den Bezeichnungen des Satzes und des QR–Algorithmus gilt

1.
Aj = Q(0) · . . . Q(j−1)R(j−1) · . . . ·R(0).

2. Falls A(j) gegen eine Matrix A konvergiert, so konvergieren auch die QR–
Zerlegungen mit positiver Hauptdiagonale vonA(j) gegen dieQR–Z erlegung
von A.

3. Seien
A = Q ·R = Q̃ · R̃

zwei QR–Zerlegungen von A. Dann gibt es eine Diagonalmatrix D̃ mit |D̃i,i| =
1 und

Q̃tQ = R̃R−1 = D̃.

4. (
RDR−1

)
k,k

= Dk,k.

5.

(
DjL′D−j

)
i,k

= λjiLi,kλ
−j
k =


0 i < k

1 i = k

7→ 0 i > k

und damit
DjL′D−j = I + F (j), F (j) 7→ 0.

Beweis: (des Lemmas)

1.
Q(0)R(0) = A

Q(0)Q(1)R(1)R(0) = Q(0)A(1)R(0) = Q(0)R(0)Q(0)R(0) = A2

usw.

2. Für die erste Spalte ist die Aussage klar, dann weiter per Induktion über die
Spalten.

3. Das ist 3.15.

4. Durch Hinschreiben des Matrixprodukts.

5. Genau wie im Beweis zu 7.5 und wegen |λk| > |λk+1|.
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�
Beweis: (des Satzes)
Der Beweis orientiert sich an der Originalpublikation Francis [1961].
Wir leiten eine zweite QR–Zerlegungen von Aj her und vergleichen sie mit dem
Lemma. Es gilt

Aj = XDjX−1

= XDjL′R′

= XDjL′D−jDjR′

= X(I + F (j))DjR′

= QR(I + F (j))DjR′

= Q (I +RF (j)R−1)︸ ︷︷ ︸
=:P (j)S(j) (QR–Zerlegung, HD von S(j) ≥ 0)

RDjR′

= (QP (j))︸ ︷︷ ︸ (S(j)RDjR′)︸ ︷︷ ︸
und dies ist eine weitereQR–Zerlegung vonAj. Nach Teil 2 des Lemmas konvergie-
ren P (j) und S(j) gegen die Einheitsmatrix I. Nach Teil 3 des Lemmas gibt es also
eine DiagonalmatrixD(j) mit Elementen vom Betrag 1 auf der Hauptdiagonalen und

Q(0) · . . . ·Q(j−1) = QP (j)D(j)

R(j−1) · . . . ·R(0) =
(
D(j)

)−1
S(j)RDjR′

Es gilt

Q(j) = (Q(0) · . . . ·Q(j−1))−1(Q(0) · . . . ·Q(j))

=
(
QP (j)D(j)

)−1 (
QP (j+1)D(j+1)

)
und

R(j) = (R(j) · . . . ·R(0))
(
R(j−1) · . . . ·R(0)

)−1

=
((
D(j+1)

)−1
S(j+1)RDj+1R′

)((
D(j)

)−1
S(j)RDjR′

)(−1)

.

Wegen A(j) = Q(j)R(j) gilt also insgesamt

A(j) =
(
D(j)

)−1 (
P (j)

)−1
P (j+1)S(j+1)RDR−1

(
S(j)
)−1︸ ︷︷ ︸

7→RDR−1

D(j)

Da RDR−1 rechte obere Dreiecksmatrix ist mit der Hauptdiagonalen von D, kon-
vergiertA(j) also unterhalb der Hauptdiagonalen gegen 0, auf der Hauptdiagonalen
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gegen die Diagonale von D, oberhalb der Hauptdiagonalen können wir keine
Aussage treffen. �

Der Beweis ist nicht schwierig, aber leider extrem technisch. Die zentrale Idee des
Beweises ist der Eindeutigkeitssatz der QR–Zerlegung 3.15, und Teil 5 des Lemmas.
Dort kann man auch die Konvergenzgeschwindigkeiten ablesen, nicht sehr überra-
schend, entsprechen sie denen der Potenzmethode.
Tatsächlich kann man auf die meisten Voraussetzungen verzichten, sie sind rein
technischer Natur, um den Beweis halbwegs übersichtlich zu halten. Da die Idee
aber auf der Potenzmethode beruht, erwarten wir natürlich dieselben Schwierigkei-
ten wie dort.
Bemerkung: (Bemerkungen zum QR–Algorithmus zur Bestimmung der Eigenwerte
einer Matrix)

1. Falls die Matrix nicht diagonalisierbar ist, konvergiert der QR–Algorithmus für
die entsprechenden Eigenwerte nur wie 1/j.

2. Falls betragsgleiche, unterschiedliche Eigenwerte existieren, so konvergiert
der QR–Algorithmus für die entsprechenden Eigenwerte nicht. In diesem Fall
bleiben auch unterhalb der Hauptdiagonalen einige Elemente stehen, wir er-
halten Kästchen, die den Jordan–Kästchen entsprechen.

3. Auch die Voraussetzung, dass die Hauptdiagonalen der QR–Zerlegungen
positiv sein müssen, ist rein technisch. Man kann mit beliebigen QR–
Zerlegungen arbeiten.

Unsere Demo zeigt das typische Konvergenzverhalten. In unserem Beispiel konver-
gieren einige Eigenwerte schnell (sie sind betragsmäßig getrennt bzw. haben vollen
Eigenraum–Rang) (Block oben links), einige langsam (dort gibt es nicht ausreichend
viele Eigenvektoren) (unten rechts), einige gar nicht (dort gibt es betragsgleiche,
verschiedene Eigenwerte) (in der Mitte).

166



Abbildung 7.5: QR-Algorithmus: Typisches Konvergenzverhalten

� �
f u n c t i o n d o i t e i g m o v i e ( i n p u t a r g s )

%DOITEIGMOVIE
N=8;
A=zeros ( N ) ;
A ( 1 , 1 ) = 1 ;
A ( 2 , 2 ) = 1 ;
� �
Listing 7.4: Konvergenzverhalten des QR-Algorithmus (Eigenwerte/doiteigmovie.m)

� �
f u n c t i o n S = q r a l g ( A , N , p )

%QRALG QR=A l g o r i t h m u s
S=A ;
f o r k =1: p
f o r i =1 :N

[ Q, R ]= qr ( S ) ;
� �
Listing 7.5: QR–Verfahren (Eigenwerte/qralg.m)
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qralgdemo.jpg: QR-Algorithmus: Typisches Konvergenzverhalten
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Matlab Figure qralgdemo.fig: QR-Algorithmus: Typisches Konvergenzverhalten


function  doiteigmovie( input_args )

%DOITEIGMOVIE

N=8;

A=zeros(N);

A(1,1)=1;

A(2,2)=1;

A(3,3)=1;

A(1,2)=1;

A(2,3)=1;

A(4,4)=2;

A(5,5)=-2;

A(6,6)=2;

A(7,7)=3;

A(8,8)=3;

diag(A)'

X=rand(N);

B=inv(X)*A*X;

for i=1:100

    [Q R]=qr(B);

    B=R*Q;

    C=log(abs(B)+1e-8);

    %C=B;

    for j=1:N

        for l=j+1:N

            C(j,l)=0;

        end

    end

    imagesc(C);

    colorbar;

    title('Logarithmus des Betrags der Elemente unter und auf der Hauptdiagonalen');

    drawnow;

    %waitforbuttonpress;

end





Frank Wuebbeling
Konvergenzverhalten des QR-Algorithmus


function S = qralg( A,N,p )
%QRALG QR-Algorithmus
S=A;
for k=1:p
for i=1:N
    [Q,R]=qr(S);
    S=R*Q;
end
%if (not(issparse(A)))
%sort(diag(S))
%sort(eig(A))
%end
figure(1);
imagesc(abs(S),[0 1])
title(['QR-Verfahren nach ' mat2str(k*N) ' Iterationen.']);
colorbar;
figure(2);
imagesc(log(abs(S)),[-5 0])
title(['QR-Verfahren nach ' mat2str(k*N) ' Iterationen, log view.']);
colorbar;
waitforbuttonpress;
end
diag(S)'

Frank Wuebbeling
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� �
f u n c t i o n [ o u t p u t a r g s ] = demoqralg ( i n p u t a r g s )

%DEMOQRALG
A=rand ( 4 ) ;
A=A+A ’ ;
q r a l g ( A , 2 0 , 1 ) ;
A=rand ( 1 2 8 ) ;
� �

Listing 7.6: QR–Verfahren: Treiber 1 (Eigenwerte/demoqralg.m)

� �
f u n c t i o n [ o u t p u t a r g s ] = demoqr2 ( n ,m, p , q , r )

%DEMOQR2 Summary o f t h i s f u n c t i o n goes here
% D e t a i l e d e x p l a n a t i o n goes here
format compact ;
i f ( nargin <1)

n =10;
� �
Listing 7.7: QR–Verfahren: Treiber 2 (Eigenwerte/demoqr2.m)

Nach unserer Motivation hätte man vielleicht erwartet, dass der QR–Algorithmus
nur für selbstadjungierte Matrizen konvergiert. Für allgemeine Matrizen ist die Mo-
tivation:
Für die erste Spalte vonX(j) führen wir eine normale Potenzmethode durch. Für die
zweite Spalte auch, aber wir ziehen immer ein Vielfaches der ersten Spalte so ab,
dass die Spalten senkrecht aufeinander stehen. Dadurch verhindern wir die Konver-
genz gegen v1 und erreichen eine Konvergenz in einem Teilraum, der von v1 und v2

aufgespannt wird, und das reicht tatsächlich schon aus.
Also: Wir führen n Potenzmethoden gleichzeitig durch, verhindern aber durch eine
kleine Modifikation, dass alle Folgen gegen denselben Vektor v1 konvergieren.
Dies kann man auch leichter haben und war drei Jahre vorher die Idee von Heinz
Rutishauser, veröffentlicht in den Mitteilungen der US–Amerikanischen Normie-
rungsbehörde (Rutishauser [1958]), die auch die bekannteste Formel– und Tabel-
lensammlung Abramowitz and Stegun [1965] veröffentlicht hat. Leider nicht onli-
ne. Auch Francis zitiert Rutishausers LR–Algorithmus als Motivation für den QR–
Algorithmus. Eine amüsante Geschichte der QR– und LR–Algorithmen findet sich in
Gutknecht and Parlett [2011].
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function [ output_args ] = demoqralg( input_args )
%DEMOQRALG 
A=rand(4);
A=A+A';
qralg(A,20,1);
A=rand(128);
A=A+A';
A=qralg(A,3,30);
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function [ output_args ] = demoqr2( n,m,p,q, r )
%DEMOQR2 Summary of this function goes here
%   Detailed explanation goes here
format compact;
if (nargin<1)
    n=10;
end
if (nargin<2)
    m=10;
end
if (nargin<3)
    p=4;
end
if (nargin<4)
    q=0;
end
if (nargin<5)
    r=0;
end
D=diag(rand(n,1));
switch q
    case 0
    case 1
        for i=2:r
            D(i,i)=D(1,1);
        end
    case 2
        for i=2:r
            D(i,i)=D(1,1);
            D(i-1,i)=1;
        end
    case 3
        for i=2:r
            D(i,i)=D(1,1)*(-1)^(i+1);
        end
end

sort(diag((D)),1,'descend')'
X=rand(n)*2-1;
%Symmetric?
[X,R]=qr(X);
A=inv(X)*D*X;
qralg(A,m,p);

Frank Wuebbeling
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Wir nehmen an, dass (v1)1 6= 0. Auf der ersten Spalte führen wir eine normale Po-
tenzmethode durch. Diesmal skalieren wir so, dass in jedem Schritt x(j)

1 = 1, dies
entspricht der Wahl x̃ = e1 in der Potenzmethode.
Wir ziehen nun in der zweiten Spalte einfach ein Vielfaches der ersten Spalte so ab,
dass in der zweiten Spalte in der ersten Zeile eine 0 steht, normieren so, dass in
der zweiten Zeile eine 1 steht (x̃ = e2), und verhindern damit die Konvergenz gegen
ein Vielfaches von v1. Für die weiteren Spalten geht man ebenso vor. Dann ist X(k)

eine linke untere Dreiecksmatrix, R(k) wie im QR–Algorithmus, und damit X(k)R(k)

LR–Zerlegung von AX(k).
Mit den gleichen Überlegungen wie oben führt dies zum LR–Algorithmus, bei dem
einfach statt der QR–Zerlegung die LR–Zerlegung durchgeführt wird.

Setze A(0) := A.
Für j = 0 . . .∞

Berechne die LR–Zerlegung L(j)R(j) von A(j).
Setze A(j+1) := R(j)L(j).
Falls A nah genug an einer Diagonalmatrix ist, brich das Verfahren ab.

und wieder liest man Näherungen für die Eigenwerte auf der Hauptdiagonalen ab.
Der Algorithmus hat dieselben Konvergenzeigenschaften wie der QR–Algorithmus,
da aber keine Spaltenpivotsuche durchgeführt werden kann, gilt er als notorisch in-
stabil und kann unter Umständen gar nicht ausgeführt werden, wenn im Verlauf der
Iteration eine Matrix auftaucht, die keine LR–Zerlegung besitzt. Eine kleine Demo
zum LR– und QR–Algorithmus findet sich hier.
Wir müssen auch noch auflösen, warum der QR–Algorithmus für allgemeine Matri-
zen oberhalb der Hauptdiagonalen nicht konvergiert. Sei z.B. λ1 = −1. Nehmen wir
an, dass x(0)

1 ein Eigenvektor zu λ1 ist. Dann gilt

x
(j)
1 = (−1)jx

(0)
1 ,

d.h. die x(j)
1 oszillieren, und damit müssen wir in der ersten Reihe von A(j) mit Aus-

nahme des Diagonalelements auch mit einem oszillierenden Verhalten rechnen.
Für die LR–Zerlegung gilt dieser Einwand nicht, dort wird eine echte Potenzmethode
mit der vorgesehenen Normierung durchgeführt, und damit erwarten wir dort Kon-
vergenz (nicht notwendig gegen 0) auch oberhalb der Hauptdiagonalen, wenn die
Voraussetzungen erfüllt sind.
Praktische Durchführung des QR–Algorithmus
Da die QR–Zerlegung recht aufwändig ist (2/3n3 Rechenoperationen nach unserer
Berechnung) führt man den Algorithmus nicht direkt auf der Matrix A durch. Im All-
gemeinen wird zunächst mit 3.16 die Hessenberg–Form von A berechnet. Nach De-
finition ist diese ähnlich zu A, hat also dieselben Eigenwerte. In den Übungen ha-
ben wir bereits gezeigt, dass sie einfach mit einer Modifikation des Householder–
Algorithmus in 2/3n3 Rechenoperationen berechenbar ist. Die QR–Zerlegung dieser
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Matrix ist dann in O(n2) berechenbar, so dass man insgesamt auf einen Aufwand
von O(n2) für einen Schritt des QR–Algorithmus kommt.
Noch einfacher wird dies für hermitesche Matrizen. Dann ist auch die Hessenberg-
form hermitesch, also eine Tridiagonalmatrix! Die QR–Zerlegung von Tridiagonalma-
trizen ist in O(n) berechenbar, und so kommt man auf einen Aufwand von O(n) für
einen Schritt des QR–Verfahrens, d.h. die Eigenwerte von hermiteschen Matrizen,
z.B. für die Singulärwertzerlegung, sind extrem schnell berechenbar.
Es bleibt das Problem, dass bei betragsgleichen, unterschiedlichen Eigenwerten
keine Konvergenz vorliegt. Dies löst man wieder mit geeigneten Shiftstrategien.
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Kapitel 8

Numerische Approximation in metrischen
Räumen

Eine typische Aufgabe der Numerik ist die Approximation von Funktionen. Bei der
Nutzung eines Taschenrechners etwa nutzen wir bedenkenlos die Funktion zur Be-
rechnung des Sinus einer Zahl - wohl wissend, dass dieser natürlich eigentlich nur
die Grundrechenarten nativ beherrscht (und unter Umständen nicht mal diese, sie-
he unsere Diskussion zur Division mit dem Newtonverfahren in 5.33).
Einige Möglichkeiten, etwa die trigonometrischen Funktion f(x) = sin(x) nähe-
rungsweise zu berechnen, fallen uns im Lichte der Vorlesung gleich ein:

1. Abgeschnittene Taylorentwicklung: Es wird die Taylorentwicklung der Funkti-
on bestimmt, aber bei der Auswertung nur bis zu einem endlichen Glied be-
rechnet, also

f(x) ∼
n∑
k=0

(−1)k
1

2k + 1)!
x2k+1.

Für n 7→ ∞ liefert diese Formel den korrekten Wert.

2. Lookup–Table: Es werden sehr viele Werte der Funktion mit einem hochge-
nauen Algorithmus (etwa abgeschnittene Taylorentwicklung mit sehr großem
n) ausgerechnet und vertafelt. Der gesuchte Wert wird dann durch Interpo-
lation approximiert. Dies ist die Methode der großen Tafelwerke, siehe etwa
Abramowitz and Stegun [1965]. Dies ist ein Spezialfall der bekannten Spline–
Interpolation (s. Numerische Analysis).
Diese Methode ist sehr schnell ausführbar, sobald die Tafeln zur Verfügung
stehen, benötigt aber einen langen Vorlauf und ist nicht mehr praktikabel,
wenn hochgenaue Ergebnisse benötigt werden.
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3. Polynom–Interpolation: Es werden nur relativ wenige Werte der Funktion
hochgenau berechnet. Anschließend legt man ein Polynom durch die berech-
neten Werte und wertet dieses Polynom aus (das ist möglich nach 4.1). Dies
hört sich attraktiv an, ist aber leider extrem instabil (und wird in der Vorlesung
Höhere Analysis behandelt).

4. Polynomiale Regression: Es werden einige Werte der Funktion hochgenau be-
rechnet. Anschließend sucht man ein Ausgleichspolynom niedrigen Grades.
Dies funktioniert tatsächlich sehr gut. Für sehr viele berechnete Auswertun-
gen entspricht dies der Gauss–Approximation (siehe unten).

Abbildung 8.1: Approximation durch abgeschnittene Taylorentwicklung, Polynomin-
terpolation

� �
f u n c t i o n a b g t a y l o r

%ABGTAYLOR
%A p p r o x i m a t i o n des Sinus durch a b g e s c h n i t t e n e T a y l o r e n t w i c k l u n g

o r d e r =2;
N=10000;
� �
Listing 8.1: Approximation des Sinus durch abgeschnittene Taylorentwicklung (Ap-
proximation/abgtaylor.m)
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Matlab Figure abgtaylor.fig: Approximation durch abgeschnittene Taylorentwicklung, Polynominterpolation
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polynominterp.jpg: Approximation durch abgeschnittene Taylorentwicklung, Polynominterpolation
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Matlab Figure polynominterp.fig: Approximation durch abgeschnittene Taylorentwicklung, Polynominterpolation



� �
f u n c t i o n [ o u t p u t a r g s ] = polynom ( i n p u t a r g s )

%POLYNOM
% A p p r o x i m a t i o n durch P o l y n o m i n t e r p o l a t i o n
o r d e r =2;
N=10000;
x = ( 0 :N ) / N* p i / 2 ;
� �
Listing 8.2: Approximation des Sinus durch Polynominterpolation (Approximation/-
polynom.m)

Im Bild sind abgeschnittene Taylorentwicklung und Polynominterpolation für den
Sinus dargestellt. Es fällt auf, dass in beiden Fällen die lineare Approximation kei-
neswegs optimal ist.
Wir vergleichen mit der polynomialen Regression. Hier sind die Ergebnisse für linea-
re Approximationen schon im Bild sehr viel besser.

Abbildung 8.2: Approximation durch Regression

Zur Referenz geben wir hier die maximalen Fehler für eine Approximation mit Poly-
nomen vom Grad≤ 3 an:
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function abgtaylor

%ABGTAYLOR

%Approximation des Sinus durch abgeschnittene Taylorentwicklung



order=2;

N=10000;

x=(0:N)/N*pi/2;

y0=sinfun(x,0);

y1=sinfun(x,1);

y2=sinfun(x,2);

y3=sinfun(x,3);

plot(x,y0,x,y1,x,y2,x,y3,x,sin(x));

legend('n=0','n=1','n=3','n=5','sin');

title(['Approximation durch abgeschnittene Taylorentwicklung']);

maximalerFehler=max(abs(y2-sin(x)))

vorlsavepic('abgtaylor');

end

function out=sinfun(x,order)

out=zeros(size(x));

for i=1:order

    n=2*i-1;

    out=out-x.^n./factorial(n)*(-1)^i;

end

end
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function [ output_args ] = polynom( input_args )

%POLYNOM

%   Approximation durch Polynominterpolation

order=2;

N=10000;

x=(0:N)/N*pi/2;

y0=sinfun(x,0);

y1=sinfun(x,1);

y2=sinfun(x,2);

y3=sinfun(x,3);

plot(x,y0,x,y1,x,y2,x,y3,x,sin(x));

legend('n=0','n=1','n=2','n=3','sin');

title(['Approximation durch Polynominterpolation']);

maximalerFehler=max(abs(y3-sin(x)))

vorlsavepic('polynominterp');



y0=sinfun(x,1000,0);

y1=sinfun(x,1000,1);

y2=sinfun(x,1000,2);

y3=sinfun(x,1000,3);

plot(x,y0,x,y1,x,y2,x,y3,x,sin(x));

legend('n=0','n=1','n=2','n=3','sin');

title(['Approximation durch Regression']);

maximalerFehler=max(abs(y3-sin(x)))

vorlsavepic('regressioninterp');

end



function out=sinfun(x,order,order2)

if (nargin<3)

    order2=order;

end

if (order==0)

    x0=pi/4;

else

x0=(0:order)/order*pi/2;

end

p=polyfit(x0,sin(x0),order2);

out=polyval(p,x);

end
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regressioninterp.jpg: Approximation durch Regression
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Matlab Figure regressioninterp.fig: Approximation durch Regression



maximaler Fehler
abg. Taylor 0.075

Polynominterp. 0.0024
Regression 0.0027

Dabei haben wir den seltsamen Effekt, dass die Approximation durch Regression
nach unserer Herleitung eigentlich besser sein sollte als die Polynominterpolation,
die Kurve eigentlich auch sehr gut aussieht, der maximale Fehler aber trotzdem bei
der Regression größer ist. Dies werden wir später noch untersuchen.
Kriterien für eine gute Approximation sind natürlich, dass der entstehende Approxi-
mationsfehler und der Aufwand zur Berechnung der Approximation möglichst klein
sind. Keiner der vorgeschlagenen Algorithmen erfüllt dies. Tatsächlich werden in
der Implementation in Hardware hochgenaue Algorithmen benutzt, die diesen im
Aufwand um Größenordnungen überlegen sind (siehe Risse [2004] für einen guten
Überblick). Wir werden hier nicht diese (CORDIC–) Algorithmen behandeln, sondern
Approximationen, die eigentlich noch bessere Ergebnisse liefern, aber aufwändiger
zu implementieren sind.
Wir werden in diesem Kapitel einige Grundbegriffe kennenlernen. Gute Referenzen
für weitergehende Sätze und Beweise sind der klassische Text Meinardus [1964]
und die neue Edition des Buchs Muller [2005]. Wieder betrachten wir ausschließlich
reelle Vektorräume.

8.1 Bestapproximationen

Wir wollen nach Bestapproximationen suchen, also z.B. Polynome, die bezüglich
einer vorgegebenen Norm eine Funktion f am besten unter allen Polynomen vom
Grad ≤ n approximieren. Zunächst suchen wir nach allgemeinen Kriterien dafür,
wann solche Bestapproximationen existieren und wann sie eindeutig sind.

Definition 8.1 ( Minimalabstand und Bestapproximation)
Sei (X, || · ||) ein normierter Raum. Sei T ⊂ X nichtleer, f ∈ X, p∗ ∈ T . Falls

||p∗ − f || ≤ ||p̃− f || ∀ p̃ ∈ T

so heißt p∗ Bestapproximation an f in T bzgl. || · ||.

d(f, T ) = inf{||f − p|| : p ∈ T}
heißt Minimalabstand von f und T .

Hierbei denken wir natürlich vor allem an Funktionenräume für X, also etwa den
Raum aller stetigen Funktionen, versehen mit der Unendlich– oder euklidischen
Norm. Wir betrachten trotzdem zunächst einige einfache Beispiele im R2.
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Beispiel 8.2

1. Sei X = (R2, || · ||2), T = {p ∈ X : ||p||2 = 1}. Sei f ∈ X.
Für ||f ||2 ≤ 1 ist f Bestapproximation an f in T .
Für ||f ||2 ≥ 1 ist f/||f ||2 eindeutige Bestapproximation an f in T .

2. Wie oben, aber diesmal sei T = {p ∈ X : ||p||2 < 1}. In diesem Fall gibt es für
||f || ≥ 1 keine Bestapproximation.

3. Jetzt wählen wir die Unendlichnorm, d.h.
X = (R2, || · ||∞), T = {p ∈ X : ||p||∞ = 1}, f = (3, 0).
Natürlich ist (1, 0)t eine Bestapproximation von f , aber wegen

||(3, 0)t − (1, 1)t||∞ = 2 = ||(3, 0)t − (1, 0)t||∞

auch (1, 1)t, d.h. in diesem Fall ist die Bestapproximation nicht eindeutig.

Abbildung 8.3: Approximation im R2. Links bzgl. der euklidischen Norm, rechts bzgl.
der∞–Norm.

Die Existenz und Eindeutigkeit der Bestapproximation hängt also von der Norm ab.
Insbesondere geben andere Normen auch andere Bestapproximationen - die Wahl
der richtigen Norm ist entscheidend für das Ergebnis. Tatsächlich liefert eine falsche
Normwahl unsinnige Ergebnisse.
Im folgenden betrachten wir immer einen Raum X mit Norm || · ||. Wir vermuten
natürlich, dass Kompaktheit bereits ausreicht, um die Existenz einer Bestapproxi-
mation zu garantieren.

Satz 8.3 ( Existenz der Bestapproximation)

1. Sei T kompakt, f ∈ X. Dann gibt es eine Bestapproximation an f in T .
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2. Sei T endlich–dimensionaler affiner Unterraum von X, f ∈ X. Dann gibt es
eine Bestapproximation an f in T .

Beweis:

1. Die Funktion
Df (x) = ||x− f ||

ist stetig, T ist kompakt, also nimmt Df auf T sein Minimum an.

2. Sei g ∈ T . Wir bezeichnen immer mit

Kr(f) = {h ∈ X : ||h− f || ≤ r}

die abgeschlossene Kugel in X um f mit Radius r.

K := T ∩K||f−g||
ist kompakt als abgeschlossene und beschränkte Teilmenge eines affinen
endlich–dimensionalen Unterraums von X. Also gibt es eine Bestapproxima-
tion p∗ an f in K mit

||f − p|| ≥ ||f − p∗)|| ∀p ∈ K.

Für p ∈ T , p 6∈ K gilt aber dann wegen g ∈ K

||f − p|| > ||f − g|| ≥ ||f − p∗||.

Damit ist p∗ Bestapproximation an f in T . �

Teil 1 dieses Satzes klingt großartig – er ist auch einfach anzuwenden für endlich–
dimensionale Räume, bei denen klar ist, was die kompakten Teilmengen sind
(nämlich die abgeschlossenen und beschränkten). Für X = C([a, b]) lassen sich
diese charakterisieren mit dem Satz von Arzela–Ascoli, hier kommt die Bedingung
der gleichgradigen Stetigkeit hinzu.
Oben haben wir bereits gesehen, dass wir für die Eindeutigkeit zusätzliche Bedin-
gungen an die Norm benötigen.

Definition 8.4 ( strikt konvex, strikte Norm)

1. Sei K ⊂ X. K heißt strikt konvex, falls für alle unterschiedlichen x,y aus K
die Verbindungsstrecke zwischen x und y ganz im Inneren vonK verläuft, also

λx+ (1− λ)y ∈ K̊ ∀λ ∈ (0, 1)∀x 6= y, x, y ∈ K.
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2. || · || heißt strikt, falls die Einheitskugel

E||·|| = {p ∈ X : ||p|| ≤ 1}

strikt konvex ist.

Beispiel 8.5

1. || · ||2 im R2 ist strikte Norm, denn für zwei beliebige unterschiedliche Punkte
auf dem Einheitskreis liegt die Verbindungsstrecke ganz im Inneren der Ein-
heitskugel.

2. || · ||∞ im R2 ist keine strikte Norm. Die zugehörige Einheitskugel ist ein Qua-
drat mit Seitenlänge 2 um den Nullpunkt. Für (1, 1)t und (1,−1)t verläuft die
Verbindungsstrecke ganz auf dem Rand dieses Quadrats.

Damit können wir zwei Eindeutigkeitssätze zeigen.

Satz 8.6 ( Eindeutigkeit der Bestapproximation)

1. Sei T strikt konvex, f ∈ X. Dann existiert höchstens eine Bestapproximation
an f in T .

2. Sei T konvex, und || · || sei strikt konvex. Dann gibt es höchstens eine Bestap-
proximation an f in T .

Beweis: Sei B(f, T ) die Menge aller Bestapproximationen nichtleer, und seien p1

und p2 zwei Bestapproximationen. Sei f 6∈ T . Wir zeigen jeweils p1 = p2.
Sei

Kr(f) = {p ∈ X : ||p− f || ≤ r}

die abgeschlossene Kugel um f mit Radius r und d = d(f, T ). Dann ist

B(f, T ) = T ∩Kd(f)

als Schnitt konvexer Mengen konvex. Damit ist also

p∗ =
1

2
(p1 + p2)

ebenfalls eine Bestapproximation.
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1. Angenommen, p1 6= p2. Da T strikt konvex ist, liegt p∗ im Inneren von T . Es
gibt also ein 1 > ε > 0, so dass

q = p∗ + ε(f − p∗) ∈ T.

Damit gilt

||f − q|| = ||f − p∗ − ε(f − p∗)|| = (1− ε) ||f − p∗|| < d

und damit wären p1 und p2 keine Bestapproximationen. Also gilt p1 = p2.

2. Mit der Einheitskugel ist auch Kd(f) strikt konvex. p1 und p2 liegen in Kd(f).
Angenommen, p1 6= p2. Dann liegt p∗ im Inneren von Kd(f) und damit gilt

||f − p∗|| < d

im Widerspruch zur Minimalität. Also ist p1 = p2.

�
Bemerkung: Üblicherweise führt man strikte Normen über eine äquivalente Formu-
lierung ein (siehe Übungen).

Korollar 8.7 Sei || · || strikt und T affiner endlich–dimensionaler Teilraum von X.
Dann ist die Bestapproximation an T eindeutig.

Unglücklicherweise sind die interessanten Normen nicht strikt, mit Ausnahme der
Normen in euklidischen Vektorräumen.

8.2 Gauss–Approximation

Als Gauss–Approximation bezeichnen wir die Bestapproximation in euklidischen
Vektorräumen, bei denen also die Norm durch ein Skalarprodukt definiert ist. Die-
ses Problem haben wir bereits in 6.6 gelöst. Wir bemerken zunächst

Satz 8.8
Normen in euklidischen Vektorräumen sind strikt.

Beweis: Zu zeigen ist, dass die Verbindungsstrecke zweier unterschiedlicher Punkte
x und y der Einheitskugel ganz im Inneren der Einheitskugel verläuft. Sei ||x|| =
||y|| = 1 (sonst ist das sowieso klar). Sei λ ∈ [0, 1]. Es gilt

||λx+ (1− λ)y||2 = λ2||x||2 + 2λ(1− λ)(x, y) + (1− λ)2||y||2

≤ λ2||x||2 + 2λ(1− λ)||x|| ||y||+ (1− λ)2||y||2 (Cauchy–Schwartz)

= (λ||x||+ (1− λ)||y||)2

= 1.
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Bei der Anwendung von Cauchy–Schwartz steht genau dann ein =, wenn x = µy
mit positivem µ. Da aber ||x|| = ||y|| = 1 und x 6= y, ist diese Bedingung nicht
erfüllbar. Also steht dort ein echtes <–Zeichen. �

Das Approximationsproblem in euklidischen Vektorräumen ist also immer eindeu-
tig lösbar. Dies haben wir bereits in 6.6 bemerkt und auch die Lösung für endlich–
dimensionale Unterräume angegeben. Wir fassen das Ergebnis noch einmal zusam-
men.

Korollar 8.9 ( Bestapproximation in euklidischen Vektorräumen, Gauss–
Approximation)
Sei (X, (·, ·)) ein euklidischer Vektorraum mit induzierter Norm || · ||. Sei T ein
endlich–dimensionaler Untervektorraum von X mit Orthogonalbasis {p1, . . . , pn}.
Sei weiter f ∈ X.
Dann ist die Bestapproximation p∗ an f in T gegeben durch

p∗ =
n∑
k=1

(f, pk)

(pk, pk)
pk.

Wir wollen dieses Korollar nun für unser Ausgangsproblem der polynomialen Ap-
proximation nutzen. Sei dazu X der Vektorraum der stetigen Funktionen auf einem
endlichen Intervall, versehen mit einem Skalarprodukt (·, ·), und Pn der Untervek-
torraum der Polynome vom Grad ≤ n. Wir suchen das Polynom, das eine vorge-
gebene stetige Funktion f auf dem Intervall bzgl. der induzierten Norm am besten
approximiert.
Um den Satz anwenden zu können, benötigen wir zunächst eine orthonormale Ba-
sis von Pn.

Definition 8.10 ( orthogonale und orthonormale Polynome)
Durch Anwendung des Gram–Schmidtschen Orthogonalisierungsverfahrens auf die
Monome 1, x, x2, . . . erhält man eine Folge von paarweise orthonormalen Polyno-
men pn, n ≥ 0. Es gilt grad pn = n. Die pn heißen orthonormale Polynome des Ska-
larprodukts (·, ·). {p0. . . . , pn} ist Basis des Polynomraums Pn. pn steht senkrecht
auf Pn−1 für n > 0.
Verzichtet man auf die Normierung und ersetzt sie durch eine andere Forderung, so
heißen die Polynome orthogonale Polynome.

In den Übungen haben Sie bereits nachgewiesen, dass die Tschebyscheff–
Polynome orthogonale Polynome zum Skalarprodukt

(f, g) =

∫ 1

−1

1√
1− x2

f(x)g(x) dx
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sind.
Als Übung berechnen wir die ersten orthogonalen Polynome zum Standardskalar-
produkt für die stetigen Funktionen auf [−1, 1]

(f, g) =

∫ 1

−1

f(x)g(x) dx.

Sie heißen Legendre–Polynome. Wir fordern die Normierung pn(1) = 1.

p0(x) = 1, ||p0(x)|| =
√

2.

p1(x) = x− 1

2
(x, p0)p0 = x.

p̃2(x) = x2 − 1

2
(x, p0)p0 = x2 − 1

3
. p2(x) =

1

2
(3x2 − 1) (Normierung)

Orthogonale Polynome spielen in der angewandten Mathematik eine große Rolle,
insbesondere in der Approximation und bei der Lösung gewöhnlicher Differential-
gleichungen. Allgemein betrachtet man das Skalarprodukt

(f, g)w =

∫ b

a

w(x)f(x)g(x)dx .

mit positiven Funktionen w. Einige Beispiele mit zugehörigen orthogonalen Polyno-
men:

[a, b] w(x) Bezeichung
[−1, 1] 1 Legendre–Polynome Pk
[−1, 1] (1− x2)−1/2 Tschebyscheff–Polynome 1. Art Tk
[−1, 1] (1− x2)1/2 Tschebyscheff–Polynome 2. Art Uk
[−1, 1] (1− x)α(1 + x)β Jakobi–PolynomeP (α,β)

k

(−∞,∞) e−x
2/2 Hermitesche Polynome Hk

(0,∞) e−x Laguerresche Polynome Lk

Die Eigenschaften dieser Polynome sind gut untersucht, wir bemerken

Satz 8.11 Sei (pn) System von orthogonalen Polynomen zum Skalarprodukt (f, g)w
im Vektorraum der stetigen Funktionen auf [a, b]. Dann hat pn ∈ Pn genau n Null-
stellen in (a, b).

Beweis: Seien x1, . . . , xm die Vorzeichenwechsel von pn, also m ≤ n. Sei

q(x) :=
m∏
k=1

(x− xk) ∈ Pm.

180



Dann hat q(x)pn(x) konstantes Vorzeichen. Angenommen,m < n. Da pn dann senk-
recht steht auf den Polynomen aus Pm, gilt

0 = (pn, q) =

∫ b

a

w(x)pn(x)q(x)dx .

Wegen w > 0 ist also pn · q = 0 . �

Als Beispiel für die Approximation berechnen wir nun noch die Bestapproximation
des Cosinus auf [−1, 1] durch Polynome vom Grad ≤ 2 bezüglich des Standard–
Skalarprodukts. Wir setzen

p∗ =
2∑

k=0

αkpk, αk =
(cos, pk)

(pk, pk)
.

Dann gilt

α0 =

∫ 1

−1
cos(x)1dx∫ 1

−1
1dx

= sin(1) ∼ 0.84.

α1 =

∫ 1

−1
cos(x)xdx∫ 1

−1
x2dx

= 0.

α2 =

∫ 1

−1
cos(x)1

2
(3x2 − 1)dx∫ 1

−1
1
4
(3x2 − 1)2dx

=
−4 sin(1) + 6 cos(1)

2/5
∼ −0.31

Insgesamt erhalten wir die Approximation

cos(x) ∼ 0.99656− 0.46526x2,

die sich leicht von der abgeschnittenen Taylor–Reihe unterscheidet.
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Abbildung 8.4: Gauss–Approximation des Cosinus

Für unser Standardbeispiel der Approximation des Sinus auf dem Intervall I =
[0, π/2] berechnen wir zunächst die orthogonalen Polynome pk mit dem Gram–
Schmidt–Verfahren auf I exakt in Maple bezüglich eines vorgegebenen Skalarpro-
dukts und approximieren dann

p∗ =
3∑

k=0

(f, pk)

(pk, pk)
pk.
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Abbildung 8.5: Gauss–Approximation. Links Legendre, rechts Tschebyscheff.

� �
f u n c t i o n [ o u t p u t a r g s ] = gaussappro ( i n p u t a r g s )

%GAUSSAPPRO
%Computes o r t h o g o n a l p o l y n o m i a l s w i t h r e s p e c t t o a g i v e n s c a l a r p r o d u c t
%and t he b e s t a p p r o x i m a t i o n i n t he Gauss sense t o s i n ( x ) on ( 0 , p i / 2 )
%A t t e n t i o n : Maple t o o l b o x may be r e q u i r e d !
syms x ;
� �
Listing 8.3: Gauss–Approximation und orthogonale Polynome (Approximation/g-
aussappro.m)

maximaler Fehler
Gauss (Legendre) 0.0027

Gauss (Tschebyscheff) 0.0015

Wir erhalten für das Standard–Skalarprodukt also denselben Fehler wie für die
Regression, tatsächlich liefern die beiden Verfahren ein identisches Ergebnis.
Durch Verwendung des Skalarprodukts, das die Tschebyscheff-Polynome definiert,
können wir den maximalen Fehler noch einmal um den Faktor 2 drücken.
Die berechneten Polynome sind

p∗L(x) = −0.00225845161 + 1.027169448x− 0.0699435763x2 − 0.1138685452x3
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gaussappro.jpg: Gauss–Approximation. Links Legendre, rechts Tschebyscheff.
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gaussaprotscheb.jpg: Gauss–Approximation. Links Legendre, rechts Tschebyscheff.
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Matlab Figure gaussaprotscheb.fig: Gauss–Approximation. Links Legendre, rechts Tschebyscheff.


function [ output_args ] = gaussappro( input_args )

%GAUSSAPPRO 

%Computes orthogonal polynomials with respect to a given scalar product

%and the best approximation in the Gauss sense to sin(x) on (0,pi/2)

%Attention: Maple toolbox may be required!

syms x;

order=3;

N=1000;

x0=(0:N)/N*pi/2;

x0=(0:N)/N*2-1;

for i=0:order

    P=x^i;

    for j=0:i-1

        P=P-skalarprodukt(p(j+1),P)/skalarprodukt(p(j+1),p(j+1))*p(j+1);

    end

    p(i+1)=P/subs(P,1);

    P=simplify(P);

    p(i+1)

end

f=sin(x);

f=heaviside(0.1-abs(x));

pstar=0;

for i=0:order

    pstar=pstar+skalarprodukt(f,p(i+1))/skalarprodukt(p(i+1),p(i+1))*p(i+1);

    Pstar(i+1)=pstar;

end

pstar=simplify(pstar)

y0=double(subs(Pstar(1),x0));

y1=double(subs(Pstar(2),x0));

y2=double(subs(Pstar(3),x0));

y3=double(subs(Pstar(4),x0));

%plot(x0,y0,x0,y1,x0,y2,x0,y3,x0,sin(x0));

y=double(heaviside(0.1-abs(x0)));

plot(x0,y0,x0,y1,x0,y2,x0,y3,x0,y);

title('Gauss--Approximation (Tschebyscheff-Skslarprodukt)');

legend('n=0','n=2','heavi');

maxError=max(abs(y3-sin(x0)))

%vorlsavepic('gaussappro');

vorlsavepic('gaussapprotschebheavi');

end

function out=skalarprodukt(f,g)

syms b;

syms a;

syms x;

b=pi/2;

a=-1;

b=1;

%out=int(f*g,0,b);

out=int(f*g/sqrt((x-a)*(b-x)),a,b);

end
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p∗T (x) = −0.001244756730 + 1.023967362x− 0.06858728910x2 − 0.1133771946x3

Die Erklärung dafür, dass die Tschebyscheff–Polynome ein besseres Ergebnis lie-
fern: Die Approximation wird häufig zum Rand hin schlechter (das kann man analy-
tisch zeigen), durch die Gewichtung sorgen wir dafür, dass der Rand besser appro-
ximiert wird.
Dies sieht zunächst sehr gut aus - hat aber einen Pferdefuß: Alle über Skalarpro-
dukte definierten Normen tun eigentlich nicht das, was wir wollen. Als Beispiel be-
trachten wir die folgende (unstetige) Funktion:

f(x) =

{
1 ||x|| ≤ 0.1

0 sonst

auf [−1, 1].
Angenommen, wir wollen diese Funktion durch eine Konstante approximieren. Dann
gibt es verschiedene Strategien: Falls wir den durchschnittlichen Fehler minimieren
wollen (dies tut die Gauss–Approximation), so sollten wir die Konstante nah an 0
wählen. Dadurch erhalten wir zwar für x = 0 einen großen Fehler, aber nur auf
einem kleinen Gebiet. Tatsächlich liefert die Gauss–Approximation dieses Ergebnis.
Wollen wir dagegen den maximalen Fehler minimieren (wie es etwa ein CPU–
Architekt tun würde), würden wir natürlich 1/2 als Konstante wählen. Dies ist die
Idee der Tschebyscheff–Approximation.

Abbildung 8.6: Approximation einer Treppenfunktion mit Gauss

Bemerkung: Wir haben hier der Einfachheit halber durch Polynomräume approxi-
miert. Dies wurde tatsächlich in den Algorithmen und Sätzen gar nicht verwendet.
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Gauss–Approximation lässt sich auf beliebigen Unterräumen durchführen. Eine be-
liebte Wahl ist die rationale Approximation, dort wählt man Unterräume, die auch
Quotienten von Polynomen enthalten.

8.3 Tschebyscheff–Approximation

In diesem Abschnitt wählen wir als Norm im Vektorraum X der stetigen Funktio-
nen auf einem abgeschlossenen Intervall I = [a, b] die Unendlich–Norm || · ||∞.
Wir haben bereits gesehen, dass die Unendlich–Norm nicht strikt ist, wir können
also nicht erwarten, eindeutige Bestapproximationen zu erhalten. Bei der Appro-
ximation bezüglich der Unendlich–Norm versuchen wir, p∗ so zu wählen, dass der
Maximalabstand zwischen f und p minimal wird, also

||f − p∗||∞ ≤ ||f − p||∞ ∀p ∈ Pn.

p∗ heißt Tschebyscheff–Approximation an f in Pn. Wir schauen uns diese Bestap-
proximation zunächst am Beispiel des letzten Kapitels an. Wir wählen wieder

f(x) =

{
1 ||x|| ≤ 0.1

0 sonst

auf [−1, 1] und n = 0. Natürlich ist die Bestapproximation dann die konstante Funk-
tion

p∗(x) = 1/2

mit dem Maximalabstand 1/2.
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Abbildung 8.7: Tschebyscheff–Approximation vom Grad 0

Abbildung 8.8: Tschebyscheff–Approximation vom Grad 0 (f(x) = x)

� �
f u n c t i o n [ o u t p u t a r g s ] = tscheb1 ( i n p u t a r g s )

%TSCHEB1

N=1000;
x = ( 0 :N ) / N*2=1;
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y=double ( h e a v i s i d e (0.1= abs ( x ) ) ) ;
� �
Listing 8.4: Tschebascheff–Approximation einfaches Beispiel (Approximation/t-
scheb1.m)

Wenn wir den Fehler der Tschebyscheff–Approximation betrachten, fällt auf, dass er
sein Betragsmaximum mit wechselnden Vorzeichen annimmt. Dies ist natürlich für
n = 0 immer der Fall, man überlegt sich schnell, dass die beste Approximation die
Konstante (max + min)/2 ist, und an den Stellen, an denen f Maximum oder Mini-
mum annimmt, ist der Abstand sein Betragsmaximum mit wechselnden Vorzeichen.
Gleichzeitig charakterisiert das die Bestapproximation eindeutig.
Wir betrachten nun wieder den Sinus auf [0, π/2] und versuchen, die Bestapproxi-
mation zu vom Grad 1 zu schätzen.

Abbildung 8.9: Tschebyscheff–Approximation vom Grad 1 (geraten)

� �
f u n c t i o n [ o u t p u t a r g s ] = tscheb2 ( i n p u t a r g s )

%TSCHEB2

N=1000;
x = ( 0 :N ) / N* p i / 2 ;
y= s i n ( x ) ;
� �
Listing 8.5: Tschebyscheff–Approximation vom Grad 1 (Approximation/tscheb2.m)

187


function [ output_args ] = tscheb1( input_args )

%TSCHEB1 



N=1000;

x=(0:N)/N*2-1;

y=double(heaviside(0.1-abs(x)));

y=x;

y0=0;

plot(x,y0,x,y);

ylim([-1.2,1.2]);

title('Tschebyscheff-Approximation');

legend('n=0','heavi');

vorlsavepic('tscheb1c');

plot(x,y-y0);

ylim([-1.2,1.2]);

title('Fehler der Tschebyscheff-Approximation');

vorlsavepic('tscheb1d');

end
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Zumindest angenähert sehen wir auch hier, dass der Fehler der von uns geratenen
Approximation sein Betragsmaximum mit unterschiedlichen Vorzeichen annimmt —
nicht ganz genau, es ist ja nur geraten...
Wir vermuten daher, dass eine Funktion eine Bestapproximation bezüglich der
Unendlich–Norm ist, wenn der Fehler sein Betragsmaximum mit wechselnden Vor-
zeichen (ausreichend oft) annimmt. Dies ist tatsächlich der Fall. Wir zeigen zunächst

Lemma 8.12
Sei I = [a, b], f : I 7→ R stetig. Sei n ≥ 0 ganz, p ∈ Pn.
Seien xk ∈ I, k = 0 . . . n+ 1, und xk < xk+1. Die Funktion

f − p

habe alternierende Vorzeichen in den xk, d.h.

sgn(f(xk)− p(xk)) = (−1)kσ, σ ∈ {−1, 1}.

Dann gilt
n+1

min
k=0
|f(xk)− p(xk)| ≤ d(f,Pn).

Wir wenden das Lemma zunächst auf unsere geratene Approximation an. Der Fehler
nimmt dort an drei Stellen die Werte −0.1, 0.1 und −0.12 an. Jedes Polynom vom
Grad≤ 1 hat also mindestens den Maximalabstand 0.1 zu f .
Beweis: Angenommen, es gibt ein q ∈ Pn, das f besser approximiert als das Mini-
mum. Dann gilt für alle k = 0 . . . n+ 1

σ(−1)k(f(xk)− p(xk)) = |f(xk)− p(xk)|
> ||f − q||∞
≥ |f(xk)− q(xk)|
≥ σ(−1)k(f(xk)− q(xk)).

Damit gilt
σ(−1)k(q(xk)− p(xk)) > 0, j = 0 . . . n+ 1.

Die Funktion q − p hat also n + 1 Vorzeichenwechsel und ist stetig. Sie hat also
auch mindestens n + 1 Nullstellen. Da p und q aber in Pn liegen, ist damit q − p
ein Polynom vom Grad ≤ n mit n + 1 Nullstellen, also das Nullpolynom und damit
p = q im Widerspruch dazu, dass q − p alternierendes Vorzeichen hat. �
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function [ output_args ] = tscheb2( input_args )

%TSCHEB2 



N=1000;

x=(0:N)/N*pi/2;

y=sin(x);

y1=0.1+0.65*x;

plot(x,y,x,y1);

title('Tschebyscheff-Approximation (Grad 1)');

legend('n=1','sin');

vorlsavepic('tscheb2');

plot(x,y-y1);

title('Fehler der Tschebyscheff-Approximation (Grad 1)');

vorlsavepic('tscheb2b');

end





Frank Wuebbeling
Tschebyscheff–Approximation vom Grad 1



Korollar 8.13 ( Alternantensatz)
Sei p∗ ∈ Pn, f : I 7→ R stetig. Die Funktion f − p∗ nehme für aufsteigend geord-
nete, unterschiedliche Argumente xk ∈ I ihr Betragsmaximum mit alternierendem
Vorzeichen an, also

f(xk)− p∗(xk) = σ(−1)k||f − p∗||∞, σ ∈ {−1, 1}.

Dann ist p∗ Bestapproximation an f in Pn.

Beweis: Nach Lemma 8.12 gilt

||f − p∗|| ≤ d(f,Pn).

�

Die Folge von Argumenten xk aus dem Lemma heißt Alternante zu f − p∗. Damit
können wir also feststellen, ob ein Polynom p eine Bestapproximation ist. Es gilt
auch die Umkehrung: Jede Tschebyscheff–Bestapproximation besitzt eine Alternan-
te.

Satz 8.14 (Existenz einer Alternante)
Sei p∗ die Bestapproximation an f in Pn bezüglich || · ||∞. Dann besitzt f − p∗ eine
Alternante, d.h.

∃x0 < . . . < xn+1, σ : (f − p)(xk) = σ(−1)k||f − p∗||∞, |σ| = 1.

Beweis: Dies ist Satz 17 in Meinardus [1964].
Beweisskizze:
Sei f 6= p∗. Sei D die Menge aller Werte, für die f − p∗ sein Betragsmaximum
annimmt, also

D := {x ∈ I : |f(x)− p∗(x)| = ||f − p∗||∞}.

Wir betrachten die Anzahl der Vorzeichenwechsel von f − p∗ auf D. Sind es minde-
stens (n+1), so gibt es eine Alternante. Angenommen, dies sei nicht der Fall. Dann
gibt es Werte xk ∈ I mit

(f − p∗)(xk) = 0, k = 1 . . .m, m ≤ n,

die die Bereiche mit gleichem Vorzeichen trennen, denn D ist abgeschlossen.
Wir setzen

q(x) :=
m∏
k=1

(x− xk) ∈ Pn.
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Dann wechseln q und (f − p∗) bezogen auf D an denselben Stellen ihr Vorzeichen.
Ohne Einschränkung sei das Vorzeichen immer gleich. Wir betrachten

p(x) := p∗(x) + εq(x) ∈ Pn

für ein kleines ε > 0. Für x ∈ D (und auch in einer kleinen Umgebung D̃) gilt dann

|f(x)− p(x)| = |(f(x)− p∗(x))− εq(x)| < |f(x)− p∗(x)|.

Für ε hinreichend klein werden die Maxima von f − p in D̃ angenommen, dies ist
ein Widerspruch. �

Häufig sind die Intervallenden a und b Teil der Alternante. Mit dieser Annahme lässt
sich manchmal die Alternante auch analytisch berechnen. Als Beispiel berechnen
wir

Beispiel 8.15 (Tschebyscheff–Approximation von x2 durch lineare Funktionen)
Sei I = [0, 1], f : I 7→ R, f(x) = x2. Sei p∗(x) = αx + β die Tschebyxscheff–
Approximation an f . Sei x0, x1, x2 die Alternante und d = ||f − p∗||∞. Wir machen
den Ansatz x0 = 0 und x2 = 1. Dann gilt

p∗(0)− f(0) = β = D

p∗(x1)− f(x1) = αx1 + β − x2
1 = −D

p∗(1)− f(1) = α + β − 1 = D .

für D = d(f,Pn) oder D = −d(f,Pn). Zusätzlich muss die Differenz am inneren
Punkt x1 ihr Maximum oder Minimum annehmen, die Ableitung muss also dort ver-
schwinden, und damit

p′(x1)− f ′(x1) = α− 2x1 = 0.

Wir erhalten sofort

α = 1, x1 =
1

2
, β = D = −1

8

und damit ist

p∗(x) = x− 1

8

die beste lineare Approximation an x2. Die Alternante ist (0, 1/2, 1), an allen diesen
Stellen nimmt die Differenz ihren Maximalabstand 1/8 mit alternierendem Vorzei-
chen an.
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Abbildung 8.10: Tschebyscheff–Approximation an x2

� �
f u n c t i o n r e m e z b e i s p i e l

%REMEZBEISPIEL
N=1000;
x = ( 0 :N ) / N ;
a l t e r n a n t e =[0 0 . 5 1 ] ;
p l o t ( x , x=1/8 , x , x . ˆ 2 ) ;
� �
Listing 8.6: Beispiel zur Tschebyscheff–Approximation (Approximation/remezbei-
spiel.m)

Als Anwendung beweisen wir

Satz 8.16 (Optimalität der Tschebyscheff–Polynome)
Sei n > 0 und Tn das Tschebyscheff–Polynom vom Grad n.

p(x) =
1

2n−1
Tn(x)

hat unter allen Polynomen vom Grad n mit Höchstkoeffizient 1 die kleinste
Unendlich–Norm auf dem Intervall [−1, 1].

Beweis: In den Übungen wurde bereits gezeigt, dass p den Höchstkoeffizienten 1
hat. Also ist

1

2n−1
cos(n arccosx) = p(x) = xn − v(x)
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function remezbeispiel

%REMEZBEISPIEL 

N=1000;

x=(0:N)/N;

alternante=[0 0.5 1];

plot(x,x-1/8,x,x.^2);

title('Tschebyscheff-Approximation an x^2');

legend('p^\ast','x^2');

vorlsavepic('remezbeispiel');

plot(x,0*x,x,x.^2-x+1/8,alternante,alternante.^2-alternante+1/8,'X','MarkerSize',15);

title('Fehler der Tschebyscheff-Approximation an x^2');

vorlsavepic('remezbeispiel2');

end
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mit v ∈ Pn−1. Wenn p minimale Norm haben soll unter allen Polynomen dieser
Form, muss v die Bestapproximation von xn in Pn−1 sein.
Wir setzen

xk = cos(
kπ

n
), k = 0 . . . n.

Dann gilt

(xk)
n − v(xk) =

1

2n−1
Tn(xk)

=
1

2n−1
cos(kπ)

=
1

2n−1
(−1)k.

Also nimmt die Differenzfunktion mit wechselnden Vorzeichen an (n + 1) Stellen
ihr Betragsmaximum an, ist also Alternante und v ist Bestapproximation. �

Wir wollen nun noch einen iterativen Algorithmus herleiten, der die Tschebyscheff–
Approximation berechnet. Der Beweis zu Satz 8.14 gibt dazu eine Idee: Wir starten
mit einem Polynom p0. Falls f −p0 eine Alternante hat, so sind wir fertig. Falls nicht,
so können wir wie im Beweis eine neue Funktion p1 konstruieren, die einen kleine-
ren Maximalabstand zu f hat als p0 usw.
Dieser Algorithmus ist leider wenig praktikabel. Die Untersuchung, ob f − p0 eine
Alternante besitzt bzw. die Berechnung der Menge D aus dem Beweis wird schnell
aufwändig.
Statt dessen nutzen wir den Remez–Algorithmus. Er geht nicht vom Polynom aus
und berechnet die zugehörige Alternante, sondern versucht, iterativ eine Alternante
und dadurch die zugehörige Bestapproximation zu bestimmen.
Wenn x0, . . . , xn+1 eine Alternante zur Approximation von f durch p ∈ Pn bilden, so
haben sie zu der vorgegebenen Funktion f an diesen Stellen den gleichen Abstand
D = ||f − p||∞.
Wir starten also zunächst mit irgendeiner geordneten Startverteilung von Punkten
x0, . . . , xn+1 aus dem Intervall I. Dann berechnen wir ein Polynom p, das zu f an die-
sen Punkten den gleichen Abstand D mit alternierendem Vorzeichen hat. Das fol-
gende Lemma zeigt, dass dieses Polynom eindeutig bestimmt werden kann durch
Lösen eines linearen Gleichungssystems in (n+2) Variablen. Falls |D| = ||f−p||∞,
so sind wir fertig, wir haben eine Alternante gefunden. Falls nicht, verschieben wir
die Punkte (im Beispiel wird sofort klar, wie), und machen mit der neuen Verteilung
weiter.
Zunächst aber
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Lemma 8.17
Sei x0 < . . . < xn+1. Dann gibt es genau ein Polynom p ∈ Pn und ein D ∈ R, so
dass

p(xk)− f(xk) = (−1)kD ∀ k = 0 . . . n+ 1.

Beweis: D und die Koeffizienten von p erfüllen ein lineares Gleichungssystems.
Die Annahme, dass dieses zwei verschiedene Lösungen hat, führt sofort zum
Widerspruch, also ist das Gleichungssystem eindeutig lösbar. �

Korollar 8.18 Eine Bestapproximation p∗ ist eindeutig durch ihre Alternante charak-
terisiert. Bei gegebener Alternante kann p∗ durch Lösen eines linearen Gleichungs-
systems in (n+ 2) Variablen bestimmt werden.

Korollar 8.19 Die Bestapproximation in Pn bezüglich || · ||∞ ist eindeutig.

Beweis: Die Existenz wurde bereits gezeigt. Seien p1 und p2 zwei Bestapproximatio-
nen. Dann ist wie in 8.6 auch

p∗ =
1

2
(p1 + p2)

eine Bestapproximation. Nach Satz 8.14 besitzt f − p∗ eine Alternante x0, . . . , xn+1.
Dann ist dies aber auch eine Alternante von f − p1 und f − p2, die die Bestapproxi-
mation eindeutig charakterisiert. �

Falls in Lemma 8.17 |D| = ||p − f ||∞, so sind wir fertig, denn dann ist nach dem
Alternantensatz p eine Bestapproximation. Falls nicht, so gilt |D| < ||p − f ||. Dies
motiviert den folgenden Algorithmus:

1. Wähle xk gleichverteilt im Intervall [a, b].

2. Berechne D und p nach Lemma 8.17.

3. Falls |D| = ||p− f ||∞, so ist p eine Bestapproximation.

4. FallsD < ||p−f ||∞, so verschiebe die xk leicht so, dass der Abstand zwischen
p und f an diesen Stellen größer wird.

5. Gehe zurück zu 2.

Man kann zeigen, dass unter Bedingungen der Remez–Algorithmus konvergiert ge-
gen die Tschebyscheff–Approximation. Wir schauen nur kurz auf ein Beispiel. Wir
betrachten wieder den Sinus auf [0, π/2] und suchen eine lineare Approximation
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(wie oben). Im ersten Schritt wählen wir die xk gleichverteilt und berechnen die zu-
gehörige Approximationsfunktion wie im Lemma.

Abbildung 8.11: Erste Iteration des Remez–Algorithmus

Wir sehen, dass wir noch keine Alternante erreicht haben. Am mittleren Interpolati-
onspunkt (x1) wird noch nicht das Maximum des Abstands angenommen. Wir ver-
schieben also nur diesen Punkt etwas nach rechts, wiederholen den Algorithmus
mit dieser Anordnung und erhalten

194


1.4

1.2

0.8

0.6

0.4

0.2

Remez--Algorithmus (lteration 1)

n=1
sin

0.2

0.4

0.6

0.8

1.2

1.4

1.6



Frank Wuebbeling
Remeziter1.jpg: Erste Iteration des Remez–Algorithmus


Frank Wuebbeling
Matlab Figure Remeziter1.fig: Erste Iteration des Remez–Algorithmus


0.15

0.05

-0.05

-0.15

Fehler der Remez-Approximation

0.2

0.4

0.6 0.8 1 1.2 1.4 1.6



Frank Wuebbeling
Remeziterdiff1.jpg: Erste Iteration des Remez–Algorithmus


hgS_070000:[1x1  struct array]


		[1x6  char array]

		[1x1  double array]

		[1x1  struct array]		@ = 
	PaperUnits : [1x11  char array]
	Color : [1x3  double array]
	Colormap : [64x3  double array]
	InvertHardcopy : [1x2  char array]
	PaperPosition : [1x4  double array]
	PaperSize : [1x2  double array]
	PaperType : [1x2  char array]
	Position : [1x4  double array]
	ApplicationData : [1x1  struct array]






		[1x1  struct array]		@ = 
	type : [1x4  char array]
	handle : [1x1  double array]
	properties : [1x1  struct array]
	children : [6x1  struct array]
	special : [4x1  double array]






		[0x0  double array]



Frank Wuebbeling
Matlab Figure Remeziterdiff1.fig: Erste Iteration des Remez–Algorithmus



Abbildung 8.12: Zweite Iteration des Remez–Algorithmus

Tatsächlich bekommen wir eine Alternante. Das zugehörige Polynom ist eine
Tschebyscheff–Approximation. Die folgenden Programme sind einfache Implemen-
tationen des Remez–Algorithmus.� �
f u n c t i o n [ o u t p u t a r g s ] = remezalgo ( n )

%REMEZALGO Very s imple i m p l e m e n t a t i o n o f t he Remez a l g o r i t h m
i f ( nargin <1)

n=3;
end
d i f f e r e n z =1e=2;
� �
Listing 8.7: Simple Implementation des Remez–Algorithmus mit dem Standardbei-
spiel (Approximation/remezalgo.m)

� �
f u n c t i o n [ o u t p u t a r g s ] = remezalgo ( n )

%REMEZALGO Very s imple i m p l e m e n t a t i o n o f t he Remez a l g o r i t h m
%A p p l i c a t i o n t o t he a p p r o x i m a t i o n o f s i n ( x ) / x by a p o l y n o m i a l i n x * x
%( see Abramowitz / Stegun , 4 . 3 . 9 6 ) .
i f ( nargin <1)

n=3;
� �
Listing 8.8: Remez–Algorithmus angewandt auf Abramowitz and Stegun [1965]
4.3.96 (Approximation/remezalgoabramo.m)
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function [ output_args ] = remezalgo( n )

%REMEZALGO Very simple implementation of the Remez algorithm

if (nargin<1)

    n=3;

end

differenz=1e-2;

a=0;

b=pi/2;

f=@funsin;



%a=1e-3;

%a=a*a;

%b=b*b;

%n=5;

%f=@funabramo;





close all;

format compact;

format long;

N=1000;

X=(0:N)/N*(b-a)+a;

Y=f(X);

RandStream.setDefaultStream(RandStream('mt19937ar','seed',1000));

x=sort(rand(n+2,1)*(b-a)+a);

%x=(0:n+1)'/(n+1)*(b-a)+a;

for L=1:60

[p,D,y]=computepD(f,x);

p'



figure(1);

plot(X,polyval(p,X),X,Y,x,polyval(p,x),'X','MarkerSize',15);

title(['Remez--Approximation, Iteration ' num2str(L)]);

legend('p_n','f','x_k');



figure(2);

plot(X,Y-polyval(p,X),x,y-polyval(p,x),'X','MarkerSize',15);

title(['Fehler der Remez--Approximation, Iteration ' num2str(L)]);

legend('diff','x_k');



for i=1:n+2

    curr =y(i)-polyval(p,x(i));

    z=x(i)+1e-6;

    curr1=f(z)-polyval(p,z);

    if ((curr>0)&&(curr1<curr))||((curr<0)&&(curr<curr1))

        x(i)=x(i)-differenz;

        x(i)=max(x(i),a);

    else

        x(i)=x(i)+differenz;

        x(i)=min(x(i),b);

    end

end



%waitforbuttonpress;

maxError=max(abs(Y-polyval(p,X)))

AlternantenFehler=abs(D)

waitforbuttonpress

end

p'

end



function [p,D,y]=computepD (f,x)

n=numel(x)-2;

A=zeros(n+2,n+2);

b=zeros(n+2,1);

for i=1:n+2

    for k=1:n+1

        A(i,k)=x(i)^(n+1-k);

    end

    A(i,n+2)=(-1)^i;

end

b=f(x);

A=double(A);

b=double(b);

z=A\b;

p=z(1:n+1);

D=z(n+2);

y=b;

end



function y=funsin(x)

y=sin(x);

end



function y=funabramo(x)

y=sin(sqrt(x))./sqrt(x);

%y=(y-1)./x;

end
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Maple besitzt eine Implementation des Remez–Algorithmus. Wir nutzen sie, um für
unser Standardbeispiel der Approximation des Sinus mit kubischen Polynomen den
Fehler der Tschebyscheff–Interpolation anzugeben.

maximaler Fehler
Tschebyscheff 0.0014� �

f u n c t i o n [ o u t p u t a r g s ] = mapleremez ( i n p u t a r g s )
%MAPLEREMEZ
N=1000;
x = ( 0 :N ) / N* p i / 2 ;
y=zeros ( 1 , N + 1 ) ;
maple ( ’ w i t h ( numapprox ) ’ )
� �

Listing 8.9: Remez–Algorithmus in Maple (Approximation/mapleremez.m)

Das berechnete Polynom ist

p∗(x) = −0.0013670643 + 1.025256091 ∗x− 0.0706895833 ∗x2− 0.1125059808 ∗x3.

Zumindest in diesem Fall konnten wir die bereits durch die Tschebyscheff–
Polynome gelieferte Gauss–Approximation also leider nur noch marginal verbes-
sern. Das bereits für die Gauss–Approximation Gesagte gilt auch hier: Wir sind
keineswegs auf Polynome beschränkt. Die meisten Sätze gelten für alle Funktio-
nenräume, bei denen die Interpolationsaufgabe eindeutig lösbar ist (Haarsche Sy-
steme). Die Maple–Routinen etwa lassen gleich eine rationale Approximation zu.
Die Standard–Tafelwerke (etwa Abramowitz and Stegun [1965]) geben hochgenaue
Remez–Approximationen für die elementaren Funktionen an.

8.4 Der Approximationssatz von Weierstrass

Der letzte Abschnitt hat uns gezeigt, dass wir die Bestapproximation p∗n bezüglich
der Unendlichnorm an eine stetige Funktion f in Pn berechnen können. Es stellt
sich die Frage, ob man durch ausreichend hohe Polynomgrade f beliebig genau
approximieren kann, d.h. ob
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function [ output_args ] = remezalgo( n )

%REMEZALGO Very simple implementation of the Remez algorithm

%Application to the approximation of sin(x)/x by a polynomial in x*x

%(see Abramowitz/Stegun, 4.3.96).

if (nargin<1)

    n=3;

end

differenz=1e-2;

a=0;

b=pi/2;

f=@funsin;



a=1e-6;

n=1;

f=@funabramo;





close all;

format compact;

format long;

N=1000;

X=(0:N)/N*(b-a)+a;

Y=f(X);

RandStream.setDefaultStream(RandStream('mt19937ar','seed',1000));

x=sort(rand(n+2,1)*(b-a)+a);

%x=(0:n+1)'/(n+1)*(b-a)+a;

for L=1:100

[p,D,y]=computepD(f,x);

p'



figure(1);

plot(X,polyval(p,X),X,Y,x,polyval(p,x),'X','MarkerSize',15);

title(['Remez--Approximation, Iteration ' num2str(L)]);

legend('p_n','f','x_k');



figure(2);

plot(X,Y-polyval(p,X),x,y-polyval(p,x),'X','MarkerSize',15);

title(['Fehler der Remez--Approximation, Iteration ' num2str(L)]);

legend('diff','x_k');



for i=1:n+2

    curr =y(i)-polyval(p,x(i));

    z=x(i)+1e-6;

    curr1=f(z)-polyval(p,z);

    if ((curr>0)&&(curr1<curr))||((curr<0)&&(curr<curr1))

        x(i)=x(i)-differenz;

        x(i)=max(x(i),a);

    else

        x(i)=x(i)+differenz;

        x(i)=min(x(i),b);

    end

end



maxError=max(abs(Y-polyval(p,X)))

AlternantenFehler=abs(D)

%waitforbuttonpress;

end

end



function [p,D,y]=computepD (f,x)

n=numel(x)-2;

A=zeros(n+2,n+2);

b=zeros(n+2,1);

for i=1:n+2

    for k=1:n+1

        l=(n+1-k);

        A(i,k)=x(i)^(2*l+2);

    end

    A(i,n+2)=(-1)^i;

end

b=f(x);

A=double(A);

b=double(b);

z=A\b;

%p=z(1:n+1);

p=zeros(2*n+3,1);

for i=1:n+1

    p(2*i-1)=z(i);

end

D=z(n+2);

y=b;

end



function y=funsin(x)

y=sin(x);

end



function y=funabramo(x)

y=sin(x)./x-1;

end



Frank Wuebbeling
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function [ output_args ] = mapleremez( input_args )

%MAPLEREMEZ

N=1000;

x=(0:N)/N*pi/2;

y=zeros(1,N+1);

maple('with(numapprox)')

maple('w:=proc(x) 1.0 end proc')

maple('f:=proc(x) sin(x) end proc')

maple('crit:=Array(1..5,[0,0.2,0.4,0.6,0.8,1.0]);')

p=maple('p:=remez(w,f,0,evalf(pi/2),3,0,crit,''maxerror'');')

for i=1:N+1

    y(i)=maple(['p(' num2str(x(i)) ')']);

end

plot(x,y,x,sin(x))

maxError=max(abs(y-sin(x)))

end





Frank Wuebbeling
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||f − p∗n||∞ 7→ 0, n 7→ ∞.

Dies ist äquivalent zu der Frage, ob die Polynome dicht liegen im Raum der stetigen
Funktionen. Diese Frage wurde von Weierstrass beantwortet – in Münster kommt
man nicht darum herum, dies zumindest zu erwähnen. Beweise finden sich zuhauf
in der Literatur (und gehören eigentlich in andere Vorlesungen), wir skizzieren hier
nur kurz die Beweisidee. Im Folgenden sei immer X der Vektorraum der stetigen
Funktionen auf I = [a, b] (ohne Einschränkung a = 0 und b = 1) und || · || die
Unendlichnorm.

Definition 8.20 ( monotone Operatoren)
Sei L : X 7→ X ein linearer Operator. L heißt monoton, falls für alle f, g ∈ X

(f(t) ≤ g(t)∀t ∈ I)⇒ ((L(f))(t) ≤ (L(g))(t)∀t ∈ I).

Als Beispiel für einen positiven Operator betrachten wir den Bernsteinoperator.

Definition 8.21 ( Bernsteinoperator)
Sei X der Raum der stetigen Funktionen auf dem Intervall I = [0, 1]. Der Operator

Bn : X 7→ Pn, (Bn(f))(t) =
n∑
k=0

(
n

k

)
f

(
k

n

)
tk(1− t)n−k, n ≥ 1

heißt Bernsteinoperator.

Lemma 8.22 (Eigenschaften des Bernsteinoperators)

1. Bn ist monoton.

2. Sei pk(x) = xk.

(Bn(p0)) = p0

(Bn(p1)) = p1.

(Bn(p2))(t) = p2(t) +
t− t2

n
.

Bn(pk) konvergiert also gleichmäßig gegen pk, k = 0, 1, 2.

Beweis:

197



1. Sei f ≤ g, dann ist insbesondere f(k/n) ≤ g(k/n). Der Binomialkoeffizient
ist nichtnegativ, ebenso tk(1− t)n−k, also ist

(Bn(f))(t) =
n∑
k=0

(
n

k

)
f

(
k

n

)
tk(1−t)n−k ≤

n∑
k=0

(
n

k

)
g

(
k

n

)
tk(1−t)n−k = (Bn(g))(t).

2. Es gilt

1 = (t+ (1− t))n =
n∑
k=0

(
n

k

)
tk(1− t)n−k = (Bn(p0))(t).

Weiter gilt

(Bn(p1))(t) =
n∑
k=0

(
n

k

)
k

n
tk(1− t)n−k

=
n∑
k=1

(
n− 1

k − 1

)
tk(1− t)n−k

= t
n−1∑
k=0

(
n− 1

k

)
tk(1− t)n−1−k

= t

und schließlich

(Bn(t(1− t)))(t) =
n∑
k=0

(
n

k

)
k

n

n− k
n

tk(1− t)n−k

=
n(n− 1)

n2
t(1− t)

n−2∑
k=0

(
n− 2

k

)
tk(1− t)n−2−k

= (1− 1

n
)t(1− t).

�

Der entscheidende Hilfssatz ist

Lemma 8.23 ( Lemma von Korovkin)
Sei Ln : X 7→ X eine Folge linearer, monotoner Operatoren. Es sei pk(t) = tk. Falls

||Ln(pk)− pk||∞ 7→ 0, k = 0, 1, 2,

so gilt bereits
||Ln(f)− f ||∞ 7→ 0

für alle f ∈ X.
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Die Voraussetzungen dieses Lemmas sind für den Bernsteinoperator erfüllt. Falls
wir es zeigen können, liefert also der Bernsteinoperator für jede stetige Funktion f
eine Polynomfolge, die gleichmäßig gegen f konvergiert.
Beweis: Der Beweis findet sich z.B. in Meinardus [1964], Seite 6, und deutlich
ausführlicher online im Skript Oberle [2007], Kapitel 4.
Wir folgen dem eleganten Beweis von Meinardus. Sei zunächst ε > 0 fest gewählt.
f ist stetig auf einem Kompaktum, also gleichmäßig stetig. Damit gibt es ein δ > 0,
so dass

|f(t)− f(x)| ≤ ε∀|t− x| ≤ δ.

Für |t− x| ≥ δ gilt

|f(t)− f(x)| ≤ 2||f || ≤ 2||f ||
δ2

(t− x)2,

insgesamt also sicherlich

|f(t)− f(x)| ≤ ε+
2||f ||
δ2

(t− x)2.

Wir betrachten die linke und rechte Seite als Funktionen in t (setzen also x konstant)
und nutzen aus, dass Ln monoton und linear ist. Dann gilt wegen

|z| ≤ u⇔ −u ≤ z ≤ u

auch

|Ln(f)(t)− f(x)(Ln(1))(t)| ≤ ε(Ln(1))(t) +
2||f ||
δ2

(Ln((t− x)2))(t).

Unabhängig von t und x konvergieren nach Voraussetzung Ln(1) und Ln((t − x)2)
gleichmäßig gegen 1 bzw. (t− x)2. Sei ε′ > 0. Dann gilt

|(Ln(f))(t)− f(x)| ≤ ε+
2||f ||
δ2

(t− x)2 + ε′

für n > n0(ε′). Ausgewertet für t = x gilt damit

|(Ln(f))(x)− f(x)| ≤ ε+ ε′.

�

Wir folgern nun aus 8.22 und dem Lemma von Korovkin

Satz 8.24 ( Satz von Weierstrass)

Bn(f) 7→ f ∀f ∈ X.
Insbesondere liegen wegen Bn(f) ∈ Pn die Polynome dicht in X.

Der Wert der ApproximationBn(f) an f liegt ausschließlich in diesem theoretischen
Ergebnis. Numerisch liefert die Approximation wesentlich schlechtere Werte als die
Tschebyscheff–Approximation (die ja optimal ist).
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Kapitel 9

Grundzüge der linearen und nichtlinearen
Optimierung

Viele Aufgaben der angewandten Mathematik führen auf Probleme, bei denen wir
einen Wert suchen, für den eine gegebene Zielfunktion ihr Maximum oder Minimum
annimmt. Einige Beispiele haben wir bereits kennengelernt, etwa

Beispiel 9.1

kleinste Quadrate–Lösungen (4.2): Hier konnten wir mit Hilfe der Gaussschen Nor-
malgleichungen 4.4 die Lösung direkt angeben.

Minimum Norm–Lösungen: Hier haben wir den kleinsten Vektor v mit der Nebenbe-
dingung, dass v kleinste Quadrate–Lösung ist, berechnet.

Krylovraumverfahren (6.1): Hier haben wir die Lösung des Minimierungsproblems
numerisch durch Gradientenverfahren berechnet.

Uns interessieren natürlich die Probleme mit numerischen Lösungsverfahren. Grob
lassen sich die Optimierungsaufgaben in mindestens zwei Kategorien einteilen.

1. Unbeschränkte Optimierung: Dies sind Aufgaben der Form

min
x∈V

f(x)

wobei V einen kompletten Raum darstellt. Dies ist bei den kleinste Quadrate–
Lösungen und den Krylovraumverfahren der Fall.

2. Optimierung mit Nebenbedingungen: In der Praxis ist der Raum, in dem wir
die Kandidaten für die Minimierung suchen, fast nie unbeschränkt, sondern
unterliegt Einschränkungen, die aus der Anwendung stammen. Das einfach-
ste Beispiel sind die Minimum Norm–Lösungen, bei denen wir den Raum auf
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die Menge der kleinsten Quadrate–Lösungen einschränken. Wir haben also
Aufgaben der Form

min
x∈V

f(x) unter g(x) = 0 undh(x) ≤ 0.

Die verwendeten (iterativen) numerischen Methoden unterscheiden sich deutlich.
In der unbeschränkten Optimierung könnten wir etwa Gradientenmethoden verwen-
den, oder Nullstellen der Ableitung von f mit Hilfe des Newtonverfahrens suchen.
Bei der beschränkten Optimierung müssen wir hingegen immer sicherstellen, dass
die Nebenbedingungen von den Kandidaten noch erfüllt werden. Wir schauen auf
den klassischen, in der Anwendung immer noch häufig auftretenden Spezialfall der
linearen Optimierung. Hier sind sowohl die Nebenbedingungen g und h wie auch
die Zielfunktion h linear. Es ist sofort klar, dass erst die Nebenbedingungen die
Existenz eines Minimums garantieren.

9.1 Lineare Optimierung

Lineare Optimierungsaufgaben stammen häufig aus der Chemie oder den Wirt-
schaftswissenschaften. Die einfachsten Prototypen sind von der Form:
In einem Chemiekonzern werden zwei Chemikalien X und Y hergestellt. Bei der
Herstellung von X fallen pro Liter S1,X , S2,X , . . . mg. Für die Schadstoffe gelten
die Grenzwerte S1, S2, . . .. Weiter werden pro Liter R1,X , R2,X , . . . kg Rohstoffe
benötigt, entsprechend für Y . Zusätzlich gibt es eine Maschine, die nur einmal zur
Verfügung steht, aber 24 Stunden laufen muss, sie kann pro Stunde entweder die
Menge MX von X oder die Menge MY von X herstellen.
Der Konzern erwirtschafte pro kg der Chemikalie einen Gewinn von GX bzw GY .
Welcher Produktionsplan garantiert den höchsten Gewinn?
Dies ist leicht in einen mathematische Formulierung zu bringen:
Maximiere

f(X, Y ) = GXX +GYX

unter den Nebenbedingungen

X, Y ≥ 0

Sk,X ·X + Sk,Y · Y ≤ Sk, k = 1, . . . , N

(1/MX) ·X + (1/MY ) · Y = 24

Mit
x = (X, Y )
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und offensichtlicher Definition für die restlichen Variablen formulieren wir dies um
zu

maxxtG unter Ax ≤ b, x ≥ 0.

Die offensichtliche Art, die Gleichung einzubauen, wäre, einfach entwederX oder Y
komplett aus den Gleichungen zu eliminieren. Alternativ könnten wir die Gleichung
z = C auch durch Z − C ≥ 0 und C − Z ≥ 0 modellieren.
Für ein kurzes Beispiel wählen wir

A =

 20 10
4 5
6 15

 , b =

 8000
2000
4500

 , G =

(
16
32

)

In unseren zwei Variablen ist das Problem leicht lösbar. Wir zeichnen zunächst den
zulässigen Bereich.
*TODO*
Unser Gesamtgewinn ist f(x) = Gtx. Wir betrachten die Produktionsplankombina-
tionen, die den gleichen Gewinn C garantieren. Diese erfüllen die Gleichung

Y (G,X) = G/32−X/2.

Wir suchen also diejenige Gerade, für die G möglichst groß ist, aber noch so, dass
die zugehörige Gerade mit dem zulässigen Bereich noch mindestens einen Punkt
gemeinsam hat. Alle Geraden liegen parallel, wir müssen also nur eine einzeichnen
und sie möglichst weit nach oben verschieben. Anschaulich ist klar, dass der Maxi-
malpunkt entweder eine Ecke ist, oder (falls eine begrenzende Gerade parallel zur
Gewinngeraden verläuft) eine Kante – in diesem Fall enthält sie sogar zwei Ecken. In
jedem Fall wird der Maximalgewinn in einem Eckpunkt des zulässigen Gebiets an-
genommen. Wir können uns also in unseren Betrachtungen auf die Untersuchung
der Eckpunkte des zulässigen Gebiets beschränken.
Diese grafissche Vorgehensweise ist natürlich nur im R2 durchführbar. Wir betrach-
ten die Normalform:
Sei A ∈ Rm×n, b ∈ Rm, c ∈ Rn, f(x) := ctx und

M := {x ∈ Rn : xj ≥ 0, j = 1 . . . n und Ax = b}

die Menge der zulässigen Punkte. Bestimme xM ∈ Rn, so dass

f(xm) ≥ f(x)∀x ∈M.

Dies deckt alle linearen Aufgaben ab. Ist etwa xk unbeschränkt, so ersetzen wir xk =
yk − zk und wir können ungestraft die Positivität der neuen Variablen annehmen.

202



Falls wir eine Ungleichungnebenbedingung der Form (Ax)j ≤ bj haben, so führen
wir eine neue (Schlupf–) Variable uj ein und schreiben

(Ax)j + uj = bj

was mit der Bedingung uj ≥ 0 äquivalent zur alten Bedingung ist. Insgesamt er-
halten wir in diesen neuen Variablen dann ein Gleichungssystem (unter Umständen
mit wesentlich mehr Variablen) in Normalform, das nur nichtnegative Variable und
Gleichungen (keine Ungleichungen) enthält.
Offensichtlich macht die Minimierungsaufgabe nur Sinn, wenn n > Rang A.
M ist konvex. Die Ecken von M definieren wir geometrisch mit

Definition 9.2 (Ecken des zulässigen Gebiets)
x ∈ M heißt Ecke von M , wenn es nicht als Konvexkombination zweier Punkte x1

und x2 von M dargestellt werden kann, die verschieden von x sind.

Wir bemerken ohne Beweis

Satz 9.3 Sei M konvex und beschränkt. Dann ist M die konvexe Hülle seiner Ecken.

Beweisidee: Per Induktion über die Dimension des zugrunde liegenden Raums. Sei
x ∈ M . Falls x auf dem Rand von M liegt (einer (n − 1)–dimensionalen Unter-
mannigfaltigkeit), so ist x Konvexkombination der Ecken des Randes nach Indukti-
onsvoraussetzung. Falls nicht, so ist x Konvexkombination zweier Punkte x(1) und
x(2). Die Gerade durch diese Punkte schneidet den Rand in zwei Punkten, die wie-
der nach Induktionsvoraussetzung Konvexkombination von Ecken des Randes sind,
und damit ist auch x Konvexkombination von Punkten des Randes.
Damit gilt sofort der

Satz 9.4 (Eckensatz)
Sei M beschrönkt. Dann gibt es eine Ecke von M , die Lösung der Optimierungsauf-
gabe ist.

Beweis: f ist stetig auf einem Kompaktum, also wird das Maximum angenommen.
Sei z Lösung der Optimierungsaufgabe. z ist Konvexkombination von Ecken vonM ,
also

z =
∑
k

λkx
(k), 0 < λk,

∑
k

λk = 1.

Damit gilt aber auch
f(z) =

∑
k

λkf(x(k))

und damit f(x(k)) = f(z). �
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Dies motiviert sofort einen Algorithmus: Berechne alle Ecken von M und die zu-
gehörigen Werte von f . Die Ecke, die das Maximum liefert, löst die Optimierungs-
aufgabe.
Um dies zu realisieren, benötigen wir zunächst

Satz 9.5 (Charakterisierung der Ecken)
x ist genau dann Ecke von M , wenn es eine Indexmenge I ⊂ {1 . . . n} mit |I| = m
gibt, so dass

1. x ≥ 0.

2. Ax = b.

3. xi = 0∀i 6∈ I.

4. Die Spalten ai, i ∈ I, sind linear unabhängig.

I heißt Basis der Ecke, {1 . . . n} \ I heißt Nichtbasis.

Schauen wir kurz auf unser grafisches Beispiel. Dort hatten wir nur Ungleichungen,
die wir durch Schlupfvariable realisieren, d.h. wir haben die Variablen x1, x2, u1,
u2 und u3. Die Ecken lagen jeweils auf zwei begrenzenden Geraden. Die dritte Glei-
chung war dort nicht erfüllt. Zu den Ecken unserer Grafik gehört also jeweils ein
Lösungstupel, bei dem höchstens x1, x2 und ein uk nicht verschwinden, also gera-
de drei (= m).
Beweis:

1. Es gelten 1-4. Angenommen, x sei keine Ecke. Dann ist x Konvexkombination
zweier verschiedener Punkte x(1) und x(2). Wegen xi = 0, i 6∈ I, gilt auch
x

(1)
i = x

(2)
i = 0 (denn alle Komponenten der Vektoren sind nichtnegativ), und

damit xi = x
(1)
i = x

(2)
i für i 6∈ I.

Die restlichen Unbekannten lösen das Gleichungssystem

b = Ax =
∑
i∈I

xiai

und entsprechend für x(1) und x(2). Da die ai linear unabhängig sind und |I| =
m, gilt auch x

(1)
i = x

(2)
i für i ∈ I, also gilt x(1) = x(2) im Widerspruch zur

Annahme.

2. Sei x eine Ecke von M . Sei I die Indexmenge der Koordinaten mit xi > 0.
Angenommen, die zugehörigen ai seien linear abhängig. Dann gibt es eine
nichttriviale Linearkombination

Aα =
∑
i

αiai = 0
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mit ai = 0 für i 6∈ I. Sei xε = x + εα. Dann gilt Axε = b. Für ausreichend klei-
nes |ε| bleibt die Lösung also inM . Damit wäre aber x Linearkombination von
x± εα und damit keine Ecke. Also sind die zugehörigen ai linear unabhängig,
insbesondere sind es höchstens m. Falls es weniger sind, ergänzen wir I ent-
sprechend.

�

9.2 Simplex–Verfahren

Zur Herleitung des Simplex–Verfahrens betrachten wir zunächst nur den einfach-
sten Fall. In der Normalform stamme jede Gleichung aus einer Ungleichung, die wir
mit Hilfe einer Schlupfvariablen yk umgewandelt haben, k = 1 . . .m. Weiter sei
bk > 0, k = 1 . . .m. Dann ist (0, b)t eine Ecke von M . Ihre Basis ist y1 . . . ym, ihre
Nichtbasis ist x1 . . . xn.
Die Idee des Simplex–Verfahrens ist, ausgehend von dieser Ecke eine Folge von
zulässigen Ecken zu konstruieren, bei denen der Wert des Zielfunktionals ansteigt.
Hierbei tauschen wir jeweils eine Variable aus der Basis mit einer aus der Nichtba-
sis. Es gilt für alle Elemente aus M

Ax+ y = b, also
(
A I

)( x
y

)
= b

oder in der p. Zeile ∑
k

(ak)pxk + yp = bp. (9.1)

Wir wollen nun xs anstelle von yp in die Basis bringen, d.h. wir suchen eine neue
Ecke (x̃, ỹ), so dass ỹp = 0 und x̃s 6= 0 und nach wie vor x̃k = 0 für k 6= s.
Diese ist leicht bestimmt: Wir setzen (x̃, ỹ) in 9.1 ein und erhalten wegen ỹp = 0

x̃s =
bp

(as)p
.

Für k 6= p ergibt sich entsprechend

ỹk = bk − (as)kx̃s.

Damit haben wir bereits die neue Ecke gefunden. Dies war aber nur deshalb so
leicht, weil unser Gleichungssystem eine so einfache Form hatte, die wir jetzt
natürlich zerstört haben. Wir stellen diese Form wieder her, indem wir die Positio-
nen von xs und yp im Vektor vertauschen (was wir uns natürlich merken müssen).

205



Dadurch steht im Vektor die Nichtbasis wieder oben, die Basis unten. In der Matrix
müssen wir die zugehörigen Spalten vertauschen, wir erhalten

(a1 . . . as−1epas+1 . . . ane1 . . . ep−1asep+1 . . . em).

Wir haben durch die Vertauschung also die einfache Form der Matrix zerstört. Diese
stellen wir nun durch Zeilenoperationen wieder her.

1. Damit im rechten Teil der Matrix auf der Hauptdiagonalen wieder eine 1 steht,
multiplizieren wir die p. Gleichung mit 1/(as)p.

2. Damit im rechten Teil der Matrix in der p. Spalte die Elemente außerhalb der
Hauptdiagonalen verschwinden, ziehen wir für k 6= p das (as)k–fache der p.
Gleichung von der k. Gleichung ab.

Hier wie im Folgenden machen wir natürlich stillschweigend die Annahme, dass das
Pivotelement nicht verschwindet. Darauf kann man verzichten (Stichwort: Berech-
nung von entarteten Lösungen).
Damit haben wir hier die Form fast wiederhergestellt: Wir müssen noch bei der Aus-
wahl von s und p sicherstellen, dass die rechte Seite positiv bleibt.
Bleibt noch die Zielfunktion. Sie war vor der Vertauschung natürlich eine Funktion
in den ersten n Variablen des Vektors, das wollen wir auch beibehalten. Wieder gilt
mit 9.1

(as)pxs = bp − yp −
∑
k 6=s

(ak)pxk.

Wir können also xs in der Zielfunktion durch yp ersetzen. Es gilt

f(x, y) = ctx = c̃



x1

...
xs−1

yp
xs+1

...
xn


+ cs

bp
(as)p

mit

c̃s = − 1

(as)p
, c̃k = ck −

(ak)p
(as)p

(k 6= s).

Der Funktionswert des Zielfunktionals an der neuen Ecke ist damit insbesondere

206



cs
bp

(as)p
.

Falls dieser Wert positiv ist für ein Pärchen (s, p), so steigt der Funktionswert in
dieser benachbarten Ecke an und wir müssen nur noch sicherstellen, dass die neue
Ecke die Voraussetzung erfüllt, dass die rechte Seite positiv ist.
Mit dieser neuen Ecke können wir nun den Algorithmus fortführen. Üblicherweise
wird dies in einem Tableau (dem Simplex–Tableau) durchgeführt.
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Kapitel 10

Ausblick

Übersicht über weiterführende Vorlesungen/Themen der Angewandten Mathema-
tik.
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