Numerische Lineare Algebra im WS 2018/2019

Frank Wiibbeling

22. April 2020

Inhaltsverzeichnis

1 Angewandte Mathematik|

2 Grundlagen der LA und der Fehlerrechnung]
2.1 LineareAlgebral
2.1.1 __Normierte Vektorraumel
[2.1.2 Lineare Operatoren|
[2.2 Fehler beim numerischen Rechnen|
[2.3 Fehlerverstarkung| o

i3 Direkte Verfahren zur L6sung linearer Gleichungssysteme|
3.1 GauB~Elimination und LR—-Zerlegung

3.2 [Cholesky=Zerlegung|.
3.3 QR-Zerlegung|. e e
3.4 Ubersicht: Direkte Ldsungvon LGS|

iy Uber- und unterbestimmte Gleichungssysteme|
4.1 Die Methode der kleinsten Quadrate|
(4.2 Die Minimum Norm-Losung
(4.3 Die Pseudoinversel. i e e e e e e
l4.4 Die Singularwertzerlegungl 0.,

|5 Iterative Losung von Gleichungssystemen mit Fixpunktiterationen|

[.1 DerBanachsche Fixpunktsatz

[s.2 Fixpunktverfahren zur Losung linearer Gleichungen|
[5.3 lterative Losung nichtlinearer Gleichungssysteme|

|6 Krylovraumverfahrren zur Losung linearer Gleichungen|
6.1 Gradientenverfahrenl o L.
[6.2 Konjugierte Richtungen und das CG-Verfahren|.
[6.3 Der Uzawa—Algorithmus: Optimierung mit Nebenbedingungen| . . .

18
18
18
21
29
33

39
39
50
54
65

66

74
76
80

85
87
100
115

128
128

134

. 145

http://en.wikipedia.org/wiki/Gauss
http://de.wikipedia.org/wiki/Cholesky

(7 Numerische Berechnung von Eigenwerten|

[7.1 Kondition des Eigenwertproblems|

[7.2 Potenzmethode| . .

[7.3 Der QR—Algorithmus zur Bestimmung aller Eigenwerte einer Matrix| . .

|8 Numerische Approximation in metrischen Raumen|

[8.1 Bestapproximationen| e

[8.2 Gauss—Approximation|. e e

[8.3 Tschebyscheff-Approximation|

[8.4 Der Approximationssatz von Welerstrass|

|9 Grundziige der linearen und nichtlinearen Optimierung|

[0.1 Lineare Optimierung
[0.2 Simplex—Verfahren|

[Literaturverzeichnis|

148
151
154
161

171
174
178
185
196

200
201
205

208

209

Kapitel 0

Einleitung

Der vorliegende Text entstand als Begleitmaterial zur Vorlesung Numerische Linea-
re Algebra im Wintersemester 2018/1019. Die Vorlesung richtet sich an Studierende
des Bachelorstudiengangs Mathematik im dritten Semester sowie Studierende in
den Lehramtsstudiengangen Mathematik. Fiir die Korrektheit des Textes wird kei-
nerlei Garantie ibernommen, vermutlich sind noch reichlich Schreibfehler enthal-
ten. Fiir Bemerkungen und Korrekturen bin ich dankbar.

Macht es Sinn, der grof3en, bereits existierenden Zahl von Skripten zu Einfiihrungs-
veranstaltungen der Numerischen Mathematik noch ein weiteres hinzuzufiigen? Die
Antwort ist wohl ja, denn zumindest die Auswahl der Themen und vor allem Schwer-
punkte im breiten Spektrum geschieht subjektiv durch den Dozenten.

Da der Grofteil der Studierenden heute kaum noch einen physikalischen Hinter-
grund hat, habe ich auf die Darstellung der Beziehungen zwischen Angewandter
Mathematik und Physik, wie sie in den klassischen Lehrbiichern und Vorlesungen
iiblich war, groBtenteils verzichtet. Ubungen zu den einzelnen Kapiteln finden sich
im Netz, ebenso eine ausfiihrliche (subjektive) Literaturliste.

Ich habe mich bemiiht, zu den vorgestellten Algorithmen eine Beispiel-Implemen-
tation in Matlab zu liefern. Einige Programme nutzen dabei die Imaging—Toolbox
oder die SymbolicMath—Toolbox. Die zugehdrigen Dateien sind in der PDF-Datei
enthalten. Klick auf die jeweilige Textstelle 6ffnet die Beispielimplementation in
Matlab. Ebenso sind alle Bilder beigefiigt, Klick liefert jeweils das zugehorige Bild.
Dies funktioniert in Acrobat (Reader) und in einigen anderen PDF—-Readern, in vielen
PublicDomain—Readern aber nicht.

Billerbeck, im Herbst 2018

Frank Wiibbeling

Kapitel 1

Angewandte Mathematik

Angewandte Mathematik libertragt mathematische Konzepte auf die Realitat und
macht sie so fiir praktische Probleme nutzbar. Das Zusammenspiel zwischen Theo-
rie (Mathematik) und Praxis (Anwendung) ist der Reiz dieser Disziplin und bildet die
Grundlage fiir die modernen Naturwissenschaften (Physik, Biologie, Chemie, Geo-
physik, Medizin, ...), aber auch fiirandere Gebiete wie die analytischen Wirtschafts-
wissenschaften.

Wichtige Aufgaben sind dabei

Simulation: Ein Prozess wird auf dem Rechner nachgebildet, z.B. in der Wettervor-
hersage oder der Klimaforschung.

Optimierung: Es werden optimale Parameter fiir einen beeinflussharen Prozess ge-
sucht, z.B. in der Produktionsplanung oder der Strahlentherapie.

Ursachenforschung: Ermittlung von Grofien, die nur indirekt gemessen werden
kdonnen, z.B. in der Tomographie oder beim Scharfrechnen von geglatteten
Bildern.

Die Vorgehensweise bei der Losung eines Problems mit Hilfe der Mathematik ist:
1. Genaue Formulierung des Problems
2. Ubertragung in die Mathematik (Modellierung)
3. Vereinfachung des Modells, so dass es losbar wird (Diskretisierung)

Design eines Losungswegs (Algorithmus)

=

5. Implementation des Algorithmus

6. Interpretation

7. Anwendung

Die numerische Mathematik ist dabei fiir die Schritte 3-5 zustandig. Jeder der ma-
thematischen Schritte unterliegt dabei einer Untersuchung mit analytischen Metho-
den:

e Wie genau ist das Modell?

e Wie genau ist das vereinfachte Modell?

Liefert der Algorithmus das richtige Ergebnis?
e \Was passiert bei Messfehlern?

e Wie effizient (schnell) ist der Algorithmus?
Wir betrachten einige Beispiele.

Beispiel 1.1 (Computertomographie)

Ein Réntgenbild zeigt immer zweidimensionale Schattenbilder. Eine dreidimensio-
nale Lagebeziehung (etwa: liegt der Tumor vor oder hinter dem Knochen?) kann
man den Bildern nicht entnehmen. Mitte des letzten Jahrhunderts kam die Idee auf,
viele Rontgenbilder aufzunehmen und daraus eine dreidimensional Darstellung zu
berechnen. Ein einfaches mathematisches Modell: Sei R die Position der Rdntgen-
quelle, P eine Position auf der Fotoplatte. Sei weiter g(x), g : R® — R die Stdrke,
mit der ein Réntgenstrahl am Punkt x geschwdcht wird.

Die Helligkeit der Fotoplatte am Punkt P ist umso grofier, je weniger der Rontgen-
strahl auf seinem (geraden) Weg von R nach P geschwdcht wurde: Ging der Strahl
durch Knochen (dort ist g grof3), so bleibt die Fotoplatte schwarz, ging er durch Luft,
so wird die Platte weif3. Auf diese Weise bekommen wir eine zweidimensionale Pro-
jektion von g auf die Fotoplatte. Wir hdtten aber gern nicht die Projektion, sondern g
selbst - die Fragestellung ist daher: Wie berechnet man g aus seinen zweidimensio-
nalen Projektionen?

Mathematisch ist die Schwdrzung proportional zum Linienintegral von g (liber die
Linie zwischen R und P. Die mathematische Fragestellung lautet daher: Kann man
eine Funktion von R™ nach R aus Linienintegralen (iber die Funktion berechnen? Die-
se pure mathematische Fragestellung wurde weitgehend schon 1905 von Radon bei
der Untersuchung der spdter nach ihm benannten Radon—Transformation beant-
wortet, der sogar eine Inversionsformel angeben konnte. Leider kann man zeigen,
dass diese Inversionsformel nicht praktikabel ist (ihre direkte Implementation ist
langsam und liefert grofSe Fehler), siehe hierzu die Diskussionen in|Natterer [2001]
und |Natterer and Wiibbeling [2001].

Sehr erfolgreich war dagegen eine viel einfachere Vorgehensweise: Man teilt den

http://de.wikipedia.org/wiki/Johann_Radon
http://en.wikipedia.org/wiki/Radon_transform

gesamten Raum in Wiirfel (Voxel) auf und nimmt an, dass g aufjedem Voxel konstant
ist. Man macht sich schnell klar (am einfachsten in 2D), dass die Werte in jedem
Voxel dann Ldsung eines linearen Gleichungssystems sind, das nur noch invertiert
werden muss. Effiziente Verfahren zur Lésung dieses Gleichungssystems (das ca.
5123 Unbekannte hat) bilden heute den Kern der meisten Computertomographie—
Gerdte. Eine genauere Diskussion finden Sie zuhauf in der Literatur, z.B. in|Natterer
and Wiibbeling|[2001].

Abbildung 1.1: R6ntgenbild/Tomographie eines Uberraschungseis. Nur in der Tomo-
graphie sind Details erkennbar.

Klick fiir Bild autoxray
Klick fiir Bild autotomo

Beispiel 1.2 Berechnung der Ableitung einer Funktion
Die Funktion f sei auf dem Intervall I differenzierbar. Ihre Ableitung an der Stelle
x € 1 ist, wenn sie existiert, definiert als

h) —

 hes0, h£0

Diese Definition ist fiir die Praxis, in der die Ableitung etwa als Geschwindigkeit als
Ableitung der zuriickgelegten Wegstrecke auftritt, nutzlos, wenn nur diskrete (end-
lich viele) Funktionsauswertungen vorliegen. Es liegt in diesem Fall nahe, die Ablei-
tung durch die Approximation

flx+h)— f(z
fiir ein kleines h zu ersetzen (Modellvereinfachung, Diskretisierung). Der Fehler die-
ses Modells kann fiir zweimal stetig differenzierbare Funktionen einfach angegeben

8

Frank Wuebbeling
autoxray.jpg: Röntgenbild/Tomographie eines Überraschungseis. Nur in der Tomographie sind Details erkennbar.

Frank Wuebbeling
autotomo.jpg: Röntgenbild/Tomographie eines Überraschungseis. Nur in der Tomographie sind Details erkennbar.

werden. Mit der Taylorentwicklung und dem Lagrange-Restglied gilt

! h2 4
fla+h) = fz) +hf(z) + o F(€)
mit einem & zwischen x und x + h. Der maximale Fehler kann also abgeschdtzt wer-

den durch .
PERRLALES ()

Entsprechend zeigt man fiir viermal stetig differenzierbare Funktionen eine Approxi-
mationsformel fiir die zweite Ableitung:

JOERR (AL ELCRY L1 ‘

<Py (1)

< (1.2)
— 12

Hierbei steht natiirlich jeweils die Unendlichnorm fiir das Betragsmaximum auf I.
Nach dieser Analyse scheint klar: Je kleiner das h, desto besser das Ergebnis. Dies
beriicksichtigt aber natiirlich die Messfehler nicht. Ist h sehr klein, so fiihrt offen-
sichtlich schon ein kleiner Fehler im Zdhler zu riesigen Fehlern. Ist h zu grof3, ist der
Modellfehler, den wir angegeben haben, zu grof3. Diesen Zusammenhang werden
wir im ndchsten Kapitel genauer untersuchen.

Beispiel 1.3 Wdrmeleitung in einem isolierten Stab

Als Beispiel fiir ein komplexeres Anwendungsproblem betrachten wir einen wédrme-
isolierten Stab, der an beiden Enden auf eine feste Temperatur gebracht wird. Der
Stab befinde sich im Intervall [0, 7] auf der x-Achse und sei homogen. Die Anfang-
stemperatur zum Zeitpunkt t = 0 sei bekannt. Es bezeichne T'(x,t) die Temperatur
zum Zeitpunkt t an der Stelle x, t > 0, = € [0, w]. Mdgliche Fragestellungen:

1. Bestimme den Temperaturverlauf T unter Beriicksichtung einer externen Wdir-
mequelle q(x,t).

2. Nach ldngerer Zeit stellt sich ein fester Endzustand Ty(x) ein. Bestimme Ty,

Zundchst benétigen wir eine Mathematisierung (Modellierung). Unter Vernachldssi-
gung vieler physikalischer und mathematischer Gesichtspunkte und aller Konstan-
ten konnen wir diese leicht motivieren. Sei dazu [a, b] ein beliebiges Teilintervall von
[0, 7] und ty > t; > 0. Sei weiter

b
Q(t) = / T(x,t)dx

die Wdrmeenergie im Intervall [a,b] zum Zeitpunkt t. Es ist anschaulich, dass die
Wdrmeenergie, die zu einem Zeitpunkt t durch einen Punkt x lduft, proportional zur

9

Ableitung von T nach = ist: Ist die Ableitung 0, so dndert sich nichts, und es wird
auch keine Wdrme verschoben. Ist die Ableitung grof3, hat man einen grofien Tem-
peraturunterschied links und rechts des Punkts, und Wdrmeenergie flief3t durch die-
sen Punkt in einer Richtung, die vom Vorzeichen des Unterschieds abhdngt (Fourier-
sches Gesetz).

Zundchst gilt mal

Q(tg)—Q(tl)—/abT(x ts) — T(x, 1) // T, (x, t)dtdx

Da sich Q) nur durch Zufluss oder Abfluss von Energie am linken oder rechten Rand
oder durch externe Wdrmezufuhr dndert, gilt

Qlta) — Q(ty) /t (b 1) — atdt+// (z,) dxdlt

/ / Tow(z,t) + q(x, t)dxdt

wobei T, fiir die partielle Ableitung von T nach x steht und q(x,t) fiir die Stdrke
einer externen Wdarmequelle zum Zeitpunkt t an der Stelle x.
Fiir b — a und t, — t1 konvergiert nach dem Mittelwertsatz der Integralrechnung

b to
(b—a)(ltz—tl)//t Ti(x, t)dtdx — Ty(a,ty)

und

1
(b—a)(ty —t1)

und damit gilt fiir alle x € [0, 7], t > 0

2 b
/ / T,) + qla,)dxdt — Tho(a, 1) + qla, 1)

Ti(x,t) = Tpo(x,t) + q(z,). (1.3)

Eine genauere Herleitung bekommen Sie zum Beispiel in der Vorlesung Modellie-
rung.

Wir haben damit den kompletten physikalischen Vorgang in einer mathematischen
Beschreibung verstecken kénnen, in einer Gleichung, die fiir alle x und t erfiillt sein
muss und die die Ableitungen der gesuchten Funktion T enthdlt (partielle Differen-
tialgleichung, Wéarmeleitungsgleichung). Streng analytisch kann man nun zeigen:
Die Wirmeleitungsgleichung mit bekanntem Temperaturverlauf T'(x,0) = to(x) und
festen Temperaturen am Rand (T'(0,t) = C4, T(w,t) = Csy) hat eine eindeutige
Ldsung (mit Bedingungen an q).

10

Sdtze dieser Art sind Inhalt der Vorlesung partielle Differentialgleichungen.
Fiir den Endzustand T, (x) gilt, dass der Temperaturverlauf von der Zeit nicht mehr
abhdngt, also (Ty); = 0, er erfiillt damit

—(Ty)" =¢ (1.4)

und die Randbedingung (stationdre Wdarmeleitungsgleichung).

Fiir sehr einfache Funktionen q ldsst sich der Endzustand T, direkt angeben. Wir
setzen der Einfachheit halber C, = Cy = 0, am linken und rechten Ende des Stabes
wird also auf 0 Grad gekiihlt.

Eine in der Physik beliebte Methode, Aufgaben dieser Art zu losen, bestimmt
zundchst einmal die Eigenvektoren (Eigenfunktionen) der Abbildung auf der linken
Seite der Differentialgleichung, also der zweiten Ableitung. Wir suchen also nicht-
verschwindende Funktionen wuy, mit uy(0) = ug(7) = 0 und (ug). = Aruy. Man zeigt
leicht, dass

up(z) = sinkx, A, = —k?
fiir k € N dies leisten. Sei nun

To(x) = Zakuk(a:)

k

eine Losung der Differentialgleichung. Dann gilt

q(x) = —(10)ze(z) = — Z apApug(z) = Z apk? sin k.

k k

Umgekehrt gilt: Hat q eine solche Reihenentwicklung, so ist ", ajux(x) eine (die)
Ldsung der stationdren Wdrmeleitungsgleichung. Die Koeffizienten lassen sich mit
Hilfe der Fouriertransformation berechnen.

Damit ist das Problem mathematisch eigentlich komplett gel6st: Wir haben gezeigt,
dass es eine eindeutige Losung gibt, und kénnen diese sogar aus der Fourierrei-
hendarstellung von q direkt berechnen. Sei etwa q die charakteristische Funktion
des Intervalls [t /2 — e, m/2 + €| fiir ein 1 > € > 0. Dann gilt

T Jrj2—c

. 9 w/2+€ . 2 - .
q(x) = Z Agsin(kz), Ay = —/ sin(ky)dy = T cos(ky) Wﬁi :
k

und die Losung des stationdren Wdrmeleitungsproblems ist
— Ap .
To(x) = Z 5l sin(kz).
k=1

11

Wir kénnen die Lésung also exakt angeben. Dies geht aber offensichtlich nur, weil
wir die Warmequelle unrealistisch vereinfacht haben. Mdglicherweise ist diese nur
gemessen und besitzt keine geschlossene Darstellung - in diesem Fall kénnen wir
auch die Fourierreihe nicht berechnen und die analytische Losung wird wertlos.
Bemerkung: Die so erzielte Losung ist zwar physikalisch absolut sinnvoll, aber nicht
differenzierbar und damit keine Ldsung der Differentialgleichung. Dies zeigt, dass
unsere mathematische Modellierung nicht vollstdndig ist.

Es gibt aber eine sehr einfache numerische Lésung fiir unser Problem durch Dis-
kretisierung. Hierzu verteilen wir zundchst N + 1 Gitterpunkte x;, gleichmadfig im
Intervall [0, 7|, also x;, = kh, h = w/N, k = 0...N. Wir beschrdnken uns darauf,
Ndaherungen wy, fiir Ty(zx,) zu bestimmen. Mit[1.4]gilt an jedem Gitterpunkt

—T5 (zk) = q(@y).
Wir approximieren die Differentialgleichung mit[1.2} also
—Up_1 + 2uk — Uk4+1 = h2q(xk), k=1...N—1.

Zusdtzlich wissen wir wegen der Randbedingung ug = Ty(0) = 0 und uy = Ty(w) =
0. Insgesamt erhalten wir damit N — 1 lineare Gleichungen fiir die N — 1 Unbekann-
ten uy bis un_;:

—0+2u; —uy = h%q(x)
—uy +2uy —uy = h*q(zs)
—uy +2uz —uy = h%q(x3)

(1.5)
—un—_3+2un_s —uy—1 = h*q(xN_2)
—Un_2+2uy_1 —0 = hQQ(«'EN—l)
oder in Matrixschreibweise
2 -1 Uy q(1)
-1 2 -1 Ug q(x2)
1 -1 2 -1 us q(xs3)
2 . T : = : (1.6)
1 2 -1 Un—o q(zN_2)
-1 2 UN—1 q(xn-1)

Zur numerischen Lésung miissen wir also nur die Matrix invertieren und das Glei-
chungssystem lésen. Dies ist in Matlab schnell getan, Abbildung 1 zeigt den Ver-
gleich zweier Losungen, die jeweils mit der analytischen und diskreten Methode er-
zielt wurden. Bei grofiem N (hoher Auflosung) sind die Kurven praktisch gleich.

12

Analytische Losung mit Auswertung der Reie bis Glied 200, Diskrete Losung mit 400 Disicetisierungspuniten.

S AL
08 # N 06 7 \\\
d h i \

Abbildung 1.2: Analytische/Diskrete Lésung der stationdaren Warmeleitungsglei-
chung

Klick fiir Bild heatanalytic
Klick fiir Matlab Figure heatanalytic
Klick fiir Bild heatdiscrete
Klick fiir Matlab Figure heatdiscrete

Vergleich der Lésungen
0.7 T T

T
Diskret

Analytisch

— Differenz ||

06

05

041

03

0.2+

01

01 I L I I I I
0 0.5 1 1:5 2 25 3 35

Abbildung 1.3: Vergleich der diskreten/analytischen Lésung der stationdren Warme-
leitungsgleichung

Klick fiir Bild heatcompare
Klick fiir Matlab Figure heatcompare

13

0.7

0.6

0.5

0.4

03

0.2

0.1

Analytische L&sung mit Auswertung der Reihe bis Glied 200.

0.5

35

Frank Wuebbeling
heatanalytic.jpg: Analytische/Diskrete Lösung der stationären Wärmeleitungsgleichung

Frank Wuebbeling
Matlab Figure heatanalytic.fig: Analytische/Diskrete Lösung der stationären Wärmeleitungsgleichung

Diskrete Lésung mit 400 Diskretisierungspunkten.
07 T T T T

Frank Wuebbeling
heatdiscrete.jpg: Analytische/Diskrete Lösung der stationären Wärmeleitungsgleichung

Frank Wuebbeling
Matlab Figure heatdiscrete.fig: Analytische/Diskrete Lösung der stationären Wärmeleitungsgleichung

Vergleich der Lésungen

T
— Diskret

— Analytisch
— Differenz ||

0.6

0.5

0.4

03

0.2

0.1

35

Frank Wuebbeling
heatcompare.jpg: Vergleich der diskreten/analytischen Lösung der stationären Wärmeleitungsgleichung

Frank Wuebbeling
Matlab Figure heatcompare.fig: Vergleich der diskreten/analytischen Lösung der stationären Wärmeleitungsgleichung

function [x,y] = analytisch(N, M)

%Analytische Loesung der stationaeren Waermeleitungsgleichung
%fuer einen an den Raendern gekuehlten, isolierten Stab, der in
%der Mitte erwaermt wird

%N — Anzahl der Auswertungspunkte, M — Reihen—Auswertungsgrenze

Listing 1.1: Analytische Losung der stationaren Warmeleitungsgleichung (Waerme-
leitung/analytisch.m)

Klicken fiir den Quellcode von Waermeleitung/analytisch.m

function [x,y] = diskret(N)

%Diskrete Loesung der stationaeren Waermeleitungsgleichung fuer
%einen an den Raendern gekuehlten, isolierten Stab, der in der
%Mitte erwaermt wird. N — Anzahl der Auswertungspunkte

h=pi/N;
(S

Listing 1.2: Diskrete Losung der stationdaren Warmeleitungsgleichung (Waermelei-
tung/diskret.m)

Klicken fiir den Quellcode von Waermeleitung/diskret.m

function doitid

%Treiber fuer analytisch, diskret

global epsilon;

epsilon=o0.5;

N=200;

close all;

. J
Listing 1.3: Rahmen zur stationdren Warmeleitungsgleichung (Waermeleitung/-
doitad.m)

Klicken fiir den Quellcode von Waermeleitung/doitid.m

Wir halten also fest: Zur Diskretisierung praktischer Probleme miissen am Ende
meist (grofie) lineare Gleichungssysteme geldst werden. Dies méglichst genau und
effizient zu tun, wird den Grofiteil dieser Vorlesung einnehmen.

Bemerkung: Die Cramersche Regel wdre aus mathematischer Sicht hierzu bereits
absolut ausreichend, leider ist sie weder effizient noch liefert ihre direkte Implemen-
tation genaue Werte.

14

function [x,y] = analytisch(N, M)

%Analytische Loesung der stationaeren Waermeleitungsgleichung

%fuer einen an den Raendern gekuehlten, isolierten Stab, der in

%der Mitte erwaermt wird

%N - Anzahl der Auswertungspunkte, M - Reihen-Auswertungsgrenze

h=pi/N;

x=(0:N)*h;

y=zeros(size(x));

global epsilon;

for k=1:M

 a=(cos(k*(pi/2-epsilon))-cos(k*(pi/2+epsilon)))*2/pi/(k^3);

 y=y+a*sin(k*x);

end

plot(x,y);

title(['Analytische Lösung mit Auswertung der Reihe bis Glied ' num2str(M) '.']);

end

Frank Wuebbeling
Analytische Lösung der stationären Wärmeleitungsgleichung

function [x,y] = diskret(N)

%Diskrete Loesung der stationaeren Waermeleitungsgleichung fuer

%einen an den Raendern gekuehlten, isolierten Stab, der in der

%Mitte erwaermt wird. N - Anzahl der Auswertungspunkte

h=pi/N;

x=(1:N-1)*h;

A=2*diag(ones(N-1,1))-diag(ones(N-2,1),1)-diag(ones(N-2,1),-1);

A=A/(h*h);

g=q(x)';

y=A\g;

plot(x,y);

title(['Diskrete Lösung mit ' num2str(2*N) ' Diskretisierungspunkten.']);

end

function g=q(x)

global epsilon;

g=zeros(size(x));

g(abs(x-pi/2)<epsilon)=1;

end

Frank Wuebbeling
Diskrete Lösung der stationären Wärmeleitungsgleichung

function doit1d

%Treiber fuer analytisch, diskret

global epsilon;

epsilon=0.5;

N=200;

close all;

[x,ydiskret]=diskret(N);

savepic('heatdiscrete');

figure;

[x1,yanalytisch]=analytisch(N,N);

savepic('heatanalytic');

figure;

plot(x,ydiskret,x1,yanalytisch,x,ydiskret-spline(x1,yanalytisch,x'));

title('Vergleich der Lösungen');

legend('Diskret','Analytisch','Differenz');

savepic('heatcompare');

end

function savepic(name)

 if exist('vorlsavepic','file')

 vorlsavepic(name);

 end

end

Frank Wuebbeling
Rahmen zur stationären Wärmeleitungsgleichung

Warnung: Dies ist eine reine Motivation. Das analytische Modell durch ein diskretes
zu ersetzen, scheint hier eine gute Idee zu sein. Tatsdchlich kann aber natiirlich erst
eine genaue mathematische Analyse zeigen, ob das Ergebnis brauchbar ist bzw. mit
welchem Fehler die diskrete Losung behaftet ist. Zur Warnung schauen wir uns da-
her auch noch die zeitabhdngige Wérmeleitungsgleichung an. Wir diskretisieren die
Zeit an den Zeitpunkten t,, = kdt, k € Ny. Sei u(ty, x) die gesuchte Nédherung fiir die
Temperatur am Punkt x zum Zeitpunkt t,.. Mit Hilfe der Formel fiir die Diskretisierung
der ersten Ableitung erhalten wir also

u(tpr1,) = u(ty + dt,x) = ulty,) + dt (g + q).

Wir kdnnen also eine Approximation fiir die Temperatur zum Zeitpunkt t;.,, ange-
ben, wenn wir die Temperatur zum Zeitpunkt t,, kennen. Fiir t = 0 ist die Tempera-
tur bekannt (hier konstant o), zur Berechnung der zweiten Ableitung verwenden wir
wieder unsere Formel fiir die Diskretisierung der zweiten Ableitung, und wir erhal-
ten sofort die im Programm implementierte Formel. Um unser Programm zu testen,
lassen wir es fiir einige Zeit laufen und vergleichen den Endzustand mit dem vorher
berechneten aus der stationdren Wdrmeleitungsgleichung.

Vergleich stationér - zeitabhéngig
07 T T

AN\
06 / // \\ 1]
/ \
/ \
0.4 / \\
/ \
03F / \

02 / \

01 \
Il 1 1 Il 1

Abbildung 1.4: Vergleich der stationdaren Losung mit der zeitabhdngigen Losung

051

Klick fiir Bild heattime1
Klick fiir Matlab Figure heattime1

15

0.7

0.6

0.5

0.4

03

0.2

0.1

Vergleich stationér - zeitabhéngig

— Diskret
— Analytisch
— Diskret (Zeit)

35

Frank Wuebbeling
heattime1.jpg: Vergleich der stationären Lösung mit der zeitabhängigen Lösung

Frank Wuebbeling
Matlab Figure heattime1.fig: Vergleich der stationären Lösung mit der zeitabhängigen Lösung

function [x,y] = diskrettime (NT,N,T)

%Loesung der Waermeleitungsgleichung in der Zeit,
%diskret in Ort und Raum.

%NT — Zeitschritte pro Sekunde, N — Raumschritte,
%T — Endzeit. Achtung: Stabilitaetsbedingung beachten!

Listing 1.4: Losung der zeitabhdngigen Warmeleitungsgleichung (Waermeleitung/-
diskrettime.m)

Klicken fiir den Quellcode von Waermeleitung/diskrettime.m

Alles ist so, wie wir es erwarten: Der Endzustand liegt nah an der Lésung der stati-
ondren Gleichung. Wir wollen nun etwas genauer werden und erhGhen die Diskre-
tisierung auf der Raumachse wenig, statt 8o wdhlen wir nun 100 Diskretisierungs-
punkte und lassen unsere Simulation wieder laufen.

x 10°® Vergleich stationér - zeitabhéngig
T T T

T
Diskret
Analytisch ||
Diskret (Zeit)

25 ! 1 L 1 ! I
0 05 1 15 2 25 3 35

Abbildung 1.5: Vergleich der stationdren Losung mit der zeitabhdngigen Lésung, in-
stabil

Klick fiir Bild heattime2
Klick fiir Matlab Figure heattime2

16

function [x,y] = diskrettime(NT,N,T)

%Loesung der Waermeleitungsgleichung in der Zeit,

%diskret in Ort und Raum.

%NT - Zeitschritte pro Sekunde, N - Raumschritte,

%T - Endzeit. Achtung: Stabilitaetsbedingung beachten!

if (nargin<3)

T=10;

end

if (nargin<1)

NT=1300;

N=80;

end

NT=round(T*NT);

disp=round(NT/100);

dt=T/NT;

h=pi/N;

%Stabilitätskonstante (<1/2)

dt/(h*h)

x=((1:N-1)*h)';

A=(-2*diag(ones(N-1,1))+diag(ones(N-2,1),1)+diag(ones(N-2,1),-1))/(h*h);

y=zeros(size(x));

for i=1:NT

 y=y+dt*(A*y+q(x));

 if (mod(i,disp)==1)

 plot(x,y);

 if (max(y)<1)

 ylim([0,1]);

 end

 t=i*dt;

 title (['Temperaturverlauf zum Zeitpunkt t=' num2str(t)]);

 drawnow;

 end

end

end

function g=q(x)

global epsilon;

if(numel(epsilon)==0)

 epsilon=0.5;

end

g=zeros(size(x));

g(abs(x-pi/2)<epsilon)=1;

end

Frank Wuebbeling
Lösung der zeitabhängigen Wärmeleitungsgleichung

x 10 Vergleich stationér - zeitabhéngig

T T T

— Diskret
— Analytisch ||
— Diskret (Zeit)

0.5 1 1.5 2 25 3 35

Frank Wuebbeling
heattime2.jpg: Vergleich der stationären Lösung mit der zeitabhängigen Lösung, instabil

Frank Wuebbeling
Matlab Figure heattime2.fig: Vergleich der stationären Lösung mit der zeitabhängigen Lösung, instabil

function [output_args] = doittime()
%Treiber fuer diskrettime

global epsilon;

epsilon=o0.5;

close all;

[x1,y1]=diskrettime (1300,80,30);

Listing 1.5: LOsung der zeitabhangigen Warmeleitungsgleichung mit instabilen Pa-
rametern (Waermeleitung/doittime.m)

Klicken fiir den Quellcode von Waermeleitung/doittime.m

Das ist definitiv nicht, was wir erwarten. Eine Verbesserung der Approximation fiihrt
zu einem véllig chaotischen (in der Numerik: instabilen) Verhalten. Dies zeigt deut-
lich, dass blinde Diskretisierung ohne zusdtzliche mathematische Analyse zu unsin-
nigen Ergebnissen fiihren kann.

Die genaue Erkldrung fiir dieses Phdnomen erhalten Sie in den Vorlesungen Nume-
rische Analysis und Numerik Partieller Differentialgleichungen.

17

function [output_args] = doittime()

%Treiber fuer diskrettime

global epsilon;

epsilon=0.5;

close all;

[x1,y1]=diskrettime(1300,80,30);

figure;

[x2,y2]=analytisch(80,200);

[x3,y3]=diskret(80);

plot(x3,y3,x2,y2,x1,y1);

legend('Diskret','Analytisch','Diskret (Zeit)');

title('Vergleich stationär - zeitabhängig');

ylim([0,1]);

 if exist('vorlsavepic','file')

 vorlsavepic('heattime1');

 end

 waitforbuttonpress;

[x4,y4]=diskrettime(1300,100,0.5);

plot(x4,y4,x2,y2,x1,y1);

legend('Diskret','Analytisch','Diskret (Zeit)');

title('Vergleich stationär - zeitabhängig');

 if exist('vorlsavepic','file')

 vorlsavepic('heattime2');

 end

end

Frank Wuebbeling
Lösung der zeitabhängigen Wärmeleitungsgleichung mit instabilen Parametern

Kapitel 2

Grundlagen der LA und der Fehlerrechnung

2.1 Lineare Algebra

Wir erinnern zundchst an einige Grundbegriffe der linearen Algebra. Wir be-
schranken uns grundsatzlich auf die Betrachtung von Vektorrdumen iber K = R
oder K = C. Seien also im Folgenden immer U und V' Vektorraume iiber K.

2.1.1 Normierte Vektorraume

Grundlegend fiir alle numerischen Uberlegungen ist der Begriff der Norm, denn nur
so lassen sich Fehler messen.

Definition 2.1 (normierte Vektorrdume)
Sei V ein Vektorraum. || - || : V +— R= heifit Norm, falls

1) ||az|| = |a|||z||Va € K, x € V.
2) |jz|]|=0< 2z =0.
3) llz+yll <|l=fl + [lyll Ve, y € V.

(V.|| - ||) heiit normierter Vektorraum.

Beispiel 2.2 Sei V' =R", p € [1,00], v = (v1,...,v,) € V.

n 1/p
|[v]lp == (Z |vi|p> (p < 00), [[v]]oc = max|u,]
i=1

heift p—Norm (und ist eine Norm).

18

Beispiel 2.3 Sei V = C°(I) der Raum der stetigen Funktionen auf einer kompakten
Teilmenge I C R", f € V.

1/p
151l = ([1560Pa) " (0 < . 111 = sup o)

heifit p—Norm (und ist eine Norm).

Definition 2.4 (Banachraum) Sei (V,|| - ||) normierter Vektorraum. V heift
vollstdndig oder Banachraum, falls jede Cauchyfolge in V einen Grenzwert in V be-
sitzt (bzgl. || - ||)-

Beispiel 2.5
(CO(I), || - ||2) ist nicht vollstdndig.
(C°(I), || - ||so) ist vollstdndig.

Definition 2.6 (Vektorrdume mit Skalarprodukt, euklidische Vektorrdume)
(+,+) : V x V — K heift Skalarprodukt, falls

1) (v,v) >0und(v,v) =0 v=0% e V.

2) (u,v) = (v,u) Yu,v € V.

3) (-, v) istlinear fiir alle festen v € V.

Ublicherweise wird auf euklidischen Riumen die induzierte Norm

lol] = (v.0)'? veV

benutzt. V heifit dann Prd—Hilbertraum. Ist V' mit dieser Norm vollstdndig, so heifit
V Hilbertraum.

Beispiel 2.7

1) SeiV = C". Dann ist
(u,v) = u'v, u,v €V

ein Skalarprodukt.
2) SeiV = C°(I). Dann ist

(9) = [)i f.9 € v
I
ein Skalarprodukt.

19

http://de.wikipedia.org/wiki/Stefan_Banach
http://de.wikipedia.org/wiki/David_Hilbert

Wir werden beide stillschweigend als Standard—Skalarprodukte auf den jeweiligen
Rdumen verwenden. Die induzierte Norm ist jeweils || - ||o.

Satz 2.8 (Cauchy-Schwarz)
Sei V ein Vektorraum mit Skalarprodukt. Dann gilt

|(w,)P < JJul P [ol[* Yu,v € V
und Gleichheit genau dann, wenn u und v linear abhdngig sind.
Beweis: Falls v = 0, so ist der Satz richtig. Sei also v # 0. Es gilt
0 < [olPu = (u, v)ol* = [Jo][*(u, w) = 2|(u, v)P[]o]]* + [(u, v)[* (v, v)

und damit
[(u, 0) [< [Jul]?]v]]?

und Gleichheit genau dann, wenn u = Awv. O

Vorlesungsnotiz: Beim Auflésen muss der Skalar aus dem zweiten Argument
geholt werden und wird komplex konjugiert. Evtl. |ju + v||*> = (u + v,u + v) =
||u||* + 2Re(u,v) + ||v||?, und hier steht im gemischten Term (u, v)(v, u).

Die wichtigste Folgerung ist
Satz 2.9 Sei V ein Vektorraum mit Skalarprodukt. Dann ist

1/2,1)6V

o]l = (v,0)
eine Norm.
Beweis:
[lu+vl* = [Jull* + 2Re(u, v) + [[o|* < [Jul|* + 2[[ul| [[o]] + [[ol* = (lul] + [[v]])*.
U
Satz 2.10 Sei V endlichdimensional und seien || - || und ||| - ||| zwei Normen auf V.

Dannsind || - || und ||| - ||| dquivalent, d.h. 3C;, Cy > 0:

Culllolll < Jlvf] < Calf[oll[Vo € V.

20

http://de.wikipedia.org/wiki/Augustin_Louis_Cauchy
http://de.wikipedia.org/wiki/Hermann_Amandus_Schwarz

Beweis: Sei (v1,...,v,) eineBasisvonV,v e V,v =", ayuy. Es sei
[|0]]| oo := maxy|ay]

und || - || eine beliebige Norm. Wir zeigen, dass || - || und || - || dquivalent sind, und
damit sind alle Normen dquivalent.
Zundchst gilt

[loll < Dl el < nmax|Jog]| max ax| = Callv]|.
k N —r
Cs
Sei nun
Cy= inf |[[v|].
[[olloo=1
Angenommen, C; = 0. Dann ex. eine Folge mit ||vy||oc = 1, ||vx|| < 1. Die Folge ist
beschrankt bzgl. || - ||, hat also eine konvergente Teilfolge v; — v beziiglich || - ||«
und damit
o — o] < Calluy — v]]ac = 0.

Also konvergiert v; gegen v auch beziiglich || - ||. Da [|v;|| < %, gilt v = 0. Damit gilt
wegen der Stetigkeit der Norm

1= [[vjlloe = [[v][= 0.

Dies ist ein Widerspruch. Es gilt also C; > 0.

Seinun 0 # v € V beliebig. Dann gilt
|[o]] =]

v

S

und dies war zu zeigen. O

Eine wichtige Folgerung dieses Satzes ist: Wenn eine Folge in endlichdimensionalen
Raumen konvergiert beziiglich einer Norm, so konvergiert sie gegen den gleichen
Grenzwert beziiglich aller Normen.

2.1.2 Lineare Operatoren

Wir werden in dieser Vorlesung im wesentlichen Matrizen als Spezialfall linearer
Operatoren untersuchen. Im folgenden steht 7" immer fiir eine allgemeine lineare
Abbildung zwischen Vektorraumen, A fiir eine Abbildung zwischen endlichdimen-
sionalen Raumen (die wir immer sofort mit einer Matrix identifizieren).

21

Definition 2.11 (lineare Operatoren) Seien U, V Vektorrdume. T : U +— V heifit
linear genau dann, wenn

T(ax+y) =aTz+ Ty, Va € K, z,y € U.

Sind U und V endlichdimensional, so kann T durch eine Matrix A beziiglich vorge-
gebener Basen dargestellt werden. Falls U =V und T in zwei verschiedenen Basen
durch die Matrizen A und B dargestellt wird, so heifien A und B dhnlich, und es
gibt eine Matrix X mit

A=XBX

Die Menge aller linearen Operatoren L(U, V') bildet auf natiirliche Weise selbst wie-
der einen Vektorraum.

Definition 2.12 (induzierte Operatornorm)
Seien (U, || ||v) und (V.|| -||v) normierte Vektorrdume. Sei'T' € L(U, V). Dann heif3t

Tully U
[Tully _ T lv="sup |[|[Tully
u€Uu#0 HU||U u€U,u#0 ||U||U wel,||ully=1

1T} =

(induzierte, vertrdgliche) Operatornorm von T.

Es kdnnte natirlich sein, dass ||T|| = oc. Dies mussen wir ausschlieBen und unter-
suchen zundchst, was das bedeutet.

Satz 2.13 (Eigenschaften der induzierten Norm)
Seien (U, ||-||v) und (V|| -||v) normierte Vektorrdume. Sei'T' € L(U, V). T ist stetig
genau dann, wenn

1T < 0.
Es gilt
| Tully < [T} |ullv Vu € U
und
IV Tal| < [|Th|[||T2]| VT, € L(U, V), Ty € L(V,W).
Beweis: u
[Tully = ||Tm||V||u||U < |7 {|ulle (w # 0).

INT|| = sup [[TToull < sup [T ||T2ully = [IT3|[||T2]-

lJullv=1 lJullu=1

Wegen der Linearitdt reicht es, die Stetigkeit in 0 nachzuweisen. Sei u;, eine Nullfol-
ge und ||7’|| beschrankt. Dann ist

| Tug|| < I}k

22

und damit ebenfalls Nullfolge. Sei nun ||7’|| unbeschrdnkt. Dann gibt es eine Folge
uy von Vektoren mit Norm 1in U, so dass ||Tux||y > k. Dannist wy = /|| Tugl||v
eine Nullfolge, aber ||Twy ||y = 1, also ist T'wy keine Nullfolge und 7" nicht stetig. [

Satz 2.14 (Norm von Operatoren) Seien (U, || - ||v) und (V,|| - ||v) normierte Vek-
torrdume, B(U,V') der Vektorraum der stetigen linearen Operatoren von U nach V,
also

BU,V)={Te€ L(U,V) : ||T|| < oo}

Danniist|| - || Norm auf B(U, V).

Satz 2.15 (Stetigkeit linearer Abbildungen auf endlichdim. Vektorrdumen)
Es sei (U,|| - ||lu) und (V|| - ||v) normierte Vektorrdume, n := dimU < oo, und
A e L(U,V). Dann ist ||A|| < co und somit A stetig.

Beweis: Es sei u, eine Basis von U. Wir definieren auf U die Supremumsnorm

I Zakukﬂm = max v .
k

Da U endlichdimensional ist, sind || - ||~ und || - || dquivalent, also gibt es ein Cs
mit

[lul|oo < Collul|y Yu € U.
Seiu =), ayug, u # 0. Dann gilt

[[Aully < 11D axAug|ly < nmax || Au|[y max |ax| = Ciljullee < C1Collully
k N’
C1

und damit
|| Aullv

[lully

Fiir unendlichdimensionale Zielrdume gilt dieser Satz nicht notwendig. So ist etwa
die Ableitung als lineare Abbildung von (C", || - ||o) nach (C°, || - ||) nicht stetig
(Ubungen). dJ

S 0102 < Q.

|| - || heiRt Operatornorm und ist die Standardnorm auf B(U, V).
In endlichdimensionalen Banachrdumen wird das Infimum angenommen. Um zu
zeigen, dass || - || eine induzierte Matrixnorm ist, ist also zu zeigen:

L [[Ao]| < [|AJ[v][Yv € V

23

2. Jv eV ||Av|| = ||A4]] ||v]].

Wir berechnen die Operatornorm an zwei Beispielen, || - ||, und spater || - ||o.

Beispiel 2.16 Sei A = (A, ;) € R™ ™ nicht die Nullmatrix. Wir bestimmen || A||.
Seidazuu = (u;) € R™ beliebig. Dann gilt:

Aulloo = 1137 Arjnglleo = max| 3 Ag sl < max S [Ag | flull
. k j

J

und damit || A|| < maxy,) | Ay ;|-
Zu zeigen ist noch, dass diese Grenze angenommen wird. Sei k der Index, an dem
das Zeilenmaximum angenommen wird, also

max 3 A1 = 3 Ay |
J J

Seiu € R" mitu; = sgn(Ay ;) mit der Definition

1 x>0
sgn(z) =¢0 =0
-1 <0

Mit dieser Definition gilt x sgn(x) = |x|, also fiir unser w mit ||u|| = 1:

[Alleo > [[Aullso > (Au)g =D Ay juj =D 1Azl = max) |Agl.
j j j

Bemerkung: Alternativ kann man Normen auf dem Vektorraum der Matrizen definie-
ren durch 1
1Al = (3 1Ak P)» bzw. || A]] = max ||
k.j

flir p < co. Fiir p = 2 heif3t diese Norm Frobenius—Norm. Der Vorteil dieser Normen
ist, dass sie schnell auszurechnen sind. Der Nachteil ist, dass sie nicht notwendig
vertraglich sind mit der Vektorraumnorm (d.h. es gilt nicht ||Av|| < [|A]|||v]]). Fur
die Zwecke dieser Vorlesung sind sie damit im Allgemeinen unbrauchbar.

Korollar 2.17 Sei A eine Folge von Matrizen. A, konvergiert gegen A in einer be-
liebigen Norm || - || auf dem Vektorraum der Matrizen genau dann, wenn alle Matri-
xelemente gegeneinander konvergieren.

Beweis: Aquivalenz zur Unendlichnorm der Koeffizienten. O

24

Definition 2.18 (Adjungierte Abbildung)
Seien (U, (+,)v) und (V, (-,)y) Vektorrdume mit Skalarprodukt. Sei T € L(U,V),
T € L(V,U). Falls

(Tu,v)y = (u, T*v)yVu € U, v €V,

so heifst T* die zu T adjungierte Abbildung.
FallsU =V und T = T, so heifit T selbstadjungiert.

Es gilt: Jede stetige Abbildung besitzt eine Adjungierte (ohne Beweis).

Beispiel 2.19 Sei U = C", V = C™, A € L(U,V) (also A (n x m)—-Matrix, wobei
wir immer unzuldssigerweise die Matrizen mit den Abbildungen identifizieren, die
sie darstellen). U und V' seien versehen mit dem Standardskalarprodukt. Dann gilt
firueU,veV

(Au,v) = ' AT = u'(AW) = (u, Al)
und damit A* = At, iiber R natiirlich A* = At. Matrizen mit der Eigenschaft

A=A = At
heifien hermitesch, reelle Matrizen mit der Eigenschaft

A=A = A
heifsen symmetrisch.

Satz 2.20 (Rechenregeln fiir adjungierte Operatoren)

1. (TlTQ)* = T2*Tl*.
2. (T =T.
3. TT* und T*T sind selbstadjungiert.

Beweis: Durch einfaches Nachrechnen. O

Definition 2.21 (Eigenwerte und Eigenvektoren)
SeiT € L(U,U).v € U, v # 0. v heifit Eigenvektor zum Eigenwert \ € C, falls
Tv = .

25

Definition 2.22 (Diagonalisierbarkeit)
SeiT € L(U,U), dimU < oo. T heifit diagonalisierbar, falls U eine Basis aus
Eigenvektoren v, von T besitzt. Es gilt

D=WITW, W = (vjvy---v,), T = diag(\y).

Satz 2.23 Selbstadjungierte Operatoren haben reelle Eigenwerte. Eigenvektoren zu
unterschiedlichen Eigenwerten stehen senkrecht aufeinander.

Beweis: Sei T selbstadjungiert. Sei Tx = Az, x # 0. Dann gilt
Mz, 7) = (A\z,2) = (Tz,2) = (2,Tx) = (2, \x) = Mz, 1)

und wegen (z,z) # 0 gilt A = .
Sei Tz = Mz, Ty = Aoy, \1 # Aa, x # 0, y # 0. Dann gilt

/\1(ZE,y) = (T‘Tay) = (:E7Ty) =)‘_Q(xvy> =)‘Q(xvy)

und damit wegen \; # \y: (z,y) = 0. O

Definition 2.24 (Positiv definite Operatoren)
Sei U Vektorraum mit Skalarprodukt, T € L(U,U). T heifit (symmetrisch) positiv
definit, wenn T selbstadjungiert ist und

(Tu,u) > 0Vu € U, u # 0.
Gilt nur >, so heif3t T positiv semidefinit.

Satz 2.25 Sei U Vektorraum mit Skalarprodukt, T € L(U,U) symmetrisch positiv
definit. Dann ist
(u,v)p = (Tu,v),u e U,vel

ein Skalarprodukt auf U.

Satz 2.26 SeiT' € L(U,V). T*T ist positiv semidefinit. Falls T' injektiv ist, so ist T
positiv definit.

Beweis: 7*7 ist selbstadjungiert, und (7"Tz,z) = (Tx,Txz) > 0. O

Den Satz {iber die Jordan—Normalform kennen Sie aus der Linearen Algebra I. Bitte
machen Sie sich klar, dass Ihre Formulierung der folgenden entspricht.

26

Satz 2.27 (Jordan—-Normalform)
Sei A eine (n x n)—Matrix. v heifst Hauptvektor k. Stufe zum Eigenwert A von A, falls

(A= XDFv=0,(A =X #£0.
Hauptvektoren erster Stufe sind Eigenvektoren.
1. Jede Matrix besitzt eine Basis aus Hauptvektoren v;.
2. Sei J die Darstellung von A in dieser Basis, also
J=DB1'AB, B = (vivy---vy,).

Dann ist J (fast) eine Diagonalmatrix, mdoglicherweise mit einigen Einsen
oberhalb der Hauptdiagonalen, auf der die Eigenwerte von A stehen.

Satz 2.28 Sei A hermitesche (n x n)—Matrix. Dann ist A diagonalisierbar. U besitzt
eine Orthonormalbasis aus Eigenvektoren von A.

Beweis: Zu zeigen ist: Alle Hauptvektoren sind Eigenvektoren, also Hauptvektoren
erster Stufe. Sei (A — A\I)%v = 0. Dann gilt

0= ((A— A0, 0) = (A= M)w, (A~ \)v) = ||(A — A)o]?

und damit schon (A — AI)v = 0, es gibt also keine Hauptvektoren hdherer Stu-
fe, und die Jordan—Normalform ist eine Diagonalmatrix. Es gibt also eine Basis
aus Eigenvektoren. Die Eigenvektoren zu unterschiedlichen Eigenwerten stehen be-
reits senkrecht aufeinander nach[2.23] In den Eigenrdumen zum gleichen Eigenwert
wahlt man eine ONB als Basis. O

Korollar 2.29 Die Matrix A sei hermitesch. A ist positiv definit (semidefinit) genau
dann, wenn alle Eigenwerte von A positiv (nichtnegativ) sind.

Satz 2.30 Eine hermitesche Matrix ist genau dann positiv definit (semidefinit),
wenn alle ihre Hauptminoren positiv (nichtnegativ) sind.

Mit diesen Vorbemerkungen konnen wir nun leicht die 2-Norm einer Matrix berech-
nen.Sei A € C"™*" und B = A*A.

Definition 2.31 Sei A € C™*". Dann heift
p(A) = max{|\y| : \x Eigenwertvon A}

Spektralradius von A.

27

http://en.wikipedia.org/wiki/Camille_Jordan

Satz 2.32 Sei A € C™*". Dann gilt
|Al]2 = p(A"A)Y2.

Beweis: B = A'A ist symmetrisch positiv semidefinit, also besitzt C" eine Ortho-
normalbasis aus Eigenvektoren v, zu Eigenwerten A\, von B. Seiv =), v, € C™,
also [[v||* = >, |k |*. Dann gilt

403 = (Av, Av) = (A*Av,)

= (Zﬂk)\kvbzlujvj)
K j
= D> Ml
k
< p(B)Y Il
k

= p(B)|[vlf3-

Sei nun noch A ein betragsmaximaler Eigenwert von B und v ein zugehdriger Eigen-
vektor. Dann gilt

||Av]]3 = (Av, Av) = (A*Av,v) = X|[v||* = p(B)|[v][5.
Also gilt

A
1A :SHPM

= p(ATA)'2.
w0 [[V]l2

g

Zum Abschluss zitieren wir noch einen letzten Satz, der bei der Fehlerrechnung eine
grofRe Rolle spielt.

Satz 2.33 (Neumannsche Reihe)
Sei (V.|| - ||) ein Banachraum, T : V — V linear mit ||T|| < 1 (induzierte Norm).
Dann ist (I — T') invertierbar, und

(I-T)"'= i T".

Beweis: Wegen ||T'|| < 1 sind fiir jedes v € V die Partialsummen von Y 72 T*v
eine Cauchyfolge, also konvergiert die Summe fiir jedes v gegen ein Bv € V. Es gilt

(I —T)Bv= lim (I —1T) ZTkU = lim (v — T"") = 0.

28

http://de.wikipedia.org/wiki/Carl_Gottfried_Neumann

Korollar 2.34 Seien V' Banachraum, T € L(V,V) invertierbar, AT € L(V,V') und
T~ sei stetig. Weiter sei g = ||T!||||AT|| < 1. Dann ist (T + AT) invertierbar und

|||
1—gq

(T + A7) <

Beweis:
(T+ AT) =T(I — (=T 'AT))

ist invertierbar nach[2.33}

(T +AT)Y| = [|) _(~T'AT)T|
k=0

< T4
k=0

_ 1
= [|T 1H1T
q

U

Dieser Satz ldsst sich so interpretieren: Die Matrix T" sei invertierbar. Bekannt ist

eine Approximation 7" mit einem Fehler ||T"— T"|| < e. Falls € klein genug ist, so ist
auch T" invertierbar.

Korollar 2.35 Die Menge der invertierbaren (n x n)—Matrizen ist offen.

2.2 Fehler beim numerischen Rechnen
Fehler konnen beim numerischen Rechnen an mindestens vier Stellen entstehen:

1. Der Modellierungsfehler entsteht dadurch, dass wir ein (womaglich verein-
fachtes) mathematisches Modell zugrunde legen, das nicht die gesamte An-
wendung umsetzt. Beispiel: Im CT-Beispiel haben wir keine Streuung beriick-
sichtigt.

2. Der Diskretisierungsfehler entsteht dadurch, dass wir nicht die exakte ma-
thematische Formel implementieren. Beispiel: Approximation des Differen-
tialquotienten durch einen Differenzenquotienten wie in

3. Der Messfehler bewirkt, dass unsere Eingangsdaten nur eine endliche Genau-
igkeit haben.

29

4. Der Rechenfehler entsteht durch Rundung bei der Durchfiihrung der Rech-
nung.

Im Rahmen dieser Vorlesung werden wir uns nur mit den Punkten drei und vier
beschaftigen. Der Messfehler dominiert dabei liblicherweise den Rechenfehler.

Definition 2.36 (absoluter und relativer Fehler)
Seixz €V, (V,||-||) normierter Vektorraum, & eine Nédherung fiir x. Dann heift

|Az]|, Az = (z — T)
absoluter Fehler von 7. Falls = # 0, so heif3t

[|Ax]]
]|

relativer Fehler von 7.

Natiirlich hdangen alle diese Definitionen von der verwendeten Norm ab. Im Allge-
meinen gibt die Anwendung eine Norm vor.

Ublicherweise spielt der absolute Fehler eine untergeordnete Rolle, wir werden im-
mer den relativen Fehler betrachten.

Auf einem Rechner kann immer nur eine Teilmenge M der reellen bzw. komple-
xen Zahlen darstellen. Ublicherweise wird dabei die Zahlendarstellung nach dem
Standard IEEE 754 (1985) benutzt, der auch Regeln fiir die Rundung, Rechnung und
Fehlerbehandlung festsetzt. Selbst neueste Prozessoren setzen den Standard um
oder besitzen zumindest einen Schalter, mit dem man IEEE-Kompatibilitat erzwin-
gen kann (etwa im Intel-Compiler: “fp-model precise”).

Definition 2.37 (Gleitkommazahlendarstellung und Runden nach IEEE 754)
Seien b >= 2 (Basis), p >= 1 (Mantissenldnge), r >= 1 (Exponentlinge) fiir ein

Format fest gewdhlte ganze Zahlen. Dann ist die Menge M der Maschinenzahlen
definiert durch

p
M = {j: (kab’f) b= my,e €Z, 0 <my, <b—1, |e| < bq"} :
k=1

Die Zahlen m € M haben die b-adische normalisierte Darstellung
m = £0.mimams . . .mpbie

mitmy # 0 (oder m = ().

30

http://de.wikipedia.org/wiki/IEEE_754
http://www.nccs.nasa.gov/images/FloatingPoint_consistency.pdf

Pl
2

heifit Maschinengenauigkeit (und ist eine Matlab—Funktion).
Eine Funktion rd : R — M heifst Rundungsfunktion, falls

eps =

rd(z) — =| = min |y — .

rd(x) ist nicht eindeutig, zu jedem Format gehdrt also auch immer eine Rundungs-
funktion (IEEE definiert round-to-zero, round-to-infinity, ...).

Beispiel 2.38

b =10, p =2, r =1 (human format).

0.12 - 107 ist Maschinenzahl.

—0.99 - 108 ist Maschinenzahl.

—0.234 - 10'° jst keine Maschinenzahl (Exponent und Mantisse zu lang).
Ublicherweise schreibt man E1o fiir 10'° usw.

b=2,p=23,r="7.
Dies ist der single precision—Standard, er belegt im Rechner 1 + 23 + 1+ 7 = 32
Bits. Es gilteps = 272 ~ 107",

b=2,p=>52r=10.
Dies ist der double precision—Standard, er belegt im Rechner 1 + 52 + 1 + 10 = 64
Bits. Es gilt eps = 2752 ~ 10716,

Wirvernachldssigen in unseren Betrachtungen den Einfluss des Exponenten, setzen
also r = oo. Falls die Beschrankung etwa in double precision auf 103 als groBte
Zahl problematisch ist, kann dieses Problem durch Skalierung aller Grof3en geldst
werden. Nach IEEE-Standard wird ein Programm abgebrochen, wenn der Exponent
zu grof3 (Overflow) oder zu klein (Underflow, zu nah an o) wird. Dies wird allerdings
von aktuellen Compilern im Allgemeinen nicht mehr beachtet.

Mit dieser Einschrdankung wird nur die 0 auf 0 gerundet, und es gilt fiirx # 0

Satz 2.39 (Abschdtzung des Rundungsfehlers)

rd(z) — x

< ,
| 2d(2) | <eps
und
rd(z) — z
———| <eps.

x

31

http://www.mathworks.de/de/help/matlab/ref/eps.html

Beweis: Sei m eine Maschinenzahl in normalisierter Darstellung, m # 0. Wenn z €
R zu m gerundet wird, darf sich z in der b—adischen Darstellung maximal um b/2 an
der p + 1. Stelle hinter dem Komma von m unterscheiden,also

|z —m| < b P1h/2.

Da m; # 0 (m ist normalisiert), gilt

|m| > b~ 'b°
und damit
m—x| 0O Pb/2 ens
m plpe
Der zweite Teil folgt genauso, mit einer Fallunterscheidung fiir m = 0.16¢ (Ubun-
gen). d

M ist nicht abgeschlossen beziiglich der arithmetischen Operationen. Im human
format etwa gilt:

0.1 €M, 0.1107* € M,0.14+0.1107* = 0.1001 & M.

Wir miissen also nach jeder Operation runden.

Definition 2.40 (Maschinenoperationen)
Auf M x M sind die Abbildungen &, ©, ® und @ nach M definiert durch

my @ my = rd(my + my)
usw. Offensichtlich gilt

(m1 @D mg) — (m1 + mz)
my + mo

< eps

fiirmy + mo # 0 usw.

Bemerkung:)M ist nicht assoziativ beziiglich der Maschinenoperationen. Im human
format gilt:
(10 e1)e1=0

aber
10 (1o1)=10"%

32

2.3 Fehlerverstarkung

Uns interessiert besonders, wie stark ein Eingangsfehler (Messfehler oder Run-
dungsfehler) das Ergebnis beeinflusst. Sei also f eine stetig differenzierbare Funkti-
onaufl C R, dieim Punkt z ausgewertet werden soll. Statt = sei nur eine Naherung
Z mit relativem Fehler ¢ bekannt. Wir berechnen den relativen Fehler von § = f(Z)
zuy = f(x). Mit Taylorentwicklung und Lagrange—Restglied oder auch einfacher
mit dem Mittelwertsatz gilt

f(@) = f(z) + (€)@ - x)
und damit fiirz # 0 und f(z) # 0

F@ ~ @) (PO -2 | _
‘ i@ |) s ‘gM
mit
M :gg{gﬁﬂf/(fﬂ @)

Der Fehler in der Ausgangsvariablen wird also hochstens um den Faktor M ver-
groBert. M heif3t Verstarkungsfaktor oder Konditionszahl und wird, falls der Fehler
|z — x| klein ist, hdufig durch

f'(z) ’

x
f(z)
abgeschatzt. Allgemein gilt fir f : R — R

M =

Satz 2.41 Sei f auf einer konvexen und kompakten Menge I C R" stetig differen-
Zierbar. Seien x, & € I, x # 0, f(x) # 0. Dann gilt

n

F(@) = f@)] N~ [0F/02)(©) 35— x5 | g~y 13—
’ 7(@) —Z f@ T —Z)
mit o
= max |—— Ly
=g 5o |7
Beweis: Betrachte die Funktion ¢(¢) = f(z+t(Z —x)) und wende die Vorbemerkung
an. O

Beispiel 2.42

33

L flzy)=r+y

T

M, =

Tty

Dieser Term kann sehr grof3 werden, wenn der Nenner fast verschwindet, der
Zdhler aber nicht, also fiir v ~ —y.

2. flz,y) =y

fiir x ~ 7.

Wir folgern daraus: Die Multiplikation ist problemlos, bei der Addition zweier Zahlen
x und y kann der relative Fehler explodieren, falls x ~ —y. Dieses Phanomen heif3t
Ausloschung.

Definition 2.43 (Kondition und Stabilitdt)

1. Ein Problem heift gut gestellt (gut konditioniert), wenn kleine Anderungen
in den Parametern zu kleinen Anderungen im Ergebnis fiihren. Ein Problem
heifit schlecht gestellt (schlecht konditioniert), wenn kleine Anderungen in
den Parametern zu grofien Anderungen im Ergebnis fiihren. Dieser Fehler ist
rein analytisch und unvermeidbar.

2. Ein Algorithmus zur Lésung eines Problems heif3t (vorwédrts—)stabil, falls er
bei kleinen Anderungen der Eingangsdaten ein Ergebnis liefert, dessen Feh-
ler (Algorithmusfehler) in der Gréf3enordnung des analytischen Fehlers liegt.
Ansonsten heif3t er instabil.

3. Fiir das Problem y = f(x) betrachten wir den implementierten Algorithmus
g = g(x). Fallsy = f(Z) fiir ein & mit ||z — Z||/||z|| klein, so heif3t g riickwdrts-
stabil. Es gilt: Riickwdrtsstabile Algorithmen sind (vorwidrts—) stabil.

Was im Einzelfall klein oder grof3 heif3t, wird durch die Anwendung vorgegeben.
Beweis zur Bemerkung: Es sei x exakt bekannt, die Naherung 3 fiir y = f(z) wer-
de auf einem Rechner ausgerechnet, es sei y = f(z) und f € C'. Dann ist der
unvermeidbare Fehler beschrankt durch

f'(€)
/()

epssup x| .

£

34

Fiir den tatsachlichen relativen Fehler gilt
'@—y):‘f(i")—f(w) _ fcf’(f)‘
f(x) f(x)

Liegt also der relative Fehler von # zu x in der Grof’enordnung von eps, so ist der
Algorithmus auch vorwartsstabil.

r— T

X

Korollar 2.44

1. Falls die Konditionszahlen einer Funktion f klein sind, so ist die Auswertung
von f gut gestellt.

2. Die Auswertung der Multiplikation ist ein gut gestelltes Problem.

3. Die Auswertung der Addition ist ein schlecht gestelltes Problem, falls die Ar-
gumente unterschiedliches Vorzeichen und (fast) gleichen Betrag haben.

Zur Illustration der Stabilitat betrachten wir f(z) = z. Offensichtlich hat f den
Verstarkungsfaktor 1, der unvermeidbare Fehler ist gleich dem Eingangsfehler. Zur
Auswertung von f benutzen wir den Algorithmus

y=(zedl)ol.

Oben haben wir bereits gesehen, dass fiir z = 1073 der Fehler 100% betrégt, un-
abhdngig vom Fehler in z. Dieser Algorithmus ist also sicherlich nicht stabil, wir
haben durch die Addition der 1 eine kiinstliche Ausloschung erzeugt.

Haufig ist die Ausloschung aber nicht so offensichtlich. So gilt etwa

Satz 2.45 Die direkte Implementation der pg—Formel zur L6sung quadratischer Glei-
chungen ist instabil.

Beweis: Es lassen sich leicht p, ¢ angeben, so dass der Algorithmusfehler beliebig
viel gréRer ist als der unvermeidbare Fehler, siehe Ubungen. O

Ein hdufig angewandter Trick zur Auswertung schwieriger Funktionen ist die Reihen-
entwicklung. In der numerischen Behandlung gewdhnlicher Differentialgleichungen
tauchen haufig Terme der Form

vV1i+e -1

fiir kleine ¢ > 0 auf. Wiirde man diesen Term so ausrechnen, wie er dort steht,
wiirde €2 komplett in der 1 aufgehen, und das Ergebnis wére 0 unabhéngig von e.

35

Andererseits ist die Konditionszahl der Funktion fast 1, der Fehler ist also nicht un-
vermeidbar. Wir nutzen in diesen Fdllen die Taylorreihe der Wurzel und erhalten

\/1+€2—1:1—|—1€2—1€4—1N162
2 8 2
was tatsachlich fiir kleine ¢ eine gute Naherung ist.
Als letzte Anwendung werden wir den unvermeidbaren Fehler bei der Losung eines
linearen Gleichungssystems
Ar =b

mit einer invertierbaren n x n—Matrix A und b € R™ berechnen. Wir bestimmen also
eine Abschatzung fiir den Fehler, der entsteht, wenn die Koeffizienten der invertier-
baren Matrix A oder des Vektors b nicht genau bekannt sind, sondern statt dessen
nur Naherungen A + AA und b 4+ Ab zur Verfiigung stehen und wir ersatzweise die
Losung des Gleichungssystems

(A+ AA)E =b+ Ab

berechnen.

Abbildung 2.1: Graphische Losung von Gleichungssystemen: Links gut gestellt,
rechts schlecht gestellt, kleine Anderungen (gestrichelte Linie) in den Koeffizienten
fiihren zu groRer Anderung des Schnittpunkts.

Sei zundchst n = 2. Dann kdnnen wir die Lésung des Gleichungssystems als
Schnittpunkt zweier Geraden im R? graphisch bestimmen. Kleine Anderungen in
den Koeffizienten fiihren zu kleinen Anderungen in der Lage der Linien. Aber: Falls
die Linien fast parallel liegen, fiihrt eine kleine Anderung in der Lage der Linien zu
groBen Anderungen beim Schnittpunkt. Die Verstdrkung des Eingangsfehlers muss
also von der Richtung der Linien, also von A, abhdngen.

Satz 2.46 Sei A € R"*" invertierbar. Sei x € R" und Ax = b. Sei weiter AA € R™*"
und Ab € R". Es sei
k(A) = [|A]]- [JA7Y]

36

die Kondition von A und es gelte

AA

Dann ist A+ AA invertierbar. Sei & = x + Ax die Lésung von
(A+AA)z = (b+ Ab).

Dann gilt fiir den relativen Fehler in der L6sung

=[] — 1—¢ |10]] 1Al
—— ——

rel.Fehlerin b rel. Fehlerin A

|[Az]] _ k(A) [Ab]] |AA]

Die relativen Fehler in A und b werden also (héchstens) um den Faktor
M =k(A)/(1—q)
verstdrkt.

Fiir sinnvolle Anwendungen ist ||AA|| klein gegen || A]|, also ¢ ~ 0 und damit M ~
k(A).
Beweis: Nach ist A+ AAinvertierbar, und es gilt

AT
Ly < AT
A+ a7 <

Es gilt
(A+ AA)(x + Az) = (b+ Ab)

und damit wegen Ax = b
(A+ AA)Azx = Ab— AAx

und
Az = (A+ AA)HAb - AAx),

also insbesondere

1Azl < [I(A+AA)TI(NAD] + [[AA[]z]])-

37

Fiir den relativen Fehler fiirz # 0

|Aal] ||A1||(||Ab“+\|AA||)
Bl = T-q \ [l
) k<A>< 1A +HAAH)
T—g \[[AT el [TA4]
k) (131,)
T—g Bl " T
wegen [1b] = || Az| < [|A]|[l«]|.

38

Kapitel 3

Direkte Verfahren zur Losung linearer
Gleichungssysteme

Fast jedes praktische Problem fiihrt am Ende nach langer Modellierung auf ein li-
neares Gleichungssystem. Deshalb ist ihre Losung von fundamentaler Bedeutung
fiir die Angewandte Mathematik. Wir betrachten zundchst direkte Verfahren, die in
endlicher Zeit eine Losung liefern, gegeniiber iterativen Verfahren, bei denen eine
Folge ausgerechnet wird, die gegen die Losung konvergiert. Direkte Verfahren sind
dabei typischerweise langsam fiir groBe Matrizen und spielen heute eine unterge-
ordnete Rolle.

Eine gute Quelle fiir klassische Algorithmen und Analysen zu diesem Bereich ist das
Buch von Golub und van Loan, Matrix Computations.

3.1 GauB-Elimination und L R—Zerlegung

Die Gau3—Elimination sollte bereits aus der Schule bekannt sein. Wir rechnen trotz-
dem zur Einfiihrung ein Mikro—Beispiel.

39

http://books.google.de/books/about/Matrix_Computations.html?id=mlOa7wPX6OYC&redir_esc=y
http://en.wikipedia.org/wiki/Gauss

3 x1 + 2 xy + T3 = 8
6 z1 + 5 xp — 4 23 = 12 = Abx=pW

_3 T + To — 2 T3 = —3

3 T + 2) + r3 = 8
9 — 6 13 = —4 = A@x=b®3

3 x1 + 2 xy + T3 = 8
o — 6 3 = —4 = ABGx=Dbp0®

17 r3 = 17

Durch Riickwartseinsetzen ergibt sich damit

23 =17/1T=1, 20 = (-4 +6)/1 =2, 25 = (8 =1 —2-2)/3 = 1.

Wir werden Algorithmen immer in einem Pseudocode formulieren.
Zu losen sei Az = b, A € R™" b € R". Setze AD = A und b)) = b. Es sei
A®) = (ag.'f)) usw.
Firi=1...n—1
Zur Konstruktion des Gleichungssystems AG+1 g = p(+1)
Ubernehme die ersten i Gleichungen, d.h. die ersten i Zeilen.

FUrj:i+1...‘n
L = % falls af) 0.
Filrk —i+1..n
b§i+l) _ bgi) _ lﬂbgi)

Setze die restlichen Eintrage auf 0.
Fliri=n...1

zi = (0" = Sy alfas) Jal).

Hierbei bendtigen wir die Matrizen A®) zur Berechnung der Lsung nicht, es liegt
also nahe, jeweils A®) mit A+ zu liberschreiben. Es wird also im Laufe des Algo-
rithmus kein zusatzlicher Speicherplatz bendtigt.

Wir bestimmen den Aufwand zur Losung des Systems. Wir vereinbaren zunachst:
Da Addition und Multiplikation fast immer zusammen auftreten, zdhlen wir sie als
eine Rechenoperation. Tatsdchlich sind moderne Rechnerarchitekturen in der Lage,
diese beiden Operationen gleichzeitig durchzufiihren (fused multiply add), was, wie
man sich schnell iiberlegt, den IEEE-Standard verletzt.

40

http://de.wikipedia.org/wiki/Fused_multiply-add

Fiir das Auflosen des Gleichungssystems werden dann

n—1 n n
1 1
SN (24) 1) =<@n 430" —5n) = —n(n—1)(2n +5)
— , 6 6
i=1 j=i+1 k=i+1

Rechenoperationen und n Divisionen benétigt, wobei wir fir die einzelnen Divisio-
nen jeweils einmal den Kehrwert der ag) ausrechnen und dann mit ihm multiplizie-
ren. Die Division ist namlich tatsachlich recht aufwandig, einen Algorithmus zu ihrer
schnellen Berechnung (mit einigen Rechenoperationen) werden wir im Kapitel tiber
die Newton-Iteration herleiten.

Zur Durchfiihrung des Riickwartseinsetzens erhalten wir

@+ > 1) =n*/2+7/2n.
i=1 j=i+1

Alle Berechnungen dieser Art interessieren uns immer nur fiir gro3e n. Dann domi-
nieren aber sofort die Terme mit hoher Potenz die mit kleiner, und nur der Leitterm
mit der hochsten Potenz ist interessant. Es wiirde also reichen, den grofiten Term
(mit einer Abschatzung fiir den Rest) zu kennen. Wir definieren daher die Landau-
Symbole:

Definition 3.1 (Landau-Symbole)
1. Seien f, g: N+ N,

f(n) =0(g(n)) fiirgrofen < 3C > 0, ng > 0: [f(n)| < Clg(n)|Vn > ny.

2. Seien f, g : R — R.
f(h) = O(g(h)) fiir kleine h < 3C > 0, hy > 0: |f(h)] < Clg(h)|V0 < h < hy.

Wenn der Zusammenhang klar ist, werden wir den Zusatz weglassen.

Beispiel 3.2

(n?) fiir0 < a < 8.
(1) fiir grofSe .
(hP) fiir o > B > 0.

(1) fiir kleine x.
(x) fiir kleine .

41

http://de.wikipedia.org/wiki/Edmund_Landau

Mit dieser Konvention gilt

Satz 3.3 Die Auflésung einer Gleichung mit n Unbekannten mit dem Gauf3—
Algorithmus bendtigt n® /3 + O(n?) Rechenoperationen und n Divisionen.

Bemerkung:

1.

Die |Cramersche Regel rechnet die Determinanten der Matrix aus, was bei di-
rekter Berechnung die Komplexitdt O(n!) hat (und damit véllig unbrauchbar
ist).

. Die Gauss—Elimination ist durchfiihrbar genau dann, wenn alle al(-;) # 0.

Falls o\ = 0, aber a,(fi) # 0 fir ein k > 14, so vertausche die k. und die :. Zeile
des Gleichungssystems (was die Losung natdirlich nicht andert).

Falls a,i? = 0 fur alle k£ > 4, so ist x; aus den Gleichungen i bis n bereits
eliminiert. In diesem Fall hat A®) die Form

*
0 =x*

0 0 =

0 0 0 0 =
: Dok
0O -~ 0 0 0 =

Entwicklung der Determinante nach der ersten Spalte zeigt sofort: Dann ist
AW singuldr, und damit auch A. Falls A invertierbar ist, kann dieser Fall also
nicht auftreten.

Die Elimination ist auf einer Permutation des Systems aberimmer ausfiihrbar.
Setze R := A™, Dann gilt
Ry, = 0ftire > k.

R mit dieser Eigenschaft (alle Elemente unterhalb der Hauptdiagonalen ver-
schwinden) hei3t rechte obere Dreiecksmatrix. Entsprechend heif3t eine Ma-
trix L linke untere Dreiecksmatrix, falls alle Elemente oberhalb der Hauptdia-
gonalen verschwinden, d.h.

42

http://de.wikipedia.org/wiki/Gabriel_Cramer

Falls alle L;; = 1, so heit L normiert. Produkte von (normierten) linken un-
teren Dreiecksmatrizen sind (normierte) linke untere Dreiecksmatrizen usw.,
die Dreiecksmatrizen bilden algebraisch jeweils einen Ring.

Wir lassen in der allgemeinen Definition zu, dass Dreiecksmatrizen nicht qua-
dratisch sind, dann sind sie natiirlich nicht miteinander multiplizierbar.

. Fehleranalyse: Eine genaue Fehleranalyse ist fiir den GauB-Algorithmus
schwierig. Wir betrachten nur die Berechnung von ;. 2; wird berechnet durch

a1

o1 S
rG = — (bl — Zalkmk) .
k=2

~~
aii1xri

Ist nun |aq;24| klein gegeniiber by, so kann dies nur dadurch entstanden sein,
dass in der Differenz Ausloschung aufgetreten ist. Fehler werden also stark
verstdrkt, wenn |ay1| klein ist. Wir ordnen deshalb im 4. Schritt die Gleichun-
gen so an, dass das Diagonalelement in der i. Spalte unterhalb der Hauptdia-
gonalen betragsmaximal ist, dass also gilt

a7’ | = max |a]).

Diese Strategie hei3t Spaltenpivotsuche und macht den GauBalgorithmus be-
reits zu einem stabilen (in praktischen Fallen). Alternativ kann man in jedem
Schritt zusatzlich auch die Variablen umbenennen (also die Spalten von A
umordnen), so dass auf der Diagonalen das betragsmafig grofite Element der
rechten unteren Teilmatrix erscheint. Diese Strategie heif3t totale Pivotsuche.

Wir rechnen dazu ein kurzes Beispiel, zundachst ohne Pivotsuche. Wir benut-
zen zur Rechnung das Human Format.

107 2, + re = 14107
r1 + Ty = 2
10_4 Ty + o = 1

(-10*@1) 29 = —10"@2

—_—— ——

—_104 =—10%

und damit 7, = —10*® —10* = lund 7, = (1©1)/10~* = 0. Da z = (1,1)
die korrekte Losung ist, hat z; einen Fehler von 100% (genau wie oben vor-
ausgesagt sorgt die Ausloschung beim Riickwartseinsetzen fiir einen grofien
Fehler). Die Kondition der Matrix ist kleiner als drei, dieser Fehler ist also nicht

43

unvermeidbar. Nun dasselbe mit Pivotsuche:

ry + To = 2
1074 2, + ro = 14+1074
x|y + Ty = 2
(1e107) x, = 162-107*
1
=1 =

und wir erhalten die korrekte Lésung zo = 1, x; = 1.

. Platzbedarf: Ublicherweise wird die Matrix A durch A™ {iberschrieben. Die
dabei nicht mehr genutzten Eintrdge unterhalb der Hauptdiagonalen nutzt
man, um sich die Zahlen [;; zu merken, also im 4. Schritt

Aji:lji7j>i

und ‘
A=A k>, j > .

Damit ist es moglich, sofort ein weiteres Gleichungssystem Ax = b zu
l6sen, ohne die Elimination erneut durchfiihren zu miissen. Tatsachlich wird
Ublicherweise zundchst der Eliminationsschritt durchgefiihrt (mit Aufwand
n® + O(n?)) und dann die rechte Seite eingesetzt (mit Aufwand n? + O(n)).
Falls das Gleichungssystem permutiert wird, werden die [;;, mitpermutiert. Die
Permutation muss ebenfalls gespeichert werden.

. Viele Gleichungssysteme kénnen schneller als angegeben aufgelost werden.
Fiir die Inversion einer Matrix etwa l6st man die Gleichungssysteme

AIk = €L

fiir die Spalten z;, von A~'. Durch Nutzen der Nullen auf der rechten Seite
lasst sich die Inverse in n® + O(n?) Rechenoperationen berechnen.
Andererseits: Sei A eine Matrix, bei der nur die b Nebendiagonalen besetzt
sind, also

A = 0ftir|i — k| > b.

Dann hat A die Bandbreite b. Die L R—Zerlegung ldsst sich fiir kleine b in nb? +
O(nb) Rechenoperationen berechnen. (Ubungen)

Insbesondere ldsst sich die L R—Zerlegung von Tridiagonalmatrizen (Matrizen
mit Bandbreite 1) mit O(n) Rechenoperationen berechnen.

44

9. Der Rechenaufwand zur Losung eines Gleichungssystems ldsst sich durch
vollig andere Methoden sogar im Exponenten der Komplexitdt reduzieren.
Schon 1969 zeigte Strassen in seiner damals sensationellen, nur drei Sei-
ten langen Arbeit “Gaussian Elimination is not Optimal”, dass sich der Auf-
wand zur Inversion bzw. Multiplikation von Matrizen von n? auf n'°¢27 driicken
lasst (Beispielimplementation). Inzwischen sind weitere Algorithmen dieser
Art bekannt, allgemein wird vermutet, dass die Untergrenze fiir die Komple-
xitdt tatsdchlich O(n?) ist.

Leider sind die so entstehenden Algorithmen alle instabil und bieten wegen

der grof’en Konstanten im O(...) nur fiir extrem grofe Matrizen einen theore-
tischen Vorteil.

Wir werden die Gauf3—Elimination nun mit Hilfe von Elementar— und Permutations-
matrizen beschreiben.

Definition 3.4

1. Eine normierte linke untere Dreiecksmatrix L = (l;) heifst Elementarmatrix,

wenn nur in einer Spalte unterhalb der Hauptdiagonalen Eintrdge ungleich 0
sind, d.h.

Fi: by =0, k>4, j#i

2. Eine Matrix P € R™"*™ heifst Permutationsmatrix, falls in jeder Zeile und Spalte
genau eine 1 auftaucht und alle anderen Eintrdge 0 sind, d.h.

n .. . o]., k — O'z‘
Jdoe{l...n} .ak%ajfurk#j,ai,k—{o’ ko
Beispiel 3.5
1
1
L= liJrl,i 1
lni 1
ist Elementarmatrix.
1 1
_ 1 e |1
pP= L= .
1 1

45

http://de.wikipedia.org/wiki/Volker_Strassen
http://link.springer.com/article/10.1007%2FBF02165411?LI=true
http://software.intel.com/en-us/courseware-numeric-algorithm-examples

sind Permutationsmatrizen zu o = (2, 3,4, 1) bzw. (4, 1, 2, 3). Offensichtlich gilt

PP'=P'P=1.

Bemerkung:

1.

LA |dsst die ersten i Zeilen von A konstant und addiert jeweils auf die Zeilen
i + 1 bis n das [;,~fache der . Zeile auf.

. Die Inverse von L ergibt sich durch Multiplizieren der Elemente unterhalb der

Hauptdiagonalen mit —1, denn um die Operation wieder riickgdangig zu ma-
chen, muss die . Zeile entsprechend wieder abgezogen werden.

. Das Produkt zweier Elementarmatrizen L L(t+1) zu den Spalten ; und i + 1 ist

eine normierte linke untere Dreiecksmatrix, die durch Uberlagerung von L®
und L(+Y entsteht.

Begriindung: Statt erst ein Vielfaches der (i + 1). und dann ein Vielfaches der
1. Zeile zu addieren, kann man beides gleichzeitig tun.

P A bringt die Zeilen von A in die Reihenfolge 0. AP bringt die Spalten in die
Reihenfolge 0. PAP! bringt Zeilen und Spalten in die vorgegebene Reihenfol-
ge, insbesondere bleiben Diagonalelemente Diagonalelemente.

Produkte von Permutationsmatrizen sind Permutationsmatrizen.

Sei L; eine Elementarmatrix zur Spalte 7 und P eine Permutation mit Pe;, = ¢,
fur k <4.Dannist L, = PL;P" wieder Elementarmatrix, es gilt PL; = L, P.
Beweis: Sei L, = (I + F'). F hat nur Eintrdge in deri. Spalte ab Zeile : + 1.

PL;P' = P(I+F)P
— [+ PFP".

Da Rechtsmultiplikation mit P! nur die Spalten k& mit k > ¢ betrifft, dort aber
nur Nullspalten stehen, ist F’/P* = F. Da Linksmultiplikation nur die Zeilen
J mit j > i vertauscht, andert F' seine Form nicht und (I + PF) ist wieder
Elementarmatrix. O

Offensichtlich sind das genau die Matrizen, die wir zur exakten Beschreibung des
Gauf3—Algorithmus bendtigen. Wir formulieren dies als

46

Satz 3.6 (LR-Zerlegung, engl. LU-Zerlegung)
Sei A eine n x n—Matrix. Dann gibt es eine Permutationsmatrix P zur Permutation o,
eine normierte linke untere Dreiecksmatrix L und eine rechte obere Dreiecksmatrix
R (alles (n x n)), so dass

PA = LR.

L und R heifien LR—Zerlegung von P A.

Beweis: Wir fuhren die Gauss—Elimination an 4 = A® durch. Es sei A® bereits
berechnet. Falls ak = 0 fur alle & > 4, so ist z; bereits eliminiert und wir setzen
L,=1,P =1.

Falls mindestens ein Element der i. Spalte unter oder auf der Hauptdiagonalen
nicht Null ist, wahlen wir eine Permutationsmatrix P9, so dass die Zeilenvertau-
schung P%WA® ein solches Element an die Stelle (i,7) auf der Hauptdiagonalen
bringt (z.B. ein Element mit maximalem Betrag in der Spaltenpivotsuche). P |dsst
dabei natiirlich die ersten i Zeilen fest.

Wirwahlen die l;;, j > 4, wie in der Gauss—Elimination als

, _ (PAD);
7T (PADY,

und

1

(8 —
L —lit1; 1

—lpi 1
Die Matrix A“+Y) aus der Gauss—Elimination ergibt sich dann durch
A+ — [0) pli) 46)

Nach n — 1 Schritten erhilt man so aus A = A die rechte obere Dreiecksmatrix
A = R.Es gilt nach den Vorbemerkungen

R=AM — [0-1)ph-15n=2)_ 11 pl)
L/(n 1) L/()P(nfl) . P(l)A

und damit

p-b ... p) g = (L/(l))*l e (L/(nfl))fl R
%/_/ /

-~

=P -7

47

wobei L " aus L; durch Permutieren und Multiplizieren der Elemente unterhalb der
Hauptdiagonalen mit —1 entsteht. L ist eine unitdre linke untere Dreiecksmatrix, ih-
re Eintrdge unterhalb der Hauptdiagonalen ist die Uberlagerung der Elementarma-
trizen, und das sind gerade die Eintrage [, » mit der Permutation o zu P. O
Bemerkung:

1. Sei PA = LR. Dann kann Ax = b gelost werden mittels

Ar=b < PAxz=Pb
<= LRx=Pb
< Ly=Pb,Rx=y

Dabei wird y bestimmt durch Vorwdrtseinsetzen (Auflosung der Gleichun-
gen von vorn nach hinten) in Ly = Pb und x durch Riickwértseinsetzen
(Auflésung der Gleichungen von hinten nach vorn) in Rx = v.

2. Nicht jede invertierbare Matrix besitzt eine L R—Zerlegung. Sei etwa

0O 1Y) _ (10} b ¢\ b c
10/ \al 0 d) \ab ac+d |-
Dann gilt offensichtlich b = 0, also ab = 0 5.

3. Es gibt singuldre Matrizen, die eine L R—Zerlegung besitzen.

00y _ (10Y) (00
00/ \01 00
4. Die LR-Zerlegung mit Spaltenpivotsuche und Vorwdrts—Riickwdrtseinsetzen

ist fiir praktische Zwecke ein gutartiger Algorithmus zur Bestimmung der
Losung eines linearen Gleichungssystems.

5. Der Aufwand zur Berechnung der L R-Zerlegung betrdgt n3/3 + O(n?) Re-
chenoperationen (+n Divisionen). Der Aufwand fiir das Einsetzen betragt
n? + O(n).

Satz 3.7 (Eindeutigkeit der L R—Zerlegung) Sei A eine invertierbare n x n—Matrix.
Falls A eine L R—Zerlegung besitzt, so ist diese Zerlegung eindeutig.

Beweis: A besitze die LR—Zerlegungen (L, R) und (L', R'). Da A invertierbar ist,
sind auch die Dreiecksmatrizen invertierbar. Es gilt

A=LR=LR = (L')'\L=RR "' = Z

48

Z ist Produkt linker unterer normierter Dreiecksmatrizen, also selbst wieder nor-
mierte linke untere Dreiecksmatrix. Andererseits ist Z Produkt rechter oberer Drei-
ecksmatrizen, also selbst wieder rechte obere Dreiecksmatrix. Damit ist Z Diago-
nalmatrix und hat, weil sie normiert ist, 1 auf der Hauptdiagonalen, ist also die Ein-
heitsmatrix. Damit gilt

L=LundR=R.

Satz 3.8 (Existenz der LR—Zerlegung)

1. Sei A eine n x n—Matrix. Alle Hauptminoren von A, d.h. die Determinanten al-
ler quadratischen Teilmatrizen, die in der linken oberen Ecke beginnen, seien
ungleich 0. Dann besitzt A eine L R—Zerlegung.

2. Sei A symmetrisch positiv definit. Dann besitzt A eine L R—Zerlegung.

Beweis:

zu 1.: In den Ubungen.

Zu 2.: Die Hauptminoren positiv definiter Matrizen sind positiv. U
function [A,P,Q] = LR(A, pivot))

%LR Compute LU decomposition. Accept symbolic input for pivot=o
% A — return R on upper right, return L on lower left

% diagonal of L is 1

% pivot=o0: No pivoting, throw error when o appears on diagonal
% pivot=1: Column pivoting, if o appears on diagonal

S J
Listing 3.1: LR—Zerlegung (LR-Zerlegung/LR.m)

Klicken fiir den Quellcode von LR-Zerlegung/LR.m

function B = checkLR(A,P,Q)

%CHECKLR check output of LR decomposition
%input arguments as in LR output arguments
%B is LR

[n ml=size (A);

B=zeros (n,m);

\& J
Listing 3.2: Berechnung von A aus der L R-Zerlegung (LR-Zerlegung/checkLR.m)

49

function [A,P,Q] = LR(A, pivot)

%LR Compute LU decomposition. Accept symbolic input for pivot=0

% A - return R on upper right, return L on lower left

% diagonal of L is 1

% pivot=0: No pivoting, throw error when 0 appears on diagonal

% pivot=1: Column pivoting, if 0 appears on diagonal

% pivot=2: column search (default)

% pivot=3: total search

% P - return column order (pivot>0)

% Q - return row order (pivot=2)

%We accept non-quadratic A.

n=size(A,1);

m=size(A,2);

if (nargin<2)

 pivot=2;

end

P=1:n;

Q=1:m;

for i=1:n-1

%pivot search

 switch pivot

 case 0

 %if (abs(A(i,i))<eps)

 % 'LR: 0 on diagonal without pivoting.';

 % return;

 %end

 case {1,2}

 if (pivot==2)|(abs(A(i,i))<eps)

 maxcol=i;

 for k=i+1:n

 if (abs(A(k,i))>abs(A(maxcol,i)))

 maxcol=k;

 end

 end

 %Permute and store permutation in P

 A([maxcol i],:)=A([i maxcol],:);

 P([maxcol i])=P([i maxcol]);

 end

 case 3

 maxk=i;

 maxl=i;

 for k=i:n

 for l=i:m

 if (abs(A(k,l))>abs(A(maxk,maxl)))

 maxk=k;

 maxl=l;

 end

 end

 end

 %Permute and store order in P,Q

 A(:,[i maxl])=A(:,[maxl i]);

 A([i maxk],:)=A([maxk i],:);

 P([i maxk])=P([maxk i]);

 Q([i maxl])=Q([maxl i]);

 end

 %elimination step

 %if (abs(A(i,i))>eps)

 for k=i+1:n

 l=A(k,i)/A(i,i);

 A(k,i)=l;

 A(k,i+1:m)=A(k,i+1:m)-l*A(i,i+1:m);

 end

 %end

end

end

Frank Wuebbeling
LR–Zerlegung

Klicken fiir den Quellcode von LR-Zerlegung/checkLR.m

function B = LRSolve(A,B,P,Q)
%LRSOLVE Solve AX=B. A,P,Q are from LR.
%B can be a matrix of vectors.
%Permute right hand side vectors.

[n ml=size (A);

if (size(B,1) =m)

S

Listing 3.3: Losung eines LGS mit der L R—Zerlegung (LR-Zerlegung/LRSolve.m)

Klicken fiir den Quellcode von LR-Zerlegung/LRSolve.m

function [output_args] = doit(N, pivot)
%DOIT Solve random linear equation of size N
%Remember: Pivoting effect does not show with random matrices.

if (nargin<1)
N=128;

\S

Listing 3.4: Losung eines zufdlligen LGS mit der LR-Zerlegung (LR-
Zerlegung/doit.m)

Klicken fiir den Quellcode von LR-Zerlegung/doit.m

3.2 Cholesky-Zerlegung

Fiir symmetrisch positiv definite Matrizen (die in der Praxis haufig auftauchen) lasst
sich der Aufwand fiir die LRR-Zerlegung halbieren. Sei A also eine reelle n x n—
Matrix und s.p.d. Man kdnnte erwarten, dass symmetrische Matrizen eine Zerlegung
der Form

A=LL

haben fiir eine Dreiecksmatrix L. Fiir die lbliche LR-Zerlegung ist das im allge-
meinen falsch, denn L ist dabei normiert. Fiir die Zerlegung von symmetrischen
Matrizen verzichten wir daher auf die Normierung.

Sei A = LR die LR-Zerlegung von A (A ist positiv definit, also besitzt sie eine
LR-Zerlegung, und diese ist eindeutig, denn A ist als positiv definite Matrix inver-
tierbar). Wegen 0 # det A = det L det R sind die R;; invertierbar. Sei D die Diago-
nalmatrix mit D;; = R;;. Dann ist D~ R eine normierte rechte obere Dreiecksmatrix
und

A=A'"=(LDD'R)! = (D 'R)(LD)"

50

function B = checkLR(A,P,Q)

%CHECKLR check output of LR decomposition

%input arguments as in LR output arguments

%B is LR

[n m]=size(A);

B=zeros(n,m);

if (nargin<2)

 P=1:n;

end

if (nargin<3)

 Q=1:m;

end

for i=1:n

 for k=1:m

 sum=0;

 for j=1:min(i,k)

 %Observe 1 on main diagonal of L

 if (j==i)

 sum=sum+A(j,k);

 else

 sum=sum+A(i,j)*A(j,k);

 end

 end

 B(i,k)=sum;

 end

 %Reverse sorting.

end

B(P,:)=B(:,:);

B(:,Q)=B(:,:);

Frank Wuebbeling
Berechnung von A aus der LR–Zerlegung

function B = LRSolve(A,B,P,Q)

%LRSOLVE Solve AX=B. A,P,Q are from LR.

%B can be a matrix of vectors.

%Permute right hand side vectors.

[n m]=size(A);

if (size(B,1)~=m)

 'Dimensions do not match.'

 return;

end

B=B(P,:);

if (n~=m)

 'Matrix is not quadratic. Continuing anyway.'

end

if (abs(prod(diag(A)))<n*eps)

 'Matrix is close to singular. Continuing anyway.'

end

%Forward

for i=2:n

 for l=1:i-1

 B(i,:)=B(i,:)-A(i,l)*B(l,:);

 end

end

%Backward

for i=n:-1:1

 for l=i+1:n

 B(i,:)=B(i,:)-A(i,l)*B(l,:);

 end

 if (abs(A(i,i))>eps)

 B(i,:)=B(i,:)/A(i,i);

 else

 %No solution, set x_i=0.

 B(i,:)=0;

 end

end

%Permute variables.

B(Q,:)=B(:,:);

end

Frank Wuebbeling
Lösung eines LGS mit der LR–Zerlegung

function [output_args] = doit(N, pivot)

%DOIT Solve random linear equation of size N

%Remember: Pivoting effect does not show with random matrices.

if (nargin<1)

 N=128;

end

if (nargin<2)

 pivot=0;

end

%Choose a matrix with high condition

while true

 A=rand(N);

 if (cond(A)>1000)

 break;

 end

end

x=rand(N,N);

b=A*x;

[ALR,P,Q]=LR(A,pivot);

A2=checkLR(ALR,P,Q);

MaxErrorOfLR=max(abs(A2(:)-A(:)))

x2=LRSolve(ALR,b,P,Q);

MaxErrorOfSolution=max(x2(:)-x(:))

end

Frank Wuebbeling
Lösung eines zufälligen LGS mit der LR–Zerlegung

http://de.wikipedia.org/wiki/Cholesky

eine L R—Zerlegung. Wegen der Eindeutigkeit gilt also L = (D~ R)?, und insbeson-
dere
0 < (Az,2) = (LRx,2) = (Rx, L'z) = (R, D' Rx).

Einsetzen von R~ 'e;, liefert Dy, > 0, wir kdnnen also die Wurzel aus den Diagonal-
elementen ziehen. Sei D’ die Diagonalmatrix mit D}, = 1/y/R;;. Dann gilt

A=LR=(D'R'R=R'D'R=R'D'DR=(D'R)'DR),

A ldsst sich also tatsdchlich als Produkt von zueinander transponierten Dreiecks-
matrizen schreiben. Wir halten dieses Ergebnis fest in

Satz 3.9 (Cholesky-Zerlegung)
Sei A eine symmetrisch positiv definite (nxn)—-Matrix. Dann gibt es eine linke untere
(nicht notwendig normierte) (n x n)-Dreiecksmatrix L, so dass

A=LL"

Bei der Berechnung der Cholesky—Zerlegung kann also die ganz normale L R—Zerle-
gung berechnet werden. Die Elemente oberhalb der Hauptdiagonalen miissen aber
wegen der Symmetrie nicht mitgezogen werden, es ergibt sich insgesamt also der
halbe Aufwand. Da Zeilenvertauschungen die Symmetrie zerstéren wiirden, muss
dabei ohne Pivotsuche gearbeitet werden, sie ist aber bei s.p.d.—Matrizen tatsach-
lich auch nicht notwendig.

Der Algorithmus lasst sich leicht angeben. Seien a, die Spalten der zu zerlegenden
Matrix A und [;, die Spalten von L. L ist linke untere Dreiecksmatrix, d.h. (I;); = 0
flir j > k. Wegen

(a1 ag Gn):A:LLt = (ll lQ ln)

gilt in der ersten Spalte

und damit

und

Entsprechend fiir die k. Spalte

und damit .
(L) el = ax, — Z(lk)ili7
=1
also
k—1
(lk)k - (ak)k - (lk)z(lz)k
=1
und

1 k-1
I, = m (akz - Z(%)zh) .

i=1

Satz 3.10 (Aufwand der Cholesky—Zerlegung)
Die Cholesky—Zerlegung ldsst sich mit n®/6 + O(n?) Rechenoperationen, n Divisio-
nen und n Wurzelberechnungen berechnen.

Beweis: Ubungen. O

function L = cholesky(A)

%CHOLESKY Compute Cholesky decomposition of A.

%A is assumed to be symmetric, only the lower left is used.
%Me make sure that the function can be used on symbolic input.
L=zeros (size (A));

if (Cisnumeric(A))

(\

Listing 3.5: Cholesky—Zerlegung (Cholesky/cholesky.m)

Klicken fiir den Quellcode von Cholesky/cholesky.m

52

function L = cholesky(A)

%CHOLESKY Compute Cholesky decomposition of A.

%A is assumed to be symmetric, only the lower left is used.

%We make sure that the function can be used on symbolic input.

L=zeros(size(A));

if (~isnumeric(A))

 L=sym(L);

end

[n n]=size(A);

for k=1:n

 L(k,k)=A(k,k);

 if (k>1)

 L(k,k)=L(k,k)-dot(L(k,1:k-1),L(k,1:k-1));

 end

 if (isnumeric(A))

 if (L(k,k)<=0)

 'Matrix is not s.p.d.'

 end

 end

 L(k,k)=sqrt(L(k,k));

 if (k<n)

 L(k+1:n,k)=A(k+1:n,k);

 for (i=1:k-1)

 L(k+1:n,k)=L(k+1:n,k)-L(k,i)*L(k+1:n,i);

 end

 L(k+1:n,k)=L(k+1:n,k)/L(k,k);

 end

 if (~isnumeric(A))

 L=simplify(L);

 end

end

end

Frank Wuebbeling
Cholesky–Zerlegung

function A = testcholesky(L)
%TESTCHOLESKY Compute L L~t
%Should compute this directly.
%A=L «L ’;

[n n]=size(L);

A=zeros (size(L));

. J
Listing 3.6: Berechnung von A aus der Choleskyzerlegung (cholesky/testcholes-
ky.m)

Klicken fiir den Quellcode von cholesky/testcholesky.m

function B=solvecholesky(L,B)

%SOLVECHOLESKY Solve linear equation using Cholesky
%decomposition .

[n n]=size(L);

%Forward

for i=1:n

S J
Listing 3.7: Berechnung der Lésung eines LGS aus der Choleskyzerlegung (choles-
ky/solvecholesky.m)

Klicken fiir den Quellcode von cholesky/solvecholesky.m

function doit(n)
%DOIT Generate random nxn s.p.d. matrix, compute its Cholesky
% decomposition, solve a random system.
if (nargin<1)
n=3;
end

S

Listing 3.8: Losung eines zufélligen LGS mit der Choleskyzerlegung (cholesky/-
doit.m)

Klicken fiir den Quellcode von cholesky/doit.m

53

function A = testcholesky(L)

%TESTCHOLESKY Compute L L^t

%Should compute this directly.

%A=L*L';

[n n]=size(L);

A=zeros(size(L));

for i=1:n

 for k=1:n

 sum=0;

 for j=1:min(i,k)

 sum=sum+L(i,j)*L(k,j);

 end

 A(i,k)=sum;

 end

end

Frank Wuebbeling
Berechnung von A aus der Choleskyzerlegung

function B=solvecholesky(L,B)

%SOLVECHOLESKY Solve linear equation using Cholesky

%decomposition.

[n n]=size(L);

%Forward

for i=1:n

 for j=1:i-1

 B(i,:)=B(i,:)-L(i,j)*B(j,:);

 end

 B(i,:)=B(i,:)/L(i,i);

end

%Backward

for i=n:-1:1

 for j=i+1:n

 B(i,:)=B(i,:)-L(j,i)*B(j,:);

 end

 B(i,:)=B(i,:)/L(i,i);

end

end

Frank Wuebbeling
Berechnung der Lösung eines LGS aus der Choleskyzerlegung

function doit(n)

%DOIT Generate random nxn s.p.d. matrix, compute its Cholesky

% decomposition, solve a random system.

if (nargin<1)

 n=3;

end

A=rand(n);

A=A*A';

L=cholesky(A);

A1=testcholesky(L);

MaxErrorOfCholesky=max(abs(A(:)-A1(:)))

x=rand(n,1);

b=A*x;

x1=solvecholesky(L,b);

MaxErrorOfSolution=max(abs(x(:)-x1(:)))

end

Frank Wuebbeling
Lösung eines zufälligen LGS mit der Choleskyzerlegung

3.3 QR-Zerlegung

Bei der LR—-Zerlegung schreibt man eine Matrix als Produkt von Matrizen, fiir die
das Gleichungssystem Qx = b leicht geldst werden kann. Statt Dreiecksmatrizen
konnte man dazu auch unitare Matrizen () mit der Eigenschaft

Q—l — Qt

nutzen. Dies ist die Idee hinter der Q R—Zerlegung.

Im gesamten Kapitel beschiftigen wir uns der Ubersichtlichkeit wegen nur mit re-
ellen Matrizen im R™ und dem Standard—Skalarprodukt. Alle Sdtze sind geeignet
sofort auch auf komplexe Vektorraume iibertragbar.

Satz 3.11 (unitdre Matrizen)

1. Sei Q € R™ ", (Q ist genau dann unitdr mit Q'Q = QQ' = I, wenn die Spalten
und Zeilen von @ eine Orthonormalbasis bilden.

2. Seiv € R", v # 0. Dann beschreibt die Spiegelmatrix

eine Spiegelung an der Hyperebene x - v = 0. Q(v) ist unitdr. Q(v) heifit
Householder-Spiegelung.

3. Seip € R, 1 <i < k <n.Dann beschreibt die Matrix

cosp —singp
siny cosp

R(p) = 1
1

eine Rotation um ¢ in der (x1, x2)—Ebene. Sei nun P eine Permutationsmatrix
mit Permutation o, 1 = o1, k = 0. Dann beschreibt

Rip(p) = PR(SD)Pt

eine Rotation um ¢ in der (x;, z)—Ebene und heifit Givens—Rotation. R ()
ist unitar.

Beweis:

54

1. Seien ¢, die Spalten von (). Dann ist
(91, 95) = 405 = (Q°Q)ig = (I)ij = 9
mit dem Kronecker—4, also ist {¢;} Orthonormalsystem (und umgekehrt).

2. Sei w Element der Spiegelebene, also w'v = 0. Dann gilt

vt vh
Qv = (I — 2%)1) =v— QUE =—v

vt viw
Qv)w = (I — QE)IU =w— 211% =w

und @ ist Spiegelmatrix an der Ebene. Q(v) ist symmetrisch, und es gilt

(Q)Q(v))v = v, (Qv)Q(v))w = w

nach der Vorbemerkung, also ist @) unitar. Wir halten auch noch gleich fest,
dass die Multiplikation Q(v)y schnell ausgefiihrt werden kann:

t t

VU vy
Q)y = — 2E)y =y— 20—

vty
und dies ist mit 2n Rechenoperationen (gegeniiber n? fiir die normale Matrix—
Vektor—Multiplikation) berechenbar, wenn v'v berechnet ist.

3. Durch Nachrechnen.
]

Satz 3.12 (Gram-Schmidtsches Orthonormalisierungsverfahren, kurz Schmidt-
sches Orthonormalisierungsverfahren)

Seienay,...,a, € R™ linear unabhdngig, also insbesodere m > n. Seien g, und g
imR™ mit ~
- q1
1 =a1, 1 = =
||
und
— i
G = ar— Y (g5 a)gj, o = o k=2
j=1

Dann bilden die g, ein Orthonormalsystem, und es gilt fiir die lineare Hiille
<Qy...,qx >=<aq,...,a >, k=1...n.

Weiter sei () die Matrix mit den Spalten q;, A die Matrix mit den Spalten a,. Dann
gibt es eine rechte obere (n x n)—Dreiecksmatrix R mit A = QR. Die Spalten von @
bilden ein Orthonormalsystem. Falls m = n, so ist () unitdr.

55

http://de.wikipedia.org/wiki/J%C3%B8rgen_Pedersen_Gram
http://de.wikipedia.org/wiki/Erhard_Schmidt

Beweis: Der Satz sei fiir a; ... a,_, bereits bewiesen, ¢; ... ¢._: stehen also senk-
recht aufeinander. Sei ! < k. Dann gilt

k-1

(Gr, 1) = Z Q5> O)45, Q)

j=1
(ak>QZ) - (CIhak)(QbC]l)
= 0.

gr und damit auch ¢, stehen also senkrecht auf allen ¢, mit < k.
qr liegt nach Definition und Induktionsvoraussetzung in der linearen Hiille <
ai,...,a >.Andererseits gilt

E

-1

ar =G + Y (g5, a1)q;
1

<.
Il

und damit gilt auch
<q1,...,q, >=<0Q1,y...,0 > .

Es gibt also fiir jedes g, Koeffizientenr,,, k=1...m,l =1...k, so dass

k

ap = E T4

=1

oder
A=QR

mit der rechten oberen Dreiecksmatrix Ry, = r; flir k < [und 0 sonst. O
Mit dieser Methode lassen sich also zumindest invertierbare Matrizen A in ein Pro-
dukt aus einer unitaren und einer rechten oberen Dreiecksmatrix zerlegen. Das Glei-
chungssystem Az = b 16st man dann durch

Ar=b<= QRr=b<= Qy =0,y = Rx

und damit y = Qb und x kann durch Riickwartseinsetzen bestimmt werden.
Wir erweitern die Aussage zu

Satz 3.13 (Definition und Existenz der () R-Zerlegung)
Sei A eine (m x n)—Matrix.

1. Falls m = n, so gibt es eine unitdre n x n—Matrix () und eine (n x n) rechte
obere Dreiecksmatrix R, so dass A = QQR.

2. Falls m > n, so gibt es eine m x n—Matrix Q mit Q'Q = I,, und eine (n x n)
rechte obere Dreiecksmatrix R, so dass A = QR.

56

3. Falls m < n, so gibt es eine unitdre m x m—Matrix Q) und eine (m x n)-
Matrix R, deren Elemente unterhalb der Hauptdiagonalen verschwinden, so
dass A = QR.

Diese Zerlegung heif3st () R—Zerlegung von A.

Beweis: Sei zundchst m > n und seien a; die Spalten von A.

Das Schmidtsche Orthogonalisierungsverfahren auf den a; versagt, falls ¢, = 0.
In diesem Fall wahlen wir fiir g, irgendeinen normierten Vektor, der zu ¢. ..., qr_1
orthogonal ist. Dies ist moglich, da m > n. Die Spalten der Matrix @ = (¢1,...,¢x)
stehen also senkrecht aufeinander, es gilt

QtQ = I,.

ay liegt in der linearen Hiille < ¢1,...,q, >, also gibt es wie beim Schmidtschen
Orthogonalisierungsverfahren ein R mit A = QR. Es gilt R, = 0 falls g, = 0.

Fiir m < n wenden wir diese Methode auf die Vektoren ay,...,a,, an und erhal-
ten wieder (ay,...,a,) = QR. q,...,q, ist eine Basis, damit liegen die Vek-
toren a,,y1...a, in ihrer linearen Hiille, es gilt (apy1,...,a,) = QB flr eine
(n x (n —m))—Matrix B und damit

(ay,...,a,) = Q[R; B].

O
Anders als bei der L R—Zerlegung existiert die () R—Zerlegung also auch ohne Per-
mutation, und mit der obigen Erweiterung sogar fiir nicht—-quadratische Matrizen.

function [Q R] = ONV(A)

%0NV Compute QR decomposition of A based on Schmidt
%orthonormalization. Currently works on real input only!
%Fails in the case of singular A.

[n m]=size (A);

Q=zeros (n,m);
S v

Listing 3.9: Q R—Zerlegung nach Schmidt (QR/ONV.m)

~

Klicken fiir den Quellcode von QR/ONV.m

function A = testONV(Q,R)

%TESTONV compute A from its Schmidt decomposition
A=QxR;

end

Listing 3.10: Berechnung von A aus der (QR-Zerlegung nach Schmidt (QR/te-
stONV.m)

57

function [Q R] = ONV(A)

%ONV Compute QR decomposition of A based on Schmidt

%orthonormalization. Currently works on real input only!

%Fails in the case of singular A.

[n m]=size(A);

Q=zeros(n,m);

R=zeros(m,m);

maxA=max(abs(A(:)));

for i=1:min(n,m)

 q=A(:,i);

 for k=1:i-1

 q=q-dot(q,Q(:,k))*Q(:,k);

 end

 if (norm(q)<maxA*eps)

 'Matrix is too close to singular.' %#ok<*NOPRT>

 return

 end

 q=q/norm(q);

 Q(:,i)=q;

end

R=Q'*A;

A1=Q*R;

if (n>=m)

I1=eye(m);

I2=Q'*Q;

else

 I1=eye(n);

 I2=Q*Q';

end

MaxErrorOfQR=max(abs(A1(:)-A(:)))

MaxErrorOfQ=max(abs(I1(:)-I2(:)))

end

Frank Wuebbeling
QR–Zerlegung nach Schmidt

Klicken fiir den Quellcode von QR/testONV.m

function B = solveONV(Q,R,B)

%SOLVEONV Use ONV decomposition for solution of linear equations
[n n]l=size (Q);

B=Q’xB;

for i=n:—1:1

for k=i+1:n
\)

Listing 3.11: Berechnung der Lésung eines LGS aus der Q R—Zerlegung nach Schmidt
(QR/solveONV.m)

Klicken fiir den Quellcode von QR/solveONV.m

function [output_args] = doitONV(n)
%DOITONV solve random equation of size n
if (nargin<1)

n=3;
end

A=rand (n);
\&

Listing 3.12: Losung eines zufélligen LGS nach Schmidt (QR/doitONV.m)

Klicken fiir den Quellcode von QR/doitONV.m

Die ganze Rechnung hat aber einen Haken. Nehmen wir an, die Dimension von A
sei sehr grof3. Bei der Berechnung von ¢, ziehen wir von a,, die Anteile in den ortho-
gonalen Richtungen ¢;, j < k, ab. Dabei wird die Norm von a;, jedes Mal kleiner.
Die Norm von ¢, ist also kleiner, haufig viel kleiner, als die von a;, (es sei denn,
die Matrix A war schon unitar). Dies kann nur durch die Subtraktionen entstanden
sein, also durch Ausléschung. Ausléschung ist fiir das Schmidtsche Orthogonalisie-
rungsverfahren also unvermeidlich, es ist instabil.

Wir brauchen also ein alternatives Verfahren und nutzen dazu die Householder—
Spiegelungen. Gegeben sei eine (m x n)—Matrix A. Wie bei der L R—Zerlegung wol-
len wir im ersten Schritt die Matrix mit einer (jetzt unitaren) Matrix von links multi-
plizieren, so dass die Elemente unterhalb der Hauptdiagonalen in der ersten Spalte
eliminiert werden. Wir suchen also eine unitare Matrix ;, so dass

Qqp k
0 =x*
QA=
0 =

58

function A = testONV(Q,R)

%TESTONV compute A from its Schmidt decomposition

A=Q*R;

end

Frank Wuebbeling
Berechnung von A aus der QR–Zerlegung nach Schmidt

function B = solveONV(Q,R,B)

%SOLVEONV Use ONV decomposition for solution of linear equations

[n n]=size(Q);

B=Q'*B;

for i=n:-1:1

 for k=i+1:n

 B(i,:)=B(i,:)-R(i,k)*B(k,:);

 end

 B(i,:)=B(i,:)/R(i,i);

end

Frank Wuebbeling
Berechnung der Lösung eines LGS aus der QR–Zerlegung nach Schmidt

function [output_args] = doitONV(n)

%DOITONV solve random equation of size n

if (nargin<1)

 n=3;

end

A=rand(n);

x=rand(n,1);

b=A*x;

[Q R]=ONV(A);

A1=testONV(Q,R);

MaxErrorOfONV=max(abs(A1(:)-A(:)));

x1=solveONV(Q,R,b);

MaxErrorOfSolution=max(abs(x(:)-x1(:)));

end

Frank Wuebbeling
Lösung eines zufälligen LGS nach Schmidt

http://en.wikipedia.org/wiki/Alston_Scott_Householder

Seien aq, ..
zwei Moglichkeiten, einen gegebenen Vektor auf ein Vielfaches des Einheitsvektor

abzubilden, namlich die Spiegelung an den Geraden

mit den Normalvektoren

aq + Ha1H61

a; + ||CL1||61.

., a, die Spalten von A. Da unitdre Abbildungen langenerhaltend sind,

gilt schon mal ||aq||2 = ||@1a1]||]2 = |aa|- Wirwollen @ als Spiegelungsmatrix wahlen
und betrachten das Problem zunichst im R? (Abbildung[3.1). Offensichtlich gibt es

Wir lassen die Wahl des Vorzeichens zunachst offen und setzen

o€ {l,—1}, a; = ol|ai||s = Valar, v1 = a1 — aqe;.

)

a

// aq + ||a1||€1
!

X1

Abbildung 3.1: a; kann auf||a;||e; und —||a;||e; gespiegelt werden

Wie erwartet gilt

59

Qu)ar = (1—2“1—”5)@1

vioy
((11 - Oélel)tﬂh

((ll — 06161)t((11 — 06161) (al B 05161)

Oé% — Oé](al)l
a? —2aq(ar); + of

(Cll - 04161)

Der Spaltenvektor a; wird durch die Linksmultiplikation mit Q(v,) also auf ein Viel-
faches des Einheitsvektors abgebildet. Mit A" = A stehtin Q(v;)A™ in der ersten
Spalte unterhalb der Hauptdiagonalen 0. Wir streichen nun die erste Zeile und Spal-
te von Q(v;)A™ und erhalten eine neue Matrix A®). Falls noch Zeilen und Spalten
iibrigbleiben, fiihren wir dieselbe Rechnung auf der neuen Matrix A® durch. Wir
erhalten eine Matrix Q(v,)’, so dass Q(v,)A®) in der ersten Spalte unterhalb der
Hauptdiagonalen verschwindet.

Wir ergdnzen Q(v2) in der linken oberen Ecke mit einer Einheitsmatrix zu einer (m x
m)—Matrix Q(vy) und erhalten damit

Q(v2)Q(v1)A = ((1) Q(?;Q)’>Q<UI)A(1)

aq X *
— O Qg *
0 0

Sei k = min(n, m). Wir flihren diese Schritte insgesamt k-mal durch und streichen
dabei in Schritti (i — 1) Zeilen und Spalten. Fiiri = k bleibt nichts iibrig, und es gilt

Qur) - Q(v2)Q(v1)A=: R

und (m x n)-Matrix mit R;; = 0 fiir j < 1.
Wir multiplizieren noch von links mit den Transponierten und erhalten insgesamt

A= Q) - Q) R.

t
>
~
=Q

Dies ist eine Zerlegung von A in eine unitdare Matrix Q und eine Matrix mit 0 unter-
halb der Hauptdiagonalen. Haufig wird auch diese () R—Zerlegung von A genannt.
Um mit der obigen Definition konsistent zu bleiben: Fiir m > n sind die Zeilen n +1

60

bis m von R leer. In diesem Fall kdnnen wir wir die letzten m — n Spalten von @ und
die letzten m — n Zeilen von R @ndern, ohne dass sich QR andert. Dann erhalten
wir in jedem Fall eine Q R—Zerlegung in der oben definierten Form.

Dieser Algorithmus versagt, falls v, = 0 fliroc = 1 und 0 = —1. Dann ist aber die
erste Spalte von A%*) komplett 0, und die gewiinschte Dreiecksform ist bereits her-
gestellt. Wir kdnnen also fiir Q(vy) eine beliebige unitdre Matrix wahlen, iiblicher-
weise Q(vg) = I. Der Householder—Algorithmus liefert also immer zwei Matrizen @
und Rmit A = QR.

Zur Wahl von o: Natiirlich wahlen wir o so, dass bei der Berechnung von a; — a;e;
keine Ausldschung auftritt. Dies ist dann der Fall, wenn o = —sgn(ay;).

Dieser Algorithmus zur Herstellung der Q R—Zerlegung heif3t Householder—Algorith-
mus.

Es gilt

Satz 3.14 (Stabilitdt des Householder-Algorithmus)
Der Householder-Algorithmus ist stabil.

(ohne Beweis).
Bemerkung:

1. Der Aufwand zur Berechnung der QQ R—Zerlegung mit Hilfe der Householder—
Matrizen betragt mn? —n?®/3+O((n+m)?) firm > nundistdamit firn = m
doppelt so hoch wie bei der LR-Zerlegung (n*/3 vs. 2n?/3) (Ubungen).

2. Sei A = QR und A invertierbar. Dann kann die Losung von Az = b berechnet
werden mit
Ar = b <= QRr = b <= Rx = Q'

und Riickwartseinsetzen.

3. Ublicherweise wird die Matrix Q weder abgespeichert noch iiberhaupt ausge-
rechnet, sondern nur die Vektoren v;,. Diese werden zusammen mit der rech-
ten oberen Dreiecksmatrix R in die Originalmatrix A geschrieben. Die Haupt-
diagonale mit den oy, kommt dabei in einen Extra—Vektor. Qu fiir einen Vektor
w wird dann {iber die Definition von) mit Hilfe der v;, berechnet, was nach
den Vorbemerkungen sehr schnell geht.

4. Sei A = QR.Dannist
A'A = R'Q'"QR = R'R.

R'Rist also Cholesky—Zerlegung von A’ A.

61

function [A, alphavec] = householder(A)

%HOUSEHOLDER compute QR decomposition of A by householder
%operations. R always has A size (different from script).

[m n]l=size (A);

mi=min (n,m);

alphavec=zeros (mi,1);

. J
Listing 3.13: QR—Zerlegung nach Householder (QR/householder.m)

Klicken fiir den Quellcode von QR/householder.m

function A = householdertest(QR, alphavec)
%HOUSEHOLDERTEST

%compute A from its QR decomposition
%Unefficient. Use computeQR to compute Q and R,
%Then compute its product.

[m n]=size (QR);
(S v,

Listing 3.14: Berechnung von A aus seiner Householderzerlegung (QR/househol-
dertest.m)

Klicken fiir den Quellcode von QR/householdertest.m

function B = householdersolve (QR, alphavec, B)
%HOSUEHOLDERSOLVE
[m n]=size (QR);
B=applyQt (QR,B);
for i=n:—1:1
for k=i+1:n

\S

Listing 3.15: Berechnung der Losung eines LGS aus der Householder-Zerlegung
(QR/householdersolve.m)

Klicken fiir den Quellcode von QR/householdersolve.m

function [output_args] = doithouseholder(m,n)
%DOITHOUSEHOLDER Solve random linear equation with householder
if (nargin<1)

m=3;
end

62

function [A, alphavec] = householder(A)

%HOUSEHOLDER compute QR decomposition of A by householder

%operations. R always has A size (different from script).

[m n]=size(A);

mi=min(n,m);

alphavec=zeros(mi,1);

for i=1:mi

 alpha=sign(A(i,i))*norm(A(i:end,i));

 alphavec(i)=-alpha;

 v=A(i:end,i);

 v(1)=v(1)+alpha;

 normv=norm(v,2); %this can be done simpler

 v=v/normv;

 A(i:end,i:end)=A(i:end,i:end)-2*v*(v'*A(i:end,i:end));

 A(i:end,i)=v;

end

end

Frank Wuebbeling
QR–Zerlegung nach Householder

function A = householdertest(QR, alphavec)

%HOUSEHOLDERTEST

%compute A from its QR decomposition

%Unefficient. Use computeQR to compute Q and R,

%Then compute its product.

[m n]=size(QR);

R=QR;

for i=1:n

 for k=i+1:m

 R(k,i)=0;

 end

 R(i,i)=alphavec(i);

end

A=applyQ(QR,R);

end

function [Q,R]=computeQR(QR,alphavec)

[m n]=size(QR);

R=QR;

for i=1:n

 for k=i+1:m

 R(k,i)=0;

 end

 R(i,i)=alphavec(i);

end

Q=applyQ(QR,eye(m));

end

function B=applyQ(QR,B)

[m n]=size(QR);

for i=m:-1:1

 v=QR(i:end,i);

 B(i:end,:)=B(i:end,:)-2*v*(v'*B(i:end,:));

end

end

Frank Wuebbeling
Berechnung von A aus seiner Householderzerlegung

function B = householdersolve(QR, alphavec, B)

%HOSUEHOLDERSOLVE

[m n]=size(QR);

B=applyQt(QR,B);

for i=n:-1:1

 for k=i+1:n

 B(i,:)=B(i,:)-QR(i,k)*B(k,:);

 end

 B(i,:)=B(i,:)/alphavec(i);

end

end

function B=applyQt(QR,B)

[m n]=size(QR);

for i=1:m

 v=QR(i:end,i);

 B(i:end,:)=B(i:end,:)-2*v*(v'*B(i:end,:));

end

end

Frank Wuebbeling
Berechnung der Lösung eines LGS aus der Householder–Zerlegung

&if (nargin <2) J

Listing 3.16: Losung eines zufdlligen LGS mit der Householderzerlegung (QR/doi-
thouseholder.m)

Klicken fiir den Quellcode von QR/doithouseholder.m

Satz 3.15 (Eindeutigkeit der Q R—Zerlegung Sei A € R"™"™ invertierbar. Seien A =
QR = Q'R zwei Q R—Zerlegungen von A. Dann gibt es eine (n x n)—Diagonalmatrix
D mit|Dy| =1,i=1...n, Q = @D, R = D™'R. Falls R;; > 0 und R, > 0,
i=1...n,50istR=R undQ = Q.

Beweis: Ubungen. O

Zum Abschluss sollte man einmal eine grofere Q R—Zerlegung von Hand rechnen,
um sich wirklich im Klaren zu sein, wie das funktioniert. Im Anhang findet sich ein
durchgerechnetes Beispiel fiir eine symbolische 7x5—Matrix.

7x5—QR-Zerlegung

Satz 3.16 (Hessenbergform)
Sei A eine n x n—Matrix. Dann gibt es eine unitdre (n x n)-Matrix), so dass fiir
H = QAQ! gilt

Hyp=0

firi > k + 1. H heiit dann Hessenbergmatrix. Falls A symmetrisch ist, so ist H
sogar eine Bandmatrix der Bandbreite 1.

H ist dhnlich zu A, besitzt also dieselben Eigenwerte. Die () R—Zerlegung von H
kann schnell berechnet werden.

Beweis: Wir streichen die erste Zeile von A und erhalten eine Matrix A™. Wir fiihren
darauf einen Householderschritt aus. Dies liefert eine unitdre (n — 1,n — 1)-Matrix
Q). Wir ergdnzen wie bei Householder diese Matrix zu einer unitdaren (n, n)-Matrix
Q1. Nach Konstruktion ist dann @, A eine Matrix mit (moglicherweise) von Null ver-
schiedenen Elementen in der ersten und zweiten Zeile der ersten Spalte, darunter
stehen nur Nullen. Das ist gerade die geforderte Form. Rechtsmultiplikation mit Q}
zerstort dies nicht, d.h. Q1 AQ! hat in der ersten Spalte die richtige Form.

Wir streichen nun die erste Spalte und Zeile von A und fiihren den Algorithmus wie
bei Householder rekursiv durch. Dies liefert eine Folge von Matrizen Q;...Q,_1,
und es gilt

H - anlQn72 e QLAQi N 2_1
=0

63

function [output_args] = doithouseholder(m,n)

%DOITHOUSEHOLDER Solve random linear equation with householder

if (nargin<1)

 m=3;

end

if (nargin<2)

 n=m;

end

A=rand(m,n);

[QR,alphavec]=householder(A);

A1=householdertest(QR,alphavec);

MaxErrorOfQRDec=max(abs(A(:)-A1(:)))

x=rand(n,1);

b=A*x;

x1=householdersolve(QR,alphavec,b);

MaxErrorOfSolution=max(abs(x(:)-x1(:)))

end

Frank Wuebbeling
Lösung eines zufälligen LGS mit der Householderzerlegung

a)p =

2’(1)1’(1}1

: _—2’11}211)1
—2w3w1
—2w4w1
—2w5w1
—2wewq
—2w7wy

11
21
i ,
Q41

Q51
ae1
ar

2w1w2
_2'11}2102

: _—211)3102
—2w4w2
—2w5w2
—2w6w2
—2IU7”LU2

tlaal], 01 =

a11
21
a31
Q41
Q51
ae1
a7y

— 2w1w3
—2w2w3
1 2w3w3

—2w4w3
—2w5w3
—2U}61U3
—2w7w3

1A=

o o
Q12 A13 o o
Q22 A23 . o
a3z a3z o o
Q42 Q43 o o
52 as3 o o
- Zii 74
" ai; + oq
21
a31
Q41
51
ae1
ari
t) _ 5
2v1vy .
! 2wiwy _2w2w:
_2w2w4 _2w335
-) —2w4
_2w354 2o
—2w4 . v
1 2wswy _2w6w5
_2w6w4 _2w7
. T15
o 3 T4 y
0 b bia b3 o
0 bag bo3 o
0 bsp bs3 iy
0 bia baz e
0 bso bs3 e
0 251 be2 bes
0 be1

= 0/[[onl| =
V1 =
Y

— 2U)1 We
—2w2w6
—2w3w6
—2w4w6
—2w5w6
2w6w6

: _—2w7w6

— 2’11)1 (%4
—2’11)211)7
—2’(1)31117
—2w4w7
—2w5w7
—2w6w7
1 21071117

—Q1 T2 T3
0 bir bio
0 bar Do
WA= 0 b3 b2
0 by bao
0 bs1 bso
0 bsr be2
b1y + o
ba1
2| =l Q. =
bs1
be1
—0q T2 T13
0 —Qy T93
0 0 C11
Q201 A = 0 0 ¢
0 0 C31
0 0 Cq1
0 0 Cs1

T14

b23
b33
b43
b53
663

14
724
Ci2
C22
C32
C42
Cs52

15

b2s
b3y
baa
bs4
bes

(I — 2vy0})

15
725
€13
Ca23
C33
C43
Cs3

— 712

0 — Q9

0 0

Q21 A = 0 0

0 0

0 0

0 0

c11 + as
C21
U3 = 31 , v3 = U3/|03]], Qs =

Cq1
Cs1

—q 12

0 —Ql9

0 0

Q3Q20Q1A = 0 0

0 0

0 0

0 0

13
723

Ca1
C31
C41
Cs1

e}

14
T4
C12
C22
C32
C42
C52

14
T4
T34
diy
dyy

d41

O = O
=)

15
725
C13
Ca23
C33
C43
Cs53

(I — 2vg0%)

15
T'25
T35

d12
d22

d42

)

Q30201 A =

Q1=

SO oo OO

QuQ3Q21 A =

[N eloloNoll S

[l elelell =R« Eé
SO OO OO+

|
=
coocoocos

12 13
—Q 723
0 —Q3
0 0
0 0
0 0
0 0
0
0
0
(I — 2v40%)
12 13
—0 723
0 —(Q3
0 0
0 0
0 0
0 0

T4 Ti15
T24 To5
T34 T35

dll d12

d31 d32
d41 d42

)
o O O

14
724
T34
—auy

15
725
T35
T45
€12
€22
€32

0 10 10 1 AN NN
— N N F H NN »
S~ SN N K O O QO
TRFggeee
S NN

_
~ &

_
H%AOOOOO
&~
_

aloooooo
_

[

<

i

<

N

<

2]

<

=t

<

0
0
0
0

10000
01000
001O0O0
00010

(I — 2v50t)

o O O
o O O
o O O

o o O

Qs =

T15
T'25
T35

13 T14

T23

T12

T4
T34

o O O O

Q5Q4Q3Q201 A

Frank Wuebbeling
QR-Beispiel

http://de.wikipedia.org/wiki/Karl_Hessenberg

ist Hessenbergmatrix.
Beweis zum Aufwand: In den Ubungen. O

Bemerkung: Falls man auf die Idee kommt, einfach den normalen Householder—
Algorithmus anzuwenden und QAQ? bildet, erhdlt man zwar mit QA sogar eine
rechte obere Dreiecksmatrix, die Rechtsmultiplikation mit Q' zerstort diese Form
aber wieder.

function [A, Q] = hessenberg(A)

%HESSENBERG Compute Hessenberg form of a matrix.
%Assume A is quadratic.

%Q is the true matrix Q, not in vector form.

[n n]l=size(A);

\Q=eye(n);

Listing 3.17: Hessenbergform einer Matrix (QR/hessenberg.m)

Klicken fiir den Quellcode von QR/hessenberg.m

function A = hessenbergtest(H,Q)

%HESSENBERGTEST Compute A from its Hessenberg representation
A=Q’ xHxQ;

end

Listing 3.18: Berechnung einer Matrix aus ihrer Hessenbergform (QR/hessenberg-
test.m)

Klicken fiir den Quellcode von QR/hessenbergtest.m

function [A alphavec] = QRhessenberg(A)

%QRHESSENBERG compute QR decomposition of Hessenberg matrix.
%QR is stored as in householder.

%v should be computed directly.

[m n]=size (A);

mi=min (n,m) —1;

S

Listing 3.19: Berechnung der QR—Zerlegung einer Hessenbergmatrix (QR/QRhessen-
berg.m)

Klicken fiir den Quellcode von QR/QRhessenberg.m

64

function [A, Q] = hessenberg(A)

%HESSENBERG Compute Hessenberg form of a matrix.

%Assume A is quadratic.

%Q is the true matrix Q, not in vector form.

[n n]=size(A);

Q=eye(n);

for i=2:n-1

 v=A(i:end,i-1);

 alpha=sign(A(i,i-1))*norm(v);

 v(1)=v(1)+alpha;

 normv=norm(v,2); %this can be done simpler

 v=v/normv;

 A(i:end,:)=A(i:end,:)-2*v*(v'*A(i:end,:));

 A(:,i:end)=A(:,i:end)-2*(A(:,i:end)*v)*v';

 Q(i:end,:)=Q(i:end,:)-2*v*(v'*Q(i:end,:));

end

Frank Wuebbeling
Hessenbergform einer Matrix

function A = hessenbergtest(H,Q)

%HESSENBERGTEST Compute A from its Hessenberg representation

A=Q'*H*Q;

end

Frank Wuebbeling
Berechnung einer Matrix aus ihrer Hessenbergform

function [A alphavec] = QRhessenberg(A)

%QRHESSENBERG compute QR decomposition of Hessenberg matrix.

%QR is stored as in householder.

%v should be computed directly.

[m n]=size(A);

mi=min(n,m)-1;

alphavec=zeros(mi+1,1);

for i=1:mi

 v=A(i:i+1,i);

 alpha=sign(A(i,i))*norm(v);

 alphavec(i)=-alpha;

 v(1)=v(1)+alpha;

 normv=norm(v,2); %this can be done simpler

 v=v/normv;

 A(i:i+1,i:end)=A(i:i+1,i:end)-2*v*(v'*A(i:i+1,i:end));

 A(i:i+1,i)=v;

end

alphavec(n)=-A(n,n);

A(n,n)=1;

end

Frank Wuebbeling
Berechnung der QR–Zerlegung einer Hessenbergmatrix

function [output_args] = QRhessenbergtest(input_args)
%QRHESSENBERGTEST Summary of this function goes here
% Detailed explanation goes here

end
&)

Listing 3.20: Berechnung einer Hessenbergmatrix aus ihrer QR-Zerlegung (QR/QR-
hessenbergtest.m)

Klicken fiir den Quellcode von QR/QRhessenbergtest.m

function doithessenberg(n)
%DOITHESSENBERG Compute Hessenberg form of random matrix
if (nargin<1)
n=3;
end
A=rand (n);
S /)
Listing 3.21: Test der Hessenbergzerlegungen (QR/doithessenberg.m)

Klicken fiir den Quellcode von QR/doithessenberg.m

3.4 Ubersicht: Direkte Lésung von LGS

LR-Zerlegung Cholesky—Zerlegung QR-Zerlegung
Existenz | 3P: PA= LR As.pd= A= LIL! A=QR
Eindeutig Ja Ja, falls L;; > 0 Q =QD
(Ainv.) R =D 'R
Lsg. LGS | Vorw/Riickw. Vorw./Riickw. Rx = Q%
Aufwand n®/3 n?/6 2n3/3
Stabil Ja (Pivot) Ja Ja
n#m Nein Nein Ja

65

function [output_args] = QRhessenbergtest(input_args)

%QRHESSENBERGTEST Summary of this function goes here

% Detailed explanation goes here

end

Frank Wuebbeling
Berechnung einer Hessenbergmatrix aus ihrer QR–Zerlegung

function doithessenberg(n)

%DOITHESSENBERG Compute Hessenberg form of random matrix

if (nargin<1)

 n=3;

end

A=rand(n);

[H Q]=hessenberg(A);

A1=hessenbergtest(H,Q);

MaxErrorOfHessenbergForm=max(abs(A(:)-A1(:)))

tic;[Q1,alpha1]=householder(H);toc

tic;[Q2,alpha2]=QRhessenberg(H);toc

H2=householdertest(Q2,alpha2);

MaxErrorOfQRDec=max(abs(H(:)-H2(:)))

end

Frank Wuebbeling
Test der Hessenbergzerlegungen

Kapitel 4

Uber- und unterbestimmte
Gleichungssysteme

Wir haben bereits in der Einleitung gesehen, dass im allgemeinen die Anzahl der
Gleichungen und Variablen in einem linearen Gleichungssystem nicht ibereinstim-
men. Sollen etwa bei einer Landvermessung Positionen bestimmt werden, so macht
man typischerweise mehr Messungen als notwendig, um Messfehler ausgleichen
zu konnen. Das bekannteste Beispiel findet sich bei Gauss, der die Theorie dazu in
seinem Buch “Theoria combinationis observationum erroribus minimis obnoxiae”
veroffentlichte (die Society for Industrial and Applied Mathematics hat freundlicher-
weise fiir die Nicht—Lateiner eine englische Ubersetzung verdffentlicht). Der alte 10
DM-Schein erinnerte an diese Arbeit von Gauss.

Abbildung 4.1: 10 DM-Schein (Quelle: Bundesbank)

Klick fur Bild scheinvorn
Klick fur Bild schein
Klick fiir Bild scheincrop

Der Hintergrund dazu ist eigentlich ein statistischer, wir werden uns hier ausschlie3-
lich auf die numerisch.e Sichtweise konzentrieren (das Ergebnis ist natiirlich genau
dasselbe, wie in den Ubungen gezeigt wird).

66

GN4480100S8

Deutsche Bundesbank

(oelite véowf @

Frankfurt am Main [0

1September 1999

ZEHN DEUTSCHE MARK

Frank Wuebbeling
scheinvorn.jpg: 10 DM–Schein (Quelle: Bundesbank)

MIVYW IHDSLNIA NH3IZ

o
g
i
@
=
Z
S
3
@
=
z
=
3
-]

Zehn

Deutsche Mark

Frank Wuebbeling
schein.jpg: 10 DM–Schein (Quelle: Bundesbank)

Frank Wuebbeling
scheincrop.jpg: 10 DM–Schein (Quelle: Bundesbank)

http://books.google.de/books?id=ZQ8OAAAAQAAJ&oe=UTF-8&redir_esc=y

4.1 Die Methode der kleinsten Quadrate

Als Hauptbeispiel betrachten wir die polynomiale Regression: In einem Experiment
werden Messwerte y; zu Zeiten ¢; gemessen, i = 1...m. Es wird vermutet, dass
die Ergebnisse durch ein Polynom p € P,_; beschrieben werden kdnnen, also
y; = p(t;),i = 1...m. P, ist dabei die Menge der Polynome vom Grad < n — 1.
Zu bestimmen ist das Polynom p (Interpolations—/Approximationsaufgabe). Es gilt
zundchst

Satz 4.1 (Polynominterpolation)
Seien t; € R paarweise verschieden, und y; € R, i = 1...m. Dann gilt:

1. Fallsn = m, so gibt es genau ein Polynom pin P,,_1 mitp(t;) =y, i = 1...m.

2. Falls n > m, so gibt es unendlich viele Polynome p in P,_1 mit p(t;) = v,
1=1...m.

3. Falls n < m, so gibt es hdchstens ein, im Allgemeinen aber gar kein Polynom
in P,y mitp(t;) =y,i=1...m.

Beweis:

Fiir alle

a €R" a=(ag,...,a,1)"

sei p,(t) das Polynom mit den Koeffizienten ay, also
pa(t) =ag+ alt + ...+ an_ltnfl.

Weiter sei A € R™ "™ mit A;, = tf’l, y = (y1,...,ym)". Dann ist p, genau dann
Losung der Aufgabe, wenn

ot e o Ui
Aa=| & : = | =
th tn oot (1 Y

A heift Vandermondematrix. Sei n = m. Wir zeigen, dass dann A injektiv und
damit invertierbar ist. Sei also a € R™ mit Aa = 0. Wegen 0 = (Aa); = pa(t;)
hat p, damit die m Nullstellen ¢4,...,¢,,. Da p, ein Polynom vom Grad < m — 1
ist, ist nach dem Fundamentalsatz der Algebra p, das Nullpolynom, und damit
a = 0, also besteht der Kern von A nur aus 0. Damit ist A invertierbar, und die
Interpolationsaufgabe mit n = m hat genau eine Losung.

Falls n > m, so gibt es zu wenige Messungen. Der Rang von A ist m, daraus folgt
der Satz.

67

http://en.wikipedia.org/wiki/Vandermonde

Falls m > n, so gibt es zu viele Gleichungen (Messungen). Der Rang von A
ist n. Falls die Messungen exakt sind, so kann man einfach ein Subset von m
Gleichungen wahlen und die eindeutige Losung bestimmen. Falls die Messungen
oder der polynomiale Zusammenhang nicht exakt sind, gibt es gar keine Losung.
O

Vorlesungsnotiz: 4. November 2012

Die hier implizierte Idee, falls man zu viele Messungen hat, diese einfach wegzu-
werfen, ist natiirlich nicht praxistauglich. Wir miissen davon ausgehen, dass unse-
re Werte nicht exakt sind, und wollen mit Hilfe der zusatzlichen Messungen diese
Fehler korrigieren.

Fiir eine numerische Lésung miissen wir also im einen Fall den Losungsbegriff er-
weitern, damit (iberhaupt eine Lésung existiert, im anderen Fall aus den vielen vor-
handenen Losungen eine auswahlen.

Wir betrachten den Fall n = 2, wir vermuten also einen linearen Zusammenhang.
Dann unterscheiden wir

1. m < n, alsom = 1: Jede Gerade, die durch den Punkt (¢, y1) geht, ist Losung
der Aufgabe (unterbestimmter Fall).

2. m = n, alsom = 2: Die durch die Punkte (¢1, 1) und (¢2, y2) definierte Gerade
ist Losung der Aufgabe (eindeutig bestimmter Fall).

3. m > n,also m > 2: Es gibt keine Losung der Aufgabe (es sei denn, die
Messpunkte liegen zuféllig tatsachlich auf einer gemeinsamen Geraden). Wir
modifizieren unsere Aufgabe und suchen statt dessen eine Gerade, die die
gegebenen Punkte moglichst gut approximiert (iiberbestimmter Fall).

function beispielpolyregr
%BEISPIELPOLYREGR Beispiele zur Ausgleichsgeraden
for i=1:11

x1(i)=i—6;

y1(i)=x1(i)+(rand —0.5)%2;

end
k)

Listing 4.1: Unterbestimmtes / eindeutig bestimmtes / (iberbestimmtes System (ue-
berbest/beispielpolyregr.m)

Klicken fiir den Quellcode von ueberbest/beispielpolyregr.m

68

function beispielpolyregr

%BEISPIELPOLYREGR Beispiele zur Ausgleichsgeraden

for i=1:11

 x1(i)=i-6;

 y1(i)=x1(i)+(rand-0.5)*2;

end

%Unterbestimmter Fall

close;

hold on;

plot(0,0,'blackX','MarkerSize',30);

x=(-100:100)/100*5;

plot(x,1*x,'red');

plot(x,-x,'green');

plot(x,0.3*x,'blue');

plot(x,0.-0.3*x,'magenta');

set(gcf,'color','white');

centaxes;

title('Unterbestimmter Fall');

axis off;

hold off;

vorlsavepic('unterbestimmt');

%Bestimmter Fall

close;

hold on;

plot(-5,-5,'blackX',5,5,'blackX','MarkerSize',30);

plot(x,x,'red');

title('Eindeutig bestimmter Fall');

centaxes;

set(gcf,'color','white');

axis off;

hold off;

vorlsavepic('bestimmt');

%Ueberbestimmter Fall

close;

hold on;

plot(x1,y1,'blackX','MarkerSize',30);

A=[x1.^0;x1];

A=A';

A1=A'*A;

y2=(A')*(y1');

addpath('../Cholesky');

L=cholesky(A1);

y3=solvecholesky(L,y2);

plot(x,y3(1)+y3(2)*x,'red');

title('Ueberbestimmter Fall');

centaxes;

set(gcf,'color','white');

axis off;

hold off;

vorlsavepic('ueberbestimmt');

end

function H = centaxes(ax)

 % CENTAXES breaks the plot up into four quadrants.

 %

 % H = CENTAXES(AX) breaks the axes with handle AX up into

 % four quadrants. The output, H, contains the handles to

 % the lines and text objects that make up the axes.

 %

 % NOTE: Written for 2-D plots only.

 % Written by John L. Galenski III - Oct. 10, 1994

 % Copyright (c) by the MathWorks, Inc. 1994

 % DISCLAIMER: This files has not been tested by the

 % MathWorks, Inc., and therefore, it is not supported.

 % It is provided as an example of how to break a plot

 % up into four quadrants.

 if nargin == 0

 ax = gca;

 end

 % Get the children of the axes

 ch = get(ax,'Children');

 X1 = 0;

 X2 = 0;

 Y1 = 0;

 Y2 = 0;

 for i = 1:length(ch);

 typ = get(ch(i),'Type');

 if ~strcmp(typ,'text');

 X = get(ch(i),'XData');

 Y = get(ch(i),'YData');

 x1 = min(X);

 x2 = max(X);

 if abs(x1) > abs(x2), X1 = abs(x1); else, X1 = abs(x2); end

 if X1 > X2, X2 = X1; end

 y1 = min(Y);

 y2 = max(Y);

 if abs(y1) > abs(y2), Y1 = abs(y1); else, Y1 = abs(y2); end

 if Y1 > Y2, Y2 = Y1; end

 end

 end

 % Add the lines that form the axes

 lx = line('XData',[-X2 X2],'YData',[0 0], ...

 'Color',get(gca,'XColor'));

 ly = line('XData',[0 0],'YData',[-Y2 Y2], ...

 'Color',get(gca,'YColor'));

 set(gca,'XLim',[-X2 X2],'YLim',[-Y2 Y2], ...

 'Visible','on')

 % Add the tick marks

 tl = get(gca,'TickLength');

 tl = [-tl(1) tl(1)];

 xt = get(gca,'XTick');

 yt = get(gca,'YTick');

 for i = 1:length(xt) % X-tick marks

 hxt(i) = line('XData',[xt(i) xt(i)], ...

 'YData',tl, ...

 'Color',get(gca,'XColor'));

 tx(i) = text(xt(i),1.5*tl(1),num2str(xt(i)));

 set(tx(i),'Horizontal','center','Vertical','top')

 end

 for i = 1:length(yt) % Y-tick marks

 hyt(i) = line('YData',[yt(i) yt(i)], ...

 'XData',tl, ...

 'Color',get(gca,'YColor'));

 ty(i) = text(tl(1),yt(i),num2str(yt(i)));

 set(ty(i),'Horizontal','right','Vertical','middle')

 end

 % Return output if necessary

 if nargout

 H = [lx;ly;hxt(:);tx(:);hyt(:);ty(:)];

 end

end

Frank Wuebbeling
Unterbestimmtes / eindeutig bestimmtes / überbestimmtes System

Uttt 7o Endesigbesimrter ol Uebesestimrter Fa

Abbildung 4.2: Beispiel: Polynomiale Regression. Unterbestimmt, bestimmt, {iber-
bestimmt.

Klick fiir Bild unterbestimmt
Klick fiir Matlab Figure unterbestimmt
Klick fiir Bild bestimmt
Klick fiir Matlab Figure bestimmt
Klick fiir Bild ueberbestimmt
Klick fiir Matlab Figure ueberbestimmt

Im dritten Fall suchen wir ein Polynom p, € P,,_1, so dass der Abstand der Punkte
(ti,y;) und (t;, pa(t;)) = (ti, (Aa);), also ||y — Aal|, insgesamt mdglichst klein ist.
Wir haben also das Problem der Lésung von

Ao =y <= ||Aa—y|| =0
ersetzt durch die Bestimmung von
argmin ||Aa — f||.

Wenn ||Aa — f|| = 0 nicht mdglich ist, dann soll es also zumindest moglichst klein
sein. Fiir invertierbares A sind diese Losungen natiirlich gleich. Wir erhalten eine
echte Erweiterung des Losungsbegriffs fiir den Fall, dass eigentlich keine Losung
existiert.

Wirwahlen nun zur Abstandsmessung die euklidische Norm, im Kapitel tiber Appro-
ximation werden wir auch andere Normen betrachten.

Definition 4.2 (kleinste Quadrate-Losung, least squares solution) Sei A ¢ R™*",
b € R™. x € R™ heift kleinste Quadrate—Ldsung von Ax = b genau dann, wenn

Az — b||3 < min ||Ay — b][3.
Az — Blf5 < min || Ay — B[f;

Bemerkung: Wir machen keine Voraussetzungen an m, n oder den Rang von A.

69

Unterbestimmter Fall
N 5

Frank Wuebbeling
unterbestimmt.jpg: Beispiel: Polynomiale Regression. Unterbestimmt, bestimmt, überbestimmt.

hgS_070000:[1x1 struct array]

		[1x6 char array]

		[1x1 double array]

		[1x1 struct array]		@ =
	PaperUnits : [1x11 char array]
	Color : [1x3 double array]
	Colormap : [64x3 double array]
	InvertHardcopy : [1x2 char array]
	PaperPosition : [1x4 double array]
	PaperSize : [1x2 double array]
	PaperType : [1x2 char array]
	Position : [1x4 double array]
	ApplicationData : [1x1 struct array]

		[1x1 struct array]		@ =
	type : [1x4 char array]
	handle : [1x1 double array]
	properties : [1x1 struct array]
	children : [55x1 struct array]
	special : [4x1 double array]

		[0x0 double array]

Frank Wuebbeling
Matlab Figure unterbestimmt.fig: Beispiel: Polynomiale Regression. Unterbestimmt, bestimmt, überbestimmt.

Eindeutig bestimmter Fall

5

-2

-3

Frank Wuebbeling
bestimmt.jpg: Beispiel: Polynomiale Regression. Unterbestimmt, bestimmt, überbestimmt.

hgS_070000:[1x1 struct array]

		[1x6 char array]

		[1x1 double array]

		[1x1 struct array]		@ =
	PaperUnits : [1x11 char array]
	Color : [1x3 double array]
	Colormap : [64x3 double array]
	InvertHardcopy : [1x2 char array]
	PaperPosition : [1x4 double array]
	PaperSize : [1x2 double array]
	PaperType : [1x2 char array]
	Position : [1x4 double array]
	ApplicationData : [1x1 struct array]

		[1x1 struct array]		@ =
	type : [1x4 char array]
	handle : [1x1 double array]
	properties : [1x1 struct array]
	children : [53x1 struct array]
	special : [4x1 double array]

		[0x0 double array]

Frank Wuebbeling
Matlab Figure bestimmt.fig: Beispiel: Polynomiale Regression. Unterbestimmt, bestimmt, überbestimmt.

Ueberbestimmter Fall

Frank Wuebbeling
ueberbestimmt.jpg: Beispiel: Polynomiale Regression. Unterbestimmt, bestimmt, überbestimmt.

hgS_070000:[1x1 struct array]

		[1x6 char array]

		[1x1 double array]

		[1x1 struct array]		@ =
	PaperUnits : [1x11 char array]
	Color : [1x3 double array]
	Colormap : [64x3 double array]
	InvertHardcopy : [1x2 char array]
	PaperPosition : [1x4 double array]
	PaperSize : [1x2 double array]
	PaperType : [1x2 char array]
	Position : [1x4 double array]
	ApplicationData : [1x1 struct array]

		[1x1 struct array]		@ =
	type : [1x4 char array]
	handle : [1x1 double array]
	properties : [1x1 struct array]
	children : [48x1 struct array]
	special : [4x1 double array]

		[0x0 double array]

Frank Wuebbeling
Matlab Figure ueberbestimmt.fig: Beispiel: Polynomiale Regression. Unterbestimmt, bestimmt, überbestimmt.

Bemerkung: Falls Az = b Lésungen besitzt, so sind genau diese auch die kleinste
Quadrate—Losungen.

Bemerkung: Fiir m > n und das Interpolationsproblem heif3en die durch die klein-
ste Quadrate—-Losungen von Ax = b definierten Polynome Ausgleichspolynome
bzw. Ausgleichsgeraden (n = 2).

Leider hilft uns diese Definition nicht bei der Berechnung der kleinsten Quadrate—
Losung. Wir geben daher eine zur Definition dquivalente Bedingung an. Sei im Fol-
genden immer A € R™*™, Wir beschranken uns hier der Einfachheit halber wieder
auf reelle Matrizen, obwohl alles sofort auch ins Komplexe tibertragbar ist. Wir erin-
nern noch einmal an

1. die Definitionen
Ker(A) = {x € R"|Az = 0}, Bild(A) = {Azx|z € R"}

und
rang(A) = dim Bild(A).

2. den Rangsatz
rang(A) = rang(A").

3. den Dimensionssatz
dim Ker(A) + dim Bild(A) = n.
Lemma 4.3 Sei A € R™*",
1. R™ = Bild(A) @ Ker(A") (orthogonale Summe).
2. Ker(A'A) = Ker(A).
Beweis:
1. Seix € Ker(A') C R™, y € R™ beliebig.

Atz =0= 0= (A'z,y) = (z, Ay)
also Ker(A?) c Bild(A)*. Sei nun x € Bild(A)+. Dann gilt

0= (z,AA'z) = (A'z, A'z)

und damit z € Ker(A?), insgesamt also Ker(A?) = Bild(A)*.

70

2. Sei A'Az = 0, dann gilt
0= (A'Ax,z) = (Az, Ax)

und damit schon Az = 0.

Satz 4.4 (Gauss—Normalgleichung)
Sei A € R™™ b € R™ x € R" ist genau dann kleinste Quadrate—LGsung von
Ax = b, falls

At Az = A'D.

Diese Gleichung heifit Gausssche Normalgleichung. Die Menge der kleinste
Quadrate—Ldsungen ist nicht leer.

Beweis: Nach dem Lemma gibt es by, by € R™, b, = Az, 2 € R®, Alby, = 0 mit
b = by + by. Seix € R™. Dann gilt

|Az = bl[3 = || Az —by— by |5 =[Az = bi|[3 + [[b2]3 > |[Az = ba]5 +][ba]]5-
eBilda) eKeray) =0

z ist also kleinste Quadrate—Losung. Weiter ist ein x € R™ genau dann kleinste
Quadrate-Losung, wenn Az = by = Az, also

Alr—2)=0<=0=A"A(x —2) = A'Az — A'Az = A'Ax — A'(by + by),
cKer(ay)

also AtAx = Atb.
Wir skizzieren noch die Idee zu einem zweiten Beweis (nur eine Richtung). Sei x
eine kleinste Quadrate-Losung, und y € R™ beliebig. Dann hat

g(\) = || Az + Ay) = 0l3
ein lokales Minimum bei A = 0, es gilt also

0=4(0) = ((Ar—b+ My)'(Az — b+ \Ay))'(0)
= 2(Az — b, Ay) + 2\ (Ay, Ay)|r=o
= 2(A"(Az —b),y).

Wir wahlen nun y = A*(Az — b) und damit gilt

AlAx = A'.

71

Bemerkung: Seien 1, x5 zwei kleinste Quadrate—Losungen. Dann gilt
T — 79 € Ker(A'A) = Ker(A).

Die kleinste Quadrate—Losung ist also genau dann eindeutig, wenn A den Rang n
hat. Im Allgemeinen ist sie es nicht.

Beispiel 4.5

1. Eine feste Ldnge L wird m—mal gemessen mit Ergebnissen [, bis l,,. Das zu-
gehdrige iiberbestimmte Gleichungssystem lautet

L = [1 I

L =1 1 [
G R I e

L =1, 1 I

1)
mL=(1,...,1)) P =l
1 I
und damit .
L:ZiZIZi’
m

also, nicht sehr iiberraschend, den Mittelwert der ;.
2. Zu Zeitpunkten t; werden die Messwerte y; gemessen, i = 1...4.

ti| -2 0[1]1
vl -2]-4[4]6"

Es wird ein linearer Zusammenhang der Form y(t) = at + b vermutet. Wir be-
stimmen die Ausgleichsgerade. Das iiberbestimmte Gleichungssystem lautet

1 -2 -2
1o |/bY | -4
1 1 (a)_ 4
1 1 6

72

Die Normalgleichung lautet

1 -2 ~2
1111 10 by ([1111 —4

(—2011) 11 (a)_(—QOll) 4
11 6

also

4 0 b\ [4
0 6 a) \ 14
und damit erhalten wir die Ausgleichsgerade (7/3)x + 1.

eeeeeeeeeeeeeeeeeeeeeee

Abbildung 4.3: Beispiel zur Ausgleichsgeraden

Klick fiir Bild ausgleich
Klick fiir Matlab Figure ausgleich

function beispielaus

%BEISPIELAUS Beispiel Ausgleichsgerade aus Skript
addpath(’../ Cholesky’);

A=[1 —2; 1 0; 1 1; 1 1];

b=[—2;—4;4; 6];

b1=A’*b;

Listing 4.2: Losung eines tiberbest. LGS (ueberbest/beispielaus.m)

Klicken fiir den Quellcode von ueberbest/beispielaus.m
Sei A die m x n—Nullmatrix. Dann ist jedes x € R" kleinste—Quadrate—Lésung von
Ax =, denn
AtAxr =0 = A'.

73

-4

Beispiel: Ausgleichsgerade

Frank Wuebbeling
ausgleich.jpg: Beispiel zur Ausgleichsgeraden

hgS_070000:[1x1 struct array]

		[1x6 char array]

		[1x1 double array]

		[1x1 struct array]		@ =
	PaperUnits : [1x11 char array]
	Color : [1x3 double array]
	Colormap : [64x3 double array]
	InvertHardcopy : [1x2 char array]
	PaperPosition : [1x4 double array]
	PaperSize : [1x2 double array]
	PaperType : [1x2 char array]
	Position : [1x4 double array]
	ApplicationData : [1x1 struct array]

		[1x1 struct array]		@ =
	type : [1x4 char array]
	handle : [1x1 double array]
	properties : [1x1 struct array]
	children : [6x1 struct array]
	special : [4x1 double array]

		[0x0 double array]

Frank Wuebbeling
Matlab Figure ausgleich.fig: Beispiel zur Ausgleichsgeraden

function beispielaus

%BEISPIELAUS Beispiel Ausgleichsgerade aus Skript

addpath('../Cholesky');

A=[1 -2; 1 0; 1 1; 1 1];

b=[-2;-4;4; 6];

b1=A'*b;

A1=A'*A;

L=cholesky(A1);

x=solvecholesky(L,b1);

plot(A(:,2),b,'.');

axis equal;

t=(-100:100)/100*3;

hold on;

plot(t,x(1)+x(2)*t,'red');

title('Beispiel: Ausgleichsgerade');

vorlsavepic('ausgleich');

end

Frank Wuebbeling
Lösung eines überbest. LGS

4.2 Die Minimum Norm—Losung

Im allgemeinen ist die kleinste Quadrate—Losung nicht eindeutig. Wir wahlen in die-
sen Fdllen eine spezielle aus, namlich die mit kleinster Norm. Dies fiihrt zur Defini-
tion der Minimum—-Norm—-Ldsung.

Definition 4.6 (Minimum Norm-Losung, verallgemeinerte Losung, Moore-
Penrose-Losung)

Sei A € R™™ b e R™. z+ € R" heifit Minimum Norm-Lésung von Ax = b genau
dann, wenn gilt

1. x ist kleinste Quadrate—Ldsung von Ax = b.

2. x* hat unter allen kleinste Quadrate—Ldosungen von Az = b die kleinste Norm,
d.h.

l|z*|] < ||z||Vx : z ist kleinste Quadrate—Ldsung von Az = b

Bemerkung: Wir machen keine Voraussetzungen an m, n oder den Rang von A.
Bemerkung: Fiir die kleinste Quadrate—Ldsung und die Minimum Norm-Lodsung gibt
es eine einfache geometrische Deutung. Zunachst ist klar:

Az =10

ist losbar genau dann, wenn b € Bild(A). Falls dies nicht gilt, so projizieren wir b
orthogonal auf Bild(A), erhalten b; und l8sen statt dessen

Ax = bl.

Die so erhaltenen Losungen sind die kleinste Quadrate—Ldsungen.

Falls es mehrere Losungen gibt: Offensichtlich trdgt der Nullraum von A nichts zur
Losung von Az = b bei. Also projizieren wir die Losungen auf den Ker(A)L(=
Bild(A") und diese Projektion ist eindeutig. Die so erhaltene Losung ist die Mini-
mum Norm-Losung.

Diese Definition erlaubt uns noch nicht die direkte Berechnung von z*. Die geome-
trische Uberlegung legt aber die folgende Beziehung nahe. Wir geben wieder eine
zum Optimierungsproblem dquivalente nachrechenbare Bedingung an.

Satz 4.7 (Berechnung und Eindeutigkeit der Minimum Norm-Ldsung)
Sei A € R™" b € R™, a7 ist genau dann Minimum Norm-L&sung von Az = b,
falls gilt

74

1. A'Azt = A'b.
2. ™ € Bild(A").
Die Minimum Norm—Ldsung ist eindeutig bestimmt.
Beweis: Sei r eine kleinste Quadrate-Losung von Az = b. Nach Nach Lemmals.3}

angewandt auf A%, ist x = u + v, u € Bild(A?), v € Ker(A). Mit ™ := u (wir wdhlen
also wie in der Voriiberlegung =+ als Projektion auf Ker(A)=1) gilt

Az —2)=Av =0
und damit
AtAxt = A'A(zt + (x — 2T)) = A"Az = b,

denn z ist kleinste Quadrate—Losung, also ist auch 2™ kleinste Quadrate—Lésung.
Sei nun 7 eine weitere kleinste Quadrate-Losung. Mit der Bemerkung zu Satz [4.4]
gilt

T=x" 4w, w € Ker(A)

und

[ZIE =1z +wlz =1l &= + o [lz=I"15+]wll > [l=7]]

eBildat) eKer(a)

Gleichheit bekommen wir genau dann, wenn w = 0, also 7 = z* +w = z™*, die
Minimum Norm-Losung ist also eindeutig. O

Beispiel 4.8

1. Sei A die m x n—Nullmatrix, b € R™ beliebig. Dann erfiillt jedes x € R™ die
Normalengleichung
A'Az = A'D

und ist damit kleinste Quadrate—Losung. Die Minimum Norm—Lésung ist unter
diesen die mit kleinster Norm, also x* = 0. Offensichtlich ist x™ auch eindeu-
tig bestimmt durch die Bedingung

at € Bild(A') = {0} .

75

2. Wir suchen die Minimum Norm-Lésung des Ausgleichsproblems fiir eine
einzelne Messung (t1,y,) und den linearen Ansatz at + b. (a,b) ist kleinste
Quadrate—Ldsung, also muss gelten

(o) ()= ())
(o) ()= ()

b+at1 =Y.

also

oder

Da in diesem Fall Losungen von Ax = b existieren, sind genau diese natiirlich
auch die kleinste Quadrate—Ldsungen, den Ansatz iiber die Normalenglei-
chung hdtten wir uns also sparen kénnen.
Wegen

zt € Bild(A") = {A'ulu € R™} = {(u, t1u)"|u € R}

gilt fiir ein u: b = u, a = tyu und
Y1 :b+(lt1 :u—i-t%u
und damit

n
142

u =

und die gesuchte Gerade ist

Y1t n
t) = ; .
=i gt e

Insbesondere erfiillt diese Gerade natiirlich y(t,) = 1. Tatsdchlich hat die-
se Gerade eine kleinere 2—Norm auf den Koeffizienten als die eigentlich viel
naheliegendere Lésung y(t) = y;.

4.3 Die Pseudoinverse

Falls A maximalen Rang hat (also Rang(A) = min(n,m)). so ldsst sich die Minimum
Norm-L&sung durch Matrixinversion berechnen.

Satz 4.9 Pseudoinverse, Moore-Penrose-Inverse, verallgemeinerte Inverse
Die Abbildung A* : R™ +— R", A*tb = z™, ist linear. A* heifdt Pseudoinverse
(Moore—Penrose—Inverse, verallgemeinerte Inverse) von A.

76

http://de.wikipedia.org/wiki/E._H._Moore
http://de.wikipedia.org/wiki/Roger_Penrose

1. Falls n = m und A invertierbar, so gilt AT = A1,

2. Falls m > n und A injektiv (Rang(A) = n), so ist A'A invertierbar und
At = (ATA)T AL
3. Falls m < nund A surjektiv (Rang(A) = m), so ist AA" invertierbar und

AT = AY(AAYHL

Beweis: Sei b € R™, A €¢ R™*",

1. Falls A invertierbar ist (Rang(4A) = m = n), so ist die einzige kleinste
Quadrate—Losung die eindeutige Losung von Az = b, also gilt

AT =41

2. Flirm > n ist der Zielraum in der Dimension groBer als der Urbildraum. A
kann also nicht surjektiv sein, aber injektiv. Sei A injektiv, d.h. Rang(A) = n.
Wegen Ker(A) = Ker(A'A) ist auch A'A injektiv, also invertierbar. =" erfiillt
die Normalengleichung

AtAzt = A"

also
T = (AtA)‘lAtb.

3. Fiir m < n ist der Urbildraum in der Dimension grofer als der Zielraum. A
kann also nicht injektiv sein, aber surjektiv. Sei A surjektiv, d.h. Rang(A) =
m. Dann gibt es Losungen von Az = b, und genau diese sind die kleinste
Quadrate—Losungen.

Wegen
Rang(A") = Rang(A) = dimBild(A) = m

ist A" injektiv, also ist AA" invertierbar. Wegen =" € Bild(A?) gilt 27 = A'u
firein v € R™, also
b= AxT = AAy

und damit
vt = Aly = AY(AAH .

O
Falls die Inverse von A existiert, so gilt AT = A~!. Die Pseudoinverse hat aber auch
flir die anderen Falle einige Gemeinsamkeiten mit der Inversen.

77

Satz 4.10 (Rechenregeln der Pseudoinversen)

~N

. (AHT = A

2. AATA= A

3. ATAAT = A

4. AAT und A A sind selbstadjungiert.

Beweis: Ubungen. O

Dagegen gilt im allgemeinen nicht (AB)* = BT A*. Sei als Beispiel

A=(1,0), B = (i),(AB):(AB)*:(l): BUﬁ:(%,%)(é):(%).

Leider ist es ungiinstig, die Minimum Norm-L&sungen mit[4.9]direkt auszurechnen.
Sei als Beispiel A invertierbar und selbstadjungiert. Angenommen, wir berechnen
die Minimum Norm-L6sung (in diesem Fall natiirlich die Losung) von Az = b durch

At Az = A,

Dann miissen wir in der euklidischen Norm mit Fehlerverstarkung in der Gro3enord-

nung
ko (AL A) = k(A2 = ko(A)?

rechnen (siehe[2.46]und[2.32). Fiir Matrizen mit hoher Kondition ist aber
kQ(A)Q >> kQ(A),

dieser Algorithmus ist also nicht stabil. Generell sollte man die Berechnung von A*A
vermeiden.
Wir nutzen daher zur Berechnung die () R—Zerlegung.

1. Seim >n, A € R™*", Rang(A) = nund
A=QR
eine QR—Zerlegung von A, also

Q e R™"mitQ'Q = I, R € R""rechte obere Dreiecksmatrix.

78

A hat maximalen Rang, also auch R, und damit sind R und R! invertierbar.
x7" ist eindeutig bestimmt durch die Normalengleichung

R'Q'h = A'b = A'Azt = R'Q'"QRx = R'Ra™.

Rt ist invertierbar, also gilt
Rzt = Q'

und wir erhalten z* durch Riickwértseinsetzen.

2. Seim < n, A € R™", Rang(A) = m. In diesem Fall nutzen wir die QR—
Zerlegung von Al Sei also
A = QR

eine QR-Zerlegung von A?,
Q e R™™mitQ'Q = I, R € R™ ™rechte obere Dreiecksmatrix.
Wie oben sind R, R' invertierbar. Nach Satz[4.9] gilt
vt = AYAA) D = QR(R'Q'QR) 'b = Q(R")'b = Qy, R'y = b.
Wir erhalten y durch Vorwartseinsetzen und daraus z™.

Bei dieser Berechnung dndert sich die Kondition in der euklidischen Norm fiir inver-
tierbare Matrizen nicht. Die Kondition von A berechnet sich aus den Eigenwerten
von AtA, die fiir R aus den Eigenwerten von R!R. Es gilt z.B. fiir Fall 1

A'A = R'Q'QR = R'R,

insbesondere sind die Eigenwerte dieselben und damit
und die Fehlerverstarkung bei der Losung von

Ax = boder Rz = Q'

ist dieselbe.

79

4.4 Die Singularwertzerlegung

Eine einfache, wenn auch schwierig zu berechnende, Darstellung der kleinsten
Quadrate—-Losungen bekommt man tber die Singuldrwertzerlegung.
Wir nutzen den Satz, dass eine hermitesche Matrix A eine Orthonormalbasis aus
Eigenvektoren besitzt (Satz [2.28), also mit einer unitdren Matrix diagonalisierbar
ist. Fiir allgemeine Matrizen gilt das natiirlich nicht, aber wir zeigen die Existenz
einer abgeschwachten Form, die sehr dhnliche Eigenschaften besitzt.

Satz 4.11 (Singuldrwertzerlegung, Singular Value Decomposition, SVD)
Sei A € R™*™, Seir der Rang von A.

1. Es gibt Matrizen U € R™*", V € R"*", ¥ € R"™*" mit
U'U = I,, V'V = I, Yinvertierbare Diagonalmatrix
und
A=UXV".

Die Spalten von U sind Eigenvektoren von AA', die Spalten von'V sind Eigen-
vektoren von At A, auf der Hauptdiagonalen von Y. stehen die Wurzeln der von
Null verschiedenen Eigenwerte von AA* und At A.

U, 3, V heien Singuldrwertzerlegung von A. Die Zahlen o, auf der Hauptdia-
gonalen von X heifSen Singuldrwerte, die Spalten uy, v, von U bzw. V heifsen
Singuldrvektoren.

Beziiglich des Standard-Skalarprodukts gilt
Ar = Zak(:v,vk)uk.
k=1

2. Fiir die Pseudoinverse gilt

At =Vyyt
bzw.
1
Ath = —)
Z o (b, ug vk
k=1
Beweis:

1. A'Aist hermitesch und positiv semidefinit, besitzt also eine Orthonormalba-
sis aus Eigenvektoren vy, ..., v, zu den der Grof3e nach geordneten Eigenwer-
ten Ay > Xy > ... >\, > 0.Esgilt

dim Ker(A'A) = dimKer(A) = n — Rang(A) =n —r,

80

also
)\17...,>\r >O,)\7»_'_1,...,)\”:0.
Sei
01

O'k:\/)\k>0,k‘:1...7“,22

0-7’
Sei V € R™" die Matrix mit den Spalten v, kK = 1...r. Dann gilt
ATAV = V2

Wir setzen nun U = AVX 1. Die Spalten von V sind Eigenvektoren, also nicht
0. Wegen VX2 = A AV sind also auch die Spalten von AV und damit U nicht
0, und

AA'U = AA'AVES ™ = AVE = UY2
Die Spalten von U sind also Eigenvektoren von AA?, wieder zu den Eigenwer-
ten o?.

Ker(A'A) = Ker(A) = Avy, = 0und Vo, =0,k =7+ 1...n(v;ist ONB).

UV = A) (v ... 0 Vg1 ...) = (AVVE = A (Vo ... v,)
=V
= (AV - AV,0,...,0)
= 0.
Da (v1, ..., s, Upy1, - .., U,) UNitdr, also insbesondere invertierbar, ist, gilt be-

reits
USVi—A=0=A=UXV%.

Die Darstellung von Az folgt durch Einsetzen von

n

T = Z(x,vk)vk.

k=1

. Seibe R™undy = VXU, also

r

Yy = Z i(b, Uk)vk;-

o
k=1 F

Wir miissen zeigen, dass y Minimum—-Norm-Losung ist, also y kleinste
Quadrate-Losung und y € Bild(A"). Wegen

V. = O'I;QAtAUk

81

liegen die v, im Bild von A?, also auch y.
Es gilt
AlAy = VIUUSVIVEIUD = VEUD = A',

also ist y auch kleinste Quadrate—-Losung von Az = b und damit Minimum
Norm—-Ldsung.

U
Beispiel 4.12
1. Zuzeigen: AAT und At A sind symmetrisch.
Beweis: Sei UXV'* die SVD von A. Dann ist z.B.
AAT =UXV'VETIU = UUY
2. Bestimme das Polynom vom Grad kleiner oder gleich n — 1, das durch (t, y,)

geht und die kleinste 2—Norm auf den Koeffizienten aufweist.
Losung: Wir suchen die Minimum Norm—Lésung fiir die lineare Gleichung

n—1
Z akt]f =Y.
k=0

Sei L = /> - 3. Es gilt

A=#) ...ty =1 - L -#...t" Y/ L=UsV",
=U =3 —.t
wobei U in seiner einzigen Spalte einen Vektor der Norm 1 enthdlt, 3 eine
Diagonalmatrix ist mit Eintrag L und V' in der einzigen Spalte einen Vektor

der Norm 1 enthdlt. U, ¥ und V effiillen also die Anforderungen an die Sin-
guldrwertzerlegung, und es gilt

1
+ _ —lrrt _
AT =VX U_ﬁ

im Einklang mit Beispiel[4.8} Die Losung ist
p(t) = %(1 b+ 22 Y,

82

Dieser Satz liefert also eine einfache explizite Darstellung fiir die Pseudoinver-
se. Leider ist sie zum Nachweis analytischer Eigenschaften sehr niitzlich, fiir das
praktische Rechnen aber unbrauchbar. Um sie zu nutzen, muss zundchst die Sin-
guldarwertzerlegung berechnet werden, es miissen also die Eigenwerte und Eigen-
vektoren von A*A und AA! ausgerechnet werden. Aktuell haben wir dazu noch gar
keinen Algorithmus. Wir werden einen kennenlernen, der aber eine Serie von QQ R—
Zerlegungen berechnet, also in jedem Fall aufwandiger ist als die direkte Berech-
nung der kleinste Quadrate—Losung mit Hilfe der Q R—Zerlegung. Aus diesem Grund
warnt die klassische |Linpack—Bibliothek im Users Guide: We warn the user that alt-
hough the pseudo—inverse occurs frequently in the literature of various fields, there
is seldom any need to compute it explicitly.

Zusatzlich erlaubt die Singuldarwertzerlegung, aus der linearen Algebra bekannte
Begriffe numerisch zu interpretieren. Der numerische Rang einer Matrix etwa ist de-
finiert als die Anzahl der Singularwerte, die groBer sind als eine Schranke e. Wir
betrachten dazu die Matrizen

A:<a a))A:<a+e a)

a a a a

Diese Matrizen sind numerisch fiir kleine ¢ nicht unterscheidbar, die eine kann
durch Rundung der anderen entstehen, sie haben aber fiir a # 0 die Rdnge 1 und
2. Der Rang ist also numerisch nicht berechenbar. A hat aber wie oben berechnet
einen Singularwert 0, A hat zwar keinen Singuldrwert 0, aber einen sehr kleinen,
beide hatten also den gleichen numerischen Rang 1.

Wir halten fest, dass die Berechnung der Eigenwerte positiv (semi-)definiter Ma-
trizen numerisch eine besonders grof’e Rolle spielt (ndmlich zur Berechnung der
Singuldrwertzerlegung).

Zum Abschluss betrachten wir noch eine erweiterte Form der Pseudoinversen, die
Tikhonov-Inverse. Nehmen wir an, die Kondition einer Matrix A in der 2—Norm, also
der Quotient aus grofitem und kleinstem Singularwert, sei sehr grof3 (etwa wie in der
Matrix A aus dem letzten Beispiel). Mit der Darstellung der Pseudoinversen nach
ist auch klar, woher dieser Fehler stammt: -1 wird gro, also werden Fehler in
b dann stark verstarkt, und die Pseudoinverse wird unbrauchbar. In diesen Fallen
wird [4.2]leicht modifiziert.

Definition 4.13 (Tikhonov-Inverse)
Sei A € R™*", b€ R™, v > 0 fest. 2+ € R™ heifit Tikhonov-regularisierte Lésung
von Az = bgenau dann, wenn z7 das Funktional

g(x) = Az = bll3 + 7*|[[3

fiir x € R™ minimiert.
Die Abbildung A% von b auf 7 heifit Tikhonov-Inverse.

83

http://de.wikipedia.org/wiki/LINPACK
http://en.wikipedia.org/wiki/Andrey_Nikolayevich_Tikhonov

In der Definition wird bereits vorausgesetzt, dass die Tikhonov-regularisierte
Losung eindeutig ist.

Satz 4.14 (Darstellung der Tikhonov—-Inversen)
Seien A, b, v wie inl4.13| Dann ist die Tikhonov—regularisierte Losung von Ax = b
eindeutig, die Tikhonov—Inverse also wohldefiniert. Es gilt

(A'A+ 2Dt = A%
und mit den Bezeichnungen der Singuldrwertzerlegung
2 271\—
Ajb =V(X*++21)'sU

oder

r

g

2 2
=1 Ok T
Beweis: Ubungen. O

Die Reihendarstellung der Tikhonov-regularisierten Losung zeigt ihre Auswirkung
bei Fehlern in b: Der Parameter v > 0 verhindert, dass der fehlerverstarkende Quo-
tient vor dem Skalarprodukt zu grof wird, er begrenzt also den Einfluf3 von Fehlern
auf das Ergebnis. Der Nachteil ist, dass selbst bei korrektem b nicht mehr die exakte
Losung ausgerechnet wird, sondern nur eine Approximation. Die Wahl des Regula-
risierungsparameters ~ ist also entscheidend: Ist v zu klein oder Null, so werden
Fehler zu stark verstarkt. Ist v zu grof3, wird der Approximationsfehler grof3.

Korollar 4.15 (Grenzwert der Tikhonov—Inversen)
Es gilt
Ath = lim Aj b.
y—0
Dies ist eine alternative Definition der Pseudoinversen, die ohne die (sehr heuristi-

sche) Idee, Eindeutigkeit durch Minimierung der euklidischen Norm zu erzwingen,
auskommt.

84

Kapitel 5

lterative Losung von Gleichungssystemen
mit Fixpunktiterationen

Wie bereits erwdhnt, spielen die bisher hergeleiteten direkten Verfahren zur Losung
von linearen Gleichungssystemen inzwischen eine untergeordnete Rolle. Der Grund
ist, dass typische grofie Gleichungssysteme heute Milliarden von Unbekannten und
Gleichungen beinhalten (z.B. beschrieben in einem zufélligen technischen Report
der Universitat Cambridge). Eine Losung mit Hilfe der hergeleiteten Zerlegungen
in 10%" Rechenoperationen wére viel zu langsam. Trotzdem ist eine (approximati-
ve) Losung moglich. Der Grund ist, dass die Gleichungssysteme typischerweise ei-
ne spezielle Struktur aufweisen, die es auszunutzen gilt. Wir kennen diese Vorge-
hensweise von Bandmatrizen (Band-LR) und symmetrischen Matrizen (Cholesky—
Zerlegung).

Die am hdufigsten auftretende Struktur ist die Sparsity oder Diinne Besetzung von
Matrizen. Wird etwa bei der Wettervorhersage ein Deutschlandmodell aufgestellt,
so wird die aktuelle Wetterlage mit kurzen Zeitschritten fortgeschrieben. Unbekann-
te sind dann jeweils die Wetterverhaltnisse kurze Zeit nach einem bekannten Zu-
stand. Die sind aber notwendig lokal, d.h. das Wetter in Miinster wird nicht vom
Wetter in Berlin abhangen. Es werden von der groRen Zahl an Variablen also nur
sehrwenige in einer Gleichung auftreten, fast alle Eintrdge der Matrix verschwinden.
Im oben angegebenen Report wird eine Matrix der GroBe (1.2 - 10%)? beschrieben,
die aber nur 16 - 10° Eintrdge hat. Dies ist typischerweise bei der Behandlung von
partiellen Differentialgleichungen der Fall.

Leider kann die Gauss—Elimination diesen Vorteil nicht angemessen nutzen. Aus
A diinn besetzt folgt namlich leider nicht, dass z.B. L und R aus der Gauss-—
Elimination diinn besetzt sind.

Stellen wir uns etwa vor, dass in einer Matrix A nur die erste Spalte und erste Zeile
sowie die Diagonale ungleich 0 sind. Im ersten Schritt werden dann Vielfache der
ersten Zeile auf alle anderen Zeilen addiert, d.h. die Matrix A®® aus der Gauss—

85

http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-650.pdf
http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-650.pdf

Elimination ist voll besetzt, d.h. wir haben unseren strukturellen Vorteil bereits im
ersten Schritt komplett verloren.

* % * *
x . 0 0
A=1 % 0 A®) = .
: * % *
* 0 0

Die zusatzlich entstehenden Elemente werden als Fill-in bezeichnet. Zur Vermei-
dung des Fill-ins wurden viele Strategien zur giinstigen Anordnung der Zeilen und
Spalten einer Matrix entwickelt, etwa die klassischen Algorithmen zur Bandbrei-
tenreduktion von Rosen, Cuthill und McKee (Skript TU llmenau), im obigen Bei-
spiel kann man durch Umkehren der Reihenfolge von Zeilen und Spalten das Pro-
blem natiirlich komplett [6sen. Typischerweise versagen diese Verfahren allerdings
spatestens bei der Behandlung dreidimensionaler Probleme.

In diesen Fallen verwenden wir iterative Methoden. Sie berechnen eine Folge von
Vektoren z(®), die gegen die Losung = von Az = b konvergieren. Dies erscheint
zundachst unattraktiv: Wir ersetzen einen Algorithmus, der sicher nach bestimmter
Zeit die exakte Losung liefert (im Rahmen der unvermeidbaren Fehler), durch einen,
bei dem viele Zwischenlosungen berechnet werden miissen, der an einer Stelle mit
einem Restfehler zur Konvergenz abgebrochen werden muss usw. Fiir solche Algo-
rithmen bendétigen wir mindestens drei wichtige Eigenschaften:

1. (™ sollte einfach berechenbar sein (meist rekursiv aus z(*=1)).

2. Die Konvergenz sollte moglichst schnell sein, damit nicht zu viele Zwischen-
schritte berechnet werden miissen.

3. Wir benétigen eine Abschitzung dafiir, wie nah ein Folgeglied z(¥) schon an =
liegt, damit wir wissen, wann unsere Naherung ausreichend ist.

Wir miissen uns fiir lineare Gleichungen also fragen, welche Operationen an einer
diinn besetzten Matrix besonders einfach auszufiihren sind. Dies ist vor allem die
Matrix—Vektor—Multiplikation, die gerade so viele Rechenoperationen bendétigt, wie
die Matrix an Eintragen hat. Tatsachlich werden die meisten von uns hergeleiteten
Algorithmen nur Matrix—Vektor—Multiplikationen bendtigen.

Wir werden als Grundlage den Banachschen Fixpunktsatz beweisen, und daraus
erste iterative Methoden fiir lineare und nichtlineare Probleme herleiten. Im gan-
zen Kapitel sind die Matrizen A immer quadratisch und invertierbar, wir betrachten
zundchst keine tiber— oder unterbestimmten Gleichungssysteme.

86

http://www.db-thueringen.de/servlets/DerivateServlet/Derivate-8951

5.1 Der Banachsche Fixpunktsatz

Definition 5.1 (kontrahierend, Fixpunkt)
Seien X, Y normierte Rdume, D C X.

1. Eine Funktion
g:D—Y
heif3t kontrahierend in D genau dann, wenn eine Konstante 0 < ¢ < 1 existiert
mit
lg(@) — gl < gllz —yl| Yo,y € D.
q heifit Kontraktionskonstante (und ist Lipschitzkonstante).

2. Seig: Dw— X.T € D heifit Fixpunkt von g genau dann, wenn

9(T) =T.

Bemerkung: Sei g kontrahierend. Dann ist g (Lipschitz-) stetig.
Beweis: Sei x,, eine gegen = konvergente Folge, dann gilt

lg(zn) = 9(@)I| < gllzn —][= 0.

Satz 5.2 (Banachscher Fixpunktsatz)

Sei X ein volistidndiger normierter Raum (Banachraum). Sei) # D C X abge-
schlossen, d.h. jede Cauchyfolge in D konvergiert in D.

Sei g : D — D kontrahierend in D. Dann hat g genau einen Fixpunkt.

Beweis: Sei ¢ < 1 Kontraktionskonstante von g. Seien zundchst x und y zwei Fix-
punkte von g. Dann gilt

lz =yl = llg(=) = gl < gllz —yl],

also z = y wegen ¢ < 1. Damit ist der Fixpunkt eindeutig.
Die Existenz zeigen wir konstruktiv und geben eine konvergente Folge an, deren
Grenzwert der Fixpunkt ist. Sei () € D beliebig. Wir definieren in D die Folge z(*
durch

2D = (),

87

2*) heift Fixpunktiteration.
g ist kontrahierend, also gilt mit der Definition von z*)

[lg(z®) — g(*=D)]]

< gllat — 20
< @l — 2t
< ¢Hle® — 0.

Sei e > 0 beliebig und M so grof3, dass

q" 1 0
1—_qu17(J =20 <e
Seien [,k > M und ohne Einschrdankung [> k. Dann gilt

e =@ < (o = oY) 2D = oA 2D — 2B
A 7 7

N N

<g' =]z —ol| <q'=2||z1 —zol| <q"||z1—zol|
I—k—1
< Y Pl 20
§=0
e
< |z — 2| (5.1)
l—q
< €

nach Wahlvon k& und M. Also ist z(*) eine Cauchyfolge in D und hat einen Grenzwert
T € D. Esgilt

17 = g(@)[| = lim [|2** — g(z)|| = lim ||g(z™™) — g(@)]] < lim g[l2® — 7| = 0,

also ist 7 der einzige Fixpunkt von g. O

Korollar 5.3 (Konvergenz der Fixpunktiteration)
Seien fiir g die Voraussetzungen aus|s.2|erfiillt, insbesondere g kontrahierend. Dann
konvergiert die Fixpunktiteration

20D = (), O ¢ p
gegen einen Fixpunkt von g.

Wenn wir die Fixpunktiteration zur approximativen Berechnung des Fixpunkts nut-
zen wollen, brauchen wir Abschatzungen, wie nah ein Folgeglied bereits am Grenz-
wert liegt.

88

Korollar 5.4 Fehlerabschdtzung
Seien fiir g die Voraussetzungen aus|s.2|erfiillt, und q sei die Kontraktionskonstante
von g. Es gilt

k
7~ 2®]] = lim [[2© — 2| < 7Tl — 2]
l—o0 1—q

mit (5.1).
SeiyY) eine zweite Fixpunktiteration mit Startwert). Dann lautet die Abschditzung,
angewandt auf y©)

_ _ 1 1
I7 = 211 = ll7 =y < Tlly® =yl = T lla®) o)
oder angewandt auf y
_ — q q
o= o] = [l =yl < Tl = g0 = Ll — a0

Mit Hilfe der ersten Abschadtzung kénnen wir im Vorhinein (a priori) eine obere
Schranke fiir den Konvergenzfehler angeben. Mit Hilfe der zweiten Abschatzung
konnen wirim Nachhinein (a posteriori), wenn wir also bereits das k + 1. Folgeglied
berechnet haben, ebenfalls eine obere Schranke angeben. Notwendigerweise ist
die a priori-Abschdtzung eine worst case—Abschatzung, wahrend die a posteriori—
Abschatzung auf dem tatsachlichen Folgenverlauf basiert. Deshalb ist normalerwei-
se die a posteriori-Abschatzung deutlich scharfer.

Beispiel 5.5

g:R—R: g(x):=0.9cos(x)

ist kontrahierend: Seien x,y € R. Dann ist nach dem Mittelwertsatz

l9(x) — g(W)| = 9" (E)l|lz =yl < 0.9z —yl.

g:R—=R: g(x) = cos(z)
ist nicht kontrahierend, denn

lim | cos(x) — cos(m)|

=1
TET—T |Jj‘ — 7T|

und damit gibt es kein q < 1, das diesen Ausdruck nach oben begrenzt.

89

g :[—0.1,0.1] — [0.99, 1], g(x) = cos(x)

ist kontrahierend, aber keine Selbstabbildung.

g :10.6,0.9] — [0.6,0.9], g(z) = cos(z)
ist kontrahierend und Selbstabbildung.

g:R?* = R? g(a,b) := (a/2 — 2b,0).
g hat nur den einen Fixpunkt (0, 0), ist aber nicht kontrahierend in der euklidi-
schen Norm, denn

19(0, DI* = [I(=2,0)[* > [I(0, 1)[*

Trotzdem ist die Fixpunktiteration mit beliebigen Startwert konvergent. Sei
ndmlich
29 = (a,b), alsozY = (a/2 — 2b,0)

und damit)
g+ — i (0/2 = 20,0).

Die Folge konvergiert also immer gegen den einzigen Fixpunkt (0, 0). Die Kon-
traktionseigenschaft ist also nur hinreichend, aber nicht notwendig fiir die
Konvergenz.

Tatsdchlich kénnen wir in diesem Fall einfach die Kontraktionseigenschaft
durch Wahl einer geeigneten Norm erzwingen. Statt der euklidischen Norm
wdhlen wir auf dem R? die Norm

[I(a; b)[[:= max(|a — 4b], [b]).
|| - || ist tatsdchlich eine Norm, und es gilt
lg(a,0)[] = [l(a/2 = 2b,0)]]
1
1
= —|a— 4}
2

1
< g max(ja — 48], [b])

1

= Sli@oll.

90

Anders als die Konvergenz hingt also die Kontraktionseigenschaft von der
Normwahl ab. In werden wir uns daher fragen, wann eine Norm existiert,
so dass eine vorgelegte (lineare) Funktion kontrahierend ist.

Die Beispiele fiihren zu

Satz 5.6 (Abschdtzung der Kontraktionskonstante fiir differenzierbare Funktionen)
Seieng: D — R™, D C R™ abgeschlossen, und g sei stetig differenzierbar. Es gelte

lg'(z)]] < g < 1Vx € D,

wobei ¢'(x) die Jakobimatrix von g an der Stelle x ist. Weiter sei D konvex. Dann ist
g kontrahierend mit der Kontraktionskonstante q.

Falls ||g'(x)|| > 1 fiir ein x im Inneren von D, so ist g in einer Umgebung von x nicht
kontrahierend.

Beweis: (Nur Hinrichtung) Seien z, y € D. D ist konvex, also ist die Funktion
GA) =gz + Ay —z)), A €[0,1]
wohldefiniert. G ist differenzierbar, es gilt

G'(\) =g (x+ Ay —2)(y —).

lo@@) — gl = 11G(0) — G|

=H/<? A

< swp |GV
A€0,1]

= sup |lg'(z + Ay —2))|| - [ly —]
A€(0,1]

qllz = yl|

IN

also ist g kontrahierend mit Kontraktionskonstante q. O

Korollar 5.7 Es sei der R™ versehen mit der Norm || - || und
g: (RY|)= R |]-]]), g(x) := Bz +¢, B€R"™™, ceR"

g ist genau dann kontrahierend, wenn || B|| < 1 in der induzierten Matrixnorm. Falls
||B|| < 1, so konvergiert die Fixpunktiteration gegen einen Fixpunkt

T=(I-B)"

91

Beweis:

J(z) = B.

Hoffentlich kommt Ihnen dieser Satz bekannt vor: Fiir xq = 0 gilt

1)

W =¢ z

@) = Be+e¢, 2® =B%*+ Be+e,. ..

Dies ist gerade die Neumannsche Reihe, deren Konvergenz gegen (I — B)™'c wir
bereits in[2.33 nachgewiesen haben.

Beispiel 5.8 Hdufig ist die zielfiihrende Formulierung der Fixpunktgleichung nicht
sofort klar. Wir suchen den Fixpunkt von tan x in [r /2, 37 /2]. Die Wahl

g(x) = tanz, g'(v)

1
— > 1
cos? x

fiihrt offensichtlich nicht zum Ziel, denn g ist dann nicht einmal kontrahierend. Wir
formen daher die Fixpunktgleichung um. Hier wahlen wir

Mit

T =tan(T) <= arctanT =T — ™ <= T = 7 + arctan .

T 37T

[577]7

g(z) = 7+ arctanz, ¢'(z)

1

:1—i—x2

bildet g D auf D ab und ist nach|s.6|kontrahierend mit Kontraktionskonstante

1
q

T 14m/4

0.29.

D enthdlt den gesuchten Fixpunkt. Wir fiihren die Fixpunktiteration durch mit dem
Startwert xq = w und erhalten

k| o apriori | a posteriori 1z —2®| | |z — 2®| /|7 — 2F
11]3.1416 1.3518e + 000

2 14.4042 | 1.4758e¢ — 001 | 1.7744e 4 000 | 8.9190e — 002 6.5978e — 002
3| 4.4891 | 4.2563e — 002 | 1.1931e — 001 | 4.2900e — 003 4.8100e — 002 .
414.4932 | 1.2275e — 002 | 5.7439e — 003 | 2.0266e — 004 4.7239¢ — 002
5| 4.4934 | 3.5401e — 003 | 2.7132e — 004 | 9.5871e — 006 4.7307e — 002
6| 4.4934 | 1.0210e — 003 | 1.2804e — 005 | 4.7571e — 007 4.9619¢ — 002

Offensichtlich ist die a priori-Abschdtzung viel zu pessimistisch, weil die Kontrakti-
onskonstante zu grof3 abgeschditzt wurde.

92

function [output_args] = tanbeisp(input_args)
%TANBEISP

N=200;

x=(0:N)/N=x8;

plot (x,tan(x),x,x);

ylim ([—8,8]);

L

Listing 5.1: Beispiel zum Banachschen Fixpunktsatz (Banach/tanbeisp.m)

Klicken fiir den Quellcode von Banach/tanbeisp.m

Abbildung 5.1: Bestimmung des Fixpunkts von tan(z) = z

Klick fuir Bild tanbeisp
Klick fiir Matlab Figure tanbeisp

Im Allgemeinen kann man auf keine der Voraussetzungen des Banachschen Fix-
punktsatzes verzichten, insbesondere nicht auf die Voraussetzung, dass ¢ D in sich
selbst abbildet (s. Ubungen) — es sei denn, man setzt die Existenz eines Fixpunkts
voraus. Im vierten Beispiel von [5.5|haben wir bereits gesehen, dass fiir cos(z) eine
Umgebung des Fixpunkts im Intervall [0, 27| existiert, so dass cos(z) dort Selbstab-
bildung und kontrahierend ist. Solch ein Intervall ldsst sich immer finden, wenn am
Fixpunkt selbst die Funktion kontrahierend ist.

Satz 5.9 (Lokaler Konvergenzsatz)

Sei X vollstdandig, g : U — X, U C X, kontrahierend. Sei T ein Fixpunkt von g im
Inneren von U. Dann gibt es eine Umgebung D von T, so dass die Fixpunktiteration
mit Startwerten in D gegen T konvergiert.

93

function [output_args] = tanbeisp(input_args)

%TANBEISP

N=200;

x=(0:N)/N*8;

plot(x,tan(x),x,x);

ylim([-8,8]);

legend('tan(x)','x');

format_ticks(gca,{'0','\pi/2','\pi','3\pi/2','2\pi'},[],[0 pi/2 pi 3*pi/2 2*pi],[-5 0 5]);

%vorlsavepic('tanbeisp');

x0(1)=pi;

xquer=fsolve(@(x)(g(x)-x),pi)

q=1/(1+pi*pi/4)

fprintf('%d&%1.4f&&&%1.4e\\\\\n',1,x0(1),abs(x0(1)-xquer));

for k=2:10

 x0(k)=g(x0(k-1));

 fprintf('%d&%1.4f&%1.4e&%1.4e&%1.4e&%1.4e\\\\\n',k,x0(k),...

 q^k/(1-q)*abs(x0(2)-x0(1)),1/(1-q)*abs(x0(k)-x0(k-1)),abs(x0(k)-xquer),abs(x0(k)-xquer)/abs(x0(k-1)-xquer));

end

end

function y=g(x)

y=atan(x)+pi;

end

Frank Wuebbeling
Beispiel zum Banachschen Fixpunktsatz

oF]

tan(x)

nf2

3n/2

2

Frank Wuebbeling
tanbeisp.jpg: Bestimmung des Fixpunkts von tan(x)=x

Frank Wuebbeling
Matlab Figure tanbeisp.fig: Bestimmung des Fixpunkts von tan(x)=x

Beweis: Sei ¢ die Kontraktionskonstante von g. Sei D eine abgeschlossene Kugel
um Z mit Radius ¢ > 0, die ganz in U liegt. Wir zeigen: ¢ bildet D in sich selbst ab.
Seiz € D.

lg(z) =zl = llg(z) — g(@)I]
< qllz -7l
< gqg-e<e
Also gilt g(z) € D, und die Aussage folgt mit|s.2] O

Korollar 5.10 Sei g : U — R" stetig differenzierbar, U C R™, T ein Fixpunkt von g,
und sei

lg'@)[] < 1.

Dann gibt es eine Umgebung D von 7, so dass die Fixpunktiteration mit Startwerten
in D gegen T konvergiert.

Beweis: ¢’ ist stetig, also gibt es eine Umgebung U’ von T mit

L+ [lg'(@)]]

5 <1Vx eU.

lg' ()| <

Definition 5.11 (Asymptotische Konvergenzgeschwindigkeit)
Sei

1. Die Konvergenz heifdt asymptotisch linear (von der Ordnung 1), falls es ein
q <1, kg > 0 gibt mit

||x(k+1) — 7| < q||x(k) — T||Vk > k.

Falls nicht, so heift die Konvergenz sublinear. Falls es fiir jedes q ein ko mit
der Eigenschaft gibt, so heif3t die Folge superlinear.

2. Sei p > 1. Die Konvergenz heifst asymptotisch von der Ordnung p, falls es ein
C >0, kg > 0gibt mit

|z*+D — 7| < O|z® — TP VE > k.

94

3. Sei e eine positive Nullfolge, die mit der Ordnung p konvergiert. Sei x\¥) eine
Folge, die gegen T konvergiert, und es gelte

|z® — || < e® V.
Dann heift auch z*) konvergent von der Ordnung p.

Beispiel 5.12

1. Fixpunktiterationen fiir kontrahierende Funktionen g sind asymptotisch kon-
vergent von der Ordnung 1 (a priori-Abschdtzung). Wir erhalten in jedem Ite-
rationsschritt eine Verbesserung der Approximation des Grenzwerts um den
Faktor q.

2. Das Newtonverfahren (siehe (iberndchstes Kapitel) ist konvergent von der Ord-
nung 2 (quadratische Konvergenz). Falls im k. Schritt 1 Dezimalstelle korrekt
ist, so sind es in den ndchsten 2, 4, 8, 16, die Konvergenz ist also erheblich
schneller als im linearen Fall.

Von besonderem Interesse ist die lineare Schrittfunktion
g:R"—R" g(x)=Bx+c, BER™" ceR"

g ist kontrahierend genau dann, wenn || B|| < 1 in derinduzierten Matrixnorm nach
Korollar[s.7}

Hierbei hangt die Kontraktionseigenschaft wie schon in[5.5|bemerkt von der gewdhl-
ten Vektorraumnorm ab, die Konvergenz der Fixpunktiteration aber nicht (nach

[2.10). Zum Beispiel:
s 09 02
-\ =02 09)’

|1B||oc = 1.1 > 1, ||Bl|2 = /p(B!B) \/ 088 085)~0.92<1

mit der Definition von p(B) als Betrag des betragsgrofiten Eigenwerts von B (Spek-
tralradius, s.[2.31). g ist also kontrahierend beziiglich der 2-Norm, aber nicht kon-
trahierend beziiglich der co—Norm. Trotzdem konvergiert die Fixpunktiteration fir
beide Normen. Dies ist kein Widerspruch, denn die Kontraktionseigenschaft ist hin-
reichend, aber nicht notwendig.

Offensichtlich gilt: Falls es irgendeine Norm auf dem R”" gibt, so dass ||B|| in der
induzierten Matrixnorm kleiner als 1 ist, so ist g in dieser Norm kontrahierend, und
das Fixpunktverfahren konvergiert (beziiglich jeder Norm). Wann gibt es also fiir ei-
ne vorgelegte Matrix eine solche Norm? Dies beantwortet

95

Satz 5.13 (Infimum der induzierten Matrixnormen)
Sei B € C™*™, Dann ist

pB)= mf B
-llinduzierte Matrixnorm
Insbesondere gibt es fiir alle e > 0 eine Vektorraumnorm || - ||z auf dem C", so
dass

p(B) < ||Bl[pe < p(B) + ¢

in der induzierten Matrixnorm.

Beweis: Sei zundchst = ein Eigenvektor von B zum Eigenwert A mit |\| = p(B), || - ||
eine Norm auf dem C™. Dann gilt

|| Ball _ [[A]|
1Eq1 Il

1Bl > = |A| = p(B).
Fiir den Beweis der Existenz betrachten wir zundachst den einfachen Fall, dass B
symmetrisch ist. Dann gilt fiir die euklidische Norm

1B]l2 = V/p(B*B) = v/p(B?) = p(B)

und die Aussage ist bereits fiir die 2-Norm und alle € > 0 erfiillt.

Fiir nicht—-symmetrische Matrizen ist der Satz leider schwieriger. Sei ¢ > 0 fest
gewdhlt, D € R™" die Diagonalmatrix mit D;; = ¢!, und sei J die Jordan-
Normalform von B. Es gibt also eine invertierbare Matrix X € C™*"™ mit

)\1 g1
)\2 (o))
D= _ ,J=XBX =

n—1)\n—l On—-1

wobei g, € {0,1} und die \; die Eigenwerte von B sind. Es gilt

A\ €0y
Ao €09
C:=D"'JD =
A1 €0p_1
An
Mit ?2? gilt
ICleo < p(B) +e.

96

Flir eine invertierbare lineare Abbildung L und jede Norm || - || ist
[z l]] == || L]
ebenfalls eine Norm, also insbesondere auch
2]l = [|D7 X |-

Fiir die induzierte Matrixnorm gilt

B
1Blln. = suplE0lne
o Tl

1D X X~LIDD " X 2||

= su
w0 DX][
D ' JDy||
_ SupH yH ,y:D_lXﬂf
Y70 H?/Hoo
= ||O|o
< p(B) +e

O

Hieraus folgern wir den Hauptsatz iiber die Konvergenz von Fixpunktverfahren fiir
lineare Gleichungssysteme.

Korollar5.14 Sei A € R"*". A = M — N, M invertierbar, b, x, € R". Die Folge
=) € R” sej definiert durch

g®) = MY(N2® b)), also M) = N2 ® 4 p,

Sei B := M~'N. z® konvergiert genau dann fiir alle x,, b gegen die Losung von
Az = b, wenn p(B) < 1.

Beweis:

Sei z # 0 im Kern von A, also Mz = Nx oderx = M !Nz = Buz. Also ist x
Eigenvektor von B zum Eigenwert 1 und damit p(B) > 1.

Seinun p(B) < 1, dann besteht der Kern von A nur aus der 0 und A ist invertierbar.
Die Iteration ist von der Form

x(k—l—l) — Bl'(k) +]\4—1(77
also konvergiert die Iteration nach|5.13|und[5.7]gegen einen Fixpunkt z mit

Mz =Nz +b

97

und damit
AT = b.

Sei nun p(B) > 1. Dann gibt es einen Eigenvektor z zum Eigenwert A mit |A| > 1.
Setze b := 0, 2(°) := z. Dann gilt

2 = Nz (0,

Insbesondere konvergiert die Folge in diesem Fall nicht gegen die Losung 0. O
Mit der Wahl M = I, N = (I — B) erhalten wir wieder die Neumannsche Reihe
zuriick.

Mit diesem Wissen kénnen wir auch die seltsame Normwahl im letzten Beispiel aus
[5.5|aufklaren.

Beispiel 5.15
Sei wie in|5.5]

0 0

B istdiagonalisierbar und hat die Eigenvektoren (1,0) zum Eigenwert 1/2 und (4, 1)
zum Eigenwert 0, es gilt also

B o (120 L (14 (1 -4
J = XBX _(OO,X_ o1) X=(, 1)

Nach[s.13|gibt es eine Norm || - ||, so dass beztiglich der induzierten Matrixnorm gilt
|1B]| < 1.

Da B diagonalisierbar ist, kbnnen wir uns das Hantieren mit der Matrix D aus|s.13]
sparen, die wurde nur bendétigt, um auch mit Jordan—Matrizen umgehen zu kénnen.
Wir setzen also gleich

g:R2»—>R2,g(QJ):—(1/2 _Z)x—:Bx.

[1(a,0)'|| == 1|X(a,b)"||oc = max(|a —4b], [b]).

Mit der Rechnung aus[5.5|gilt dann tatsdchlich || B|| = 1/2 und die Fixpunktiteration
zu g konvergiert gegen den einzigen Fixpunkt (0, 0)".

Beispiel 5.16 (Chaotisches Verhalten von Fixpunktiterationen)

Abschliefiend betrachten wir noch Beispiel dafiir, dass das Langzeitverhalten von
Fixpunktiterationen fiir nicht—kontrahierende Funktionen schwierig vorherzusagen
ist. Bekannt ist die Mandelbrotmenge, die aus der Konvergenzanalyse komplexer
Fixpunktiterationen kommt. Wir betrachten die noch einfachere reelle Funktion

ga(z) = Aa(l —x),

98

http://de.wikipedia.org/wiki/Mandelbrot-Menge

das logistische Modell fiir Bevolkerungsdynamik. Hier ist die Frage interessant, ob
es stationdre Bevélkerungsdaten gibt, bei denen sich Geburten und Todeszahlen
die Waage halten, und ob diese stationdren Punkte erreicht werden. Hierbei steht
A fiir die Geburtenrate zwischen 0 und 4. Klarerweise konvergiert die Populations-
zahl gegen 0, wenn die Geburtenrate zu klein ist (\ < 1). Fiir \ zwischen 1 und 3 ist
der einzige positive Fixpunkt attraktiv (d.h. die Ableitung am Fixpunkt ist vom Betrag
kleiner als 1, also gibt es nach eine kleine Umgebung, in der die Fixpunktitera-
tion konvergiert). Ab 3 ist der Fixpunkt abstofSend, und die Konvergenzanalyse wird
uniibersichtlich.

Offensichtlich ist g, Selbstabbildung auf dem Intervall [0, 1] fiir A € [0, 4]. Der Plot
zeigt fiir A € [0, 4] das Verhalten der Folgeglieder x1p24 bis x4096.

Abbildung 5.2: Chaotisches Verhalten von Fixpunktiterationen

Klick fiir Bild chaos
Klick fiir Matlab Figure chaos

function chaos(lambdao, lambdai, N ,M)
%CHAOS Display chaotic behaviour of g(x)=lambda x (1—x)
if (nargin<i)
lambdao=o0;
end
if (nargin<2)

S

Listing 5.2: Chaotisches Verhalten von Fixpunktiterationen (Banach/chaos.m)

Klicken fiir den Quellcode von Banach/chaos.m

99

Chaotic behaviour of A x (1-x)

nz =5101

Frank Wuebbeling
chaos.jpg: Chaotisches Verhalten von Fixpunktiterationen

hgS_070000:[1x1 struct array]

		[1x6 char array]

		[1x1 double array]

		[1x1 struct array]		@ =
	PaperUnits : [1x11 char array]
	Color : [1x3 double array]
	Colormap : [64x3 double array]
	InvertHardcopy : [1x2 char array]
	PaperPosition : [1x4 double array]
	PaperSize : [1x2 double array]
	PaperType : [1x2 char array]
	Position : [1x4 double array]
	ApplicationData : [1x1 struct array]

		[1x1 struct array]		@ =
	type : [1x4 char array]
	handle : [1x1 double array]
	properties : [1x1 struct array]
	children : [13x1 struct array]
	special : [4x1 double array]

		[0x0 double array]

Frank Wuebbeling
Matlab Figure chaos.fig: Chaotisches Verhalten von Fixpunktiterationen

function chaos(lambda0, lambda1, N ,M)

%CHAOS Display chaotic behaviour of g(x)=lambda x (1-x)

if (nargin<1)

 lambda0=0;

end

if (nargin<2)

 lambda1=4;

end

if (nargin<3)

 N=256;

end

if (nargin<4)

 M=256;

end

preiter=1024;

postiter=2048;

lambda=(0:N)/N*(lambda1-lambda0)+lambda0;

plot=sparse(N+1,M+1);

for i=1:N+1

 l=lambda(i);

 x=rand;

 %pre-iteration

 for j=1:preiter

 x=l*x*(1-x);

 end

 %post-iter

 for j=1:postiter

 x=l*x*(1-x);

 k=round(x*M);

 plot(N+1-i+1,k+1)=1;

 end

end

spy(plot);

format_ticks(gca,[],{num2str(lambda1),num2str(lambda0)},[],[1 M]);

title('Chaotic behaviour of \lambda x (1-x)');

vorlsavepic('chaos');

end

Frank Wuebbeling
Chaotisches Verhalten von Fixpunktiterationen

http://de.wikipedia.org/wiki/Logistische_Gleichung

5.2 Fixpunktverfahren zur Losung linearer Gleichungen

Wir definieren und untersuchen die klassischen Verfahren zur iterativen Losung li-
nearer Gleichungen: Jakobi (Gesamtschrittverfahren), Gauss-Seidel (Einzelschritt-
verfahren), SOR (Successive Over—Relaxation). Wir nutzen [5.14| und zerlegen A =
M — N mit einer leicht invertierbaren Matrix M.

Definition 5.17 (Gesamtschrittverfahren, Einzelschrittverfahren)
Zu losen sei die lineare Gleichung Ax = b, A = (a;;) € R™ ™ invertierbar, b € R™.
Wir zerlegen

A=L+D+R,

wobei L die Eintrdge von A unterhalb der Hauptdiagonalen enthdlt, R die Eintrdge
oberhalb der Hauptdiagonalen, D die Diagonaleintrdge. Insbesondere werden
zur Berechnung der Matrizen keine Rechenoperationen bendtigt. Weiter sei D
invertierbar.

1. Wir setzen ins.14| M := D, N := —(L + R) und erhalten die Fixpunktiteration
Da*) = b — (L + R)z®

oder
1
B+Dy. — = [— ()
), = L (bz > o) |
’ JFi
Wir wéihlen also in z*+Y) die die i. Komponente so, dass die i. Gleichung des
Gleichungssystems erfiillt ist, wenn man sonst nichts dndert.

Falls =*) konvergiert, so nach gegen eine Losung von Ax = b. Das Ver-
fahren hei3t Gesamtschritt— oder Jakobiverfahren (GSV).

2. Wirsetzenin[s.14| M := D + L, N := —R und erhalten die Fixpunktiteration
(D + L)z*™) = p — Rz®

oder

1

Rty — = | p — (k) (kD)
(x)i = . <bl Zawa:j Zamxj))

’ 7> 71<1
Wir wéiihlen also in **V) die i. Komponente so, dass die i. Gleichung des Glei-
chungssystems erfiillt ist, wenn man die Anderungen sequentiell berechnet
und fiir j < i die bereits berechneten Anderungen durchfiihrt.

Falls z®) konvergiert, so nach gegen eine Losung von Ax = b. Das Ver-
fahren heift Einzelschritt— oder Gauss—Seidel-Verfahren (ESV).

100

http://de.wikipedia.org/wiki/Carl_Gustav_Jakob_Jacobi
http://de.wikipedia.org/wiki/Philipp_Ludwig_von_Seidel

Bemerkung:

1. Der Aufwand zur Berechnung eines Schritts der Verfahren ist gleich der Anzahl
dervon Null verschiedenen Eintrage in A.

2. Das Gesamtschrittverfahren ist leicht parallelisierbar, denn alle Anderungen
werden unabhadngig voneinander berechnet. Das Einzelschrittverfahren ist so
nicht parallelisierbar, denn alle Anderungen miissen nacheinander durch-
gefiihrt werden.

3. Die Verfahren konvergieren fiir jeden Startwert gegen die Losung von Ax = b,
falls
p(D7'(L + R)) < 1 (Gesamtschrittverfahren)

bzw.
p((D + L)™' R) < 1 (Einzelschrittverfahren).

101

Der Unterschied zwischen den Verfahren zeigt sich am einfachsten in der Imple-
mentation. Die Routinen fiihren jeweils N Schritte des Verfahrens zur Lésung von
Ax = baus.

function Gesamtschritt (n,A,b,20,N)
x = 20
Firk=1...N

Firi=1...n

Yi = o (bi =2 %‘Ij)

r=1y
return x

function Einzelschritt (n,A4,b,20,N)
z = z0
Firk=1...N

Fire=1...n

XT; = G%'i <b7, — Zj;éi aij[l?i>

K3

return x

function x = einzelschritt(A,b,xo,N)
%EINZELSCHRITT Einzelschrittverfahren , Gauss—Seidel
%Me should assume that A is sparse.

X=XO ;
n=numel (xo0);
for i=1:N
& J

Listing 5.3: Einzelschrittverfahren (Einzelgesamtsor/einzelschritt.m)

Klicken fiir den Quellcode von Einzelgesamtsor/einzelschritt.m

function x = gesamtschritt(A,b,xo,N)
%GESAMTSCHRITT Gesamtschritt, Jakobiverfahren
%Assume that A is sparse.

n=numel (xo0);

D=diag (A);

LU=A;

Listing 5.4: Gesamtschrittverfahren (Einzelgesamtsor/gesamtschritt.m)

Klicken fiir den Quellcode von Einzelgesamtsor/gesamtschritt.m

102

function x = einzelschritt(A,b,x0,N)

%EINZELSCHRITT Einzelschrittverfahren, Gauss-Seidel

%We should assume that A is sparse.

x=x0;

n=numel(x0);

for i=1:N

 for j=1:numel(x)

 x(j)=0;

 summe=A(j,:)*x;

 x(j)=1/A(j,j)*(b(j)-summe);

 end

end

Frank Wuebbeling
Einzelschrittverfahren

function x = gesamtschritt(A,b,x0,N)

%GESAMTSCHRITT Gesamtschritt, Jakobiverfahren

%Assume that A is sparse.

n=numel(x0);

D=diag(A);

LU=A;

D=1./D;

LU=LU-diag(diag(A));

x=x0;

for k=1:N

 y=b-LU*x;

 for j=1:n

 y(j)=y(j)*D(j);

 end

 x=y;

end

end

Frank Wuebbeling
Gesamtschrittverfahren

function doit(N)

%DOIT Solve Ax=b using Jakobi/Gauss—Seidel.

%Use discretization of Laplace operator

%Cheat: We offset by lambda, otherwise the iteration is
%painfully slow.

if (nargin<1)

. J
Listing 5.5: Treiber fiir Einzel-Gesamtschritt (Einzelgesamtsor/doit.m)

Klicken fiir den Quellcode von Einzelgesamtsor/doit.m

Zur Untersuchung der Konvergenzeigenschaften miissen wir die Eigenwerte einer
Matrix abschatzen. Dabei ist haufig der Satz von Gerschgorin niitzlich.

Satz 5.18 (Satz von Gerschgorin)

Sei A = (a;;) € C**". Sei K; € C (also in der komplexen Ebene) der Kreis um das
Diagonalelement a;; mit dem Radius der Summe der Betrdge der AufSerdiagonal-
elemente in Zeile i, also

r;, = Z |ai,j’, K@ = {Z . |Z — ai,i| S Ti} .
J#

Dann liegen alle Eigenwerte von A in der Vereinigung der Kreise K.

Falls die Vereinigung V' von m Kreisen disjunkt ist zum Rest der Kreise, so liegen in
V genau m Eigenwerte von A.

Also: Sei M C {1...n}, m = |M]|. Weiter sei

1eM igM

dann ist
{ € U K; : \; Eigenwertvon A}| = m,
ieM
wobei die Eigenwerte mit ihrer Vielfachheit im charakteristischen Polynom gezdhlt
werden.

Zundchst ein kurzes Beispiel. Wir betrachten

A:

O o

0 1
1 0
1 1/2

103

function doit(N)

%DOIT Solve Ax=b using Jakobi/Gauss-Seidel.

%Use discretization of Laplace operator

%Cheat: We offset by lambda, otherwise the iteration is

%painfully slow.

if (nargin<1)

 N=20;

end

[A,L,D,R,N] = setupmatrix(N);

b=rand(N*N,1);

tic;

x=A\b;

toc

M=0;

tic;

weiter=1;

x1=zeros(N*N,1);

while (weiter>0)

 x1=gesamtschritt(A,b,x1,10);

 M=M+1;

 res=norm(x1-x);

 if (res<1e-5)

 weiter=0;

 end

end

toc

M

tic;

M=0;

weiter=1;

x2=zeros(N*N,1);

while (weiter>0)

 x2=einzelschritt(A,b,x2,10);

 M=M+1;

 res=norm(x2-x);

 if (res<1e-5)

 weiter=0;

 end

end

toc

M

tic;

M=0;

weiter=1;

x3=zeros(N*N,1);

while (weiter>0)

 x3=sor(A,b,x3,10,1.6);

 M=M+1;

 res=norm(x3-x);

 if (res<1e-5)

 weiter=0;

 end

end

toc

M

Frank Wuebbeling
Treiber für Einzel-Gesamtschritt

http://de.wikipedia.org/wiki/Gerschgorin

Die Gerschgorinkreise sind der Kreis K; um 4 mit Radius 1, der Kreis K, um 1 mit
Radius 1 und der Kreis K3 um 1/2 mit Radius 1 (alles in der komplexen Ebene,
nattrlich). Dann garantiert der Satz von Gerschgorin, dass in K; genau ein Eigen-
wert von A liegt, in Ky U K3 liegen zwei.

Ausdriicklich: Der Satz von Gerschgorin garantiert in diesem Fall nicht, dass in K,
bzw. K ein Eigenwert liegt (nur in der Vereinigung liegen zwei).

Abbildung 5.3: Gerschgorin—Kreise von A

Klick fiir Bild gerschgorin
Klick fiir Matlab Figure gerschgorin

function gerschgorin

%GERSCHGORIN Demo Gerschgorin—Kreise
A=[1 3 3 ;4 5 3;7 8 2];

A=diag ([1 2 3 4])+rand(4);

A=[5 1 0 1; 2 4 1 0; 01 4 1; 2 2 1 6];
A=[4 0 1; 1 1 0; 0 1 0.5];

&

_

Listing 5.6: Stetige Abhdngigkeit der Nullstellen und Gerschgorinkreise (Gerschgo-
rin/gerschgorin.m)

Klicken fiir den Quellcode von Gerschgorin/gerschgorin.m

Beweis:

1. Sei A ein Eigenwert von A. Sei x Eigenvektor von A zum Eigenwert A mit

104

Gerschgorin-Kreise

051

A5

1

Frank Wuebbeling
gerschgorin.jpg: Gerschgorin–Kreise von A

hgS_070000:[1x1 struct array]

		[1x6 char array]

		[1x1 double array]

		[1x1 struct array]		@ =
	PaperUnits : [1x11 char array]
	Color : [1x3 double array]
	Colormap : [64x3 double array]
	InvertHardcopy : [1x2 char array]
	PaperPosition : [1x4 double array]
	PaperSize : [1x2 double array]
	PaperType : [1x2 char array]
	Position : [1x4 double array]
	ApplicationData : [1x1 struct array]

		[1x1 struct array]		@ =
	type : [1x4 char array]
	handle : [1x1 double array]
	properties : [1x1 struct array]
	children : [8x1 struct array]
	special : [4x1 double array]

		[0x0 double array]

Frank Wuebbeling
Matlab Figure gerschgorin.fig: Gerschgorin–Kreise von A

function gerschgorin

%GERSCHGORIN Demo Gerschgorin-Kreise

A=[1 3 3 ;4 5 3;7 8 2];

A=diag([1 2 3 4])+rand(4);

A=[5 1 0 1; 2 4 1 0; 0 1 4 1; 2 2 1 6];

A=[4 0 1; 1 1 0; 0 1 0.5];

A=[1 0 0; 0 i 0; 0 0 -i];

A=[1 1 0 0;0 i 1 0; 0 0 -1 1; 0 0 0 -i];

%X=rand(3)*10;

%A=inv(X)*B*X;

%eig(A);

A=A;

close all;

D=diag(diag(A));

L=A-D;

for epsilon=0:0.02:1

 draweigengersch(D+epsilon*L);

 %waitforbuttonpress;

 drawnow;

end

A

title('Gerschgorin-Kreise');

vorlsavepic('gerschgorin');

function draweigengersch(A)

E=eig(A);

if (isreal(E))

 E=complex(E);

end

plot(E,'*');

drawgerschgorin(A);

%axis([-1 5 -2 2]);

function drawgerschgorin(A)

n=size(A,1);

D=diag(A);

R=sum(abs(A))'-abs(diag(A));

for i=1:n

 circle(real(D(i)),imag(D(i)),R(i));

end

function circle(x,y,r)

if (r==0)

 r=1e-8;

end

rectangle('Position',[x-r,y-r,2*r,2*r],'Curvature',[1 1]);

Frank Wuebbeling
Stetige Abhängigkeit der Nullstellen und Gerschgorinkreise

||z||« = 1. Es gibt also ein m mit |z,,| = 1.

A=Az =0 = (@mm — AT = — Z Am,j T

Jj#m
= |amm — Al < Z |G g - |51
Jj#Em
— |am,m - >\‘ < Z |am,j’ =Tm
J#m

2. Wir zitieren den Satz: Die Nullstellen eines Polynoms hdngen stetig von sei-
nen Koeffizienten ab. Falls die Eigenwerte keine mehrfachen Nullstellen des
charakteristischen Polynoms sind, so folgt das einfach mit dem Satz iiber im-
plizite Funktionen, andernfalls muss man etwas mehr arbeiten. Ein vollstandi-
ger Beweis mit der Ordnung der Abhangigkeit findet sich in Kato|[1995], Satz
Il.1.7.

Sei
V=|JK
ieM
wie im Satz disjunkt zur Vereinigung W der restlichen Kreise. Sei weiter A =
D+ L + Rwiein Wir betrachten die Matrizen

A(t) = D+ t(L+R),t € [0,1], A0) = D, A(1) = A.

A(0) = D ist Diagonalmatrix, die Eigenwerte stehen alle auf der Hauptdiago-
nalen. In V' liegen nach Voraussetzung also genau ihre Eigenwerte a; ;, i € M.
A(t) ist stetig in t, d.h. auch die Eigenwerte hdangen stetig von ¢ ab. Die Dia-
gonalelemente von A(t) sind die von A, die Auflerdiagonalelemente werden
mit ¢ multipliziert. Nach Teil 1 liegen die Eigenwerte von A(t) also in der Ver-
einigung der Kreise um a,; mit Radius tr;, also insbesondere in V.U W.

Wir betrachten nun die Abhadngigkeit eines Eigenwerts \;(¢) von . Fiir die Kur-
ven \;(t),t € [0, 1], gilt

(@) Sie sind stetig.

(b) Sie beginnenin einem a; ;.

(c) Die Anzahl der Kurven, die in V beginnen, ist gleich der Anzahl der Dia-
gonalelemente, die in V' liegen, also gerade m.

(d) Sie endenin einem Eigenwert \; von A = A(1).

(e) Sieliegenganzin VU W.

105

() Da V und W disjunkt sind, muss die (stetige) Kurve entweder ganz in
V oder ganz in W liegen. Die Anzahl der Kurven, die in VV enden, ist die
Anzahl der Kurven, die in V beginnen, also m.

Also gilt insbesondere

[{\i : \; Eigenwertvon A}| = |M]|.

O
Bemerkung: Da die Eigenwerte von A und A! dieselben sind, kann man den Satz
statt auf die Zeilensumme auch auf die Spaltensumme anwenden.
Haufig kann man die Abschdtzung verscharfen, indem man das Kriterium statt auf
A auf DAD~! mit einer Diagonalmatrix D anwendet (7.5).
Das Programm gerschgorin visualisiert die Kurve der Eigenwerte und die Gerschgo-
rinkreise von A(t) fiir A aus dem Beispiel.

Definition 5.19 (strikte Diagonaldominanz) Sei A € R"*". Sei
ry = Z |ai,kz|
i£k
und
ri <lai;|Vie{l...n}.
Dann heif3t A strikt diagonaldominant.

Korollar 5.20 Sei A strikt diagonaldominant. Dann ist A invertierbar, Einzel- und
Gesamtschrittverfahren zur Losung von Ax = b konvergieren.

Beweis: Da |a; — 0| > 4, ist 0 nicht im i—ten Gerschgorinkreis enthalten, also ist 0
kein Eigenwert von A und damit A invertierbar.
Zur Konvergenz des Gesamtschrittverfahrens ist zu zeigen, dass

p(B) = p(D(L+R)) < L.

B;; = 0, also sind alle Gerschgorinkreise Kreise um 0 mit Radius ;/|a;;| < 1,
also sind alle Eigenwerte kleiner als 1. Die Konvergenz des Einzelschrittverfahrens

zeigen wir in[5.23|gleich mit. O
Leider ist dieses Korollar in der Praxis unbrauchbar, denn typischerweise addieren

sich bei der Diskretisierung von Differentialgleichungen in den Auf’erdiagonalen in
fast allen Zeilen die Betrage der Elemente zum Betrag des Diagonalelements auf, so

106

dassnur mit < statt < erfiillt ist (siehe z.B. in den Ubungen die Diskretisierun-
gen der zweiten Ableitung). Dies reicht aber offensichtlich nicht aus, denn z.B. die

Matrix
11
=(i1)
erfiillt[s.19| mit <, ist aber offensichtlich nicht invertierbar. Wir benétigen daher

Definition 5.21 (irreduzible Matrizen)
Sei A = (a;;) € R™". A heifit reduzibel, falls man die Indexmenge {1...n} so in
zwei nichtleere Teilmengen I, und I, zerlegen kann, dass

A = OV(Z, k’) S Il X IQ.
Also:
AredUZibe[g El[l 7é @ 7é IQ . IlL_JIQ == {1 .. .TL}, [1ﬂ12 = (Z) Qi = OV(Z,k’) € IlXIZ-

Ordnet man Zeilen und Spalten so an, dass zundchst die Indizes in 1, dann die in I,
beriicksichtigt werden, so hat A mit dieser Anordnung die Darstellung

A:(:S>.

Falls keine solche Zerlegung existiert, so heif3it A irreduzibel. Also:
VIl, [2:[1 #@#[2,[1U[2 = {171}7 [1ﬂ[2:®: El(l,k) G]l X[Q : CLL]{%O.

Definition 5.22 (schwach diagonaldominant)
Sei A € R™™, vy =3, . lai| Es sei erfiillt mit <, d.h.

ri <lai;|Vie{l...n}.
Zusdtzlich sei die Ungleichung mit < in einer Zeile erfiillt, d.h.
am : ry < |amml-
Weiter sei A irreduzibel. Dann heifit A schwach diagonaldominant.

Satz 5.23 (Konvergenz von GSV und ESV bei schwacher Diagonaldominanz)
Sei A € R™*" schwach diagonaldominant. Dann konvergieren Gesamtschritt— und
Eizelschrittverfahren. Insbesondere ist A invertierbar.

107

Beweis: Sei A = D + L + R wie in[5.17} Sei m die Zeile mit r,,, < [ay,m|-
0 i=k
— -1 - .
B:=D (L+R),alsoB;; = { a_k sonst -
Sei x Eigenvektor zum Eigenwert A von B, und ||z||, = 1. Sei
L={i:|z| =1}, L:={1...n}\ I.

Da ||z||s = 1, ist I; nichtleer. Angenommen, m € [;. Dann gilt

| Zk;ém QU T | < Zk;ém | | T'm

|@m,m | @, |G,

Al = [A2)m| = |(B)m| = <1

Seinunm ¢ I, also m € I,. Dann sind I; und I, nichtleer, und nach Definition der
Irreduzibilitat gibtes ¢ € 11, j € I, mita;; # 0. Dann gilt

<1

2o ikl Nmsl il i

@il @il i

Al = [(Az);| = [(Bx);| <

Hier steht ein <, weil |z;| < 1 (j € I,) und a;; # 0. Also gilt in jedem Fall, dass das
Gesamtschrittverfahren konvergiert. Der Fixpunkt ist eindeutig, d.h. insbesondere
ist auch A invertierbar.

Wir betrachten nun das Einzelschrittverfahren, also

B=(D+L)'R.
Flir einen Eigenwert A verschwindet das charakteristische Polynom x5 ()
x5(A) =det(—(D+ L) 'R —) =det((D+ L) ") -det(—~R — \(D + L)) = 0.
A ist schwach diagonaldominant. Sei |A| > 1. Dann ist auch
CAN)=R+AND+1L)

mindestens schwach diagonaldominant (sogar strikt fiir [\| > 1). Insbesondere ist
C'(X\) damit nach Teil 1 invertierbar, ihre Determinante verschwindet also nicht, und
damit ist A kein Eigenwert. Es gibt also keinen Eigenwert A von B mit |\| > 1, und
damit konvergiert das Einzelschrittverfahren (Beweis nach|James|[1973]).

Mit der gleichen Argumentation, angewandt auf starke Diagonaldominanz, ist das
natirlich auch der Beweis fiir die Konvergenz des Einzelschrittverfahrens infs.20] O

Die vorgestellten Verfahren neigen dazu, zu stark auszuschlagen. Ublicherweise
nutzt man daher fiir z(*+1) eine Linearkombination aus dem berechneten und z*),

108

Definition 5.24 (Relaxierte Verfahren)
Sei A € R™" und w fest. Sei A = L + D + Rwie ins.1und 2© € R". Die Folge
%) sej definiert durch

2™ = (1 - w)z® +wD™ (b— (L + R)z™).

) heift relaxiertes Gesamtschrittverfahren.
Fiir das Einzelschrittverfahren definieren wir die Relaxation wieder pro Element und
erhalten

2 = (1 - w3 1w (- Z el = Y ai,jxﬁ«’“)) Jai;
j=1 j=i+1
oder in Matrixschreibweise
(D + wL)z®™Y = (1 — w)D2™ + w (b — Ra™)
und erhalten das relaxierte Einzelschrittverfahren.

Nach der heuristischen Herleitung wiirde man annehmen, dass w € [0,1] Sinn
macht. Tatsdchlich nutzt man sogar w € [0,2] fiir das relaxierte Einzelschrittver-
fahren und spricht von Uberrelaxierung (successive over—relaxation).

Satz 5.25 (Konvergenz von SOR, Ostrovski und Reich 1949/1954)
Sei A € R™ ™ symmetrisch positiv definit und w € (0,2). Dann konvergiert das
relaxierte Einzelschrittverfahren (SOR-Verfahren).

Beweis: Sei A = L+ D+ L' wie in Die Schrittmatrix flir das SOR-Verfahren ist
B=(D+wL) (1 -w)D —wL").

Zu zeigen ist p(B) < 1. Sei x also Eigenvektor von B zum Eigenwert), also
(1 =w)D —wLY)x = \(D + wL)x. ™

Wegen
Dk,k = Akz,k: = 6214619 = (Aek, 6k:> >0

ist D auf der Hauptdiagonalen positiv, also gilt
d:= (Dx,x) > 0.
Sei
l:=(Lx,z) = (v, L'x) = (L'z, z).

109

http://de.wikipedia.org/wiki/Alexander_Markowitsch_Ostrowski

Dann gilt
0< (Az,z)=(L+ D+ L'z, z) =d + 2.

Mit (%) und Skalarprodukt mit z gilt

(1 —w)d—wl=\d+ wl)
oder
(1 —-w)d—wl

A:
d+ wl

Esistd(2 —w) > 0 und damit
d+wl>wl— (1 -—w)d=—((1 —w)d—wl).
Andererseits ist w(d + 21) > 0 und damit
d+wl>d—w(ld+1)=(1—-w)d—wl.

Insgesamt gilt also

(1 —w)d — wl|
d+ wl

und damit ist das SOR-Verfahren fiir 0 < w < 2 konvergent.

|A| = <1

Korollar 5.26 Sei A positiv definit. Dann konvergiert das Einzelschritt—Verfahren.

Satz 5.27 (Satz von Kahan)

Sei A = (a;j) € R a;; # 0,1 =1...n, undw ¢ (0,2). Dann konvergiert das
SOR-Verfahren nicht fiir alle b € R"™ und Startwerte +(*) € R" gegen die Lésung von

Ax = b.

Beweis: Wir schreiben die Schrittmatrix B des SOR-Verfahrens als

B=(I+wD™ L) (1-w)I-wD'R).

Die Matrizen auf der rechten Seite sind Dreiecksmatrizen, ihre Determinante ist das

Produkt der Diagonalelemente. Es gilt also

det B = (1 — w)".

Seien)\; die Eigenwerte von B. B ist dhnlich zu einer Jordanmatrix, auf deren Haupt-
diagonale die Eigenwerte stehen, insbesondere haben diese dieselbe Determinan-

te. Dann gilt
p(B)" = [(Ar - An)| = |det(B)] = [1 —w[".

110

http://de.wikipedia.org/wiki/William_Kahan

function x = sor(A,b,xo,N,omega)
%EINZELSCHRITT Einzelschrittverfahren , Gauss—Seidel
%MNe should assume that A is sparse.

ST
n=numel (xo0);
for i=1:N
. J

Listing 5.7: SOR-Verfahren (Einzelgesamtsor/sor.m)

Klicken fiir den Quellcode von Einzelgesamtsor/sor.m

function spektralradius(N))

%SPEKTRALRADIUS Berechne den Spektralradius von Iterationsmatrize

if (nargin<1)
N=10;

end

if (numel(N)>1)

(\

Listing 5.8: Vergleich der Spektralradien klassischer Verfahren (Einzelgesamtsor/-
spektralradius.m)

Klicken fiir den Quellcode von Einzelgesamtsor/spektralradius.m

function [A,L,D,R,N] = setup_matrix(N))
%SETUP_MATRIX setup matrix of discretized Laplace operator in 2D
if (nargin<1)

N=10;
end
lambda=o0;

A8

Listing 5.9: Matrixgenerierung (Einzelgesamtsor/setupmatrix.m)

Klicken fiir den Quellcode von Einzelgesamtsor/setupmatrix.m

Abschlielend geben wir ein Iterationsverfahren zur Berechnung der Minimum-—
Norm-Ldsung an. Dazu starten wir mit der Normalgleichung

A'AT = A'.

Die direkte Anwendung der bisher hergeleiteten Verfahren wiirde die Berechnung
von A!A erfordern, was nach der Rechnung auf Seite[78|nicht zu empfehlen ist. Wir

111

function x = sor(A,b,x0,N,omega)

%EINZELSCHRITT Einzelschrittverfahren, Gauss-Seidel

%We should assume that A is sparse.

x=x0;

n=numel(x0);

for i=1:N

 for j=1:numel(x)

 old=x(j);

 x(j)=0;

 summe=A(j,:)*x;

 x(j)=(1-omega)*old+omega/A(j,j)*(b(j)-summe);

 end

end

Frank Wuebbeling
SOR–Verfahren

function spektralradius(N)

%SPEKTRALRADIUS Berechne den Spektralradius von Iterationsmatrizen

if (nargin<1)

 N=10;

end

if (numel(N)>1)

 A=N;

 n=size(A,1);

 D=sparse(n,n);

 L=sparse(n,n);

 R=sparse(n,n);

 for i=1:n

 D(i,i)=A(i,i);

 for k=1:n

 if (A(i,k)~=0)

 if (k>i)

 R(i,k)=A(i,k);

 end

 if (k<i)

 L(i,k)=A(i,k);

 end

 end

 end

 end

else

 [A,L,D,R,N]=setupmatrix(N);

end

omega=1.6;

opts.maxit=10000;

opts.tol=0.01;

SpektralRadiusGesamt=max(eigs(inv(D)*(L+R)))

SpektralRadiusEinzel=max(abs(eigs(inv(D+L)*R)))

SpektralRadiusSOR=max(abs(eigs(inv(D+omega*L)*((1-omega)*D-omega*R),1,0,opts)))

Frank Wuebbeling
Vergleich der Spektralradien klassischer Verfahren

function [A,L,D,R,N] = setup_matrix(N)

%SETUP_MATRIX setup matrix of discretized Laplace operator in 2D

if (nargin<1)

 N=10;

end

lambda=0;

A=sparse(N*N,N*N);

L=sparse(N*N,N*N);

D=sparse(N*N,N*N);

R=sparse(N*N,N*N);

h=1/(N+2);

for i=1:N

 for k=1:N

 pos=(i-1)*N+k;

 D(pos,pos)=-4-lambda;

 A(pos,pos)=-4-lambda;

 if (i>1)

 A(pos,pos-N)=1;

 L(pos,pos-N)=1;

 end

 if (i<N)

 A(pos,pos+N)=1;

 R(pos,pos+N)=1;

 end

 if (k>1)

 A(pos,pos-1)=1;

 L(pos,pos-1)=1;

 end

 if (k<N)

 A(pos,pos+1)=1;

 R(pos,pos+1)=1;

 end

 end

end

end

Frank Wuebbeling
Matrixgenerierung

starten daher, indem wir die Gleichung durch Aufaddieren von z in ein Fixpunktpro-
blem transformieren, also

T =T+ A'(b— A7) =: g(T).
Wir nutzen Relaxation mit Parameter w und erhalten

e) = (1 — w)a® + w(z® — AY(Az® — b)) = 2% — LA (Az® —b).

Definition 5.28 (Landweber-Verfahren)
Gesucht sei die Minimum—-Norm-Ldsung von Az = b, A € R™", b € R™. Sei
z© € R* und w > 0 fest. Dann ist das Landweberverfahren definiert durch

pFHD) = (k) _ wAt(Ax(k) —b).

Satz5.29 Essei(< w < 2/||A||3 und 29 € Bild (A'). Dann konvergiert das Land-
weberverfahren gegen die Minimum—-Norm—-Ldsung.

Beweis: Seialso
g(z) =2 — wA' (Az — b).

Wir betrachten das Verfahren auf dem Unterraum
U := Bild(A") = Kern(A) = Kern(A*A).

g ist Abbildung von U nach U, und nach Voraussetzung z(*) € U. A*A hat als Abbil-
dung von U nach U keinen Eigenwert 0 (denn U steht senkrecht auf Kern(A*A)).
Das Verfahren hat die Schrittmatrix B := (I — wA"'A). Es konvergiert genau dann,
wenn p(B) < 1 auf U. Die Eigenwerte sind aber gerade 1 — w\, wobei \; die Ei-
genwerte von A'A auf U sind. Wegen

[|A][3 = p(AA) = max Ay

gilt dann nach Wahl von w gerade A\, € (—1,1). Damit konvergiert das Landweber-
verfahren gegen eine Losung = der Fixpunktgleichung, also gerade

A'Az = A,

Wegen (@ ¢ Bild (A?) gilt auch ™ € Bild(A*) und damit 7 € Bild(A?). O
Wirwollen die Fixpunktiterationen nun noch etwas uminterpretieren. Zur Herleitung

112

http://en.wikipedia.org/wiki/Landweber_iteration

des Landweber—Verfahrens haben wir die einfachste Form der Umwandlung einer
linearen Gleichung in ein Fixpunktproblem gewahlt, wir [6sen also statt

Ar =b
das dquivalente Fixpunktproblem
x=I—-Az+b.
Natirlich kénnen wir genau so auch das transformierte Gleichungssystem

QAz = Qb

betrachten fiir eine einfach invertierbare Matrix) (Vorkonditionierung). Die zu-
gehorige Iteration lautet dann

e = (1 — QA)x™ + Qb.
Fir A= L+ D + Rund Q = D~ erhalten wir dann das Gesamtschrittverfahren
20D = DL+ R)2® 4 D1y
und fir @ = (D + L)~ das Einzelschrittverfahren
g*) = (D + L)'R2™ + (D + L)~'D.

Die Konvergenz ist offensichtlich dann besonders gut, wenn I — () A besonders klei-
ne Norm hat. Im Optimalfall wire Q = A~!, aber dann brduchten wir natiirlich gar
nicht erst zu iterieren.

Wir benétigen also eine grobe Approximation an A~1, die sich leicht berechnen
lasst. Eine Moglichkeit sind Band—Vorkonditionerer: Wir streichen alle Elemente der
Matrix A auflerhalb eines Bandes der Breite p um die Hauptdiagonale. Die so ent-
stehende Bandmatrix A’ ist leicht zu invertieren, und tatsachlich gilt QA ~ I, falls
die weggestrichenen Elemente nicht allzu grofl waren (Saad [2003)]).

Ein typischer Vertreter der Vorkonditionierer ist das I[LU- (Incomplete LU)-
Verfahren. Hierbei wird zundchst die LR— (LU-) Zerlegung von A berechnet. Zur
Vermeidung des Fillins werden L und R nur dort berechnet, wo ohnehin schon Ein-
trage in A standen. Im Programm auf Seitewird die Zuweisung zu ag.f,jl) also nur
durchgefiihrt, wenn dort schon vorher ein Eintrag ungleich 0 stand.

Es gilt dann natiirlich nicht A = LR, sondern nur A ~ LR. L und R sind einfach
invertierbar, und man wahlt Q = (LR) ™. Eine genauere Analyse dieses Verfahrens
findet sich ebenfalls beiSaad [2003].

113

function [output_args] = ILU(input_args)
%ILU Incomplete LU
if (nargin<1)
N=10;
end
[A,L,D,R,N]=setupmatrix (N);

(S

Listing 5.10: Incomplete LU (Einzelgesamtsor/ILU.m)

Klicken fiir den Quellcode von Einzelgesamtsor/ILU.m

Im Allgemeinen lasst sich zu den klassischen iterativen Verfahren sagen, dass sie
fiir praktische Zwecke ohne Vorkonditionierung zu langsam konvergieren. Die Ei-
genwerte der Schrittmatrizen B liegen ohne Vorbehandlung zu nah an 1, auch wenn
Gauss in|Hanke-Bourgeois| [2006], S. 78, zum Einzelschrittverfahren zitiert wird:
Ich empfehle Ihnen diesen Modus zur Nachahmung. Schwerlich werden Sie je wie-
der direct eliminiren, wenigstens nicht, wenn Sie mehr als zwei Unbekannte ha-
ben. Das indirecte Verfahren ldsst sich halb im Schlafe ausfiihren, oder man kann
wdhrend desselben an andere Dinge denken.

Die Nutzung geeigneter, problembezogener Vorkonditionierung ist der Schliissel
zum effizienten Einsatz von Fixpunkt—Verfahren. Noch attraktiver sind sie in Kombi-
nation mit Krylovraum—Methoden, von denen wir einige Vertreter im {iberndchsten
Kapitel kennenlernen werden.

Fiir ein Anwendungsbeispiel iterativer Methoden bei der Wettervorhersage siehe
z.B. Steppeler et al.|[2003].

114

function [output_args] = ILU(input_args)

%ILU Incomplete LU

if (nargin<1)

 N=10;

end

[A,L,D,R,N]=setupmatrix(N);

Aorig=A;

n=N*N;

m=n;

for i=1:n

 for k=i+1:n

 if (A(k,i)~=0)

 l=A(k,i)/A(i,i);

 A(k,i)=l;

 for j=i+1:m

 if (A(k,j)~=0)

 A(k,j)=A(k,j)-l*A(i,j);

 end

 end

 end

 end

end

B=sparse(n,n);

for i=1:n

 for k=1:m

 sum=0;

 for j=1:min(i,k)

 %Observe 1 on main diagonal of L

 if (j==i)

 sum=sum+A(j,k);

 else

 sum=sum+A(i,j)*A(j,k);

 end

 end

 B(i,k)=sum;

 end

end

%Compare with matlab LU

setup.type='nofill';

[L,U]=ilu(Aorig,setup);

B=L*U;

for i=1:n

 L(i,i)=0;

end

A=L+U;

close all;

spy(A)

title('Sparse plot of ILU');

figure

spy(Aorig)

title('Sparse plot of A');

Z=inv(B)*Aorig;

spektralradius(Z);

if (N<3)

full(B)

full(Z)

full(eye(n)-Z'*Z)

end

eigs(eye(n)-Z'*Z,1)

end

Frank Wuebbeling
Incomplete LU

5.3 lterative Losung nichtlinearer Gleichungssysteme

Vorlesungsnotiz: 1.12.2012

Unsere Betrachtungen der Fixpunktverfahren waren nicht auf lineare Gleichungen
beschrankt. Wir wollen in diesem Abschnitt Newton—artige Verfahren definieren
und ihre Konvergenz untersuchen.

Die kurze Behandlung in diesem Abschnitt wird der Bedeutung der Newton-—
Verfahren nicht gerecht. Tatsachlich ist das Newton—Verfahren eins der am haufig-
sten genutzten numerischen Verfahren, die Konvergenzanalyse ist aber recht iiber-
sichtlich.

Sei zunachst f : R — R stetig differenzierbar. Wir suchen eine Nullstelle z von f.
Dazu miissen wir zundchst

f(@) =0

in eine Fixpunkgleichung umwandeln. Es bietet sich an eine Formulierung wie

Damit die zugehdrige Fixpunktiteration konvergiert, muss gelten
9'(T)| <1+ f'(7) € (0,2).

Diese Bedingung legt nahe, f in der Fixpunktgleichung mit 1/ f’ zu skalieren. Dazu
gibt es eine geometrische Motivation.

Sei 2(® eine Ndherung fiir 7. Wir approximieren die Funktion f in der Ndhe des Punk-
tes (9, f(2(¥))) durch ihre Tangente, und suchen statt einer Nullstelle der Funktion
die Nullstelle der Tangente. Falls z(®) nah an 7 liegt, so ist diese Approximation gut.
Die Tangentenfunktion hat die Darstellung

T(x) = f0) + @) (o = 2)

mit der Nullstelle
o0 = (@))

Wir setzen also fiir eine gegebene Naherung
2 = g(@®), g(x) =2 — (f(2)) 7" f(2),

und erhalten die Fixpunktiteration zu g, das Newton—Verfahren zur Bestimmung ei-
ner Nullstelle von f. So, wie wir es aufgeschrieben haben, ist das Verfahren auch in
hoheren Dimensionen definiert (hier ist dann f’(x) die Jakobimatrix).

115

Definition 5.30 (Newton-Verfahren, auch Newton-Raphson-Verfahren)
Sei f : R* — R" differenzierbar. Sei z'°) € R". Falls die auftretenden Ableitungen
f'(z®) invertierbar sind fiir alle k € N, so heift die Folge mit

207 = 00— ((2) 7 (o)

Newton—Verfahren zur Bestimmung einer Nullstelle von f. Hierbei ist f'(x) fiirn > 1
die Jakobimatrix von f an der Stelle x. Fiir n = 1 ist natiirlich einfach

f(z®)

Der Einfachheit halber beschrdanken wir uns bei den Beweisen auf das eindimensio-
nale Verfahren, die h6herdimensionalen Beweise sind immer analog (aber uniiber-
sichtlicher).

Satz 5.31 (Konvergenz des Newtonverfahrens)
Sei f : R™ — R™ zweimal stetig differenzierbar. Sei T eine Nullstelle von f.

1. Sei f'(T) invertierbar. Dann gibt es eine Umgebung U von T, so dass das New-
tonverfahren
f(@)

- f(@)
fiir) € U gegen T konvergiert (lokale Konvergenz). Die Ordnung der Kon-
vergenz ist quadratisch.

2 = g(@W), g(2) =x

2. Falls f'(%) nichtinvertierbar ist, aber f'(x) invertierbar ist in einer kleinen Um-
gebung von T fiir v # T, ist das Newtonverfahren immer noch lokal konver-
gent, aber die Konvergenz ist nur noch linear.

Beweis: Sei alson = 1.

1. f'(Z) ist invertierbar, also gibt es auch eine kleine Umgebung U’ von Z, so
dass f'(x) invertierbar ist flir x € U’ (die Menge der nicht invertierbaren Ele-
mente ist offen) und damit g auf U’ wohldefiniert und einmal stetig differen-

zierbar ist.

e @) F0) — f@F@) @)
oo P)~ f@)f @) f@)f
sl = F@P RNECE

also insbesondere

g'(x) =0.

116

http://en.wikipedia.org/wiki/Isaac_Newton
http://en.wikipedia.org/wiki/Joseph_Raphson

Damit sind alle Voraussetzungen aus [5.10] erfiillt, und das Newtonverfahren
konvergiert in einer kleinen abgeschlossenen Umgebung U von 7.
f'(x) ist stetig und invertierbar auf U, also gilt

Cy =sup||f'(z)7'|| < oc.
zelU
f ist zweimal stetig differenzierbar, d.h.

0=f@) = flz)+ f(2)(T-2) +%f”(€)(f—x)2- ™*
1" ist stetig, also gilt

1
Cy :=sup ||§f”(f)|\ < oo.
zelU

Fiir die Newton—-Iteration gilt somit

7= 2D = ([— 2+ /())|
= [=2 + /@) f @) (7 - 2®)
1

= 51" @ =2 (nach[)

S 01 . CQHE — ZE(k)||2

. Seialso

f'@) = f=) =0.
Nach 'Hospital ist g stetig fortsetzbar durch ¢(Z) = 7. Der Einfachheit halber
sei f”(z) # 0. f und f’ sind differenzierbar, es gilt also wieder mit Taylor

(@) = £(@) + J' @) =)+ 30"@) @ =2+ 56 - @)~)
::hl(w;r;O,mHE
und ebenso
f'(z)=f'@ + f"(Z)(x — %) + (x — T)ha(z), lim hy(x) = 0.

=T
In hoheren Dimensionen ist dies einfach nur die Definition der Ableitung.
Damitgilt flrx A7, x € U, f"(x) #0

L@ (@ —2)? + (z —) (2)
(@) (x —F) + (T — 2)ha(x
L@ (@ —7) + (@ — 7))

=T — T — .

J"(T) + ha(z)

117

http://de.wikipedia.org/wiki/Guillaume_Fran%C3%A7ois_Antoine,_Marquis_de_L%E2%80%99Hospital

Es gilt also
—g(x 1
J(@) = i IW 9@ Ly

T—=T Tr— X 2
und damit haben wir auch in diesem Fall (allerdings nur lineare) Konvergenz
nach dem lokalen Konvergenzsatz und der Kontraktionskonstante ¢ = 1/2.
Sollte auch f”(Z) = 0 sein, so entwickelt man einfach noch einen Schritt in
der Taylorentwicklung weiter und erhdlt dieselbe Aussage mit ¢ = 2/3 usw.
Achtung: Dieser Beweis geht so nur durch, falls eine Ableitung verschwindet.
Was passiert, falls alle Ableitungen verschwinden (etwa ¢!/(**~1) auf dem
Rand)

O
Fiir ausreichend haufig differenzierbare Funktionen kann der Beweis auch einfacher
gefiihrt werden. Mit den Beweisideen aus dem letzten Satz gilt

Korollar 5.32

Sei g p—-mal stetig differenzierbar. Sei T ein Fixpunkt von g, und sei ¢*)(z) = 0, k =
1...p—1,p> 1. Dann gibt es eine Umgebung U von T, so dass die Fixpunktiteration
von g mit Anfangswerten in U mindestens mit der Ordnung p konvergiert.

Beweis: Wegen ¢'(7) = 0 gibt es nach[5.10|eine abgeschlossene Umgebung U von
7, so dass die Fixpunktiteration konvergiert. Sei C' = sup, ;s [¢% (z)|. Mit Taylorent-
wicklung gilt, da die ersten p — 1 Ableitungen von g verschwinden,

_ 7 \P
o) = o) + 90T
und damit fiir die Fixpunktiteration
_ _ z®) — 7P C .
o)~ 7] = ga®) - g(@)| = |o(0 | < Spatt —ap

]
Um diesen Satz auf die Newtoniteration anzuwenden, muss ¢ in der Newtonite-
ration zweimal stetig differenzierbar sein, also f dreimal stetig differenzierbar.
Tatsdchlich ist nicht einmal die Existenz der zweiten Ableitung notwendig, es reicht
eine Lipschitzbedingung an f’. Der Vollstandigkeit halber sei auch dieser Beweis
hier angefiihrt.
Beweis: Sei f : R” — R™. Seiz € R" eine Nullstelle von f, und f sei in einer abge-
schlossenen Umgebung U von T einmal stetig differenzierbar und die Jakobimatrix
f' sei dort invertierbar. Zusatzlich gelte

1/(@) 7 (F'(y) = @)l < Clly — |

118

(dies ist natiirlich insbesondere der Fall, wenn auch f’ noch einmal differenzierbar
ist, dann kann die Differenz gegen || f”|| ||y — z|| abgeschatzt werden). Nach Defi-
nition von g und wegen f(z) = Oist firz € U

9(@) =T = f'(x)" (f@) - f (z) = f'(2)(@ - 2))
:f%@—1<Alf@r+ﬂoh—f%@hm).
mit h = T — z und damit
lg(z) — || < C||n]]* = C||T — ||

Damit ist die Newtoniteration konvergent, falls 2(°) nah genug an 7 liegt. O
Beispiel 5.33

1. Sei f(x) = 2" —a, a > 0, n € N. Gesucht wird die Nullstelle T = a*/™ von f.
Fiir das Newtonverfahren gilt

(k)yn —1 1
(k+1) _ (k) _ (™) a_n k&L (k)
x x (0Tt — + n Gy g(x™)
und 1 1)1 1
)
n n T n T

Die einzige positive Nullstelle von ¢ ist T, und offensichtlich nimmt g fiir z > 0
dort sein Minimum T an. Es gilt also

g(x) > g(T) =TVe > 0.

Weiter ist
n—1 .
< 1Vz > 7.

g ()] <

Also ist g kontrahierende Selbstabbildung auf [T, o0) und das Newtonverfah-
ren konvergiert mindestens fiir 0 > %. Sei nun 0 < z© < %, dann ist
Y > T und das Newtonverfahren konvergiert ebenso. Ingesamt konvergiert
das Newtonverfahren also fiir positive Anfangswerte. Das Verfahren ist eine
Moglichkeit, die n. Wurzel einer Zahl ndherumgsweise zu berechnen und be-
kannt unter dem Namen Verfahren von Heron.

119

http://en.wikipedia.org/wiki/Methods_of_computing_square_roots#Babylonian_method

2. Formal kénnen wir in Beispiel 1 auch n = —1 setzen, also

flz)=1/x —a, g(x):x—1/xl_azx+(x—ax2):x(2—ax).

2

f hat den einzigen Nullpunkt © = 1/a. Die Argumente aus Beispiel 1 kehren
sich gerade um, T ist ein Maximum von g und fiir 0 < x < T monoton stei-
gend. Das Newtonverfahren konvergiert fiir x € (0,2/a).

Das sieht nicht besonders sinnvoll aus — wir erhalten eine Iteration, die ge-
gen 1/a konvergiert. Tatsdchlich ist diese Formel schon seit einigen Jahren die
wohl mit riesigem Abstand am hdufigsten benutzte Anwendung des Newton—
Verfahrens.

g(x) benutzt nur Multiplikationen und Additionen. Wir erhalten also ein Ver-
fahren, um den Kehrwert einer Zahl nur mit Multiplikationen und Additionen
zu realisieren. Dies ist interessant fiir CPU-Designer, die sich damit die kom-
plizierte Realisierung der Division in Hardware sparen kdnnen. Intel hat die
genutzten Algorithmen fiir seine IA64—Prozessoren offengelegt in |Harrison
[2000], der Newtonschritt steht in 3.2. Leider ist die dort angesprochene Bei-
spielimplementation nicht mehr verfiigbar. In groben Ziigen wird zundichst ei-
ne Approximation z.B. durch einen Lookup—Table gefunden, die dann durch
wenige Schritte des Newton—Verfahrens verbessert wird.

3. Fiirn = 2 betrachten wir die Funktion
1 .
2 2 [v — ;(cosx —siny)
[R =R f(x,y) = (y — }l(cosx — 2siny)) '
Die Jakobimatrix lautet

, (14 1/4sinxz 1/4cosy
f(x,y)—(1/4sinx 141/2cosy) "

Das g aus der Newton—lteration ist in der Nédhe von (0.16,0.2) kontrahieren-
de Selbstabbildung, also gibt es dort eine Nullstelle von f. Nach dem Satz
von Gerschgorin (oder dem starken Zeilensummenkriterium) ist f'(x,y) im-

mer invertierbar, also konvergiert das Newtonverfahren bei geeignet gewdhl-
ten Startwerten quadratisch. Die Iteration lautet

AN A 1 . 1+1/2cosy® —1/4cosz® '
yBD) = \y®) det f/(a®, y®) \ —1/4sina® 14 1/4sinz®

) —1/4(cos 2™ — siny*))
y®) —1/4(cos z*) — 2sin y*))

mit
det f'(x,y) = (1+ 1/4sinz)(1+ 1/2cosy) — (1/4sinx)(1/4 cosy).

120

Bemerkung:

1. Natrlich invertiert man im R” die Jakobi—Matrizen im Newtonverfahren nicht
explizit sondern nutzt statt dessen

Fa®)(@® = a+0) = f(a),

2. In jedem Schritt des Newton—Verfahrens muss einmal die Funktion und ein-
mal ihre Ableitung ausgewertet werden. Im R™ muss zusatzlich ein Glei-
chungssystem geldst werden.

Falls f’ nicht explizit zur Verfligung steht, muss es durch Differenzen approxi-
miert werden, wir berechnen also

i (k)Y f(@®) = f(@™ + he;)
iz,) h

mit den Einheitsvektoren e; und berechnen daraus eine Approximation der
Jakobimatrix. In diesem Fall werden n + 1 Funktionsauswertungen bendétigt.

3. Ausdriicklich: Das Newtonverfahren ist im Allgemeinen nicht global konver-
gent. Falls die zugrundeliegende Funktion einen Nullpunkt Z besitzt, so kon-
vergiert das Newtonverfahren gegen 7, falls der Anfangspunkt nah genug an
T liegt.

Definition 5.34 (Varianten des Newtonverfahrens)
f erfiille die Voraussetzungen des Newtonverfahrens.

1. Fiir grof3es n ersetzt man im Newtonverfahren die Jakobimatrix an der Stelle
%) durch die Matrix an der Stelle =©) und spart sich damit die Berechnung
der Ableitung und der Zerlegung fiir n > 1. Wir erhalten

FO)@® —2®0) = fa®).
Diese Iteration heif3t vereinfachtes Newtonverfahren. Das vereinfachte New-

tonverfahren ist lokal linear konvergent.

2. Fiir eine Funktion f : R™ — R™ ist die Jakobimatrix nicht quadratisch. Es
liegt daher nahe, die inverse Matrix durch die Pseudoinverse zu ersetzen. Wir
erhalten die Gauss—Newton—-Methode

J}k+1 _ I(k) _ f’(x(k))+f($(k)).

121

Dies ldsst sich so motivieren: Wie bei der Definition der Kleinste Quadrate—
Lésung suchen wir ein x, so dass || f (x)|| sein Minimum annimmt. Sei z(*) eine
Ndherung an dieses Minimum. Wir approximieren wieder f durch die Tangen-
te und suchen das Minimum ") der Funktion

G(x) = | f(=) + f' (@) (z — = D)][[5.
Damit ist (x() — z(0)) aber kleinste Quadrate—Ldsung von
fi(@)z = —f).
Gehen wir hier nun zur Minimum Norm—Ldsung (iber, so erhalten wir gerade
e = 2O — (O F (20,
Modifizieren wir die Funktion G wie inl4.13|zu
G(@) = |If(29) + f' (D) (@ — D)3 + 7Pz — 213
so bekommen wir das Verfahren
20 = 40 _ f’(x(o))jf(x(o))

Eine geschickte Wahl von ~ liefert die weitverbreiteten Levenberg—Marquardt—
Verfahren nach|Levenberg|[1944] und Marquardt [1963)].

. Statt durch die Tangente kann man in einer Dimension die Funktion auch
durch die Verbindungsgerade (Sekante) zweier Punkte auf der Kurve appro-
ximieren. Hierzu wéhlt man zwei Startwerte (), (U, Dje Verbindungsgerade
der zugehdrigen Punkte auf der Kurve hat die Gleichung

S(a) = 1) 1 (F@) - faO) =T
1) — 20)°
Die Nullstelle dieser Geraden ist
21 _ (0
" E0) = f@O)
und wir erhalten das Sekantenverfahren
B+ _ (k)

S — fa®)

Das Sekantenverfahren ist lokal konvergent mit der Konvergenzordnung (1+
V/5)/2 ~ 1.62 (Ubungen).

0)

s f(m(O))

LB+2) — ()

F(z®).

122

4. Durch Beriicksichtigung von weiteren Termen in der Taylorentwicklung (neben
der Linearisierung) kann man Verfahren héherer Ordnung herleiten.

Neuwlonverfahren fur @(xp)."x-1

‘Sekantenverfahren fur @(x pix."x-1

Abbildung 5.4: Newtonverfahren und Sekantenverfahren fiir z* — 1 und Startwert 0.7

Klick fiir Bild Newton
Klick fiir Matlab Figure Newton
Klick fiir Bild Sekante
Klick fiir Matlab Figure Sekante

Vereinfachtes Nestonverfahren fur @(xp)x. -1 X107 Newtonverfahren fur @(xp)Polyval(p.x)

Abbildung 5.5: Vereinfachtes Newtonverfahren und typisches Verhalten bei Nicht—
Konvergenz

Klick fiir Bild Vereinfacht
Klick fiir Matlab Figure Vereinfacht
Klick fiir Bild Newtonnoconv
Klick fiir Matlab Figure Newtonnoconv

123

Newtonverfahren fur @(x,p)x.*x-1

T T T T
— Kurve

— Tangente
— Sekante ||

25

15F

051

— Newtonzug

Frank Wuebbeling
Newton.jpg: Newtonverfahren und Sekantenverfahren für x2-1 und Startwert 0.7

Frank Wuebbeling
Matlab Figure Newton.fig: Newtonverfahren und Sekantenverfahren für x2-1 und Startwert 0.7

Sekantenverfahren fur @(x,p)x.*x-1

2 T T T T T T
— Kurve
— Sekante
— Sekantennzug
1.5+ “|
1 4
05K =
0
0.5 B
| Il Il Il Il Il Il Il Il Il
06 07 08 09 1 1.1 1.2 1.3 1.4 1.5

1.6

Frank Wuebbeling
Sekante.jpg: Newtonverfahren und Sekantenverfahren für x2-1 und Startwert 0.7

Frank Wuebbeling
Matlab Figure Sekante.fig: Newtonverfahren und Sekantenverfahren für x2-1 und Startwert 0.7

Vereinfachtes Newtonverfahren fur @(x,p)x.*x-1

T T T T T
— Kurve
— Sekante
— Newtonzug
— Newtonzug |
— Tangente

0.8 0.9 1 11 1.2 1.3

Frank Wuebbeling
Vereinfacht.jpg: Vereinfachtes Newtonverfahren und typisches Verhalten bei Nicht–Konvergenz

Frank Wuebbeling
Matlab Figure Vereinfacht.fig: Vereinfachtes Newtonverfahren und typisches Verhalten bei Nicht–Konvergenz

Newtonverfahren fur @(x,p)polyval(p,x)

— Kurve
— Tangente
— Sekante
— Newtonzug ||

I
100 120

Frank Wuebbeling
Newtonnoconv.jpg: Vereinfachtes Newtonverfahren und typisches Verhalten bei Nicht–Konvergenz

Frank Wuebbeling
Matlab Figure Newtonnoconv.fig: Vereinfachtes Newtonverfahren und typisches Verhalten bei Nicht–Konvergenz

function xo = newtonneu(f, df, p, xo, N,a,b)
%NEWTONNEU Perform N steps of Newtons algorithm.
%draw function in [a,b}.

format long

format compact

doplot=1;

(S

Listing 5.11: Newtonverfahren (Newton/newtonneu.m)

Klicken fiir den Quellcode von Newton/newtonneu.m

function y = newtonneu(f, df, p, xo, N,a,b)
WNEWTONNEU Perform N steps of Newtons algorithm.
%draw function in [a,b}.

format long

x=(0:200)x(b—a)/200+a;

plot (x,f(x,p));

\

Listing 5.12: vereinfachtes Newtonverfahren (Newton/vereinfachtneu.m)

Klicken fiir den Quellcode von Newton/vereinfachtneu.m

function y = sekanteneu(f, p, xo, x1, N,a,b)
SEKANTENEU Summary of this function goes here
% Detailed explanation goes here

format long

x=(0:200)x(b—a)/200+a;

plot (x,f(x,p));

&

Listing 5.13: Sekantenverfahren (Newton/sekanteneu.m)

Klicken fur den Quellcode von Newton/sekanteneu.m

function newtonneudemo()
YINEWTONNEUDEMO

N=40;

f=@(x,p) X.xx—1;

dfs@(x,p) 2xx;

close all;

S

)

Listing 5.14: Steuerprogramm zum Newtonverfahren (Newton/newtonneudemo.m)

124

function x0 = newtonneu(f, df, p, x0, N,a,b)
%NEWTONNEU Perform N steps of Newtons algorithm.
%draw function in [a,b}.
format long
format compact
doplot=1;
if (N<0)
 N=-N;
 doplot=0;
end
x=(0:200)*(b-a)/200+a;
if (doplot)
plot(x,f(x,p));
line([a b],[0 0],'Color','Black');
title(['Newtonverfahren für ' func2str(f)])
end
y0=f(x0,p);
for i=1:N
 dy=df(x0,p);
 x1=x0-dy\y0;
 if (abs(x1-x0)<1e-5)
 break;
 end
 y1=f(x1,p);
 if (doplot)
 line([x0 x1],[y0 y1],'Color','Red');
 line([x0 x0],[y0 y1],'Color','Green');
 line([x0 x1],[y1 y1],'Color','Green');
 line([x0 x1],[y0 0],'Color','Black');
 end
 x0=x1;
 y0=y1;
end
if(doplot)
legend('Kurve','Tangente','Sekante','Newtonzug');
end

Frank Wuebbeling
Newtonverfahren

function y = newtonneu(f, df, p, x0, N,a,b)
%NEWTONNEU Perform N steps of Newtons algorithm.
%draw function in [a,b}.
format long
x=(0:200)*(b-a)/200+a;
plot(x,f(x,p));
y0=f(x0,p);
 dy=df(x0,p);
for i=1:N
 x1=x0-dy\y0
 if (abs(x1-x0)<1e-5)
 break;
 end
 y1=f(x1,p);
 line([x0 x1],[y0 y1],'Color','Red');
 line([x0 x0],[y0 y1],'Color','Green');
 line([x0 x1],[y1 y1],'Color','Green');
 line([x0 x1],[y0 0],'Color','Black');
 x0=x1;
 y0=y1;
end
line([a b],[0 0],'Color','Black');

title(['Vereinfachtes Newtonverfahren für ' func2str(f)])
legend('Kurve','Sekante','Newtonzug','Newtonzug','Tangente');

Frank Wuebbeling
vereinfachtes Newtonverfahren

function y = sekanteneu(f, p, x0, x1, N,a,b)
%SEKANTENEU Summary of this function goes here
% Detailed explanation goes here
format long
x=(0:200)*(b-a)/200+a;
plot(x,f(x,p));
y0=f(x0,p);
y1=f(x1,p);
for i=1:N
 if (abs(x1-x0)<1e-5)
 break;
 end
 dy=(y1-y0)/(x1-x0);
 x2=x0-dy\y0
 y2=f(x2,p);
 %[x0 x1 x2 y0 y1 y2]
 line([x1 x2],[y1 y2],'Color','Red');
 line([x1 x1 x2],[y1 y2 y2],'Color','Green');
 x0=x1;
 y0=y1;
 x1=x2;
 y1=y2;
end
line([a b],[0 0],'Color','Black');

title(['Sekantenverfahren für ' func2str(f)])
legend('Kurve','Sekante','Sekantennzug');

Frank Wuebbeling
Sekantenverfahren

Klicken fiir den Quellcode von Newton/newtonneudemo.m

function [output_args] = polynewton(p,xo, x1, x2, N)
%POLYNEWTON

% Fuehre N Newtonschritte fuer p(x)=o aus.

% Zeichne im Intervall [x1,x2],

% Startwert xo.

Xx=(0:100)%(Xx2—x1)/100+ X1}

S v
Listing 5.15: Newtonverfahren fiir Polynome (Newton/polynewton.m)

Klicken fiir den Quellcode von Newton/polynewton.m

function [output_args] = demo(input_args)
9%%DEMO

polynewton ([1 o —4],0.2,—-3,3,10);
polynewton ([1 4 5 3 2 1],0.2,—3,3,10);
polynewton (rand(10,1),0.2, —3,3,10);
polynewton (rand (10,1),0.2,—3,3,10);

Listing 5.16: Steuerprogramm zum Newtonverfahren fiir Polynome (Newton/de-
mo.m)

Klicken fiir den Quellcode von Newton/demo.m

Ein Problem beim Newtonverfahren ist das Finden einer geeigneten Anfangsnahe-
rung. Hat man eine solche, konvergiert das Newton—Verfahren meist mit wenigen
Schritten. Fiir Polynome kann man mit Hilfe des Satzes von Gerschgorin Einschlie-
Bungskriterien fiir die Nullstellen gewinnen (Ubungen).

Global konvergente Verfahren lassen sich mit Homotopiemethoden gewinnen. Eine
solche Methode haben wir bereits im Beweis zum Satz von Gerschgorin angewandt.
Gesucht sei die Nullstelle von f(z). Wir definieren eine Funktion f(z,t), ¢t € [0, 1],
mit den Eigenschaften:

1 f(z,1) = f(z).
2. f(x,t) ist zweimal stetig differenzierbar in z.
3. Die Nullstelle x(t) von f(z,t) hdngt stetig von ¢ ab.

4. Die Nullstelle z(0) lasst sich einfach bestimmen.

125

function newtonneudemo()
%NEWTONNEUDEMO
N=40;
f=@(x,p) x.*x-1;
df=@(x,p) 2*x;
close all;
newtonneu(f,df,0,0.4,N,0,2);
%vorlsavepic('Newton');
figure;
sekanteneu(f,0,0.1342,0.6879867,N,0.6,1.6);
%vorlsavepic('Sekante');
figure;
vereinfachtneu(f,df,0,0.7,N,0.7,1.2);
%vorlsavepic('Vereinfacht');
figure;
p=rand(5,1)*2-1;
%p(6)=p(6)-polyval(p,0);
f=@(x,p) polyval(p,x);
df=@(x,p) polyval(polyder(p),x);
newtonneu(f,df,p,100.4,N,-2,2);
%vorlsavepic('Newtonnoconv');
%pause;
%sekanteneu(f,p,0.0234,0.98923493,N,-2,2);

Frank Wuebbeling
Steuerprogramm zum Newtonverfahren

function [output_args] = polynewton(p,x0, x1, x2, N)
%POLYNEWTON
% Fuehre N Newtonschritte fuer p(x)=0 aus.
% Zeichne im Intervall [x1,x2],
% Startwert x0.
x=(0:100)*(x2-x1)/100+x1;
plot(x,polyval(p,x),x,zeros(1,101));
title('Funktionsplot');
axis([x1 x2 -4 4]);
dp=polyder(p);
waitforbuttonpress;
for i=1:N
 lambda=polyval(dp,x0);
 p0=polyval(p,x0);
 xn=x0-p0/lambda;
 xmin=min([x1 x0 xn]);
 xmax=max([x2 x0 xn]);
 xmin=-max(abs(xmin),abs(xmax))-1;
 xmax=-xmin;
 ymax=max([abs(p0) abs(polyval(p,0)) abs(p0-lambda*x0)])+1;
 ymin=-ymax;
 x=(0:100)*(xmax-xmin)/100+xmin;
 plot(x,polyval(p,x),x,zeros(1,101),x,lambda*(x-x0)+p0,zeros(1,101),(0:100)/100*(ymax-ymin)+ymin);
 axis([xmin xmax ymin ymax]);
 title(strcat('Newtonschritt ',num2str(i)));
 xn-x0
 x0=xn;
 waitforbuttonpress
end

Frank Wuebbeling
Newtonverfahren für Polynome

function [output_args] = demo(input_args)
%DEMO
polynewton([1 0 -4],0.2,-3,3,10);
polynewton([1 4 5 3 2 1],0.2,-3,3,10);
polynewton(rand(10,1),0.2,-3,3,10);
polynewton(rand(10,1),0.2,-3,3,10);
polynewton(rand(10,1),0.2,-3,3,10);
polynewton(rand(10,1),0.2,-3,3,10);
polynewton(rand(10,1),0.2,-3,3,10);
polynewton(rand(10,1),0.2,-3,3,10);
polynewton(rand(10,1),0.2,-3,3,10);
polynewton(rand(10,1),0.2,-3,3,10);
polynewton(rand(10,1),0.2,-3,3,10);

Frank Wuebbeling
Steuerprogramm zum Newtonverfahren für Polynome

Damit konnen wir die Nullstellen x(¢) verfolgen. Sei h = 1/N und N fest. Aus-
gehend von der Nullstelle z(0) bestimmen wir mit einigen Schritten des Newton—
Verfahrens eine Naherung fiir z(h). Da die Nullstellen stetig von ¢ abhdngen, wird
das Newton—-Verfahren schnell konvergieren, falls i klein genug ist. Ausgehend von
dieser Ndherung an z(h) bestimmen wir dann eine Ndherung an x(2h) usw. bis zur
Nullstelle z(1) von f(x).

Im Matlab—Beispiel wird eine Homotopiemethode gerechnet zur Bestimmung der
Nullstellen von

p(r) = 2* — 32° +52° + 2 — 2

mit der Homotopiefunktion

flz,t) = (1 —t)(z* — 1)+ tp(x).

Es illustriert das grof’e Problem der Homotopiemethoden: Will man alle Nullstel-
len einer Funktion bestimmen, muss man, sobald zwei Nullstellen zusammen- und
wieder auseinanderlaufen (Bifurkation), sicherstellen, dass man alle Zweige weiter-
verfolgt (dies ist im Programm nicht der Fall, deshalb erhdlt man am Ende nur drei
der vier Nullstellen).

Homotopiemethoden: Nullstellenkurven
T T T

Abbildung 5.6: Nullstellen xy(t) fur f(z,t).

Klick fiir Bild Homotopy
Klick fiir Matlab Figure Homotopy

function xo=homotopyneu(f,df,fo,dfo,p,xo,N,M,a,b)
%HOMOTOPYNEU find zeros of f with homotopy method
x=(0:200)x(b—a)/200+a;

126

1.5

05

-15

1

Homotopiemethoden: Nullstellenkurven

S

oo,

Nullstelle 1
Nullstelle 2
Nullstelle 3
Nullstelle 4

S

1.5

Frank Wuebbeling
Homotopy.jpg: Nullstellen xk(t) für f(x,t).

Frank Wuebbeling
Matlab Figure Homotopy.fig: Nullstellen xk(t) für f(x,t).

plot (x, f(x,p),x,fo(x,p));
z=zeros (numel(xo) ,N);
for k=1:N

Listing 5.17: Homotopiemethoden (Newton/homotopyneu.m)

Klicken fiir den Quellcode von Newton/homotopyneu.m

function [output_args] = homotopyneudemo(input_args)
%HOMOTOPYNEUDEMO
close all;

p.orig=[1 —3 5 1 2];
%p.orig=rand (5,1) x40;
p.ref =[1 0 o 0o —1];

J

Listing 5.18: Steuerprogramm zu Homotopiemethoden (Newton/homotopyneude-
mo.m)

Klicken fiir den Quellcode von Newton/homotopyneudemo.m

127

function x0=homotopyneu(f,df,f0,df0,p,x0,N,M,a,b)
%HOMOTOPYNEU find zeros of f with homotopy method
x=(0:200)*(b-a)/200+a;
plot(x,f(x,p),x,f0(x,p));
z=zeros(numel(x0),N);
for k=1:N
 x0(1);
 alpha=k/N;
 myfun=@(x,p) alpha*f(x,p)+(1-alpha)*f0(x,p);
 mydfun=@(x,p) alpha*df(x,p)+(1-alpha)*df0(x,p);
 for i=1:numel(x0)
 x0(i)=newtonneu(myfun,mydfun,p,x0(i),M,a,b);
 y=myfun(x0(i),p);
 if (abs(y)>1e-8)
 x0(i)=x0(i)+complex(0,1e-4);
 x0(i)=newtonneu(myfun,mydfun,p,x0(i),M,a,b);
 end
 z(i,k)=x0(i);
 end
 plot(real(z(:,1:k))',imag(z(:,1:k))','.');
 z(1,1:k);
 x0(1);
 drawnow;
end

Frank Wuebbeling
Homotopiemethoden

function [output_args] = homotopyneudemo(input_args)
%HOMOTOPYNEUDEMO
close all;
p.orig=[1 -3 5 1 2];
%p.orig=rand(5,1)*40;
p.ref =[1 0 0 0 -1];
x0 =[1 -1 i -i];
%plot(real(x0),imag(x0),'.');
%waitforbuttonpress;
N=100;
M=-8;
f=@(x,p) polyval(p.orig,x);
df=@(x,p) polyval(polyder(p.orig),x);
f0=@(x,p) polyval(p.ref,x);
df0=@(x,p) polyval(polyder(p.ref),x);
polyval(p.ref,x0)
x0=homotopyneu(f,df,f0,df0,p,x0,N,M,-5,5)
f(x0,p)
title('Homotopiemethoden: Nullstellenkurven');
legend('Nullstelle 1','Nullstelle 2','Nullstelle 3', 'Nullstelle 4');
vorlsavepic('Homotopy');

Frank Wuebbeling
Steuerprogramm zu Homotopiemethoden

Kapitel 6

Krylovraumverfahrren zur Losung linearer
Gleichungen

Die heute weitaus am hdufigsten genutzten Verfahren zur iterativen Losung linearer
Gleichungen sind die Krylovraumverfahren, und hier besonders das cg—Verfahren
(siehe z.B. den schon zitierten Artikel Steppeler et al. [2003] fiir die Wettervorher-
sage). Wir konnen hier nur einen kleinen Einblick in die Thematik geben. Eine klassi-
sche Einfiihrung mit Einblick in die Anwendung fiir partielle Differentialgleichungen
finden Sie in Braess|[2007], Kapitel 4 (Achtung: Der Text von 1992 wurde in der Auf-
lage von 2007 stark ergdnzt), eine Einordnung in allgemeine iterative Methoden fiir
lineare Gleichungen in Saad| [2003], und einen weiteren klassischen, gut geschrie-
benen Text in|Greenbaum|[1987].

Das letzte Buch hat zwei Teile: Algorithmen und Vorkonditionierer, was unsere Be-
merkung zur Bedeutung der Vorkonditionierung auf Seite unterstreicht. Hier
werden auch die klassischen Iterationsverfahren nur als Vorkonditionierer ein-
gefiihrt, so, wie wir es auf Seite[113|getan haben.

Wie immer ist dies eine personliche Auswahl, die Zahl der Lehrbiicher ist vollig
uniiberschaubar. Insbesondere enthalt jedes Lehrbuch zur Numerischen Linearen
Algebra inzwischen auch einen Abschnitt zu Krylovraumverfahren, z.B. auch/Hanke-
Bourgeois|[2006].

6.1 Gradientenverfahren
In diesem Kapitel sei zundchst immer A eine symmetrisch positiv definite n x n—

Matrix. Insbesondere ist dann auf dem R"™ das Skalarprodukt mit zugehdoriger
(Energie-) Norm

(2,9)a = (Az,y) Yo,y € R, ||z||a = (2, Ax)"/?

128

wohldefiniert. Wir haben bereits in den Ubungen gezeigt, dass fiir b € R” gilt

AT = b <= T = arg min f(z), f(x) ! (x, Az) — (b,). (6.1)

reR”? T 2

Tatsdchlich gilt fir AT = b

%(m r, AT +x))— (T +x) = %(f, AT) + (z,x)

und diese Funktion nimmt ihr eindeutiges Minimum an fiir x = 0. Wir haben also
unser Problem durch ein Minimierungsproblem ersetzt.

Wir wollen dieses Problem wieder iterativ l6sen. Sei also z(*) eine Naherung fiir z.
Wir verbessern diese Lésung, indem wir zundchst eine Suchrichtung d®) und dann
einen Skalar o®) wihlen mit

g = 28 L R g (kDY < (g R))

(line search-Verfahren). Damit liegt z(**1) — (9 in dem Untervektorraum, der von
den Vektoren d© . .. d®) aufgespannt wird.
Im giinstigsten Fall wahlen wir a(*) so, dass die Funktion

gla) = f(z® + ad®)

fir @« = a® ihr Minimum annimmt und d*) so, dass die Funktion am Punkt z*) in
dieser Richtung am starksten abfallt.

Dadurch erhalten wir die Gradientenverfahren: Wie bei Newton ersetzen wir die zu
minimierende Funktion f lokal durch eine lineare Funktion. Damit ist

flz+dx) ~ f(x)+ (Vf)(z)dx.

Die grofite Abnahme von f erreicht man also durch Wahl der Richtung dx =

=V f(z).

Definition 6.1 (Gradientenverfahren, Verfahren des steilsten Abstiegs, Steepest
Descent)

Sei f € CY(R"). Sei (¥ eine Schdtzung fiir das Minimum von f, und seien
a® ¢ R*. Dann heift

2 —) 4 q®g®) gk = g p(p0)

Gradientenverfahren zur Minimierung von f.

129

Wir betrachten nun wieder[6.1} Wir definieren das Residuum r;, und den Approxima-
tionsfehler e, durch

r® =p— Az® e =7 — 28 = A71p — z®) = A1),

Furr die Funktion f aus[6.1gilt
flz+dx)— f(z) = (Az,dx) — (dx,b) + %(dx,dx) = (Az — b,dx) + %(dx,dx)

und damit d®) = —V f(2®)) = b — Az® = r® fiir das Gradientenverfahren.
Die Funktion

ﬂay:f@®+wm®):f@®y+MAﬂ@—adW)+%M@W%mﬂw (6.2)

nimmt ihr Minimum an fir (" (’“))
r\". d
= @, Ad0y ©3)

Damit erhalten wir das Gradientenverfahren zur Losung linearer Gleichungen

Definition 6.2 Sei A € R™*™ symmetrisch positiv definit, b € R", r®) = b — Az,
Dann heif3t die Folge

(8, (80
(r®), Ar()

2D) 4 o) k)

Gradientenverfahren zur L6sung von Ax = b.
2#+1) minimiert auch ||z — Z| | firz € 2™ + ar®), denn

Gla) = |lz2® 1ar® _F 2 = [—e® L ar® |2 = [1e®]12 120 (— Ae® E) 1 a2[-H)|?2
(@) = [[a"+ar™ =z|[3 = || =™ +ar[[3 = ||| [a+2a(2Ae ™) +a7[[r][

=—r(k)

nimmt ebenfalls sein Minimum fiir « = a® an. Wir bekommen also in diesem
Unterraum die beste Approximation an = (gemessen in der Energienorm).

130

Echies Gradientenverfahven fur ineare Giichungen Echtes Gradientenverfahven fur incar

/

Abbildung 6.1: Surface Plot von f in 2D und Iterationsverlauf im echten Gradienten-
verfahren

Klick fiir Bild Gradientenverf
Klick fiir Matlab Figure Gradientenverf

Klick fiir Bild Gradientenverf2
Klick fiir Matlab Figure Gradientenverf2

function [output_args] = SteepestDescent(input_args)
BSTEEPESTDESCENT

A=rand (2);

A=(A+A’) [2;

lambda=min(eig (A));

if (lambda<o)

Listing 6.1: Gradientenverfahren (Krylov/SteepestDescent.m)

Klicken fiir den Quellcode von Krylov/SteepestDescent.m
Es gilt
rD) = — Ag®HD) = — Az — o AGP = (T — o™ A)r®
und damit

D) — (1 —a® AT — a®DArED = (1T —a®A) ... (I —a®A)r®

und somit d® = r®*) Linearkombination von (@, ... A% Nach der Vorbemer-
kung gilt damit

2® D € 2O 4 span(r® . AR©),
Der von den Suchrichtungen (@ .. Ak=1,(0) aufgespannte Unterraum V*) heift

Krylovraum) (A, r(©) und gibt den hier betrachteten Algorithmen seinen Namen

131

Echtes Gradientenverfahren fir lineare Gleichungen

Frank Wuebbeling
Gradientenverf.jpg: Surface Plot von f in 2D und Iterationsverlauf im echten Gradientenverfahren

Frank Wuebbeling
Matlab Figure Gradientenverf.fig: Surface Plot von f in 2D und Iterationsverlauf im echten Gradientenverfahren

Echtes Gradientenverfahren fir lineare Gleichungen

Frank Wuebbeling
Gradientenverf2.jpg: Surface Plot von f in 2D und Iterationsverlauf im echten Gradientenverfahren

Frank Wuebbeling
Matlab Figure Gradientenverf2.fig: Surface Plot von f in 2D und Iterationsverlauf im echten Gradientenverfahren

function [output_args] = SteepestDescent(input_args)

%STEEPESTDESCENT

A=rand(2);

A=(A+A')/2;

lambda=min(eig(A));

if (lambda<0)

A=A+(1-lambda)*eye(2);

end

A=[1 0.0;0.0 4.7];

%A=[1 0; 0 100];

%A=[1 0; 0 1];

B=rand(2);

[Q R]=qr(B);

%A=Q'*A*Q;

x0=[1;1];

b=A*x0;

M=50;

len=5;

h=len/M;

f=zeros(2*M+1);

xm=zeros(2*M+1);

ym=zeros(2*M+1);

for i=0:2*M

 x=i*h-len+x0(1);

 for k=0:2*M

 y=k*h-len+x0(2);

 z=[x;y];

 xm(i+1,k+1)=x;

 ym(i+1,k+1)=y;

 f(i+1,k+1)=g(A,z,b);

 end

end

surf(xm,ym,f,'MeshStyle','row','EdgeColor','None');

 xlim([-len+1 len+1]);

 ylim([-len+1 len+1]);

x=[-len+1;-len+1];

for i=1:4

 d=b-A*x;

 alpha=d'*d/(d'*A*d);

 line2(x,x+alpha*d,A,b);

 %waitforbuttonpress;

 x=x+alpha*d;

end

norm(d)

title('Echtes Gradientenverfahren für lineare Gleichungen');

vorlsavepic('Gradientenverf');

view(gca,[-18.5 70]);

vorlsavepic('Gradientenverf2');

end

function out=g(A,z,b)

 out=1/2.*z'*A'*z-z'*b;

end

function line2(x,y,A,b)

line([x(1) y(1)],[x(2) y(2)],[g(A,x,b) g(A,y,b)],'Color','White');

end

Frank Wuebbeling
Gradientenverfahren

(nach Aleksey Krylov, geboren am 3.8.1863). Das interessante an den Krylov—Raum-
en ist, dass man sie durch Polynome beschreiben kann. Offensichtlich ist y genau
dannin K® (A, r©), wenn es ein Polynom p gibt mit

y =p(A)r®.

Es ist also moglich, Eigenschaften der Polynome zum Beweis von Eigenschaften
der Krylovraume zu nutzen, dies werden wir bei der Berechnung der Konvergenzge-
schwindigkeit des cg—Verfahrens tun.

Satz 6.3 (Konvergenz des Gradientenverfahrens)
Sei A € R™*™ positiv definit. Dann gilt:

1. Das Gradientenverfahren|6.2] konvergiert.
2. Mitder Kondition k = k(A) = ||Al]2 - ||A7]2 gilt

k—1 k
||ekr|As() leolla.

K+1

Beweis: Die Funktion G aus[6.1nimmt fiir oy, ihr Minimum an, und es gilt
Gla) = |l = e® + ar®[[5 = [|(— ad)e™[3.

A ist positiv definit, also gibt es eine unitare Matrix U und eine Diagonalmatrix X
mit A = U*¥2U. Eingesetzt in die Definition der Norm bekommen wir

(I — aA)zx, Az)

1(7 = aA)[[= sup

(x, Azx)
(XUz — aX?Uz, XUx)
= sup
(XUx,XUx)
32
— qup L= y) y = SUz
(v,9)
= || — 7|3

= max |1 — a)\;|*, \; Eigenwert vonA.
J

Also gilt
[V115 < Gla)
= /(1 — ad)e™|[}
< [|(1 = ad)|[5lle™
< max |l — |- [|le®|%4 Va € R.
J

132

http://en.wikipedia.org/wiki/Aleksey_Krylov

Seien A\, A\, der grofdte bzw. kleinste Eigenwert von A. Es gilt
A

= |All, - [|A7Y], = 22,
f= Al - ATl = 3

Wir setzen

und erhalten
1_aA_A1+An_2A1_An_A1_K_1
L VS W VA NP |

und
_)\1+>\n_2)\n_)\1_)\n_ k—1

1—a)\, = _ _ k-1
@ VW Mt h R4l

Insgesamt liegt also immer |1 — a\;| im Intervall [, £~] und wir erhalten

k—1

[le®][4 <

(k)
< S el

und daraus folgt die Behauptung. O

Bemerkung: Fiir grole Konditionen bekommen wir die Kontraktionskonstante 1 —
HLH ~ 1. Die Iteration ist in diesen Fallen also extrem langsam.

Dies klart nun auch endlich den Namen Vorkonditionierer: Die Konvergenzge-
schwindigkeit hangt von der Kondition ab. Vorkonditionierer verkleinern die Kon-
dition und beschleunigen damit die Konvergenz.

Im Bild ist gut zu sehen, dass die Iterationen hin und her springen. Die scheinbar
so giinstige Wahl der d(®) liefert zwar eine konvergente, aber keine optimale Folge.
Falls wir an den Krylovraumen festhalten wollen, konnten wir unsere Iterationen
verbessern:

Wahle X #+1 in 2O 4 K®F (A, r©) so, dass

b — Az|[3
fir z = X**+1) minimiert wird. Mit Hilfe der Matrix
W = (rO ... AG-D0)

gilt
VE = Wy 2z e R}

und daher gibt es ein z € R* mit

XEHD — 2O 4wz,

133

Nach Definition von X **1Y minimiert z das Funktional
b — Az© — AWz, z € R*

und damit ist z Minimum—Norm-L8ésung von AWz = b — Az, Hieraus l3sst sich
X (+1) berechnen. Dies fiihrt auf die hiufig verwendeten Arnoldi- und GMRES—
Verfahren (Greenbaum) [1987]). Dies sind eigentlich gar keine iterativen Verfahren
mehr. Wir werden zeigen, dass entweder die Suchrichtungen linear unabhdngig
sind oder die gesuchte Losung bereits im Suchraum enthalten ist. Wegen der Opti-
malitat ist damit nach spatestens n Schritten das optimale Ergebnis erreicht.

Zur Durchfiihrung des Verfahrens miissen die Q R-Zerlegungen der Matrizen AW (®)
berechnet werden. Dies ist sehr effizient moglich (siehe Greenbaum| [1987]). Wir
werden aber eine noch effizientere Alternative iiber die konjugierte Gradienten—
Methode kennenlernen.

6.2 Konjugierte Richtungen und das CG—Verfahren

Sei wiederimmer A € R™*™ symmetrisch positiv definit.

Definition 6.4 (konjugierte Vektoren)
Seien x, y € R™,x # 0 # y. x und y heiflen (A-) konjugiert genau dann, wenn

(xay)A = <I7Ay) =0.

Satz 6.5 Seien d, ... dU—Y) paarweise konjugiert. Sei AT = b. Dann gilt fiir das
line search—Verfahren fiir lineare Gleichungen mit den Suchrichtungen d*® und
gemdp Gleichung|6.3|optimalen

(k) qk)
a® (r'™,)

(A, 400
1. Falls j = n, so gilt
2. %) minimiert die Funktion
G(x) = [T — z|a
im Unterraum z(©) + span (d©, ... d*=1).

3. z®) minimiert die Funktion

f(a) = gl Av) — (2,0

im Unterraum z(© + span (d©, ..., d%=1).

134

Wahlt man die Suchrichtungen also konjugiert, bricht das Verfahren spatestens fiir
(™ mit der exakten Lésung ab. Zum Beweis zeigen wir zunichst ein ganz kleines
Lemma, das im iberndchsten Kapitel noch niitzlich sein wird.

Lemma 6.6 (Bestapproximation bzgl. der induzierten Norm)
Sei V ein euklidischer Raum mit Skalarprodukt (,), = € V und v™®, k =0...n — 1,
ein Orthonormalsystem in V. Dann gilt:

1. Falls dimV = n, so ist

2. Seij<n.

k=0
minimiert die Funktion
G(z) =z = 2|
fir z € span (v ... v*=1) 4 jst also die beste Approximation an x in
diesem Unterraum.
Beweis: (des Lemmas)
1. v . v(*=Yist Basis von V, also gibt es a® mitz = >, a®ou®).
n—1
(00, 2) = (00, 3" a®e®) = (0, aDp®) = o
k=0
und daraus folgt die Behauptung.
2. Furl < jgilt
j—1
(z — Y, v(l)) = (z — (x,v(k))v(k),v(l)) — (:U?v(l)) _ (x,v(l))(v(l), U(l)) =0.
k=0
Sei z € span (v, ... vU=V). Dann gilt (v — 4, yU) — 2) = 0 und

|z —2||* = II(SU—y(”)Hy(”—Z>|I2 = [le =y V1P +[ly? = 2|* =[]z — |

und das war die Behauptung.

135

Beweis: (des Satzes)

1. Die Vektoren d®)/||d*)|| , sind eine Orthonormalbasis des R™ bzgl. (,) 4, also
gilt mit dem Lemma

n—1
d®) d®)
7 20 — 7 — 20
Tr—x" = r—xv,
2 11 T
n—1
d®) d®)
— T — k) d (k) _ (0 d© . qk=1)
T —x, ennx v e< >
2 1T T
_ ”i (AT — Az®,d®)
k)||2
LA
n—1

S 00

(d®, Ad®))

k=0
n—1

= 5" athg®
k=0

und damit 2 = 7.
2. Mit dem zweiten Teil des Lemmas und derselben Rechnung.

3. Ubungen.
O

Da dies immer wieder missverstanden wird, hier direkt eine Warnung: Wir denken
nicht daran, Teil 1 von|[6.5|wirklich zu nutzen und bis zum n. Schritt zu iterieren (an-
sonsten konnten wir gleich das Gleichungssystem mit direkten Verfahren l6sen).
Viel interessanter ist Teil 2, der uns garantiert, in den untersuchten Teilraumen die
beste Approximation unserer Lésung zu finden (beziiglich der Energienorm || - || 4).
Wir mochten also ein line search—Verfahren definieren mit den folgenden Eigen-
schaften:

1. Die Suchrichtungen sollten zueinander konjugiert sein.

2. DerRaum, den die Suchrichtungen aufspannen, sollte derselbe sein wie beim
Gradientenverfahren.

136

Es stellt sich also die Frage: Kénnen wir Vektoren d© . .. ,al(’C 1 einfach so wihlen,
dass sie zueinander konjugiert sind und den Krylovraum K®) (A, 7(®)) aufspannen?
Tatsdchlich tut das cg—Verfahren dies mit einer einfachen Rekursion.

Die Grundidee ist, wie im Gradientenverfahren als Abstiegsrichtungen 7(©, () usw.
zu wahlen, aber die Richtungen mit dem Schmidschen Orthogonalisierungsverfah-
ren bzgl. des Skalarprodukts (,)4 zu orthogonalisieren.

Wir starten mit

Lemma 6.7 Seien d*) paarweise konjugiert. Dann gilt

(dD, Py = 0Vi < k,
also beziiglich des euklidischen Skalarprodukts

P 1 ® (4,0,
AufSerdem gilt beziiglich des A-Skslarprodukts

r®) 1L, KD (A7),
Beweis: Zundchst gilt
(d(k), ,r,(k—i-l)) — (d(k), h— AZE(kJ’_l))

_(d®,b— Az + (El—md(k)))

_ (d®, 70y — (g, 4g®)y (7“(’“—)_0
= (@7 ’ @ Adm) ~

Daraus folgt wegen
rEt2) —p A2 —) A(x(k—kl) + a(k+1)d(k+1)> — phtl (kD) g gkt
und
(d®) 4Dy = () 4D _ (k1) gglk+D))
= —a* D@k Aqk+Dy = 0

usw. per Induktion.
Nach Definition der Krylovraume gilt

ARFD (A7) ¢ KP4, rO).
Seialsoy € K*=D(A,r©), so gilt

(k) " 4 —0.
("™, y)a = ('Y, y o)
ek (k) (A,r(0)

137

O
Mit diesem Satz bekommen wir auch einen leichten Beweis des letzten Teils von

[6.7l Da

2" € 20 L span (@9, ..., d*Y),
sind alle Elemente aus z(©) + span (d®, ... d*~Y) von der Form
z® +w, w e span (d?, ..., d*Y).
Dann gilt aber

F® 4 w) = F@) + (A, w) — (b,w0) +3 (w0, Aw) >).

-

:(—r(k) ’w):O

Wirwenden nun das Schmidtsche Orthogonalisierungsverfahren beziiglich des Ska-
larprodukts (,) 4 auf die *) an. Dies wird uns Vektoren liefern, die zueinander kon-
jugiert sind und dieselben Vektorrdume aufspannen wie die »*), also gerade die
Krylovrdume. Wir setzen also d(®©) = r(© und

k(g k+1))

d(k+1) k+1 Z (i)
— |d(%
_ D) wd(k)
a8 |15
_) (Ad—k“)) (®)
(d®, Ad(k))

Die Terme in der Summe verschwinden wegen
Damit erhalten wir

Definition 6.8 cg-Verfahren (Verfahren der konjugierten Gradienten)

Sei A € R™ " positiv definit. Seien b, \©) € R". Dann heift die Folge %), definiert
durch

rO =p— Az O =0

(k) (k)
G — (A7)
(d®, Ad®)
20D o) 4 (9 gh)
rED — p — ApEHD = o (0) _ (B) gq(k)

ﬁ(kﬂ) (d(k k+1))A B (d(k ,AT (k+1))
d(k+1) _ r(k+1) . B(k-i—l)d(k)

Verfahren der konjugierten Gradienten. Die Folge endet, sobald d*) = 0.

138

Tatsachlich kann man diese Definition noch etwas stabiler und effizienter hinschrei-
ben.
Fiir die Eigenschaften miissen wir nur die bereits bewiesenen Satze zusammentra-
gen.

Korollar 6.9 (Eigenschaften des cg—Verfahrens)

1. Solange r*) #£ 0, ist auch d*® + 0, d.h. das Verfahren bricht genau dann ab,
wenn die korrekte Losung erreicht ist.

2. 2 jst Bestapproximation an die Lésung von Az = b im Raum z(© +
K® (A,), und minimiert dort auch die Funktion f aus|6.1}

Beweis: Das cg-Verfahren ist gerade so konstruiert, dass die d*) konjugiert sind
und den Raum K®) (A, r©)) aufspannen, daraus folgt die zweite Aussage nach
Nach |6.7] gilt d*) L r¥+1 falls also dFt! = r*+) — gRIgk) = 0, so ist bereits
r 1) = 0 und umgekehrt. O

Natiirlich miissen wir die Konvergenz des cg—Verfahrens nicht zeigen - es bricht
spatestens nach n Schritten ab. Fiir die Konvergenzgeschwindigkeit gilt, dass sie
mindestens so gut sein muss wie flir das Gradientenverfahren denn die dort
gelieferten Folgenglieder liegen in den Krylovrdumen, in denen das cg—Verfahren
eine optimale Wahl liefert.

Wir erwarten aber natiirlich, dass das cg—Verfahren bessere Konvergenzgeschwin-
digkeit liefert. Dies ist tatsachlich der Fall. Wir beginnen mit

Lemma 6.10

Sei A € R"" s.p.d., also hat R™ eine ONB v, . ..,v, aus Eigenvektoren von A zu
Eigenwerten)y, ..., \, (zum euklidischen Skalarprodukt).

Sei p ein Polynom vom Grad < k mit

p(0) = 1 und [p(\,)| < 7.
Dann gilt fiir das cg—Verfahren
1e® 14 < rl[e@]]a.

Beweis: Wir nutzen den schon angesprochenen Zusammenhang zwischen Polyno-
men und den Krylovrdumen.

139

1. Esgiltp(0) — 1 =0, also ist

Polynom vom Grad < k£ — 1 und es ist
1+ zq(z) = p(2).
Setzen wir wieder formal die Matrix A ein, so gilt entsprechend

I+ Aq(A) = p(A).

2. Sei
y =2 — g(A)r?®,
Dann gilt
und

T—y=A"—20 4 ¢A)AAO®
= (I + Aq(A))e®
= p(A)e®.

3. Seiel® =" ;v;. Dann ist

T —y=p(A) (Z Oéﬂ)z‘)

=1

= Z a;p(Ai)v;
i=1

140

und

Hf—mﬁzuﬁi%m&wﬂa
= (Z:: a;p(A)v;, 2:: ozip()\i)kivi>
:i&mez
< zn: \ir?a?
Z
:ﬁ<ijA§pm>
20t

=1?||T — mo||% = r*||eol [

4. Daz® die Bestapproximation in 2(® + K®) (A, r©) ist, gilt

1e®la = [la®™ = /4 < |ly = Tlla < rl]e®]|a-

Satz 6.11 (Konvergenzgeschwindigkeit des cg—Verfahrens)
Fiir das cg—Verfahren gilt
k
el <2 (VT) 1
Beweis: Wir nutzen die Tschebyscheff-Polynome
Ty (z) = cos(k arccos x).
Sie besitzen mit der Eulerschen Formel die alternative Darstellung
Tk(l’) — %(eikarccosm 4 e—ikarccosx)

= %((Cos(arccos x) + i sin(arccos x))* + (cos(arccos x) + 4 sin(arccos 2)) ")

— %((x +ivV1— 22 4+ (v +iV1 — 22)7F)

= S+ VD + e VD)

141

(fiir positives Vorzeichen des sin und mit einer losen Definition von v/—a = i\/a).
Diese Darstellung ist auch auflerhalb von [—1, 1] giiltig. Dort gilt dann

Tl > 5o+ VZ D (6.4)

Diese iiberschlagige Motivation mag hier geniigen, korrekt weist man nach, dass
der Ausdruck auf der rechten Seite der rekursiven Definition der Tschebyscheff-
Polynome aus den Ubungen geniigt.

In den Ubungen wurde auch bereits gezeigt, dass Ty (z) Polynom vom Grad & ist.
Nach Definition tiber den arccos ist klar, dass |T;(x)| < 1 fiirz € [—1, 1]. Seien wie-
der A\; und), derkleinste bzw. grofite Eigenwert von A. Wir skalieren das Argument
von T}, so, dass es fiir z zwischen \; und A,, zwischen —1 und 1 liegt:

[E—)\l

T(@) = Ti(1 — 25—5)

und damit
|T(x)] <1VA <o <\,

Nun definieren wir p so, dass p(0) = 1:

wobei

)\n_)\l)\1)\n+)\1 k+1
(0) k()\n—)\l N An—/\l) ¢ (An—)\l) k(m—l)

Firxz € [A\, \,] gilt also

1 1
PN 70) = 1=

(zur Erinnerung: x war die Kondition von A in der euklidischen Norm, also gerade
An/A1). Im Nenner wollen wir die Abschétzung|6.4]einsetzen. Mit

k—1 k—1 k—1 VE—1

/<;+1+\/</£+1>2 L _ntl+2VE Vet

und wegen (k+1)/(k — 1) > 1 gilt

T(O):Tk<”+1) Z%(\/E‘i‘l)k‘

Damit gilt

Ip(\)] < ﬁ <9 (\/E— 1)’“

und daraus folgt die Behauptung mit[6.10] O

Dies sieht zundchst noch nicht sehr beeindruckend aus. Tatsdchlich ist diese
Abschéatzung fiir viele Probleme viel zu pessimistisch (was man allein schon daran
sieht, dass der Fall &£ > n, fiir den die Norm des Residuums verschwindet, natiirlich
gar nicht korrekt abgebildet wird).

Die Idee des cg—Verfahrens ist eigentlich leicht zu merken:

1. Es wird ein normales line search—Verfahren durchgefiihrt, d.h. die Funktion f
wird in jedem Iterationsschritt auf Geraden durch die letzte Iterierte minimiert.

2. Die Richtungen dieser Geraden werden zueinander orthogonal gewahlt
beziiglich des A-Skalarprodukts (konjugiert). Dadurch minimiert man nicht
nur auf einer Geraden, sondern im gesamten von den Geradenrichtungen auf-
gespannten Teilraum.

3. Dies garantiert man, indem man das Schmidtsche Orthogonalisierungsverfah-
ren auf die Richtungen des Gradientenverfahrens anwendet.

4. Es stellt sich heraus, dass bei der Orthogonalisierung fast alle Terme wegfal-
len, so dass sie sehr einfach berechenbar ist.

Man nutzt wieder nicht das Problem Az = b direkt, sondern implementiert
BAx = Bb

fiir eine einfach zu invertierende Matrix B mit der Eigenschaft, dass BA moglichst
kleine Kondition hat. Dies ist nicht problemlos, denn B A ist nur symmetrisch, wenn
B und Avertauschen. Am einfachsten [6st man dies durch Nutzung der beidseitigen
Vorkonditionierung

BAB'((B")"'z) = Bb.

Eine genaue Analyse des cg—Algorithmus zeigt aber, dass eine leicht angepasste
Variante des cg—Verfahrens auch fiir BAz = Bboptimale Ergebnisse im Krylovraum
liefert mit derselben Konvergenzgeschwindigkeit|Braess|[2007]. Es sei noch einmal
darauf hingewiesen, dass erst die Wahl geeigneter Vorkonditionierer die hier vorge-
stellten Methoden wirklich effizient macht.

143

1600

1400 - cond(A)
7

1200

1000

800

600

400+

w00 e

Abbildung 6.2: Vergleich der Iterationszahlen von cg und Gradientenverfahren

Klick fiir Bild vergleichcg
Klick fiir Matlab Figure vergleichcg

function [x,n] = cg(A,b,x0,eps)
%CG cg—Verfahren wie in der Aufgabe
if (nargin<i)

A=setupmatrix (10);
end
if (nargin<2)

Listing 6.2: Konjugierte Gradienten (Krylov/cg.m)

Klicken fiir den Quellcode von Krylov/cg.m

function [x,n] = lingrad(A,b,xo0,eps)
%lingrad Gradienten—Verfahren wie in der Aufgabe
if (nargin<1)

A=setupmatrix (10);
end
if (nargin<2)

Listing 6.3: Gradientenverfahren (Krylov/lingrad.m)

Klicken fiir den Quellcode von Krylov/lingrad.m

144

1600

1400

1200

1000

800

600

400

200

#t cg
#it grad
cond(A) |

50

100

150

200

250

300

350

400

Frank Wuebbeling
vergleichcg.jpg: Vergleich der Iterationszahlen von cg und Gradientenverfahren

Frank Wuebbeling
Matlab Figure vergleichcg.fig: Vergleich der Iterationszahlen von cg und Gradientenverfahren

function [x,n] = cg(A,b,x0,eps)

%CG cg-Verfahren wie in der Aufgabe

if (nargin<1)

 A=setupmatrix(10);

end

if (nargin<2)

 N=size(A,1);

 b=ones(N,1);

end

if (nargin<3)

 N=size(A,2);

 x0=zeros(N,1);

end

if (nargin<4)

 eps=1e-8;

end

x=x0;

r=b-A*x;

d=r;

for n=1:10000

 alpha=dot(d,r)/dot(d,A*d);

 x=x+alpha*d;

 r=b-A*x;

 beta=dot(d,A*r)/dot(d,A*d);

 d=r-beta*d;

 if (norm(r)<eps)

 break;

 end

end

end

Frank Wuebbeling
Konjugierte Gradienten

function [x,n] = lingrad(A,b,x0,eps)

%lingrad Gradienten-Verfahren wie in der Aufgabe

if (nargin<1)

 A=setupmatrix(10);

end

if (nargin<2)

 N=size(A,1);

 b=ones(N,1);

end

if (nargin<3)

 N=size(A,2);

 x0=zeros(N,1);

end

if (nargin<4)

 eps=1e-8;

end

x=x0;

for n=1:10000

 r=b-A*x;

 d=r;

 alpha=dot(d,r)/dot(d,A*d);

 x=x+alpha*d;

 if (norm(r)<eps)

 break;

 end

end

end

Frank Wuebbeling
Gradientenverfahren

function cgdemo
%CGDEMO
for i=1:10
n=ix2;
n
A=setupmatrix(n);

Listing 6.4: Treiber zu cg (Krylov/cgdemo.m)

Klicken fiir den Quellcode von Krylov/cgdemo.m

.
function A = setupmatrix(N)

%SETUP_MATRIX setup matrix of discretized Laplace operator in 2D
if (nargin<1)

N=10;
end
lambda=o0;
S /)
Listing 6.5: Aufstellung der Matrix (Krylov/setupmatrix.m)

Klicken fiir den Quellcode von Krylov/setupmatrix.m

6.3 Der Uzawa—Algorithmus: Optimierung mit Nebenbedin-
gungen

Abschlieend schauen wir noch auf eine haufig auftretende Modifikation unserer
Minimierungsaufgabe aus Gleichung [6.1 Sei wieder A € R™" s.p.d., b € R",
B € R™™vom Rang m < n und g € R™. Wir suchen das Minimum nur unter
den Vektoren mit Bx = g, also:

Suche 7 € R™ mit

7 = arg in £(2), f(x) = £ (Av,2) — (b,) 65)

Bx=g

Statt dessen konnen wir auch das Gleichungssystem

(5 5) () =) 60

l6sen. Sei namlich (Z, \) eine Lésung von[6.6] Wir betrachten f(Z+x) mit B(z+z) =
g,also Bx = 0:

145

function cgdemo

%CGDEMO

for i=1:10

 n=i*2;

 n

 A=setupmatrix(n);

 x=rand(n*n,1);

 b=A*x;

 x0=zeros(n*n,1);

 [x1,n1]=cg(A,b,x0);

 [x2,n2]=lingrad(A,b,x0);

 vec1(i)=n1;

 vec2(i)=n2;

 vec3(i)=n*n;

 vec4(i)=condest(A);

end

plot(vec3,vec1,vec3,vec2,vec3,vec4);

legend('#it cg','#it grad','cond(A)');

vorlsavepic('vergleichcg');

end

Frank Wuebbeling
Treiber zu cg

function A = setupmatrix(N)

%SETUP_MATRIX setup matrix of discretized Laplace operator in 2D

if (nargin<1)

 N=10;

end

lambda=0;

A=sparse(N*N,N*N);

h=1/(N+2);

for i=1:N

 for k=1:N

 pos=(i-1)*N+k;

 A(pos,pos)=-4-lambda;

 if (i>1)

 A(pos,pos-N)=1;

 end

 if (i<N)

 A(pos,pos+N)=1;

 end

 if (k>1)

 A(pos,pos-1)=1;

 end

 if (k<N)

 A(pos,pos+1)=1;

 end

 end

end

end

Frank Wuebbeling
Aufstellung der Matrix

f@+z)= %(A(E—i—x),f—i—x) — (b,T+)
= [(@) + (AT,2) + (z, Az) — (b,)
> f(F) + (AT — b, z)
= /(@) — (B'A2)
= (@) — (A, Bx) = f(T)

Wir notieren

Korollar 6.12 Sei = € R". Falls es ein A € R™ gibt, so dass (z, \)[6.6]l0sen, so [ost
T auch das Minimierungsproblem

Uzawa schreibt dies als Fixpunktgleichung. Sei C leicht invertierbare positiv defini-
te Matrix im R™*™ (z.B. eine Diagonalmatrix oder ein Vielfaches der Einheitsmatrix).

()= (e e)

Die dadurch definierte Fixpunktiteration fiir A lautet
AEFD — \B) 1 C-Y(BA™ (b — BIAW) — g).
Dieses Verfahren ist konvergent, falls die Eigenwerte der Iterationsmatrix
G=I-C'BA'B

zum Betrag kleiner als 1 sind. Sei u ein Eigenvektor von G zum Eigenwert ;. Dann
gilt R R
Cu— BA™'B'u = uCu
und damit R
(1 —p) (u,Cu) = (u, BA™' B'u)
N—— ~—_————
>0 >0
und damit x < 1. Wir wihlen nun C so groB, dass C — BA~!B* s.p.d. ist. Dann
liegen alle Eigenwerte von G zwischen 0 und 1, und das Uzawa-Verfahren ist kon-
vergent.
Ublicherweise definiert man noch eine zusatzliche s.p.d. Vorkonditionsmatrix C' €
R™*", Dann gilt
B'C™'Bz = B'C™ !y

146

und nutzt zur Definition des Augmented Lagrangian—Verfahrens die Fixpunktiterati-
onzu

T\ ((A+BC'B) Y (b+ B'C'g— B\

Ao A+ C Bz —g) '

Die Gleichung in A ldsst sich auch als Gradientenverfahren interpretieren. Also hat
das Uzawa—Verfahren in dieser Form dieselben Probleme wie das normale Gradien-
tenverfahren. Mit denselben Methoden wie beim cg—Verfahren lasst sich auch hier
eine Methode der konjugierten Richtungen entwickeln (Braess [2007]).

147

Kapitel 7

Numerische Berechnung von Eigenwerten

Die Berechnung der Eigenwerte einer Matrix spielt in der Numerik eine grof3e Rolle,

z.B.

1. Bestimmung optimaler Iterationsparameter (max. Eigenwert einer hermite-

schen Matrix).

. Bestimmung der Kondition einer Matrix (wie oben, zusatzlich Bestimmung

des kleinsten Eigenwerts).

. Bestimmung von Eigenschwingungen einer Briicke. Dies ldsst sich (stark ver-

einfacht) so erklaren: Eine Briicke reagiere auf eine Belastung L von auf3en
mit einer Stressverteilung p = AL. Falls x ein Eigenvektor zu einem Eigenwert
von A grofier als 1 ist, so wird die wirkende Belastung durch die Briicke nicht
verteilt (als Gegendruck), sondern sogar noch verstarkt. Die Belastung kann
sich also immer weiter aufbauen.

In der Matlab—Demo truss ldsst sich das an einem sehr einfachen zweidimen-
sionalen Beispiel beobachten. Inshesondere sieht man, dass fiir hohere Mo-
den (kleinere Eigenwerte) die Eigenschwingungen eine komplexe Struktur zei-
gen. Eine genauere Analyse dieses Beispiels finden Sie in |[Hanke-Bourgeois
[2006], Kapitel V.22.

Diese Untersuchung ist keineswegs akademisch. Immer wieder gern zitiertes
Standardbeispiel ist die Tacoma Narrows Bridge, bei der eine (gar nicht so
grof3e) kontinuierliche Windanregung in der falschen Frequenz zu groen Aus-
lenkungen und letztlich zur Zerstérung der Briicke fiihrte. Der Film zeigt, dass
die Briicke keineswegs nur einfach schwingt, sondern zusatzlich eine Torsi-
onsstruktur hat (wie wir sie nach der Matlab—Analyse erwarten wiirden). Eine
mehrmals liberarbeitete mathematische Untersuchung dieser Zerstorung fin-
den Sie unter anderem in McKenna| [1999].

148

http://www.youtube.com/watch?v=j-zczJXSxnw

Aus diesem Grund sind Eigenwertanalysen in der Statik unerldsslich. Die Tat-
sache, dass es nur wenige Beispiele fiir solche Komplettzerstorungen gibt,
zeigt, dass dieses Problem geldst ist (und andererseits dieses Phanomen nur
recht selten auftritt).

Wir bemerken, dass insbesondere ein Interesse daran besteht, groe oder kleine
Eigenwerte von (hermiteschen) Matrizen zu berechnen.

Zur Motivation beginnen wir mit einer Idee zur Berechnung eines Eigenvektors, die
uns spater zu allen numerischen Verfahren fiihren wird. Wir wollen natiirlich wieder
iterativ vorgehen. Sei A eine n x n—Matrix. Da auch bei reellen Matrizen Eigenwerte
und Eigenvektoren komplex sein kdnnten, ist es bei allgemeinen Matrizen keine
Vereinfachung, sich auf reelle Matrizen zu beschranken, wir nehmen diese komplex
an. Bei hermiteschen beschranken wir uns der Einfachheit halber wieder auf reelle
(symmetrische) Matrizen.

Wie bei den Krylov—Rdumen starten wir mit einem Vektor (%) und wenden Potenzen
dern x n—Matrix A auf (¥ an. Wir setzen

20 = 4120 also 20D = A,
Zur Vereinfachung nehmen wir zundchst an, dass der C" eine Basis aus Eigenvekto-

ren y,. zu Eigenwerten \;, £ = 1...n, besitzt. In allen Betrachtungen seien unsere
Eigenwerte immer der GrofBe des Betrages nach geordnet, d.h. [\¢| > |Ax11]- ES sei

n
CL’(O): E QLU
k=1

mit oy # 0. Dann ist

o o A ~ Y
k=1 k=1 k=2

[\ J/

— (@)
Es sei nun \; der betragsmaRig echt grofite Eigenwert, d.h. |\;| > |Az]. Dann ist
klar, dass in der Darstellung die Summe fiir j — oo verschwindet, also w®)
gegen «a;v; konvergiert. Fiir groRe j wird also z9) zu einem Vielfachen des ersten
Eigenvektors y;. Um zu einer Konvergenz zu kommen, miisste man nun nur noch
die z\9) normieren, was den Faktor vor w") eliminiert. Hierzu kann man z.B. einen
Vektor z fest wahlen und die Vektoren

() —) — = A\l . -
VTR DT T Nww,z) T T 0 F

betrachten (mit der Voraussetzung, dass (Z,v;) # 0). Fiir die Bestimmung des Ei-
genwerts betrachtet man entsprechend den Quotienten
(@0, 7)) M (wl)

() — — : - A
“ (z0), %) N (w), 7) Jmoo A1

mit derselben Bedingung. Dies ist die Potenzmethode (Vektoriteration). Wir werden
diese spdter genauer untersuchen und eine bessere Bedingung zur Konvergenz an-
geben, halten aber schon mal fest:

Definition 7.1 (Potenzmethode, Vektoriteration nach von Mises)
Die Folge a'%) heif3t Potenzmethode zur Bestimmung des betragsmaximalen Eigen-
werts von A.

Korollar 7.2 (Konvergenz der Potenzmethode, einfache Version)
Die Potenzmethode konvergiert, falls

1. Die Matrix A eine Basis aus Eigenvektoren besitzt.

2. Aeinen einzigen echt betragsmdpig grofiten Eigenwert besitzt, d.h.

M| >l k=20

3. 0 7& 0.
4. (f, U1> 7& 0.

In diesem Fall gilt lim y¥) = Gt lim a9 = Ay

Bedingung 3 und 4 spielen numerisch keine Rolle (s. auch Beispiel in den Ubungen),
dies werden wir nicht weiter betrachten. Bedingung 1 und 2 dagegen sind proble-
matisch. Wir werden bei dem echten Beweis der Potenzmethode zeigen, dass ein
alternativer Beweis im Fall 1. immerhin noch (langsame) Konvergenz beweist, im
Fall 2. versagt die Potenzmethode in der vorgelegten Form, falls unterschiedliche
betragsmaximale Eigenwerte existieren.

Zusatzlich [6sen wir hier natiirlich nur ein Teilproblem: Etwa zur Berechnung der Sin-
gularwertzerlegung bendtigen wir alle Eigenwerte einer Matrix, das wird hier nicht
geliefert. Zundchst schauen wir auf die Kondition des Eigenwertproblems.

150

http://de.wikipedia.org/wiki/Richard_von_Mises

7.1 Kondition des Eigenwertproblems

Zundchst betrachten wir den Spezialfall, dass A hermitesch ist, und geben ein Ein-
schlie3ungskriterium an.

Satz 7.3 Es sei A € C™*" hermitesch. Weiter seien A\ und x Ndherungen fiir einen
Eigenwert von A mit zugehdorigem Eigenvektor, und es sei d := Ax — \x das Resi-
duum. Dann gibt es einen Eigenwert von A mit

d
pe— A < Ll
||]2
Beweis: A ist hermitesch, also hat der C™ eine Orthonormalbasis vy, . .., v, mit zu-

gehorigen Eigenwerten A, ..., \,. Nach Satz[6.6|gilt

n n
v = ave o = (@), lel3 = 3 lel?
k=1 k=1

und

n

d=Ax — \x = ch()\k — A\)Ug.
k=1

Sei \; der zu A\ nachste Eigenwert, also
Ni—= A <|A—=ALk=1...n.

Damit ist

113 = 3" Terlhe = AR > 3 Jerl?Ih = AP = [[al3[A — A%
k=1 k=1

Fiir die Stérungstheorie ist interessant

Korollar 7.4 Statt der hermiteschen Matrix A sei nur eine Ndherung A = A + S
bekannt. x sei Eigenvektor von A zum Eigenwert \. Dann gibt es einen Eigenwert \;
von A mit

15[

A — Al <
|||]2

< [[51]s-

Beweis: Wir wenden den Satz auf A an und erhalten die Existenz eines Eigenwerts
/\i mit R
|Az — Azfly _ |[Az — Axl[y _ [|Sz]2

|2 el Il

X — A < < |[S]]2-

151

O
Damit ist der Fehler in den berechneten Werten nicht grofer als die Norm der
Storung.
Leider sind die Verhdltnisse fiir nicht—diagonalisierbare Matrizen viel schlechter.
Falls v die Dimension des grof3ten Jordankdstchens von A ist, so liegen die Fehler
in der GroBenordnung || B||'/¥, den Beweis finden Sie wieder im Artikel Kato|[1995].
Genauer gilt

Satz 7.5 Sei A ¢ C™" mit Eigenwerten \i, ..., \,, und J = X1 AX die Jordan-
Normalform von A. Sei v die Dimension des griofdten Jordankdstchens von J. Sei
A, = A+ €F, € < 1.Dann liegen simtliche Eigenwerte von A in der komplexen
Ebene in der Vereinigung der Kreise

Ki={2€C:|z=N| <" (14 koo (X))||F|]oo-
Dabei ist k., (X) die Kondition von X in der Unendlichnorm, also
oo (X) = (| X oo [IX ™ [loc-

Der Satz sagt also: Fiir kleine Stérungen geht der Fehler bei der Berechnung der
Eigenwerte nicht notwendig linear mit dem Fehler in der Matrixnorm gegen 0 (wie
bei Hermiteschen Matrizen), sondern nur mit v—ten Wurzel. Fir diagonalisierbare
Matrizen erhalten wir wieder einen linearen Zusammenhang.

Beweis: Mit der Formulierung des Satzes ist schon klar, dass der Beweis {iber die
Gerschgorin—Kreise laufen muss, und nutzen diesen Beweis als Ubung fiir den Um-
gang mit dem Satz von Gerschgorin Wir betrachten (ohne Einschrankung) den
Fall, dass .J nur aus einem Jordankastchen besteht, also v = n, andernfalls teilt
man die Betrachtung in kleine Teilmatrizen auf, was sie uniibersichtlich, aber nicht
spannender macht.

Es gilt
_ —1 —1
A-I-EF—X(J%—GX_EX)X :
Dann gilt

1G]lso < 11X oo 1 F oo | X ™Hloo = Koo (X F |-

Sei nun 6 = €/™. Wir wiirden gern den Satz von Gerschgorin anwenden, tun wir
das aber auf .J, so erhalten wir immer einen Radius von mindestens 1 fiir die
Gerschgorinkreise — Gerschgorin liefert fiir nicht—diagonalisierbare Matrizen sehr
schlechte Abschatzungen, wenn man ihn direkt anwendet. Wir skalieren J daher
so, wie wir es schon einmal getan haben.

Sei D € C™" die Diagonalmatrix mit 6*~! auf der Hauptdiagonalen (siehe [5.13).

152

Ebenfalls wie dort betrachten wir die Matrix D~'J D.

A0
A0
D =) ., D7'JD =
‘ 5n71

Sei G = (g,), dann gilt entsprechend

(D7'GD)ig| = 19i56 ' < 1916 " | = |gigld/e.
Wir wenden den Satz von Gerschgorin[s.18|auf die Matrix

G'=D ' (J+eG)D=D"'JD+eD'GD

an, diese hat dieselben Eigenwerte wie J + ¢G und damit wie A..
Auf der Hauptdiagonalen von GG’ stehen die Eintrdge A + €g; ;. Die Summe der Be-
trage auf der Nebendiagonale ist

r <6+ eé/ez l9i ;| =0 (1 + Z |gz',j\> :

J# J#i
[5.18|garantiert nun, dass jeder Eigenwert 1 von A, in einem dieser Kreise liegt, also
gibt es ein ¢ mit
= (A +e€gii)| < i

Damit ist aber

1= Al < €lgi| + 7

§(5<1+Z!gi7j|> (e < owegene < 1)
j=1

< (14 |G||so) (nach ??)
< 0(1 + koo (X)[|Fl]o0)

und das war die Behauptung. O

Dieser Beweis ist ein schones Beispiel fiir die schon beim Satz von Gerschgo-
rin gemachte Bemerkung, dass sich beim Ubergang zu dhnlichen Matrizen die
Gerschgorin—Abschéatzungen erheblich verscharfen kénnen.

Der Vollstandigkeit halber erwahnen wir noch eine in der Numerik haufig genutzte
Abschatzung fiir die Eigenwerte hermitescher Matrizen.

153

Definition 7.6 (Rayleigh—Quotient)
Sei A € C™*™ hermitesch. Dann heif3t

RA C" = R, RA(x) =

Rayleigh—Quotient von A.

Satz 7.7 (Courantsches Minimum-Maximum-Prinzip)
Sei A € C™*™ hermitesch. Seien)\, ..., \, die Eigenwerte von A, hier ausnahms-
weise ihrer Grof3e nach geordnet, also \;, > A\,1. Dann gilt
Aj = min max R4 (z).
U n+1—j-dimensionaler Unterraum von C" 0#zc€U
Beweis: Wir nutzen den Satz nicht, daher hier ohne Beweis. Sie finden ihn z.B. in
Schaback and Wendland|[2004], Satz 15.3. O

7.2 Potenzmethode

In der Vorbemerkung haben wir bereits die Potenzmethode hergeleitet und den Be-
weis flir ihre Konvergenz in einem einfachen Fall gefiihrt. Wir sind nun etwas genau-
er und betrachten zusatzlich nicht—diagonalisierbare Matrizen.

Satz 7.8 (Konvergenz der Potenzmethode: Allgemeine Version)
Sei A € C, 20 ¢ O, T € C™. Wir definieren die Vektoriteration durch

(+1) 7
20 = 410 g0 = ET)
@9, 7)
Es seien My, ..., \, die Eigenwerte von A (gezdhlt mit ihrer Vielfachheit im charakte-
ristischen Polynom). Die Eigenwerte seien so angeordnet, dass
Falls \y = Xy = ... = \,, so konvergiert die Potenzmethode fiir fast alle Werte von

2 und ¥ gegen M. Falls es zusdtzlich r linear unabhéngige Eigenvektoren zum
Eigenwert \; gibt, so gilt

a9 — X | < O/ Apr),

sonst gilt nur ‘
¥ = M| < C/j

jeweils fiir ein C' > 0.
Falls es ein k gibt mit |\\| = |\i|, aber \; # \, so konvergiert die Potenzmethode
im allgemeinen nicht.

154

http://de.wikipedia.org/wiki/John_William_Strutt,_3._Baron_Rayleigh

Die genaue Konvergenzbedingung legen wir im Beweis fest. Wir schauen zunadchst
auf einige Beispiele.

Beispiel 7.9 Wir geben immer die Jordannormalform der Matrix an.

J = 1
1

Die Matrix ist diagonalisierbar, es gibt also eine Basis aus Eigenvektoren, die
Potenzmethode konvergiert schnell mit der Rate (1/4)7.

J = 4
1
Die Matrix ist diagonalisierbar, es gibt also ein linear unabhdngiges System

aus Eigenvektoren, es gibt zwei gleiche betragsmaximale Eigenwerte, die Po-
tenzmethode konvergiert wieder mit der Rate (1/4).

J = 4
1

Zum maximalen Eigenwert 4 gibt es nur einen Eigenvektor, deshalb ist die Kon-
vergenz langsam wie 1/ 3.

J = 4
—4

Die Matrix hat zwei unterschiedliche betragsmaximale Eigenwerte, die Potenz-
methode konvergiert im allgemeinen nicht.

Hier nun einige typische Beispielverldufe im Diagramm. Zundchst bei eindeutigem
betragsmaximalem Eigenwert und Diagonalisierbarkeit (7.1):

155

Potenzmethode: Berechneter Eigenwert

o 10 20 30 4 s e 70 8 %0 100 o 0 20 3 4 s e 70 & %0 100
\\\\\\\\\\\\\\\\\

Abbildung 7.1: Schnelle Konvergenz der Potenzmethode. Links: Folge a'¥), rechts:
log |\ — aV]|

Klick fiir Bild PotenzFast
Klick fiir Matlab Figure PotenzFast
Klick fiir Bild PotenzFastlogplot
Klick fiir Matlab Figure PotenzFastlogplot

Die Folge konvergiert. Die Konvergenz geht mit (\y/\1)’. Rechts plotten wir den
Logarithmus der Abweichung |\ — a|. Wegen log(|\2/M\1)?) = jlog|la/A
erwarten wir, dass dieser linear ist in den Iterationen, dies ist tatsdchlich der Fall.

eeeeeeeeeeeeeeeeeeeeeeeee genuert Potenzmethode - Abusichung von ., fogplot)

50 50 E
Iteration Iteration

Abbildung 7.2: Langsame Konvergenz der Potenzmethode.

Klick fiir Bild PotenzSlow
Klick fiir Matlab Figure PotenzSlow
Klick fiir Bild PotenzSlowlogplot
Klick fiir Matlab Figure PotenzSlowlogplot

Hier sind nicht ausreichend viele Eigenvektoren zum betragsmaximalen Eigenwert

156

Eigenwert

1.5

0.5

Potenzmethode: Berechneter Eigenwert

10

20

30

40

Il
50
Iteration

60

70

80

90

100

Frank Wuebbeling
PotenzFast.jpg: Schnelle Konvergenz der Potenzmethode. Links: Folge a(j), rechts: log|1-a(j)||

hgS_070000:[1x1 struct array]

		[1x6 char array]

		[1x1 double array]

		[1x1 struct array]		@ =
	PaperUnits : [1x11 char array]
	Color : [1x3 double array]
	Colormap : [64x3 double array]
	InvertHardcopy : [1x2 char array]
	PaperPosition : [1x4 double array]
	PaperSize : [1x2 double array]
	PaperType : [1x2 char array]
	Position : [1x4 double array]
	ApplicationData : [1x1 struct array]

		[1x1 struct array]		@ =
	type : [1x4 char array]
	handle : [1x1 double array]
	properties : [1x1 struct array]
	children : [5x1 struct array]
	special : [4x1 double array]

		[0x0 double array]

Frank Wuebbeling
Matlab Figure PotenzFast.fig: Schnelle Konvergenz der Potenzmethode. Links: Folge a(j), rechts: log|1-a(j)||

Abweichung

10

10

o

I=)

10°

10°

Potenzmethode - Abweichung von Ay (logplot)

Il
0 10 20 30 40 50 60 70 80 90 100
Iteration

Frank Wuebbeling
PotenzFastlogplot.jpg: Schnelle Konvergenz der Potenzmethode. Links: Folge a(j), rechts: log|1-a(j)||

hgS_070000:[1x1 struct array]

		[1x6 char array]

		[1x1 double array]

		[1x1 struct array]		@ =
	PaperUnits : [1x11 char array]
	Color : [1x3 double array]
	Colormap : [64x3 double array]
	InvertHardcopy : [1x2 char array]
	PaperPosition : [1x4 double array]
	PaperSize : [1x2 double array]
	PaperType : [1x2 char array]
	Position : [1x4 double array]
	ApplicationData : [1x1 struct array]

		[1x1 struct array]		@ =
	type : [1x4 char array]
	handle : [1x1 double array]
	properties : [1x1 struct array]
	children : [5x1 struct array]
	special : [4x1 double array]

		[0x0 double array]

Frank Wuebbeling
Matlab Figure PotenzFastlogplot.fig: Schnelle Konvergenz der Potenzmethode. Links: Folge a(j), rechts: log|1-a(j)||

Eigenwert

1.5

0.5

&
wn

-15

-2

Potenzmethode: Berechneter Eigenwert

10

20

30

40

Il
50
Iteration

60

70

80

90

100

Frank Wuebbeling
PotenzSlow.jpg: Langsame Konvergenz der Potenzmethode.

hgS_070000:[1x1 struct array]

		[1x6 char array]

		[1x1 double array]

		[1x1 struct array]		@ =
	PaperUnits : [1x11 char array]
	Color : [1x3 double array]
	Colormap : [64x3 double array]
	InvertHardcopy : [1x2 char array]
	PaperPosition : [1x4 double array]
	PaperSize : [1x2 double array]
	PaperType : [1x2 char array]
	Position : [1x4 double array]
	ApplicationData : [1x1 struct array]

		[1x1 struct array]		@ =
	type : [1x4 char array]
	handle : [1x1 double array]
	properties : [1x1 struct array]
	children : [5x1 struct array]
	special : [4x1 double array]

		[0x0 double array]

Frank Wuebbeling
Matlab Figure PotenzSlow.fig: Langsame Konvergenz der Potenzmethode.

10

10

<

Abweichung

10°

10°

Potenzmethode - Abweichung von Ay (logplot)

10

20

30

40

Il
50
Iteration

60

70

80

90

100

Frank Wuebbeling
PotenzSlowlogplot.jpg: Langsame Konvergenz der Potenzmethode.

hgS_070000:[1x1 struct array]

		[1x6 char array]

		[1x1 double array]

		[1x1 struct array]		@ =
	PaperUnits : [1x11 char array]
	Color : [1x3 double array]
	Colormap : [64x3 double array]
	InvertHardcopy : [1x2 char array]
	PaperPosition : [1x4 double array]
	PaperSize : [1x2 double array]
	PaperType : [1x2 char array]
	Position : [1x4 double array]
	ApplicationData : [1x1 struct array]

		[1x1 struct array]		@ =
	type : [1x4 char array]
	handle : [1x1 double array]
	properties : [1x1 struct array]
	children : [5x1 struct array]
	special : [4x1 double array]

		[0x0 double array]

Frank Wuebbeling
Matlab Figure PotenzSlowlogplot.fig: Langsame Konvergenz der Potenzmethode.

vorhanden, die Matrix ist nicht diagonalisierbar. Wir erwarten langsame Konver-
genz, dies ist der Fall, der Logarithmus ist sub—linear (7.2).

i
JW]] HI’J M]l] M] Hl]]l] il] J

M‘M‘1"1(\“»u11 i Vf

WWWWWW I H

ee

| l(f‘('rl
*])lf

2’\

\\\\\\\\\\\\\\\\

Klick fiir Bild PotenzNoConv
Klick fiir Matlab Figure PotenzNoConv
Klick fiir Bild PotenzNoConvlogplot
Klick fiir Matlab Figure PotenzNoConvlogplot

Hier haben wir zwei unterschiedliche betragsmaximale Eigenwerte, wir erwarten,
dass die Folge divergiert (und zwar hin— und herspringt) (73). Dies ist der Fall.

.
function [vl,pos] = Potenz(A,x,N,d,filename)

%POTENZ Potenzmethode
n=size (A,1);
if (nargin<3)

N=x;

x=rand (n,1);

Listing 7.1: Potenzmethode (Eigenwerte/Potenz.m)

Klicken fiir den Quellcode von Eigenwerte/Potenz.m

function [output_args] = demopotenz(q)
%DEMOPOTENZ

n=10;

format compact;

D=diag (sort(rand(n,1) ,1, *descend’));
%(2,2)=-D(1,1);

157

Potenzmethode: Berechneter Eigenwert

Eigenwert

Il
10 20 30 40 50 60 70 80 90 100
Iteration

Frank Wuebbeling
PotenzNoConv.jpg: Divergenz der Potenzmethode.

hgS_070000:[1x1 struct array]

		[1x6 char array]

		[1x1 double array]

		[1x1 struct array]		@ =
	PaperUnits : [1x11 char array]
	Color : [1x3 double array]
	Colormap : [64x3 double array]
	InvertHardcopy : [1x2 char array]
	PaperPosition : [1x4 double array]
	PaperSize : [1x2 double array]
	PaperType : [1x2 char array]
	Position : [1x4 double array]
	ApplicationData : [1x1 struct array]

		[1x1 struct array]		@ =
	type : [1x4 char array]
	handle : [1x1 double array]
	properties : [1x1 struct array]
	children : [5x1 struct array]
	special : [4x1 double array]

		[0x0 double array]

Frank Wuebbeling
Matlab Figure PotenzNoConv.fig: Divergenz der Potenzmethode.

Potenzmethode - Abweichung von Ay (logplot)

10

10

I=)

=)

Abweichung

10

10

10

07|

05|

03|

02|

ot

10

20

30

40

I
50
Iteration

60

70

80

90

100

Frank Wuebbeling
PotenzNoConvlogplot.jpg: Divergenz der Potenzmethode.

hgS_070000:[1x1 struct array]

		[1x6 char array]

		[1x1 double array]

		[1x1 struct array]		@ =
	PaperUnits : [1x11 char array]
	Color : [1x3 double array]
	Colormap : [64x3 double array]
	InvertHardcopy : [1x2 char array]
	PaperPosition : [1x4 double array]
	PaperSize : [1x2 double array]
	PaperType : [1x2 char array]
	Position : [1x4 double array]
	ApplicationData : [1x1 struct array]

		[1x1 struct array]		@ =
	type : [1x4 char array]
	handle : [1x1 double array]
	properties : [1x1 struct array]
	children : [5x1 struct array]
	special : [4x1 double array]

		[0x0 double array]

Frank Wuebbeling
Matlab Figure PotenzNoConvlogplot.fig: Divergenz der Potenzmethode.

function [vl,pos] = Potenz(A,x,N,d,filename)
%POTENZ Potenzmethode
n=size(A,1);
if (nargin<3)
 N=x;
 x=rand(n,1);
end
if (nargin<4)
 d=x;
end
ref=max(abs(eig(A)));
pos=zeros(N,1);
for i=1:N
 y=A*x;
 lambda=dot(y,d)/dot(x,d);
 vl(i)=lambda;
 pos(i)=norm(lambda-ref);
 if (i>1)
 pos2(i-1)=pos(i)/pos(i-1);
 end
 x=y;
end
plot(vl);
title('Potenzmethode: Berechneter Eigenwert');
xlabel('Iteration');
ylabel('Eigenwert');
if (nargin==5)
% vorlsavepic(filename);
end
waitforbuttonpress;
%plot(pos);
%title('Potenzmethode - Abweichung von \lambda_1');
%waitforbuttonpress;
semilogy(pos);
title('Potenzmethode - Abweichung von \lambda_1 (logplot)');
xlabel('Iteration');
ylabel('Abweichung');
if (nargin==5)
% vorlsavepic([filename 'logplot']);
end
waitforbuttonpress;
%plot(pos2);
%title('Potenzmethode - Faktor der linearen Konvergenz');
%L=sort(abs(eig(A)));
%L(n-1)/L(n)
%waitforbuttonpress
%axis([0 N 0 5]);

Frank Wuebbeling
Potenzmethode

(S

Listing 7.2: Treiber fiir Potenzmethode (Eigenwerte/demopotenz.m)

Klicken fiir den Quellcode von Eigenwerte/demopotenz.m

Beweis: Falls wir r linear unabhdngige Eigenvektoren zum Eigenwert \; haben, so
kann der Beweis wie in der Einleitung gefiihrt werden, die Konvergenzgeschwindig-
keit der w') und damit der a\?) ist O(\,41/\;1)7, die genaue Konvergenzbedingung
haben wir bereits angegeben.

Ebenso: Falls unterschiedliche Eigenwerte mit gleichem Maximalbetrag existieren,
so konvergieren die Vektoren w®) aus der Einleitung nicht, und wir erhalten auch
keine Konvergenz.

Der einzige interessante Fall: Was passiert bei nicht—diagonalisierbaren Matrizen?
Um Bezeichnungswirrwarr zu vermeiden, beschranken wir uns auf die Betrachtung
des folgenden Falls (alle anderen sind mit derselben Idee zu fiihren): A ist nicht dia-
gonaliserbar, aber ihre Jordannormalform J = X' AX hat nur eine 1 an der Stelle
(1,2), und es sei |A\1| > |X3], also

A1
A
J = A3
An
Seien vy, die Spalten von X. Wegen
A1
A1

(V1. .., Un) A3 =XJ=AX = (Avy, ..., Av,)

An

gilt
Avk = /\kvk (]{7 7é 2), AUQ = v + /\11]2.

Also gilt insbesondere
Aty = Mok # 2); Alvy = Moy +jAMor.

Sei nun wieder

n
I(O): E LUk
k=1

158

function [output_args] = demopotenz(q)
%DEMOPOTENZ
n=10;
format compact;
D=diag(sort(rand(n,1),1,'descend'));
%D(2,2)=-D(1,1);
%D(1,2)=1;
Eigenwerte=diag(D)'
X=rand(n);
A=inv(X)*D*X;
x=rand(n,1);
d=x;
[v,pos]=Potenz(A,x,100,d,'PotenzFast');
Lambda1=v(100)
Lambda2=pos(81)/pos(80)*Lambda1
D(2,2)=D(1,1);
D(2,1)=1;
A=inv(X)*D*X;
[v,pos]=Potenz(A,x,100,d,'PotenzSlow');
Lambda1=v(100)
D(2,1)=0;
D(2,2)=-D(1,1);
A=inv(X)*D*X;
[v,pos]=Potenz(A,x,100,d,'PotenzNoConv');

Frank Wuebbeling
Treiber für Potenzmethode

und wie in[z.1]
n
W) = A Z Qg Vg
k=1

n
, . i ‘
= Maqu; + Maguy + jA] aguy + E QAL U
k=3

e <<a1/j s/ Ao+ (an/ies + Y eni) (3)) .

k=3
N J/
~\~

Also konvergiert w(?) gegen (/A1)vy, aber nur sehrlangsam (ndmlich wie 1/4) und
unter der Voraussetzung, dass as # 0.
Fiir die a9 gilt

(20D 7) _ j+ 1)\1 (wU*tD 7))

CL(j): T N
(20,) J (wi), T)

— oo A1

und natiirlich auch nur mit langsamer Konvergenz wie 1/;j und unter der Vorausset-
zung, dass (vq,) # 0. O

Es stellt sich die Frage, wie haufig es auftritt, dass eine Matrix tatsachlich zwei un-
terschiedliche Eigenwerte von gleichem Betrag hat. Tatsdchlich ist dies oft der Fall
und liefert die Erkldarung fiir das folgende Phanomen:

Sei A eine reelle Matrix, der betragsmaximale Eigenwert \; sei komplex (also nicht
reell). Sei weiter (%) ein reeller Startvektor fiir die Potenzmethode, und Z ein reeller
Referenzvektor. Dann kann die Potenzmethode nicht konvergieren, denn alle ¥
sind reell.

Wie passt das mit unserem Satz zusammen? Klarerweise ist fiir eine reelle Matrix
mit A\; auch \; eine Nullstelle des (reellen) charakteristischen Polynoms, also Ei-
genwert. Da |\;| = |\, aber A\; # A1, konvergiert die Potenzmethode nicht.

Eine Methode, auch bei betragsgleichen Eigenwerten zu Konvergenz zu kommen, ist
die Nutzung von Shifts. Im einfachsten Fall wird die Potenzmethode auf die Matrix
A — ol angewandt, was alle Eigenwerte und damit die Betrdage verschiebt.

Eine weitere Methode ist die inverse Iteration nach Wielandt, dort wird die Potenz-
methode auf die Matrix A~! angewandt, und bestimmt (bei Konvergenz) den be-
tragskleinsten Eigenwert von A.

Im Folgenden werden wir Verfahren zur Bestimmung aller Eigenwerte betrachten.
Eine mogliche Idee ware: Wir bestimmen zundchst mit der Potenzmethode den be-
tragsmaximalen Eigenwert \;.

159

http://de.wikipedia.org/wiki/Helmut_Wielandt

Dann wahlen wir 2° und 7 absichtlich so, dass die Konvergenzbedingung aus der
Einleitung verletzt wird. Das Verfahren kann in diesem Fall nicht mehr gegen A, kon-
vergieren, im allgemeinen wird es gegen A\, konvergieren. Fiir Hermitesche Matrizen
miissen wir dazu nur z(9) orthogonal zum Eigenvektor von \; wihlen. Schaut man
sich den typischen lterationsverlauf an, so scheint das auch zu funktionieren (im
Beispiel [7.4] bis zum Iterationsschritt 40), aber plotzlich schlégt die Folge um und
konvergiert doch gegen \;.

Dies ist leicht zu erklaren: Da a, sehr klein (oder sogar Null) ist, bleibt der erste
Term in der Summe in w; zundchst klein. Durch Rundungsfehler schleichen sich
aber kleine Fehler ein, die durch den Exponentialterm grofs werden. Das ist auch der
Grund, warum die Konvergenzbedingungen 3 und 4 praktisch keine Rolle spielen -
man muss nur lang genug iterieren. Zur Bestimmung aller Eigenwerte konnen wir
die Grundidee dieses Ansatzes trotzdem weiterverwenden.

Potenzmethode: Berechneter Eigenwert ! Potenzmethode - Abweichung von 2., (logplot)

\\\\\\\\\\\\\\\\\

Abbildung 7.4: Konvergenz bei ungiinstigem Anfangswert

Klick fiir Bild Semikonvergenz
Klick fiir Matlab Figure Semikonvergenz
Klick fuir Bild Semikonvergenzlogplot
Klick fiir Matlab Figure Semikonvergenzlogplot

function [output_args] = Semikonvergenz(input_args)
%SEMIKONVERGENZ

A=[5 1 0;1 1 1; 0 1 1];

[V D]=eig(A);

diag (D)’

\D(z,z)/D(3,3)

)

Listing 7.3: Semikonvergenz fiir die Potenzmethode bei ungiinstigen Anfangswerten
(Eigenwerte/Semikonvergenz.m)

160

Eigenwert

12

10

Potenzmethode: Berechneter Eigenwert

Il
30 40 50 60
Iteration

Frank Wuebbeling
Semikonvergenz.jpg: Konvergenz bei ungünstigem Anfangswert

hgS_070000:[1x1 struct array]

		[1x6 char array]

		[1x1 double array]

		[1x1 struct array]		@ =
	PaperUnits : [1x11 char array]
	Color : [1x3 double array]
	Colormap : [64x3 double array]
	InvertHardcopy : [1x2 char array]
	PaperPosition : [1x4 double array]
	PaperSize : [1x2 double array]
	PaperType : [1x2 char array]
	Position : [1x4 double array]
	ApplicationData : [1x1 struct array]

		[1x1 struct array]		@ =
	type : [1x4 char array]
	handle : [1x1 double array]
	properties : [1x1 struct array]
	children : [5x1 struct array]
	special : [4x1 double array]

		[0x0 double array]

Frank Wuebbeling
Matlab Figure Semikonvergenz.fig: Konvergenz bei ungünstigem Anfangswert

10

10

10°

10°

<,

Abweichung

<

10

10

10

16

10

Potenzmethode - Abweichung von Ay (logplot)

10|

12|

14|

Il
10 20 30 40
Iteration

50

60

70

80

Frank Wuebbeling
Semikonvergenzlogplot.jpg: Konvergenz bei ungünstigem Anfangswert

hgS_070000:[1x1 struct array]

		[1x6 char array]

		[1x1 double array]

		[1x1 struct array]		@ =
	PaperUnits : [1x11 char array]
	Color : [1x3 double array]
	Colormap : [64x3 double array]
	InvertHardcopy : [1x2 char array]
	PaperPosition : [1x4 double array]
	PaperSize : [1x2 double array]
	PaperType : [1x2 char array]
	Position : [1x4 double array]
	ApplicationData : [1x1 struct array]

		[1x1 struct array]		@ =
	type : [1x4 char array]
	handle : [1x1 double array]
	properties : [1x1 struct array]
	children : [5x1 struct array]
	special : [4x1 double array]

		[0x0 double array]

Frank Wuebbeling
Matlab Figure Semikonvergenzlogplot.fig: Konvergenz bei ungünstigem Anfangswert

Klicken fiir den Quellcode von Eigenwerte/Semikonvergenz.m

7.3 Der QR-Algorithmus zur Bestimmung aller Eigenwerte
einer Matrix

Die Potenzmethode und ihre Modifikationen haben den Nachteil, dass sie nureinen
Eigenwert einer Matrix bestimmen. Manchmal benétigt man aber alle (etwa fiir die
Singularwertzerlegung).

Hierzu werden wir die Idee am Ende des letzten Abschnitts weiterentwickeln. Sei
zunachst einmal die Matrix A hermitesch und positiv definit mit betragsmafiig ver-
schiedenen Eigenwerten. Dann gibt es eine ONB aus Eigenvektoren. Mit der Potenz-
rechnung berechnen wir eine Naherung fiir A; und einen zugehorigen Eigenvektor
v1. Wahlen wir nun z(® senkrecht zu vy, so istin[z.1}a; = 0, der dominierende Term
ist damit ag)\gvg, und mit derselben Betrachtung wie oben konvergiert die Potenz-
methode gegen \,.

Leider ist dies, wie schon gesehen, nicht praktikabel. a3 ist nicht genau 0, und des-
halb setzt sich der Term in v; am Ende doch durch. Dies lasst sich aber leicht be-
heben: In jedem einzelnen Schritt ziehen wir die Projektion auf v; von zU) ab und
garantieren dadurch, dass die Iteration im Orthogonalraum zu v; stattfindet, also

FUHD = Az gD = FUHD (g0 gy,
Tatsdchlich erhalten wir auf diese Art eine stabile Konvergenz gegen \,. Wir fiihren

diesen Gedanken nun noch fort und warten nicht, bis der erste Eigenvektor auskon-
vergiert ist, sondern ziehen die Iterationen gleichzeitig auf n Vektoren durch. Sei

also
X0 = (x(lo), e ,:ES,LO)> .

Es sei XU) bereits berechnet. Zunichst wenden wir die Matrix A auf alle Spalten
an, berechnen also

(59“), . ,55$g‘+1>) = XU+D = AX0) = (Ax§j),Ax§f>> .
GemdR unserer Idee flihren wir fir mgj) eine normale Potenzmethode durch. Um
Konvergenz zu erreichen, normieren wir noch mit einem Faktor, wir wdhlen rﬂ =
|ZU+1)]|, so dass

el =5

mit ||z V|| = 1. 20V soll orthogonal werden zu 2", Wir wahlen also %) und

ry) so, dass |
G =2 —

161

function [output_args] = Semikonvergenz(input_args)
%SEMIKONVERGENZ
A=[5 1 0;1 1 1; 0 1 1];
[V D]=eig(A);
diag(D)'
D(2,2)/D(3,3)
x=rand(3,1);
d=rand(3,1);
N=80;
%Potenz(A,x,N,d);
x=V(:,1)+V(:,2);
%d=x;
d=ones(size(x));
Potenz(A,x,N,d,'Semikonvergenz');

Frank Wuebbeling
Semikonvergenz für die Potenzmethode bei ungünstigen Anfangswerten

und
(x§j+1),xéj+l)) =0, ||:1:§j+1)|| -1

Es wird natiirlich sofort klar, was wir hier tun: Wir fithren einfach nur das Schmidt-
sche Orthonormalisierungsverfahren an den Spalten von X U*1 durch. Wie schonin
gesehen, entspricht dies einfach der Berechnung der QR-Zerlegung von X U+1),
es ist

XU+ — xUG+D RG) mit RV — (Tﬁ))
(und XU+D jst dabei natiirlich unitdr, R eine rechte obere Dreiecksmatrix).
Diese Idee wollen wir nun noch etwas leichter zuganglich und implementierbar ma-
chen. Wegen

XUrDRG) — Ax) gilt RU) — (X(j+1))_1AX(j).
Wir definieren das QR-Verfahren als die Folge von Matrizen
AW — (XU))—l AXU) — (X(J'))_IX(J'“) (X(j“))_lA (X))

—.QU) —RG)

AU) ist also dhnlich zu A und hat damit dieselben Eigenwerte. Nach unserer Herlei-
tung erwarten wir, dass X¥) gegen die Eigenvektoren von A konvergiert, also sollte
AU) gegen die Jordan—Normalform von A konvergieren. Q) und RY) sind die ein-
deutige Q R-Zerlegung von A mit positiver Hauptdiagonale von R") (siehe[3.15).
AU+ |3sst sich einfach aus AY) berechnen. Es gilt

AGFD = (X(j“))_l AXGHD
_ (X(j+1))_1 AX @) (X(j))_lX(jH)
— RIIQW)

und RY und QU berechnen wir mit Householder. Da alle AY) zu A 3hnlich sind,
haben alle dieselben Eigenwerte wie A.

Der so entstehende Algorithmus ist einer der grundlegenden Algorithmen der linea-
ren Algebra, und wohl der mit der kuriosesten Geschichte. Er wurde 1961 publiziert
von John Francis,Francis| [1961] und [Francis [1962]. Francis hat nie einen Univer-
sitdtsabschluss erhalten und den Algorithmus als Student entwickelt, aber dann
das Feld verlassen, ihm ist die Bedeutung erst 2007 klargeworden, als Gene Golub
ihn in Kleinarbeit aufstoberte. Golub, einer der Vater von Matlab und selbsternann-
ter Professor SVD, schreibt zum QR-Algorithmus (librigens nicht in einem Nachruf,
Francis lebt noch im Gegensatz zu Golub| (Stand 2012)):

Along with the conjugate gradient method, it provided us with one of the basic tools
of numerical analysis.

Eine Wiirdigung des Beitrags von Francis findet sich in Golub and Uhlig [2009].

Wir kdnnen den QR-Algorithmus so zusammenfassen (mit der Wahl X(© =]):

162

http://en.wikipedia.org/wiki/John_G.F._Francis
http://www.mathworks.de/company/newsletters/articles/professor-svd.html
http://www.netlib.org/na-digest-html/07/v07n34.html#1
http://de.wikipedia.org/wiki/Gene_H._Golub

Setze A .= A,
Fiurj=0...00
Berechne die QR-Zerlegung Q) RY) von AWY)
mit positiver Hauptdiagonale von RV,
Setze AU+D .— R(j)Q(j)‘
Falls A nah genug an einer Diagonalmatrix ist, brich das Verfahren ab.

Anschlieend kdnnen wir Naherungen fiir die Eigenwerte auf der Hauptdiagonalen
von AU+D) ablesen.

Momentan hoffen wir natiirlich nur, dass dieser Algorithmus konvergiert. Nach un-
serer Motivation vielleicht (iberraschend, bekommen wir eine Teilkonvergenz sogar
flir nicht—hermitesche Matrizen. Wir zeigen dies fiir einen Spezialfall.

Satz 7.10 (Konvergenz des QR-Algorithmus)
Sei A € C™*™. A habe betragsmdfig unterschiedliche Eigenwerte)\, mit

A1] > [A2| > ... > |\l
Dann hat A n linear unabhdngige Eigenvektoren, ist also diagonalisierbar, d.h.
D=X"1AX

mit der Diagonalmatrix
A1
A2

An

X1 besitze eine LR-Zerlegung X' = L' - R'. Weiter sei X = @Q - R die QR-
Zerlegung von X mit positiver Hauptdiagonale von R. Dann gilt fiir die Matrizen
des QR-Algorithmus

N 1=k
Agf,3>—> 0 i>k
? i<k

wobei das Fragezeichen dafiir steht, dass in diesem Fall die Folge nicht notwendig
liberhaupt konvergiert. Die Folge der Matrizen konvergiert also auf der Hauptdia-
gonalen gegen die Eigenwerte und darunter gegen 0, oberhalb treffen wir keine
Aussage.

Vorlesungsnotiz: 1.1.2013
Die Bedingungen des Satzes sind viel zu scharf, mogen hier aber ausreichen. Wir
machen zundchst einige Vorbemerkungen.

163

Lemma 7.11 Mit den Bezeichnungen des Satzes und des QR-Algorithmus gilt

1.
A =0Q0. QU-VRU-D. .RO),

2. Falls AY) gegen eine Matrix A konvergiert, so konvergieren auch die QR-
Zerlegungen mit positiver Hauptdiagonale von AY) gegen die Q R—Z erlegung
von A.

3. Seien o
A=Q -R=Q" R

zwei QR-Zerlegungen von A. Dann gibt es eine Diagonalmatrix D mit |Z~)m| =

1 und B _ _
QtQ g RRil == D
4.
(RDR’l)M = Dy k.
5.
0 1< k
(D’L'D7), = MLipA? =31 i=k
—0 1>k
und damit

D'L'D77 =T+ FY, FU) 0.

Beweis: (des Lemmas)

OORO = 4
QOQW RV RO — 9O AW R(0) = QO ROQO RO — 42
usw.

2. Fiir die erste Spalte ist die Aussage klar, dann weiter per Induktion tber die
Spalten.

3. Dasist[3.15]
4. Durch Hinschreiben des Matrixprodukts.

5. Genau wie im Beweis zu[z.5lund wegen |A;| > |Aji1-

164

Beweis: (des Satzes)

Der Beweis orientiert sich an der Originalpublikation Francis [1961].

Wir leiten eine zweite (Q R-Zerlegungen von A’ her und vergleichen sie mit dem
Lemma. Es gilt

Al =XDIX™!
= XD'L'R
= XD'L'D DR’
= X(I+ FY)DIR
= QR(I + FY)D'R’
=Q (I + RFYR™) RD'R

- 7

=:P() S(J) (QR-Zerlegung, HD von S() > 0)

— (Qp(j)) (S(j)RDjR/)
——— ———

und dies ist eine weitere Q R—Zerlegung von A7. Nach Teil 2 des Lemmas konvergie-
ren PY) und SU) gegen die Einheitsmatrix I. Nach Teil 3 des Lemmas gibt es also
eine Diagonalmatrix DY) mit Elementen vom Betrag 1 auf der Hauptdiagonalen und

Q0. ..QUD = gpWpu)

RG-D . . RO _ (Dm)*l SORDIR
Es gilt
QY = (Q(O) C Q(j—l))—l(Q(O) c Q(j))
_ (Qp(j)D(j))*l (QPUT) pUHY)
und

(RY) ... RO (RO . . R(O))—l
_ <(D(j+1>)*1 5(1+1>RDJ'+1R/> <(D(j>)*1 S(J')RDJR/>(‘”

R

Wegen AU) = QU RU) gilt also insgesamt
AW — (D(j))*l (p(j))*l pPUtNSGTIRDR (SV) ' DU)

—RDR-1

/

Da RDR™! rechte obere Dreiecksmatrix ist mit der Hauptdiagonalen von D, kon-
vergiert AY) also unterhalb der Hauptdiagonalen gegen 0, auf der Hauptdiagonalen

165

gegen die Diagonale von D, oberhalb der Hauptdiagonalen kdnnen wir keine
Aussage treffen. O

Der Beweis ist nicht schwierig, aber leider extrem technisch. Die zentrale Idee des
Beweises ist der Eindeutigkeitssatz der QR—Zerlegung(3.15} und Teil 5 des Lemmas.
Dort kann man auch die Konvergenzgeschwindigkeiten ablesen, nicht sehr iiberra-
schend, entsprechen sie denen der Potenzmethode.

Tatsdchlich kann man auf die meisten Voraussetzungen verzichten, sie sind rein
technischer Natur, um den Beweis halbwegs (ibersichtlich zu halten. Da die Idee
aber auf der Potenzmethode beruht, erwarten wir natiirlich dieselben Schwierigkei-
ten wie dort.

Bemerkung: (Bemerkungen zum QR-Algorithmus zur Bestimmung der Eigenwerte
einer Matrix)

1. Falls die Matrix nicht diagonalisierbar ist, konvergiert der QR—Algorithmus fiir
die entsprechenden Eigenwerte nur wie 1/;.

2. Falls betragsgleiche, unterschiedliche Eigenwerte existieren, so konvergiert
der @ R—Algorithmus fiir die entsprechenden Eigenwerte nicht. In diesem Fall
bleiben auch unterhalb der Hauptdiagonalen einige Elemente stehen, wir er-
halten Kdstchen, die den Jordan—Kastchen entsprechen.

3. Auch die Voraussetzung, dass die Hauptdiagonalen der QR-Zerlegungen
positiv sein miissen, ist rein technisch. Man kann mit beliebigen QR-
Zerlegungen arbeiten.

Unsere Demo zeigt das typische Konvergenzverhalten. In unserem Beispiel konver-
gieren einige Eigenwerte schnell (sie sind betragsmafig getrennt bzw. haben vollen
Eigenraum—Rang) (Block oben links), einige langsam (dort gibt es nicht ausreichend
viele Eigenvektoren) (unten rechts), einige gar nicht (dort gibt es betragsgleiche,
verschiedene Eigenwerte) (in der Mitte).

166

Abbildung 7.5: QR-Algorithmus: Typisches Konvergenzverhalten

Klick fiir Bild gralgdemo
Klick fiir Matlab Figure qralgdemo

function doiteigmovie(input_args)
%DOITEIGMOVIE

N=8;

A=zeros (N);

A(1,1)=1;

A(2,2)=1;

J

Listing 7.4: Konvergenzverhalten des QR-Algorithmus (Eigenwerte/doiteigmovie.m)

Klicken fiir den Quellcode von Eigenwerte/doiteigmovie.m

function S = qgralg(A,N,p)
%QRALG QR—Algorithmus

S=A;
for k=1:p
for i=1:N

[Q,R]=qr(S);

Listing 7.5: QR—Verfahren (Eigenwerte/qralg.m)

Klicken fiir den Quellcode von Eigenwerte/qralg.m

167

Logarithmus des Betrags der Elemente unter und auf der Hauptdiagonalen

T

T

T

T

T

T

3

-10

-12

14

-16

-18

Frank Wuebbeling
qralgdemo.jpg: QR-Algorithmus: Typisches Konvergenzverhalten

Frank Wuebbeling
Matlab Figure qralgdemo.fig: QR-Algorithmus: Typisches Konvergenzverhalten

function doiteigmovie(input_args)

%DOITEIGMOVIE

N=8;

A=zeros(N);

A(1,1)=1;

A(2,2)=1;

A(3,3)=1;

A(1,2)=1;

A(2,3)=1;

A(4,4)=2;

A(5,5)=-2;

A(6,6)=2;

A(7,7)=3;

A(8,8)=3;

diag(A)'

X=rand(N);

B=inv(X)*A*X;

for i=1:100

 [Q R]=qr(B);

 B=R*Q;

 C=log(abs(B)+1e-8);

 %C=B;

 for j=1:N

 for l=j+1:N

 C(j,l)=0;

 end

 end

 imagesc(C);

 colorbar;

 title('Logarithmus des Betrags der Elemente unter und auf der Hauptdiagonalen');

 drawnow;

 %waitforbuttonpress;

end

Frank Wuebbeling
Konvergenzverhalten des QR-Algorithmus

function S = qralg(A,N,p)
%QRALG QR-Algorithmus
S=A;
for k=1:p
for i=1:N
 [Q,R]=qr(S);
 S=R*Q;
end
%if (not(issparse(A)))
%sort(diag(S))
%sort(eig(A))
%end
figure(1);
imagesc(abs(S),[0 1])
title(['QR-Verfahren nach ' mat2str(k*N) ' Iterationen.']);
colorbar;
figure(2);
imagesc(log(abs(S)),[-5 0])
title(['QR-Verfahren nach ' mat2str(k*N) ' Iterationen, log view.']);
colorbar;
waitforbuttonpress;
end
diag(S)'

Frank Wuebbeling
QR–Verfahren

function [output_args] = demogqralg(input_args)

%DEMOQRALG

A=rand (4);

A=A+A’;

gralg (A,20,1);

A=rand (128);

.)
Listing 7.6: QR—Verfahren: Treiber 1 (Eigenwerte/demoqralg.m)

Klicken fiir den Quellcode von Eigenwerte/demoqralg.m

function [output_args] = demoqr2(n,m,p,q, r)
%DEMOQR2 Summary of this function goes here
% Detailed explanation goes here
format compact;
if (nargin<i)
n=10;

Listing 7.7: QR—Verfahren: Treiber 2 (Eigenwerte/demoqr2.m)

Klicken fiir den Quellcode von Eigenwerte/demoqgr2.m

Nach unserer Motivation hdtte man vielleicht erwartet, dass der QR—Algorithmus
nur fiir selbstadjungierte Matrizen konvergiert. Fiir allgemeine Matrizen ist die Mo-
tivation:

Fiir die erste Spalte von X fithren wir eine normale Potenzmethode durch. Fiir die
zweite Spalte auch, aber wir ziehen immer ein Vielfaches der ersten Spalte so ab,
dass die Spalten senkrecht aufeinander stehen. Dadurch verhindern wir die Konver-
genz gegen v; und erreichen eine Konvergenz in einem Teilraum, der von v; und v,
aufgespannt wird, und das reicht tatsdachlich schon aus.

Also: Wir fiihren n Potenzmethoden gleichzeitig durch, verhindern aber durch eine
kleine Modifikation, dass alle Folgen gegen denselben Vektor v; konvergieren.
Dies kann man auch leichter haben und war drei Jahre vorher die Idee von Heinz
Rutishauser, veroffentlicht in den Mitteilungen der US—Amerikanischen Normie-
rungsbehorde (Rutishauser [1958]), die auch die bekannteste Formel- und Tabel-
lensammlung Abramowitz and Stegun| [1965] veroffentlicht hat. Leider nicht onli-
ne. Auch Francis zitiert Rutishausers LR—Algorithmus als Motivation fiir den QR-
Algorithmus. Eine amiisante Geschichte der QR— und LR—-Algorithmen findet sich in
Gutknecht and Parlett/[2011].

168

function [output_args] = demoqralg(input_args)
%DEMOQRALG
A=rand(4);
A=A+A';
qralg(A,20,1);
A=rand(128);
A=A+A';
A=qralg(A,3,30);

Frank Wuebbeling
QR–Verfahren: Treiber 1

function [output_args] = demoqr2(n,m,p,q, r)
%DEMOQR2 Summary of this function goes here
% Detailed explanation goes here
format compact;
if (nargin<1)
 n=10;
end
if (nargin<2)
 m=10;
end
if (nargin<3)
 p=4;
end
if (nargin<4)
 q=0;
end
if (nargin<5)
 r=0;
end
D=diag(rand(n,1));
switch q
 case 0
 case 1
 for i=2:r
 D(i,i)=D(1,1);
 end
 case 2
 for i=2:r
 D(i,i)=D(1,1);
 D(i-1,i)=1;
 end
 case 3
 for i=2:r
 D(i,i)=D(1,1)*(-1)^(i+1);
 end
end

sort(diag((D)),1,'descend')'
X=rand(n)*2-1;
%Symmetric?
[X,R]=qr(X);
A=inv(X)*D*X;
qralg(A,m,p);

Frank Wuebbeling
QR–Verfahren: Treiber 2

http://en.wikipedia.org/wiki/Heinz_Rutishauser
http://en.wikipedia.org/wiki/Heinz_Rutishauser

Wir nehmen an, dass (v;); # 0. Auf der ersten Spalte fiilhren wir eine normale Po-
tenzmethode durch. Diesmal skalieren wir so, dass in jedem Schritt xgj) =1, dies
entspricht der Wahl z = e; in der Potenzmethode.

Wir ziehen nun in der zweiten Spalte einfach ein Vielfaches der ersten Spalte so ab,
dass in der zweiten Spalte in der ersten Zeile eine 0 steht, normieren so, dass in
der zweiten Zeile eine 1 steht (= e,), und verhindern damit die Konvergenz gegen
ein Vielfaches von v;. Fiir die weiteren Spalten geht man ebenso vor. Dann ist X *)
eine linke untere Dreiecksmatrix, R*) wie im QR-Algorithmus, und damit X ® R(*)
LR-Zerlegung von AX ®),

Mit den gleichen Uberlegungen wie oben fiihrt dies zum LR-Algorithmus, bei dem
einfach statt der QR-Zerlegung die LR—Zerlegung durchgefiihrt wird.

Setze A0 .= A,
Firj=0...00
Berechne die LR-Zerlegung LY RY) von AW,
Setze AUtY .= RUILW).
Falls A nah genug an einer Diagonalmatrix ist, brich das Verfahren ab.

und wieder liest man Naherungen fiir die Eigenwerte auf der Hauptdiagonalen ab.
Der Algorithmus hat dieselben Konvergenzeigenschaften wie der QR-Algorithmus,
da aber keine Spaltenpivotsuche durchgefiihrt werden kann, gilt er als notorisch in-
stabil und kann unter Umstdanden gar nicht ausgefiihrt werden, wenn im Verlauf der
Iteration eine Matrix auftaucht, die keine L R—Zerlegung besitzt. Eine kleine Demo
zum LR— und QR-Algorithmus findet sich hier.

Wir miissen auch noch auflésen, warum der QR—Algorithmus fiir allgemeine Matri-
zen oberhalb der Hauptdiagonalen nicht konvergiert. Sei z.B. A\; = —1. Nehmen wir

an, dass x§°> ein Eigenvektor zu A, ist. Dann gilt

7 = (=1,
d.h. die 2\’ oszillieren, und damit miissen wir in der ersten Reihe von AY) mit Aus-
nahme des Diagonalelements auch mit einem oszillierenden Verhalten rechnen.
Fiir die LR-Zerlegung gilt dieser Einwand nicht, dort wird eine echte Potenzmethode
mit der vorgesehenen Normierung durchgefiihrt, und damit erwarten wir dort Kon-
vergenz (nicht notwendig gegen 0) auch oberhalb der Hauptdiagonalen, wenn die
Voraussetzungen erfiillt sind.
Praktische Durchfiihrung des QR-Algorithmus
Da die QR-Zerlegung recht aufwéndig ist (2/3n3 Rechenoperationen nach unserer
Berechnung) fiihrt man den Algorithmus nicht direkt auf der Matrix A durch. Im All-
gemeinen wird zundchst mit[3.16|die Hessenberg—Form von A berechnet. Nach De-
finition ist diese dhnlich zu 4, hat also dieselben Eigenwerte. In den Ubungen ha-
ben wir bereits gezeigt, dass sie einfach mit einer Modifikation des Householder—
Algorithmus in 2/3n3 Rechenoperationen berechenbar ist. Die QR-Zerlegung dieser

169

http://wwwmath.uni-muenster.de/num/Vorlesungen/NumerischeLA_WS12/LR/LRHerleit.html

Matrix ist dann in O(n?) berechenbar, so dass man insgesamt auf einen Aufwand
von O(n?) fiir einen Schritt des Q R—Algorithmus kommt.

Noch einfacher wird dies fiir hermitesche Matrizen. Dann ist auch die Hessenberg-
form hermitesch, also eine Tridiagonalmatrix! Die QR—Zerlegung von Tridiagonalma-
trizen ist in O(n) berechenbar, und so kommt man auf einen Aufwand von O(n) fiir
einen Schritt des QR-Verfahrens, d.h. die Eigenwerte von hermiteschen Matrizen,
z.B. fiir die Singularwertzerlegung, sind extrem schnell berechenbar.

Es bleibt das Problem, dass bei betragsgleichen, unterschiedlichen Eigenwerten
keine Konvergenz vorliegt. Dies l6st man wieder mit geeigneten Shiftstrategien.

170

Kapitel 8

Numerische Approximation in metrischen
Raumen

Eine typische Aufgabe der Numerik ist die Approximation von Funktionen. Bei der
Nutzung eines Taschenrechners etwa nutzen wir bedenkenlos die Funktion zur Be-
rechnung des Sinus einer Zahl - wohl wissend, dass dieser natiirlich eigentlich nur
die Grundrechenarten nativ beherrscht (und unter Umstanden nicht mal diese, sie-
he unsere Diskussion zur Division mit dem Newtonverfahren in|s.33).

Einige Moglichkeiten, etwa die trigonometrischen Funktion f(z) = sin(x) ndhe-
rungsweise zu berechnen, fallen uns im Lichte der Vorlesung gleich ein:

1. Abgeschnittene Taylorentwicklung: Es wird die Taylorentwicklung der Funkti-
on bestimmt, aber bei der Auswertung nur bis zu einem endlichen Glied be-
rechnet, also

1 2%k+1
f(z) ~ Z(—l)kmx e

k=0

Fiir n — oo liefert diese Formel den korrekten Wert.

2. Lookup-Table: Es werden sehr viele Werte der Funktion mit einem hochge-
nauen Algorithmus (etwa abgeschnittene Taylorentwicklung mit sehr groBem
n) ausgerechnet und vertafelt. Der gesuchte Wert wird dann durch Interpo-
lation approximiert. Dies ist die Methode der grof3en Tafelwerke, siehe etwa
Abramowitz and Stegun| [1965]. Dies ist ein Spezialfall der bekannten Spline—
Interpolation (s. Numerische Analysis).
Diese Methode ist sehr schnell ausfiihrbar, sobald die Tafeln zur Verfiigung
stehen, bendtigt aber einen langen Vorlauf und ist nicht mehr praktikabel,
wenn hochgenaue Ergebnisse benotigt werden.

171

3. Polynom-Interpolation: Es werden nur relativ wenige Werte der Funktion
hochgenau berechnet. Anschlieend legt man ein Polynom durch die berech-
neten Werte und wertet dieses Polynom aus (das ist moglich nach . Dies
hort sich attraktiv an, ist aber leider extrem instabil (und wird in der Vorlesung
Hohere Analysis behandelt).

4. Polynomiale Regression: Es werden einige Werte der Funktion hochgenau be-
rechnet. Anschlieend sucht man ein Ausgleichspolynom niedrigen Grades.
Dies funktioniert tatsdachlich sehr gut. Fiir sehr viele berechnete Auswertun-
gen entspricht dies der Gauss—Approximation (siehe unten).

durch it A1 i Approximation durch Polynominterpolation

ERe
LLLE
L L

ER e
LHLLE

1\

|

08t

06}

0.4t

of

Abbildung 8.1: Approximation durch abgeschnittene Taylorentwicklung, Polynomin-
terpolation

Klick fiir Bild abgtaylor
Klick fiir Matlab Figure abgtaylor
Klick fiir Bild polynominterp
Klick fiir Matlab Figure polynominterp

function abgtaylor
%ABGTAYLOR
%Approximation des Sinus durch abgeschnittene Taylorentwicklung

order=2;
N=10000;

S

Listing 8.1: Approximation des Sinus durch abgeschnittene Taylorentwicklung (Ap-
proximation/abgtaylor.m)

172

1.6

14

1.2

0.8

0.6

0.4

0.2

Approximation durch abgeschnittene Taylorentwicklung

= =]
TR

Qw2 o
T

0.2

0.4

0.6

0.8

1.2

1.4

1.6

Frank Wuebbeling
abgtaylor.jpg: Approximation durch abgeschnittene Taylorentwicklung, Polynominterpolation

Frank Wuebbeling
Matlab Figure abgtaylor.fig: Approximation durch abgeschnittene Taylorentwicklung, Polynominterpolation

1.2

0.8

0.6

0.4

0.2

Approximation durch Polynominterpolation

7333
WN 2O

0.2

0.4

0.6

0.8

1.2

1.4

1.6

Frank Wuebbeling
polynominterp.jpg: Approximation durch abgeschnittene Taylorentwicklung, Polynominterpolation

Frank Wuebbeling
Matlab Figure polynominterp.fig: Approximation durch abgeschnittene Taylorentwicklung, Polynominterpolation

Klicken fiir den Quellcode von Approximation/abgtaylor.m

\

function [output_args] = polynom(input_args)
%POLYNOM

% Approximation durch Polynominterpolation
order=2;

N=10000;

x=(0:N)/N«pi/2;

)

Listing 8.2: Approximation des Sinus durch Polynominterpolation (Approximation/-

polynom.m)

Klicken fiir den Quellcode von Approximation/polynom.m

Im Bild sind abgeschnittene Taylorentwicklung und Polynominterpolation fiir den

Sinus dargestellt. Es fallt auf, dass in beiden Fallen die lineare Approximation kei-

neswegs optimal ist.

Wir vergleichen mit der polynomialen Regression. Hier sind die Ergebnisse fiir linea-
re Approximationen schon im Bild sehr viel besser.

Abbildung 8.2: Approximation durch Regression

Approximation durch Regression

EN
LLLE

Klick fiir Bild regressioninterp

Klick fiir Matlab Figure regressioninterp

Zur Referenz geben wir hier die maximalen Fehler fiir eine Approximation mit Poly-

nomen vom Grad < 3 an:

173

function abgtaylor

%ABGTAYLOR

%Approximation des Sinus durch abgeschnittene Taylorentwicklung

order=2;

N=10000;

x=(0:N)/N*pi/2;

y0=sinfun(x,0);

y1=sinfun(x,1);

y2=sinfun(x,2);

y3=sinfun(x,3);

plot(x,y0,x,y1,x,y2,x,y3,x,sin(x));

legend('n=0','n=1','n=3','n=5','sin');

title(['Approximation durch abgeschnittene Taylorentwicklung']);

maximalerFehler=max(abs(y2-sin(x)))

vorlsavepic('abgtaylor');

end

function out=sinfun(x,order)

out=zeros(size(x));

for i=1:order

 n=2*i-1;

 out=out-x.^n./factorial(n)*(-1)^i;

end

end

Frank Wuebbeling
Approximation des Sinus durch abgeschnittene Taylorentwicklung

function [output_args] = polynom(input_args)

%POLYNOM

% Approximation durch Polynominterpolation

order=2;

N=10000;

x=(0:N)/N*pi/2;

y0=sinfun(x,0);

y1=sinfun(x,1);

y2=sinfun(x,2);

y3=sinfun(x,3);

plot(x,y0,x,y1,x,y2,x,y3,x,sin(x));

legend('n=0','n=1','n=2','n=3','sin');

title(['Approximation durch Polynominterpolation']);

maximalerFehler=max(abs(y3-sin(x)))

vorlsavepic('polynominterp');

y0=sinfun(x,1000,0);

y1=sinfun(x,1000,1);

y2=sinfun(x,1000,2);

y3=sinfun(x,1000,3);

plot(x,y0,x,y1,x,y2,x,y3,x,sin(x));

legend('n=0','n=1','n=2','n=3','sin');

title(['Approximation durch Regression']);

maximalerFehler=max(abs(y3-sin(x)))

vorlsavepic('regressioninterp');

end

function out=sinfun(x,order,order2)

if (nargin<3)

 order2=order;

end

if (order==0)

 x0=pi/4;

else

x0=(0:order)/order*pi/2;

end

p=polyfit(x0,sin(x0),order2);

out=polyval(p,x);

end

Frank Wuebbeling
Approximation des Sinus durch Polynominterpolation

1.2

0.8

0.6

0.4

0.2

Approximation durch Regression

7333
WN 2O

0.2

0.4

0.6

0.8

1.2

1.4

1.6

Frank Wuebbeling
regressioninterp.jpg: Approximation durch Regression

Frank Wuebbeling
Matlab Figure regressioninterp.fig: Approximation durch Regression

maximaler Fehler
abg. Taylor | 0.075

Polynominterp. | 0.0024
Regression | 0.0027

Dabei haben wir den seltsamen Effekt, dass die Approximation durch Regression
nach unserer Herleitung eigentlich besser sein sollte als die Polynominterpolation,
die Kurve eigentlich auch sehr gut aussieht, der maximale Fehler aber trotzdem bei
der Regression grofBer ist. Dies werden wir spdter noch untersuchen.

Kriterien fiir eine gute Approximation sind natiirlich, dass der entstehende Approxi-
mationsfehler und der Aufwand zur Berechnung der Approximation maglichst klein
sind. Keiner der vorgeschlagenen Algorithmen erfiillt dies. Tatsachlich werden in
der Implementation in Hardware hochgenaue Algorithmen benutzt, die diesen im
Aufwand um GroBenordnungen iiberlegen sind (siehe [Risse [2004] fiir einen guten
Uberblick). Wir werden hier nicht diese (CORDIC-) Algorithmen behandeln, sondern
Approximationen, die eigentlich noch bessere Ergebnisse liefern, aber aufwandiger
zu implementieren sind.

Wir werden in diesem Kapitel einige Grundbegriffe kennenlernen. Gute Referenzen
fiir weitergehende Satze und Beweise sind der klassische Text Meinardus| [1964]
und die neue Edition des Buchs|Muller/[2005]. Wieder betrachten wir ausschlief3lich
reelle Vektorraume.

8.1 Bestapproximationen

Wir wollen nach Bestapproximationen suchen, also z.B. Polynome, die beziiglich
einer vorgegebenen Norm eine Funktion f am besten unter allen Polynomen vom
Grad < n approximieren. Zundchst suchen wir nach allgemeinen Kriterien dafiir,
wann solche Bestapproximationen existieren und wann sie eindeutig sind.

Definition 8.1 (Minimalabstand und Bestapproximation)
Sei (X, || - ||) ein normierter Raum. Sei T C X nichtleer, f € X, p* € T. Falls

lp* = fll <llp—flIvpeT
so heif3t p* Bestapproximation an f in T bzgl. || - ||.
d(f,T) =inf{[|f —pl| : p € T}
heit Minimalabstand von f und T.

Hierbei denken wir natiirlich vor allem an Funktionenraume fiir X, also etwa den
Raum aller stetigen Funktionen, versehen mit der Unendlich— oder euklidischen
Norm. Wir betrachten trotzdem zunichst einige einfache Beispiele im R2.

174

Beispiel 8.2

1. Sei X = (R2%,||-|]2), T ={p € X :||p||l =1}. Sei f € X.
Fiir ||f||2 < list f Bestapproximation an finT.
Fiir ||f||2 > List f/||f||2 eindeutige Bestapproximation an f in T.

2. Wie oben, aber diesmalseiT = {p € X : ||p||> < 1}. In diesem Fall gibt es fiir
||f|| > 1 keine Bestapproximation.

3. Jetzt wahlen wir die Unendlichnorm, d.h.
X =R |[ec) T={p€ X :|lpllc =1}, f = (3,0).
Natiirlich ist (1,0)" eine Bestapproximation von f, aber wegen

13,0 = (1, 1)f[loo = 2= I(3,0)" = (1,0)"[|

auch (1,1)t, d.h. in diesem Fall ist die Bestapproximation nicht eindeutig.

Abbildung 8.3: Approximation im R2. Links bzgl. der euklidischen Norm, rechts bzgl.
der oco—Norm.

Die Existenz und Eindeutigkeit der Bestapproximation hdangt also von der Norm ab.
Insbesondere geben andere Normen auch andere Bestapproximationen - die Wahl
derrichtigen Norm ist entscheidend fiir das Ergebnis. Tatsachlich liefert eine falsche
Normwahl unsinnige Ergebnisse.

Im folgenden betrachten wir immer einen Raum X mit Norm || - ||. Wir vermuten
natiirlich, dass Kompaktheit bereits ausreicht, um die Existenz einer Bestapproxi-
mation zu garantieren.

Satz 8.3 (Existenz der Bestapproximation)

1. Sei T kompakt, f € X. Dann gibt es eine Bestapproximation an f inT.

175

2. Sei T endlich—dimensionaler affiner Unterraum von X, f € X. Dann gibt es
eine Bestapproximation an f inT.

Beweis:

1. Die Funktion
Dy(z) = [l — fl]
ist stetig, 7" ist kompakt, also nimmt D, auf 7" sein Minimum an.

2. Seig € T. Wir bezeichnen immer mit
K (f) ={he X :[lh—fl[<r}

die abgeschlossene Kugel in X um f mit Radius r.

K:=TnNKjg,

ist kompakt als abgeschlossene und beschrankte Teilmenge eines affinen
endlich—dimensionalen Unterraums von X. Also gibt es eine Bestapproxima-
tion p* an fin K mit

Lf =pll = [lf =p*)l[Vp € K.

Firp e T, p ¢ K gilt aber dann wegen g € K
ILf =pll > (f = gll = IIf —p"]I-
Damit ist p* Bestapproximation an fin T U

Teil 1 dieses Satzes klingt grof3artig — er ist auch einfach anzuwenden fiir endlich—
dimensionale Raume, bei denen klar ist, was die kompakten Teilmengen sind
(ndmlich die abgeschlossenen und beschrdnkten). Fiir X = C([a,b]) lassen sich
diese charakterisieren mit dem Satz von Arzela—Ascoli, hier kommt die Bedingung
der gleichgradigen Stetigkeit hinzu.

Oben haben wir bereits gesehen, dass wir fiir die Eindeutigkeit zusatzliche Bedin-
gungen an die Norm bendtigen.

Definition 8.4 (strikt konvex, strikte Norm)

1. Sei K C X. K heifit strikt konvex, falls fiir alle unterschiedlichen x,y aus K
die Verbindungsstrecke zwischen x und y ganz im Inneren von K verlduft, also

M4+ (1—=Nye KVAe (0,1)Ve £y, 2,y € K.

176

2. || - || heif3t strikt, falls die Einheitskugel
By ={peX:|pll <1}
strikt konvex ist.

Beispiel 8.5

1. || - ||2 im R? st strikte Norm, denn fiir zwei beliebige unterschiedliche Punkte
auf dem Einheitskreis liegt die Verbindungsstrecke ganz im Inneren der Ein-
heitskugel.

2. || - ||oo im R? ist keine strikte Norm. Die zugehdérige Einheitskugel ist ein Qua-
drat mit Seitenldnge 2 um den Nullpunkt. Fiir (1,1)" und (1, —1)" verlduft die
Verbindungsstrecke ganz auf dem Rand dieses Quadrats.

Damit kdnnen wir zwei Eindeutigkeitssadtze zeigen.
Satz 8.6 (Eindeutigkeit der Bestapproximation)
1. Sei T strikt konvex, f € X. Dann existiert hochstens eine Bestapproximation
an finT.

2. Sei T konvex, und || - || sei strikt konvex. Dann gibt es hochstens eine Bestap-
proximation an f inT.

Beweis: Sei B(f,T) die Menge aller Bestapproximationen nichtleer, und seien p;
und py zwei Bestapproximationen. Sei f ¢ T. Wir zeigen jeweils p; = po.
Sei
K.(f)={peX:|lp—fll<r}
die abgeschlossene Kugel um f mit Radius » und d = d(f,T). Dann ist

als Schnitt konvexer Mengen konvex. Damit ist also
. 1
p = §(p1 + p2)

ebenfalls eine Bestapproximation.

177

1. Angenommen, p; # po. Da T strikt konvex ist, liegt p* im Inneren von T'. Es
gibtalso ein1 > ¢ > 0, so dass

q=p" +e(f—p)eT.
Damit gilt
f=all=[f=p" —e(f =)= =) llf =pl <d
und damit wdren p; und p, keine Bestapproximationen. Also gilt p; = p».

2. Mit der Einheitskugel ist auch K,(f) strikt konvex. p; und p, liegen in Ky(f).
Angenommen, p; # po. Dann liegt p* im Inneren von K,(f) und damit gilt

If=pll <d
im Widerspruch zur Minimalitat. Also ist p; = ps.

U
Bemerkung: Ublich_erweise flihrt man strikte Normen iiber eine dquivalente Formu-
lierung ein (siehe Ubungen).

Korollar 8.7 Sei || - || strikt und T affiner endlich—dimensionaler Teilraum von X.
Dann ist die Bestapproximation an T eindeutig.

Ungliicklicherweise sind die interessanten Normen nicht strikt, mit Ausnahme der
Normen in euklidischen Vektorraumen.

8.2 Gauss—Approximation

Als Gauss—Approximation bezeichnen wir die Bestapproximation in euklidischen
Vektorraumen, bei denen also die Norm durch ein Skalarprodukt definiert ist. Die-
ses Problem haben wir bereits in[6.6]geldst. Wir bemerken zundchst

Satz 8.8
Normen in euklidischen Vektorrdumen sind strikt.

Beweis: Zu zeigen ist, dass die Verbindungsstrecke zweier unterschiedlicher Punkte
x und y der Einheitskugel ganz im Inneren der Einheitskugel verlduft. Sei ||z|| =
lly|| = 1 (sonst ist das sowieso klar). Sei A € [0, 1]. Es gilt

Az + (1= Nyl = N[[2[* + 201 = A) (2, y) + (1 = A)?[[yl[?
< N[4+ 201 = N)[|=[] [lyl] + (1 = A)?[]y|[* (Cauchy-Schwart2)
= (Ml + (1 = N]lyl])?
~1.

178

Bei der Anwendung von Cauchy-Schwartz steht genau dann ein =, wenn z = puy
mit positivem . Da aber ||z|| = ||y|| = 1 und = # vy, ist diese Bedingung nicht
erfiillbar. Also steht dort ein echtes <—-Zeichen. O

Das Approximationsproblem in euklidischen Vektorraumen ist also immer eindeu-
tig losbar. Dies haben wir bereits in bemerkt und auch die Losung fiir endlich—
dimensionale Unterrdume angegeben. Wir fassen das Ergebnis noch einmal zusam-
men.

Korollar 8.9 (Bestapproximation in euklidischen Vektorrdumen, Gauss-—
Approximation)

Sei (X, (-,-)) ein euklidischer Vektorraum mit induzierter Norm || - ||. Sei T' ein
endlich—dimensionaler Untervektorraum von X mit Orthogonalbasis {pi, ..., p,}-
Sei weiter f € X.

Dann ist die Bestapproximation p* an f in T gegeben durch

p* _ Z (f?pk) Di

“— (Pr Pr)

Wir wollen dieses Korollar nun fiir unser Ausgangsproblem der polynomialen Ap-
proximation nutzen. Sei dazu X der Vektorraum der stetigen Funktionen auf einem
endlichen Intervall, versehen mit einem Skalarprodukt (-, -), und P, der Untervek-
torraum der Polynome vom Grad < n. Wir suchen das Polynom, das eine vorge-
gebene stetige Funktion f auf dem Intervall bzgl. der induzierten Norm am besten
approximiert.

Um den Satz anwenden zu kénnen, bendtigen wir zundchst eine orthonormale Ba-
sisvon P,,.

Definition 8.10 (orthogonale und orthonormale Polynome)

Durch Anwendung des Gram—-Schmidtschen Orthogonalisierungsverfahrens auf die
Monome 1,x,2%, ... erhdlt man eine Folge von paarweise orthonormalen Polyno-
men p,, n > 0. Es gilt grad p,, = n. Die p,, hei3en orthonormale Polynome des Ska-
larprodukts (-,-). {po....,pn} ist Basis des Polynomraums P,. p, steht senkrecht
auf P, fiirn > 0.

Verzichtet man auf die Normierung und ersetzt sie durch eine andere Forderung, so
heif3en die Polynome orthogonale Polynome.

In den Ubungen haben Sie bereits nachgewiesen, dass die Tschebyscheff-
Polynome orthogonale Polynome zum Skalarprodukt

(F9) = | =) o

179

sind.
Als Ubung berechnen wir die ersten orthogonalen Polynome zum Standardskalar-

produkt fiir die stetigen Funktionen auf [—1, 1]

(f,9) = /1f(x)g(x) dx.

Sie heiRen Legendre—Polynome. Wir fordern die Normierung p,, (1) = 1.

po(z) = 1, [Ipo(2)]| = V2.

1
pi(r) =2 — §(m,po)po = .
1 1 1

Pale) = 2 = S(w.0)po = 2 = 3. pa() = 5(32* — 1) (Normierung)

Orthogonale Polynome spielen in der angewandten Mathematik eine grof3e Rolle,
insbesondere in der Approximation und bei der Losung gewdhnlicher Differential-
gleichungen. Allgemein betrachtet man das Skalarprodukt

b
(f:g)wZ/ w(z) f(x)g(x)dx.

mit positiven Funktionen w. Einige Beispiele mit zugehdrigen orthogonalen Polyno-
men:

[a, b] w(x) Bezeichung
[—1,1] 1 Legendre—Polynome P,
[—1,1] (1 —22)~Y2 | Tschebyscheff-Polynome 1. Art T},
[—1,1] (1 —22)'/2 Tschebyscheff-Polynome 2. Art U
[—1,1] | (1 —2)*(1+z)? | Jakobi-Polynome P>
(—00, 00) e v*/2 Hermitesche Polynome H,
(0, 00) e " Laguerresche Polynome L,

Die Eigenschaften dieser Polynome sind gut untersucht, wir bemerken

Satz 8.11 Sei (p,) System von orthogonalen Polynomen zum Skalarprodukt (f, g).
im Vektorraum der stetigen Funktionen auf [a, b]. Dann hat p,, € P,, genau n Null-
stellen in (a,b).

Beweis: Seien x4, ..., z,, die Vorzeichenwechsel von p,,, also m < n. Sei

(x — 1) € P

=)
&
i

s

Dann hat ¢(x)p,(z) konstantes Vorzeichen. Angenommen, m < n.Da p,, dann senk-
recht steht auf den Polynomen aus P,,, gilt

0=(pn,Q)=/ w(z)pn(z)q(z)dX.

Wegen w > O istalso p, - ¢ = 04. O

Als Beispiel fiir die Approximation berechnen wir nun noch die Bestapproximation
des Cosinus auf [—1, 1] durch Polynome vom Grad < 2 beziiglich des Standard-
Skalarprodukts. Wir setzen

2
. COS, Pk
p :Zakpkaak:()

k=0 (Pr> Pr)
Dann gilt
1
1dx
ap = flfclled) = sin(1) ~ 0.84.
X
-1
fil cos(z)zdx
oy = =
' fjl x2dx
. J2, cos(z)4(322 — 1)dx —4sin(1) + 6 cos(1) e
LT L322 — 1)2dx 25 -

Insgesamt erhalten wir die Approximation
cos(z) ~ 0.99656 — 0.465262

die sich leicht von der abgeschnittenen Taylor—Reihe unterscheidet.

181

Gauss—Approximation des Cosinus Fehler der Gauss--Approximation des Cosinus

1 08 08 04 02 [02 04 06 08 1 T s 08 04 02 [} 02 04 06 08 1

Abbildung 8.4: Gauss—Approximation des Cosinus

Klick fiir Bild gausscosdemo
Klick fiir Matlab Figure gausscosdemo
Klick fiir Bild gausscosdemodiff
Klick fiir Matlab Figure gausscosdemodiff

Fiir unser Standardbeispiel der Approximation des Sinus auf dem Intervall I =
[0,7/2] berechnen wir zundchst die orthogonalen Polynome p, mit dem Gram-
Schmidt-Verfahren auf I exakt in Maple beziiglich eines vorgegebenen Skalarpro-
dukts und approximieren dann

3

k=0 (pk7 pk)

182

Gauss--Approximation des Cosinus
1 T T T T

Po
095} p, U
cos
0.9 B
0.85- -

0.8

0.75

0.7

0.65

0.6

0.55

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

Frank Wuebbeling
gausscosdemo.jpg: Gauss–Approximation des Cosinus

Frank Wuebbeling
Matlab Figure gausscosdemo.fig: Gauss–Approximation des Cosinus

0.2

Fehler der Gauss--Approximation des Cosinus

01

0.051-

-0.05F

-0.15F

-0.2

1

0.2

0.4

0.6

0.8 1

Frank Wuebbeling
gausscosdemodiff.jpg: Gauss–Approximation des Cosinus

Frank Wuebbeling
Matlab Figure gausscosdemodiff.fig: Gauss–Approximation des Cosinus

aaaaaaaaaaaaaaaaaaa

Abbildung 8.5: Gauss—Approximation. Links Legendre, rechts Tschebyscheff.

Klick fiir Bild gaussappro
Klick fiir Matlab Figure gaussappro
Klick fuir Bild gaussaprotscheb
Klick fiir Matlab Figure gaussaprotscheb

%GAUSSAPPRO

syms x;
\&

function [output_args] = gaussappro(input_args)

%Computes orthogonal polynomials with respect to a given scalar
%and the best approximation in the Gauss sense to sin(x) on (o,p
%Attention: Maple toolbox may be required!

broduct
i/2)

Listing 8.3: Gauss—Approximation und orthogonale Polynome (Approximation/g-

aussappro.m)

Klicken fiir den Quellcode von Approximation/gaussappro.m

maximaler Fehler

Gauss (Legendre)
Gauss (Tschebyscheff)

0.0027
0.0015

Wir erhalten fiir das Standard—Skalarprodukt also denselben Fehler wie fiir die
Regression, tatsdchlich liefern die beiden Verfahren ein identisches Ergebnis.
Durch Verwendung des Skalarprodukts, das die Tschebyscheff-Polynome definiert,
konnen wir den maximalen Fehler noch einmal um den Faktor 2 driicken.

Die berechneten Polynome sind

ph(z) = —0.00225845161 + 1.027169448z — 0.06994357632> — 0.11386854522>

183

1.2

Gauss--Approximation

0.2

0.4

0.6

0.8

1.2

1.4

1.6

Frank Wuebbeling
gaussappro.jpg: Gauss–Approximation. Links Legendre, rechts Tschebyscheff.

Frank Wuebbeling
Matlab Figure gaussappro.fig: Gauss–Approximation. Links Legendre, rechts Tschebyscheff.

1.2

Gauss--Approximation (Tschebyscheff-Skslarprodukt)
T

0.2

0.4 0.6 0.8 1 1.2 1.4 1.6

Frank Wuebbeling
gaussaprotscheb.jpg: Gauss–Approximation. Links Legendre, rechts Tschebyscheff.

Frank Wuebbeling
Matlab Figure gaussaprotscheb.fig: Gauss–Approximation. Links Legendre, rechts Tschebyscheff.

function [output_args] = gaussappro(input_args)

%GAUSSAPPRO

%Computes orthogonal polynomials with respect to a given scalar product

%and the best approximation in the Gauss sense to sin(x) on (0,pi/2)

%Attention: Maple toolbox may be required!

syms x;

order=3;

N=1000;

x0=(0:N)/N*pi/2;

x0=(0:N)/N*2-1;

for i=0:order

 P=x^i;

 for j=0:i-1

 P=P-skalarprodukt(p(j+1),P)/skalarprodukt(p(j+1),p(j+1))*p(j+1);

 end

 p(i+1)=P/subs(P,1);

 P=simplify(P);

 p(i+1)

end

f=sin(x);

f=heaviside(0.1-abs(x));

pstar=0;

for i=0:order

 pstar=pstar+skalarprodukt(f,p(i+1))/skalarprodukt(p(i+1),p(i+1))*p(i+1);

 Pstar(i+1)=pstar;

end

pstar=simplify(pstar)

y0=double(subs(Pstar(1),x0));

y1=double(subs(Pstar(2),x0));

y2=double(subs(Pstar(3),x0));

y3=double(subs(Pstar(4),x0));

%plot(x0,y0,x0,y1,x0,y2,x0,y3,x0,sin(x0));

y=double(heaviside(0.1-abs(x0)));

plot(x0,y0,x0,y1,x0,y2,x0,y3,x0,y);

title('Gauss--Approximation (Tschebyscheff-Skslarprodukt)');

legend('n=0','n=2','heavi');

maxError=max(abs(y3-sin(x0)))

%vorlsavepic('gaussappro');

vorlsavepic('gaussapprotschebheavi');

end

function out=skalarprodukt(f,g)

syms b;

syms a;

syms x;

b=pi/2;

a=-1;

b=1;

%out=int(f*g,0,b);

out=int(f*g/sqrt((x-a)*(b-x)),a,b);

end

Frank Wuebbeling
Gauss–Approximation und orthogonale Polynome

pir(z) = —0.001244756730 + 1.023967362z — 0.068587289102% — 0.11337719462°

Die Erkldarung dafiir, dass die Tschebyscheff—-Polynome ein besseres Ergebnis lie-
fern: Die Approximation wird haufig zum Rand hin schlechter (das kann man analy-
tisch zeigen), durch die Gewichtung sorgen wir dafiir, dass der Rand besser appro-
ximiert wird.

Dies sieht zundchst sehr gut aus - hat aber einen Pferdefuf3: Alle iber Skalarpro-
dukte definierten Normen tun eigentlich nicht das, was wir wollen. Als Beispiel be-
trachten wir die folgende (unstetige) Funktion:

fla) = {1]| < 0.1

0 sonst

auf [—1, 1].

Angenommen, wir wollen diese Funktion durch eine Konstante approximieren. Dann
gibt es verschiedene Strategien: Falls wir den durchschnittlichen Fehler minimieren
wollen (dies tut die Gauss—Approximation), so sollten wir die Konstante nah an 0
wahlen. Dadurch erhalten wir zwar fiir z = 0 einen grof3en Fehler, aber nur auf
einem kleinen Gebiet. Tatsachlich liefert die Gauss—Approximation dieses Ergebnis.
Wollen wir dagegen den maximalen Fehler minimieren (wie es etwa ein CPU-
Architekt tun wiirde), wiirden wir natiirlich 1/2 als Konstante wahlen. Dies ist die
Idee der Tschebyscheff-Approximation.

Abbildung 8.6: Approximation einer Treppenfunktion mit Gauss

Klick fiir Bild gaussapprotschebheavi
Klick fiir Matlab Figure gaussapprotschebheavi

Bemerkung: Wir haben hier der Einfachheit halber durch Polynomraume approxi-
miert. Dies wurde tatsdchlich in den Algorithmen und Satzen gar nicht verwendet.

184

Gauss--Approximation (Tschebyscheff-Skslarprodukt)

n=0
n=2
heavi

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

Frank Wuebbeling
gaussapprotschebheavi.jpg: Approximation einer Treppenfunktion mit Gauss

Frank Wuebbeling
Matlab Figure gaussapprotschebheavi.fig: Approximation einer Treppenfunktion mit Gauss

Gauss—Approximation ldasst sich auf beliebigen Unterraumen durchfiihren. Eine be-
liebte Wahl ist die rationale Approximation, dort wahlt man Unterrdume, die auch
Quotienten von Polynomen enthalten.

8.3 Tschebyscheff-Approximation

In diesem Abschnitt wahlen wir als Norm im Vektorraum X der stetigen Funktio-
nen auf einem abgeschlossenen Intervall I = [a,b] die Unendlich-Norm || - || -
Wir haben bereits gesehen, dass die Unendlich—Norm nicht strikt ist, wir kbnnen
also nicht erwarten, eindeutige Bestapproximationen zu erhalten. Bei der Appro-
ximation beziiglich der Unendlich—Norm versuchen wir, p* so zu wahlen, dass der
Maximalabstand zwischen f und p minimal wird, also

f =P lloe < IS = plloc VP € P

p* heit Tschebyscheff-Approximation an f in P,.. Wir schauen uns diese Bestap-
proximation zundchst am Beispiel des letzten Kapitels an. Wir wahlen wieder

1 Jlz|| <0.1
I =
/(@) {0 sonst

auf [—1, 1] und n = 0. Natiirlich ist die Bestapproximation dann die konstante Funk-
tion
p(x) =1/2

mit dem Maximalabstand 1/2.

185

der Tschebyscheff-Approxi

Abbildung 8.7: Tschebyscheff-Approximation vom Grad 0

Klick fiir Bild tscheb1

Klick fiir Matlab Figure tscheb1
Klick fiir Bild tscheb1b

Klick fiir Matlab Figure tscheb1b

N,
L
VB

Klick fur Bild tscheb1c

Abbildung 8.8: Tschebyscheff-Approximation vom Grad 0 (f(x) = x)
Klick fiir Matlab Figure tschebic

Klick fiir Bild tscheb1d
Klick fiir Matlab Figure tscheb1d
function [output_args] = tscheb1(input_args)
%TSCHEB1
N=1000;
x=(0:N)/Nx2—1;

186

Tschebyscheff-Approximation

n=0
heavi

-0.2 0 0.2 0.4 0.6 0.8 1

Frank Wuebbeling
tscheb1.jpg: Tschebyscheff–Approximation vom Grad 0

Frank Wuebbeling
Matlab Figure tscheb1.fig: Tschebyscheff–Approximation vom Grad 0

Fehler der Tschebys
T

cheff-Approximation

051

0.4

03

0.2

01

0.2

0.4

0.6

0.8

Frank Wuebbeling
tscheb1b.jpg: Tschebyscheff–Approximation vom Grad 0

hgS_070000:[1x1 struct array]

		[1x6 char array]

		[1x1 double array]

		[1x1 struct array]		@ =
	PaperUnits : [1x11 char array]
	Color : [1x3 double array]
	Colormap : [64x3 double array]
	InvertHardcopy : [1x2 char array]
	PaperPosition : [1x4 double array]
	PaperSize : [1x2 double array]
	PaperType : [1x2 char array]
	Position : [1x4 double array]
	ApplicationData : [1x1 struct array]

		[1x1 struct array]		@ =
	type : [1x4 char array]
	handle : [1x1 double array]
	properties : [1x1 struct array]
	children : [5x1 struct array]
	special : [4x1 double array]

		[0x0 double array]

Frank Wuebbeling
Matlab Figure tscheb1b.fig: Tschebyscheff–Approximation vom Grad 0

Tschebyscheff-Approximation

0.8

06

0.4

0.2

n=0
heavi

-0.2 0 0.2

0.4

0.6

0.8

Frank Wuebbeling
tscheb1c.jpg: Tschebyscheff–Approximation vom Grad 0 (f(x)=x)

Frank Wuebbeling
Matlab Figure tscheb1c.fig: Tschebyscheff–Approximation vom Grad 0 (f(x)=x)

Fehler der Tschebyscheff-Approximation
T T

Frank Wuebbeling
tscheb1d.jpg: Tschebyscheff–Approximation vom Grad 0 (f(x)=x)

hgS_070000:[1x1 struct array]

		[1x6 char array]

		[1x1 double array]

		[1x1 struct array]		@ =
	PaperUnits : [1x11 char array]
	Color : [1x3 double array]
	Colormap : [64x3 double array]
	InvertHardcopy : [1x2 char array]
	PaperPosition : [1x4 double array]
	PaperSize : [1x2 double array]
	PaperType : [1x2 char array]
	Position : [1x4 double array]
	ApplicationData : [1x1 struct array]

		[1x1 struct array]		@ =
	type : [1x4 char array]
	handle : [1x1 double array]
	properties : [1x1 struct array]
	children : [5x1 struct array]
	special : [4x1 double array]

		[0x0 double array]

Frank Wuebbeling
Matlab Figure tscheb1d.fig: Tschebyscheff–Approximation vom Grad 0 (f(x)=x)

tty=double(heaviside(o.1—abs(x))); J

Listing 8.4: Tschebascheff-Approximation einfaches Beispiel (Approximation/t-
scheb1.m)

Klicken fiir den Quellcode von Approximation/tscheb1.m

Wenn wir den Fehler der Tschebyscheff-Approximation betrachten, fallt auf, dass er
sein Betragsmaximum mit wechselnden Vorzeichen annimmt. Dies ist natiirlich fiir
n = 0 immer der Fall, man {iberlegt sich schnell, dass die beste Approximation die
Konstante (max + min)/2 ist, und an den Stellen, an denen f Maximum oder Mini-
mum annimmt, ist der Abstand sein Betragsmaximum mit wechselnden Vorzeichen.
Gleichzeitig charakterisiert das die Bestapproximation eindeutig.

Wir betrachten nun wieder den Sinus auf [0, 7/2] und versuchen, die Bestapproxi-
mation zu vom Grad 1 zu schatzen.

Tschebyscheff-Approximation (Gred1) ~Fehlerder Tschebyschef-Approximation (Grad 1)

——sin

Abbildung 8.9: Tschebyscheff-Approximation vom Grad 1 (geraten)

Klick fiir Bild tscheb2
Klick fiir Matlab Figure tscheb2
Klick fiir Bild tscheb2b
Klick fiir Matlab Figure tscheb2b

function [output_args] = tscheb2(input_args)
%TSCHEB2

N=1000;

x=(0:N)/N«pi/2;

y=sin (x);

\

Listing 8.5: Tschebyscheff-Approximation vom Grad 1 (Approximation/tscheb2.m)

187

function [output_args] = tscheb1(input_args)

%TSCHEB1

N=1000;

x=(0:N)/N*2-1;

y=double(heaviside(0.1-abs(x)));

y=x;

y0=0;

plot(x,y0,x,y);

ylim([-1.2,1.2]);

title('Tschebyscheff-Approximation');

legend('n=0','heavi');

vorlsavepic('tscheb1c');

plot(x,y-y0);

ylim([-1.2,1.2]);

title('Fehler der Tschebyscheff-Approximation');

vorlsavepic('tscheb1d');

end

Frank Wuebbeling
Tschebascheff–Approximation einfaches Beispiel

1.4

1.2

0.8

0.6

0.4

0.2

Tschebyscheff-Approximation (Grad 1)

n=1
sin

0.2

0.4

0.6

0.8

1.2

1.4

1.6

Frank Wuebbeling
tscheb2.jpg: Tschebyscheff–Approximation vom Grad 1 (geraten)

Frank Wuebbeling
Matlab Figure tscheb2.fig: Tschebyscheff–Approximation vom Grad 1 (geraten)

0.1

0.05

-0.05

-0.15
0

Fehler der Tschebyscheff-Approximation (Grad 1)

0.2

0.4

0.6

0.8

1.2

1.4

1.6

Frank Wuebbeling
tscheb2b.jpg: Tschebyscheff–Approximation vom Grad 1 (geraten)

hgS_070000:[1x1 struct array]

		[1x6 char array]

		[1x1 double array]

		[1x1 struct array]		@ =
	PaperUnits : [1x11 char array]
	Color : [1x3 double array]
	Colormap : [64x3 double array]
	InvertHardcopy : [1x2 char array]
	PaperPosition : [1x4 double array]
	PaperSize : [1x2 double array]
	PaperType : [1x2 char array]
	Position : [1x4 double array]
	ApplicationData : [1x1 struct array]

		[1x1 struct array]		@ =
	type : [1x4 char array]
	handle : [1x1 double array]
	properties : [1x1 struct array]
	children : [5x1 struct array]
	special : [4x1 double array]

		[0x0 double array]

Frank Wuebbeling
Matlab Figure tscheb2b.fig: Tschebyscheff–Approximation vom Grad 1 (geraten)

Klicken fiir den Quellcode von Approximation/tscheb2.m

Zumindest angendhert sehen wir auch hier, dass der Fehler der von uns geratenen
Approximation sein Betragsmaximum mit unterschiedlichen Vorzeichen annimmt —
nicht ganz genau, es ist ja nur geraten...

Wir vermuten daher, dass eine Funktion eine Bestapproximation beziiglich der
Unendlich—-Norm ist, wenn der Fehler sein Betragsmaximum mit wechselnden Vor-
zeichen (ausreichend oft) annimmt. Dies ist tatsachlich der Fall. Wir zeigen zundchst

Lemma 8.12
Sei I =la,bl, f: 1~ Rstetig. Sein > 0ganz, p € P,.
Seienx, €I, k=0...n+ 1, und xy, < xy1. Die Funktion

f=r
habe alternierende Vorzeichen in den x;, d.h.

sgn(f(zr) — plew)) = (1), 0 € {-1,1}.

Dann gilt
n+1

min | f(zr) — p(zp)| < d(f, Pn).

Wirwenden das Lemma zundchst auf unsere geratene Approximation an. Der Fehler
nimmt dort an drei Stellen die Werte —0.1, 0.1 und —0.12 an. Jedes Polynom vom
Grad < 1 hat also mindestens den Maximalabstand 0.1 zu f.

Beweis: Angenommen, es gibt ein ¢ € P,,, das f besser approximiert als das Mini-
mum. Dann gilt firallek=0...n+ 1

(=) (f(xr) — plaw) = | f(zr) — plar)|
> [|f = qllso
> | f(xx) — q(xr)]
> o(=1)"(f(xx) — q(ax)).
Damit gilt
o(=1)*(q(xr) — plag)) >0, =0...n+1.

Die Funktion ¢ — p hat also n + 1 Vorzeichenwechsel und ist stetig. Sie hat also
auch mindestens n + 1 Nullstellen. Da p und ¢ aber in P, liegen, ist damit ¢ — p
ein Polynom vom Grad < n mit n + 1 Nullstellen, also das Nullpolynom und damit
p = q im Widerspruch dazu, dass ¢ — p alternierendes Vorzeichen hat. O

188

function [output_args] = tscheb2(input_args)

%TSCHEB2

N=1000;

x=(0:N)/N*pi/2;

y=sin(x);

y1=0.1+0.65*x;

plot(x,y,x,y1);

title('Tschebyscheff-Approximation (Grad 1)');

legend('n=1','sin');

vorlsavepic('tscheb2');

plot(x,y-y1);

title('Fehler der Tschebyscheff-Approximation (Grad 1)');

vorlsavepic('tscheb2b');

end

Frank Wuebbeling
Tschebyscheff–Approximation vom Grad 1

Korollar 8.13 (Alternantensatz)

Sei p* € P,, f : I — R stetig. Die Funktion f — p* nehme fiir aufsteigend geord-
nete, unterschiedliche Argumente x;, € I ihr Betragsmaximum mit alternierendem
Vorzeichen an, also

flar) = p"(z) = o(=1)"|If = p"lloc, o € {1, 1}.
Dann ist p* Bestapproximation an f in P,.
Beweis: Nach Lemma|[8.12]gilt

Lf = p*l| < d(f, Pn).
U

Die Folge von Argumenten z; aus dem Lemma heif3t Alternante zu f — p*. Damit
kénnen wir also feststellen, ob ein Polynom p eine Bestapproximation ist. Es gilt
auch die Umkehrung: Jede Tschebyscheff-Bestapproximation besitzt eine Alternan-
te.

Satz 8.14 (Existenz einer Alternante)
Sei p* die Bestapproximation an f in P, beziiglich || - ||.. Dann besitzt f — p* eine
Alternante, d.h.

Jzo < ... < @nyr, 01 (f = p)(wi) = o (=1 = plec, o] = 1.

Beweis: Dies ist Satz 17 in | Meinardus|[1964].

Beweisskizze:

Sei f # p*. Sei D die Menge aller Werte, fiir die f — p* sein Betragsmaximum
annimmt, also

D={xel:|f(z)—p @)= —pll}

Wir betrachten die Anzahl der Vorzeichenwechsel von f — p* auf D. Sind es minde-
stens (n+1), so gibt es eine Alternante. Angenommen, dies sei nicht der Fall. Dann
gibt es Werte z;, € I mit

(f=p)(zr) =0, k=1...m, m<n,

die die Bereiche mit gleichem Vorzeichen trennen, denn D ist abgeschlossen.
Wir setzen

3

q(z) = | | (z — x) € P,.

k=1

189

Dann wechseln g und (f — p*) bezogen auf D an denselben Stellen ihr Vorzeichen.
Ohne Einschrankung sei das Vorzeichen immer gleich. Wir betrachten

p(x) = p"(x) +eq(x) € Py

fiir ein kleines e > 0. Fiir z € D (und auch in einer kleinen Umgebung D) gilt dann

|[f(z) = p(a)| = [(f(z) = p™(2)) — eq(x)| < [f(z) = p*(2)].

Fiir ¢ hinreichend klein werden die Maxima von f — p in D angenommen, dies ist
ein Widerspruch. O

Haufig sind die Intervallenden a und b Teil der Alternante. Mit dieser Annahme lasst
sich manchmal die Alternante auch analytisch berechnen. Als Beispiel berechnen
wir

Beispiel 8.15 (Tschebyscheff-Approximation von xz* durch lineare Funktionen)
Seil =[0,1], f : I — R, f(x) = 22 Sei p*(x) = ax + B die Tschebyxscheff-
Approximation an f. Sei xy, x1,x, die Alternante und d = ||f — p*||«. Wir machen
den Ansatz xq = 0 und x = 1. Dann gilt

p*(0) — f(0) =5 =D
p(a1) — f21) = oy + — af =-D
p(l)—fl)=a+p-1 _D

fir D = d(f,P,) oder D = —d(f,P,). Zusdtzlich muss die Differenz am inneren
Punkt x1 ihr Maximum oder Minimum annehmen, die Ableitung muss also dort ver-
schwinden, und damit

p'(1) = f'(a1) = a = 22, = 0.

Wir erhalten sofort

1 1
(67 , L1 276 8
und damit ist
W@—x—l
AT =2 7y

die beste lineare Approximation an x*. Die Alternante ist (0,1/2,1), an allen diesen
Stellen nimmt die Differenz ihren Maximalabstand 1/8 mit alternierendem Vorzei-
chen an.

190

Abbildung 8.10: Tschebyscheff-Approximation an 2

Klick fiir Bild remezbeispiel
Klick fiir Matlab Figure remezbeispiel

Klick fiir Bild remezbeispiel2
Klick fiir Matlab Figure remezbeispiel2

function remezbeispiel
%REMEZBEISPIEL
N=1000;

x=(0:N)/N;
alternante=[o 0.5 1];
plot(x,x—1/8,x,x.72);

J

Listing 8.6: Beispiel zur Tschebyscheff-Approximation (Approximation/remezbei-
spiel.m)

Klicken fiir den Quellcode von Approximation/remezbeispiel.m
Als Anwendung beweisen wir

Satz 8.16 (Optimalitdt der Tschebyscheff-Polynome)
Sein > 0 und T, das Tschebyscheff-Polynom vom Grad n.

1
p(x) = FTn(l')
hat unter allen Polynomen vom Grad n mit Hochstkoeffizient 1 die kleinste
Unendlich-Norm auf dem Intervall [—1, 1].

Beweis: In den Ubungen wurde bereits gezeigt, dass p den Hochstkoeffizienten 1
hat. Also ist)
T cos(narccosz) = p(x) = 2" — v(z)

191

1.2

Tschebyscheff-Approximation an x’

2

0.1

0.2

03 0.4 0.5 0.6

0.7 0.8 0.9 1

Frank Wuebbeling
remezbeispiel.jpg: Tschebyscheff–Approximation an x2

Frank Wuebbeling
Matlab Figure remezbeispiel.fig: Tschebyscheff–Approximation an x2

0.15

0.1

0.05

-0.05

-0.15

Fehler der Tschebyscheff-Approximation an x

2

0.1

0.2

03

0.4

0.5

0.6

0.7

0.8

0.9

Frank Wuebbeling
remezbeispiel2.jpg: Tschebyscheff–Approximation an x2

hgS_070000:[1x1 struct array]

		[1x6 char array]

		[1x1 double array]

		[1x1 struct array]		@ =
	PaperUnits : [1x11 char array]
	Color : [1x3 double array]
	Colormap : [64x3 double array]
	InvertHardcopy : [1x2 char array]
	PaperPosition : [1x4 double array]
	PaperSize : [1x2 double array]
	PaperType : [1x2 char array]
	Position : [1x4 double array]
	ApplicationData : [1x1 struct array]

		[1x1 struct array]		@ =
	type : [1x4 char array]
	handle : [1x1 double array]
	properties : [1x1 struct array]
	children : [7x1 struct array]
	special : [4x1 double array]

		[0x0 double array]

Frank Wuebbeling
Matlab Figure remezbeispiel2.fig: Tschebyscheff–Approximation an x2

function remezbeispiel

%REMEZBEISPIEL

N=1000;

x=(0:N)/N;

alternante=[0 0.5 1];

plot(x,x-1/8,x,x.^2);

title('Tschebyscheff-Approximation an x^2');

legend('p^\ast','x^2');

vorlsavepic('remezbeispiel');

plot(x,0*x,x,x.^2-x+1/8,alternante,alternante.^2-alternante+1/8,'X','MarkerSize',15);

title('Fehler der Tschebyscheff-Approximation an x^2');

vorlsavepic('remezbeispiel2');

end

Frank Wuebbeling
Beispiel zur Tschebyscheff–Approximation

mit v € P,_;. Wenn p minimale Norm haben soll unter allen Polynomen dieser
Form, muss v die Bestapproximation von z™ in P,,_; sein.

Wir setzen I
T = cos(l), E=0...n.
n
Dann gilt
1
(20)" = v(wn) = 5y Tulzn)
1
= oni cos(km)
1
- on—1 <_1)k

Also nimmt die Differenzfunktion mit wechselnden Vorzeichen an (n + 1) Stellen
ihr Betragsmaximum an, ist also Alternante und v ist Bestapproximation. U

Wir wollen nun noch einen iterativen Algorithmus herleiten, der die Tschebyscheff—
Approximation berechnet. Der Beweis zu Satz([8.14]gibt dazu eine Idee: Wir starten
mit einem Polynom py. Falls f — pg eine Alternante hat, so sind wir fertig. Falls nicht,
so konnen wir wie im Beweis eine neue Funktion p,; konstruieren, die einen kleine-
ren Maximalabstand zu f hat als py usw.

Dieser Algorithmus ist leider wenig praktikabel. Die Untersuchung, ob f — p, eine
Alternante besitzt bzw. die Berechnung der Menge D aus dem Beweis wird schnell
aufwandig.

Statt dessen nutzen wir den Remez—Algorithmus. Er geht nicht vom Polynom aus
und berechnet die zugehdrige Alternante, sondern versucht, iterativ eine Alternante
und dadurch die zugehorige Bestapproximation zu bestimmen.

Wenn zy, ..., z,,1 eine Alternante zur Approximation von f durch p € P, bilden, so
haben sie zu der vorgegebenen Funktion f an diesen Stellen den gleichen Abstand
D = ||f = plloo-

Wir starten also zundchst mit irgendeiner geordneten Startverteilung von Punkten
Zo, ..., Tne1 ausdemIntervall . Dann berechnen wir ein Polynom p, das zu f an die-
sen Punkten den gleichen Abstand D mit alternierendem Vorzeichen hat. Das fol-
gende Lemma zeigt, dass dieses Polynom eindeutig bestimmt werden kann durch
Ldsen eines linearen Gleichungssystems in (n+2) Variablen. Falls |D| = || f — p||ccs
so sind wir fertig, wir haben eine Alternante gefunden. Falls nicht, verschieben wir
die Punkte (im Beispiel wird sofort klar, wie), und machen mit der neuen Verteilung
weiter.

Zundchst aber

192

Lemma 8.17
Seixy < ... < x,y1. Dann gibt es genau ein Polynom p € P, und ein D € R, so
dass

p(x) — f(zx) = (=1)*DVE=0...n+1.

Beweis: D und die Koeffizienten von p erfiillen ein lineares Gleichungssystems.
Die Annahme, dass dieses zwei verschiedene Losungen hat, fiihrt sofort zum
Widerspruch, also ist das Gleichungssystem eindeutig losbar. O

Korollar 8.18 Eine Bestapproximation p* ist eindeutig durch ihre Alternante charak-
terisiert. Bei gegebener Alternante kann p* durch Ldsen eines linearen Gleichungs-
systems in (n + 2) Variablen bestimmt werden.

Korollar 8.19 Die Bestapproximation in P,, beziiglich || - || ist eindeutig.

Beweis: Die Existenz wurde bereits gezeigt. Seien p; und p, zwei Bestapproximatio-
nen. Dann ist wie in[8.6lauch

L1
Pt = 5(291 + p2)

eine Bestapproximation. Nach Satz[8.14]besitzt f — p. eine Alternante zo, . .., T4 1.
Dann ist dies aber auch eine Alternante von f — p; und f — po, die die Bestapproxi-
mation eindeutig charakterisiert. O

Falls in Lemma[8.17] |D| = |[p — f||~, SO sind wir fertig, denn dann ist nach dem
Alternantensatz p eine Bestapproximation. Falls nicht, so gilt |D| < ||p — f||. Dies
motiviert den folgenden Algorithmus:

1. Wahle z;, gleichverteilt im Intervall [a, b].
2. Berechne D und p nach Lemma|8.17,
3. Falls [D] = ||p — f|~0» SO ist p eine Bestapproximation.

4. Falls D < ||p— f||~, SO verschiebe die z, leicht so, dass der Abstand zwischen
pund f an diesen Stellen grofRer wird.

5. Gehe zuriick zu 2.
Man kann zeigen, dass unter Bedingungen der Remez-Algorithmus konvergiert ge-

gen die Tschebyscheff-Approximation. Wir schauen nur kurz auf ein Beispiel. Wir
betrachten wieder den Sinus auf [0, 7/2] und suchen eine lineare Approximation

193

(wie oben). Im ersten Schritt wahlen wir die x;, gleichverteilt und berechnen die zu-

gehdorige Approximationsfunktion wie im Lemma.

— =
—sin

[005

Abbildung 8.11: Erste Iteration des Remez—Algorithmus

Klick fiir Bild Remezitera
Klick fiir Matlab Figure Remeziter:
Klick fiir Bild Remeziterdiff1
Klick fiir Matlab Figure Remeziterdiff1

Wir sehen, dass wir noch keine Alternante erreicht haben. Am mittleren Interpolati-
onspunkt (x1) wird noch nicht das Maximum des Abstands angenommen. Wir ver-
schieben also nur diesen Punkt etwas nach rechts, wiederholen den Algorithmus

mit dieser Anordnung und erhalten

194

1.4

1.2

0.8

0.6

0.4

0.2

Remez--Algorithmus (lteration 1)

n=1
sin

0.2

0.4

0.6

0.8

1.2

1.4

1.6

Frank Wuebbeling
Remeziter1.jpg: Erste Iteration des Remez–Algorithmus

Frank Wuebbeling
Matlab Figure Remeziter1.fig: Erste Iteration des Remez–Algorithmus

0.15

0.05

-0.05

-0.15

Fehler der Remez-Approximation

0.2

0.4

0.6 0.8 1 1.2 1.4 1.6

Frank Wuebbeling
Remeziterdiff1.jpg: Erste Iteration des Remez–Algorithmus

hgS_070000:[1x1 struct array]

		[1x6 char array]

		[1x1 double array]

		[1x1 struct array]		@ =
	PaperUnits : [1x11 char array]
	Color : [1x3 double array]
	Colormap : [64x3 double array]
	InvertHardcopy : [1x2 char array]
	PaperPosition : [1x4 double array]
	PaperSize : [1x2 double array]
	PaperType : [1x2 char array]
	Position : [1x4 double array]
	ApplicationData : [1x1 struct array]

		[1x1 struct array]		@ =
	type : [1x4 char array]
	handle : [1x1 double array]
	properties : [1x1 struct array]
	children : [6x1 struct array]
	special : [4x1 double array]

		[0x0 double array]

Frank Wuebbeling
Matlab Figure Remeziterdiff1.fig: Erste Iteration des Remez–Algorithmus

Remez--Algorithmus (Hteration 2) Fehler der Remez-Approximation

Abbildung 8.12: Zweite Iteration des Remez—Algorithmus

Klick fiir Bild Remeziter2
Klick fiir Matlab Figure Remeziter2
Klick fiir Bild Remeziterdiff2
Klick fiir Matlab Figure Remeziterdiff2

Tatsdchlich bekommen wir eine Alternante. Das zugehdrige Polynom ist eine
Tschebyscheff-Approximation. Die folgenden Programme sind einfache Implemen-
tationen des Remez-Algorithmus.

function [output_args] = remezalgo(n)
%REMEZALGO Very simple implementation of the Remez algorithm
if (nargin<1)
n=3;
end

differenz=1e—2;
S J

Listing 8.7: Simple Implementation des Remez—Algorithmus mit dem Standardbei-
spiel (Approximation/remezalgo.m)

Klicken fiir den Quellcode von Approximation/remezalgo.m

function [output_args] = remezalgo(n)
WREMEZALGO Very simple implementation of the Remez algorithm
%Application to the approximation of sin(x)/x by a polynomial in
%(see Abramowitz/Stegun, 4.3.96).
if (nargin<1)

n=3;

\S

Listing 8.8: Remez—Algorithmus angewandt auf Abramowitz and Stegun [1965]
4.3.96 (Approximation/remezalgoabramo.m)

195

X *xX

1.4

1.2

0.8

0.6

0.4

0.2

Remez--Algorithmus (lteration 2)

n=1
sin

0.2

0.4

0.6

0.8

1.2

1.4

1.6

Frank Wuebbeling
Remeziter2.jpg: Zweite Iteration des Remez–Algorithmus

Frank Wuebbeling
Matlab Figure Remeziter2.fig: Zweite Iteration des Remez–Algorithmus

0.15

0.05

-0.05

-0.15

Fehler der Remez-Approximation

0.2

0.4

0.6 0.8 1 1.2 1.4 1.6

Frank Wuebbeling
Remeziterdiff2.jpg: Zweite Iteration des Remez–Algorithmus

hgS_070000:[1x1 struct array]

		[1x6 char array]

		[1x1 double array]

		[1x1 struct array]		@ =
	PaperUnits : [1x11 char array]
	Color : [1x3 double array]
	Colormap : [64x3 double array]
	InvertHardcopy : [1x2 char array]
	PaperPosition : [1x4 double array]
	PaperSize : [1x2 double array]
	PaperType : [1x2 char array]
	Position : [1x4 double array]
	ApplicationData : [1x1 struct array]

		[1x1 struct array]		@ =
	type : [1x4 char array]
	handle : [1x1 double array]
	properties : [1x1 struct array]
	children : [6x1 struct array]
	special : [4x1 double array]

		[0x0 double array]

Frank Wuebbeling
Matlab Figure Remeziterdiff2.fig: Zweite Iteration des Remez–Algorithmus

function [output_args] = remezalgo(n)

%REMEZALGO Very simple implementation of the Remez algorithm

if (nargin<1)

 n=3;

end

differenz=1e-2;

a=0;

b=pi/2;

f=@funsin;

%a=1e-3;

%a=a*a;

%b=b*b;

%n=5;

%f=@funabramo;

close all;

format compact;

format long;

N=1000;

X=(0:N)/N*(b-a)+a;

Y=f(X);

RandStream.setDefaultStream(RandStream('mt19937ar','seed',1000));

x=sort(rand(n+2,1)*(b-a)+a);

%x=(0:n+1)'/(n+1)*(b-a)+a;

for L=1:60

[p,D,y]=computepD(f,x);

p'

figure(1);

plot(X,polyval(p,X),X,Y,x,polyval(p,x),'X','MarkerSize',15);

title(['Remez--Approximation, Iteration ' num2str(L)]);

legend('p_n','f','x_k');

figure(2);

plot(X,Y-polyval(p,X),x,y-polyval(p,x),'X','MarkerSize',15);

title(['Fehler der Remez--Approximation, Iteration ' num2str(L)]);

legend('diff','x_k');

for i=1:n+2

 curr =y(i)-polyval(p,x(i));

 z=x(i)+1e-6;

 curr1=f(z)-polyval(p,z);

 if ((curr>0)&&(curr1<curr))||((curr<0)&&(curr<curr1))

 x(i)=x(i)-differenz;

 x(i)=max(x(i),a);

 else

 x(i)=x(i)+differenz;

 x(i)=min(x(i),b);

 end

end

%waitforbuttonpress;

maxError=max(abs(Y-polyval(p,X)))

AlternantenFehler=abs(D)

waitforbuttonpress

end

p'

end

function [p,D,y]=computepD (f,x)

n=numel(x)-2;

A=zeros(n+2,n+2);

b=zeros(n+2,1);

for i=1:n+2

 for k=1:n+1

 A(i,k)=x(i)^(n+1-k);

 end

 A(i,n+2)=(-1)^i;

end

b=f(x);

A=double(A);

b=double(b);

z=A\b;

p=z(1:n+1);

D=z(n+2);

y=b;

end

function y=funsin(x)

y=sin(x);

end

function y=funabramo(x)

y=sin(sqrt(x))./sqrt(x);

%y=(y-1)./x;

end

Frank Wuebbeling
Simple Implementation des Remez–Algorithmus mit dem Standardbeispiel

Klicken fiir den Quellcode von Approximation/remezalgoabramo.m

Maple besitzt eine Implementation des Remez—-Algorithmus. Wir nutzen sie, um fiir
unser Standardbeispiel der Approximation des Sinus mit kubischen Polynomen den
Fehler der Tschebyscheff-Interpolation anzugeben.

maximaler Fehler
Tschebyscheff | 0.0014

function [output_args] = mapleremez(input_args)
Y%MAPLEREMEZ

N=1000;

x=(0:N)/N«pi/2;

y=zeros (1,N+1);

maple (’with (numapprox))

Listing 8.9: Remez—Algorithmus in Maple (Approximation/mapleremez.m)

Klicken fiir den Quellcode von Approximation/mapleremez.m

Das berechnete Polynom ist

p*(z) = —0.0013670643 + 1.025256091 * z — 0.0706895833 * 2 — 0.1125059808 * 2°.

Zumindest in diesem Fall konnten wir die bereits durch die Tschebyscheff-
Polynome gelieferte Gauss—Approximation also leider nur noch marginal verbes-
sern. Das bereits fiir die Gauss—Approximation Gesagte gilt auch hier: Wir sind
keineswegs auf Polynome beschrankt. Die meisten Satze gelten fiir alle Funktio-
nenraume, bei denen die Interpolationsaufgabe eindeutig l6sbar ist (Haarsche Sy-
steme). Die Maple—Routinen etwa lassen gleich eine rationale Approximation zu.
Die Standard-Tafelwerke (etwa Abramowitz and Stegun|[1965]) geben hochgenaue
Remez—-Approximationen fiir die elementaren Funktionen an.

8.4 Der Approximationssatz von Weierstrass
Der letzte Abschnitt hat uns gezeigt, dass wir die Bestapproximation p? beziiglich
der Unendlichnorm an eine stetige Funktion f in P, berechnen kdnnen. Es stellt

sich die Frage, ob man durch ausreichend hohe Polynomgrade f beliebig genau
approximieren kann, d.h. ob

196

function [output_args] = remezalgo(n)

%REMEZALGO Very simple implementation of the Remez algorithm

%Application to the approximation of sin(x)/x by a polynomial in x*x

%(see Abramowitz/Stegun, 4.3.96).

if (nargin<1)

 n=3;

end

differenz=1e-2;

a=0;

b=pi/2;

f=@funsin;

a=1e-6;

n=1;

f=@funabramo;

close all;

format compact;

format long;

N=1000;

X=(0:N)/N*(b-a)+a;

Y=f(X);

RandStream.setDefaultStream(RandStream('mt19937ar','seed',1000));

x=sort(rand(n+2,1)*(b-a)+a);

%x=(0:n+1)'/(n+1)*(b-a)+a;

for L=1:100

[p,D,y]=computepD(f,x);

p'

figure(1);

plot(X,polyval(p,X),X,Y,x,polyval(p,x),'X','MarkerSize',15);

title(['Remez--Approximation, Iteration ' num2str(L)]);

legend('p_n','f','x_k');

figure(2);

plot(X,Y-polyval(p,X),x,y-polyval(p,x),'X','MarkerSize',15);

title(['Fehler der Remez--Approximation, Iteration ' num2str(L)]);

legend('diff','x_k');

for i=1:n+2

 curr =y(i)-polyval(p,x(i));

 z=x(i)+1e-6;

 curr1=f(z)-polyval(p,z);

 if ((curr>0)&&(curr1<curr))||((curr<0)&&(curr<curr1))

 x(i)=x(i)-differenz;

 x(i)=max(x(i),a);

 else

 x(i)=x(i)+differenz;

 x(i)=min(x(i),b);

 end

end

maxError=max(abs(Y-polyval(p,X)))

AlternantenFehler=abs(D)

%waitforbuttonpress;

end

end

function [p,D,y]=computepD (f,x)

n=numel(x)-2;

A=zeros(n+2,n+2);

b=zeros(n+2,1);

for i=1:n+2

 for k=1:n+1

 l=(n+1-k);

 A(i,k)=x(i)^(2*l+2);

 end

 A(i,n+2)=(-1)^i;

end

b=f(x);

A=double(A);

b=double(b);

z=A\b;

%p=z(1:n+1);

p=zeros(2*n+3,1);

for i=1:n+1

 p(2*i-1)=z(i);

end

D=z(n+2);

y=b;

end

function y=funsin(x)

y=sin(x);

end

function y=funabramo(x)

y=sin(x)./x-1;

end

Frank Wuebbeling
Remez–Algorithmus angewandt auf abramowitz1965handbook 4.3.96

function [output_args] = mapleremez(input_args)

%MAPLEREMEZ

N=1000;

x=(0:N)/N*pi/2;

y=zeros(1,N+1);

maple('with(numapprox)')

maple('w:=proc(x) 1.0 end proc')

maple('f:=proc(x) sin(x) end proc')

maple('crit:=Array(1..5,[0,0.2,0.4,0.6,0.8,1.0]);')

p=maple('p:=remez(w,f,0,evalf(pi/2),3,0,crit,''maxerror'');')

for i=1:N+1

 y(i)=maple(['p(' num2str(x(i)) ')']);

end

plot(x,y,x,sin(x))

maxError=max(abs(y-sin(x)))

end

Frank Wuebbeling
Remez–Algorithmus in Maple

I|f = phlloo — 0, n — 0.

Dies ist dquivalent zu der Frage, ob die Polynome dicht liegen im Raum der stetigen
Funktionen. Diese Frage wurde von Weierstrass beantwortet — in Miinster kommt
man nicht darum herum, dies zumindest zu erwdahnen. Beweise finden sich zuhauf
in der Literatur (und gehoren eigentlich in andere Vorlesungen), wir skizzieren hier
nur kurz die Beweisidee. Im Folgenden sei immer X der Vektorraum der stetigen
Funktionen auf I = [a,b] (ohne Einschrdnkung a = O und b = 1) und || - || die
Unendlichnorm.

Definition 8.20 (monotone Operatoren)
Sei L : X — X ein linearer Operator. L heifst monoton, falls fiir alle f,g € X

(f(t) < g(t)vt € I) = ((L(f))(@) < (L(g))(£)Vt € I).
Als Beispiel fiir einen positiven Operator betrachten wir den Bernsteinoperator.

Definition 8.21 (Bernsteinoperator)
Sei X der Raum der stetigen Funktionen auf dem Intervall I = [0, 1]. Der Operator

By : X = Po, (Bu(f)(t) = Zn: (Z)f (5) (1=t > 1

k=0

heif3t Bernsteinoperator.

Lemma 8.22 (Eigenschaften des Bernsteinoperators)

1. B, ist monoton.

2. Seipy(z) = z".

t—t2

(Ba(p2))(t) = pa(t) + ——.

B,.(px) konvergiert also gleichmdpig gegen py, k = 0, 1, 2.

Beweis:

197

1. Sei f < g, dann ist insbesondere f(k/n) < g(k/n). Der Binomialkoeffizient
ist nichtnegativ, ebenso t*(1 —)", also ist

0 =3 (1)1 () ot = 3 (1o (5) ro-om = suonn

k=0

2. Esgilt

Weiter gilt

und schlieflich

k/n n
k=0
_n(n—1) ~— (n—2 k n—2—k
i t(1—1t) (k)t(l t)
k=0
— (- -y
N n

Der entscheidende Hilfssatz ist

Lemma 8.23 (Lemma von Korovkin)
Sei L, : X — X eine Folge linearer, monotoner Operatoren. Es sei p;(t) = t*. Falls

| L (Pk) = Prlloo = 0, k= 0,1,2,

so gilt bereits
1 Ln(f) = flloo =0
fiiralle f € X.

198

Die Voraussetzungen dieses Lemmas sind fiir den Bernsteinoperator erfiillt. Falls
wir es zeigen konnen, liefert also der Bernsteinoperator fiir jede stetige Funktion f
eine Polynomfolge, die gleichmafig gegen f konvergiert.
Beweis: Der Beweis findet sich z.B. in Meinardus| [1964], Seite 6, und deutlich
ausfiihrlicher online im Skript/Oberle/[2007], Kapitel 4.
Wir folgen dem eleganten Beweis von Meinardus. Sei zundchst ¢ > 0 fest gewahlt.
f ist stetig auf einem Kompaktum, also gleichmafiig stetig. Damit gibt es ein § > 0,
so dass

|f(t) = fla)] S eVt —a] <0
Fir |t — x| > ¢ gilt

HfH

[f(t) = f@)] < 2lIf]l < =5~ —2)?,

insgesamt also sicherlich
[f(t) = fa)] S e+ =5 (t —2)”.

Wir betrachten die linke und rechte Seite als Funktlonen int (setzen also x konstant)
und nutzen aus, dass L,, monoton und linear ist. Dann gilt wegen

HfH

2| <ue —u<z<u

auch

LuF)(O) ~ FL)O] < eLaW)) + 221, (¢~ 2)0)

Unabhéngig von ¢ und z konvergieren nach Voraussetzung L,,(1) und L, ((t — x)?)
gleichmafig gegen 1 bzw. (t —)% Sei ¢ > 0. Dann gilt

(L0 — 1) < e+ Dy o
flirn > ng(¢’). Ausgewertet fiir t = x gilt damit

[(Lu(f))(@) = fl2)] < e+ €.

Wir folgern nun aus[8.22|und dem Lemma von Korovkin
Satz 8.24 (Satz von Weierstrass)

B,(f)— fVfeX.
Insbesondere liegen wegen B,,(f) € P, die Polynome dicht in X.

Der Wert der Approximation B,,(f) an f liegt ausschliefilich in diesem theoretischen
Ergebnis. Numerisch liefert die Approximation wesentlich schlechtere Werte als die
Tschebyscheff-Approximation (die ja optimal ist).

199

Kapitel 9

Grundziige der linearen und nichtlinearen
Optimierung

Viele Aufgaben der angewandten Mathematik fiihren auf Probleme, bei denen wir
einen Wert suchen, fiir den eine gegebene Zielfunktion ihr Maximum oder Minimum
annimmt. Einige Beispiele haben wir bereits kennengelernt, etwa

Beispiel 9.1

kleinste Quadrate-Lésungen (4.2): Hier konnten wir mit Hilfe der Gaussschen Nor-
malgleichungenly.4|die Lésung direkt angeben.

Minimum Norm—L&sungen: Hier haben wir den kleinsten Vektor v mit der Nebenbe-
dingung, dass v kleinste Quadrate—Ldsung ist, berechnet.

Krylovraumverfahren (6.1): Hier haben wir die Lésung des Minimierungsproblems
numerisch durch Gradientenverfahren berechnet.

Uns interessieren natiirlich die Probleme mit numerischen Losungsverfahren. Grob
lassen sich die Optimierungsaufgaben in mindestens zwei Kategorien einteilen.

1. Unbeschrdnkte Optimierung: Dies sind Aufgaben der Form

min f(z)
wobei V einen kompletten Raum darstellt. Dies ist bei den kleinste Quadrate—
Losungen und den Krylovraumverfahren der Fall.

2. Optimierung mit Nebenbedingungen: In der Praxis ist der Raum, in dem wir
die Kandidaten fiir die Minimierung suchen, fast nie unbeschrankt, sondern
unterliegt Einschrankungen, die aus der Anwendung stammen. Das einfach-
ste Beispiel sind die Minimum Norm-Ldsungen, bei denen wir den Raum auf

200

die Menge der kleinsten Quadrate—Losungen einschrdanken. Wir haben also
Aufgaben der Form

néi‘r/l f(z)unterg(z) = 0und h(z) <O0.

Die verwendeten (iterativen) numerischen Methoden unterscheiden sich deutlich.
In der unbeschrankten Optimierung konnten wir etwa Gradientenmethoden verwen-
den, oder Nullstellen der Ableitung von f mit Hilfe des Newtonverfahrens suchen.
Bei der beschrankten Optimierung miissen wir hingegen immer sicherstellen, dass
die Nebenbedingungen von den Kandidaten noch erfiillt werden. Wir schauen auf
den klassischen, in der Anwendung immer noch hdufig auftretenden Spezialfall der
linearen Optimierung. Hier sind sowohl die Nebenbedingungen ¢ und h wie auch
die Zielfunktion h linear. Es ist sofort klar, dass erst die Nebenbedingungen die
Existenz eines Minimums garantieren.

9.1 Lineare Optimierung

Lineare Optimierungsaufgaben stammen hdufig aus der Chemie oder den Wirt-
schaftswissenschaften. Die einfachsten Prototypen sind von der Form:
In einem Chemiekonzern werden zwei Chemikalien X und Y hergestellt. Bei der
Herstellung von X fallen pro Liter S; x, S2 x,... mg. Fiir die Schadstoffe gelten
die Grenzwerte S;, Ss,.... Weiter werden pro Liter R; x, Ry x, ... kg Rohstoffe
bendétigt, entsprechend fiir Y. Zusatzlich gibt es eine Maschine, die nur einmal zur
Verfligung steht, aber 24 Stunden laufen muss, sie kann pro Stunde entweder die
Menge My von X oder die Menge My von X herstellen.
Der Konzern erwirtschafte pro kg der Chemikalie einen Gewinn von Gy bzw Gy.
Welcher Produktionsplan garantiert den héchsten Gewinn?
Dies ist leicht in einen mathematische Formulierung zu bringen:
Maximiere

FX,Y)=GxX +GyX

unter den Nebenbedingungen

X, Y >0
Sk,X'X—FSk,y'YSSk,kIl,...,N
(1/Mx)- X+ (1/My)-Y =24
Mit
r=(X,Y)

201

und offensichtlicher Definition fiir die restlichen Variablen formulieren wir dies um
Zu

max z'G unter Az < b, z > 0.

Die offensichtliche Art, die Gleichung einzubauen, ware, einfach entweder X oderY
komplett aus den Gleichungen zu eliminieren. Alternativ kdnnten wir die Gleichung
z=Cauchdurch Z —C >0und C — Z > 0 modellieren.

Fiir ein kurzes Beispiel wahlen wir

20 10 8000 6
A= 4 5 |,o={ 2000 ,G:(32)
6 15 4500

In unseren zwei Variablen ist das Problem leicht l6sbar. Wir zeichnen zundchst den
zuldssigen Bereich.

TODO

Unser Gesamtgewinn ist f(z) = G*z. Wir betrachten die Produktionsplankombina-
tionen, die den gleichen Gewinn C' garantieren. Diese erfiillen die Gleichung

Y(G,X)=G/32 - X/2.

Wir suchen also diejenige Gerade, fiir die G moglichst grof3 ist, aber noch so, dass
die zugehorige Gerade mit dem zuldssigen Bereich noch mindestens einen Punkt
gemeinsam hat. Alle Geraden liegen parallel, wir miissen also nur eine einzeichnen
und sie moglichst weit nach oben verschieben. Anschaulich ist klar, dass der Maxi-
malpunkt entweder eine Ecke ist, oder (falls eine begrenzende Gerade parallel zur
Gewinngeraden verlduft) eine Kante — in diesem Fall enthélt sie sogar zwei Ecken. In
jedem Fall wird der Maximalgewinn in einem Eckpunkt des zuldssigen Gebiets an-
genommen. Wir kdnnen uns also in unseren Betrachtungen auf die Untersuchung
der Eckpunkte des zuldssigen Gebiets beschranken.

Diese grafissche Vorgehensweise ist natiirlich nurim R? durchfiihrbar. Wir betrach-
ten die Normalform:

Sei A e R™™, b e R™, ceR", f(x):=czund

M:={zxeR":2;>0,j=1...nund Az = b}
die Menge der zuldssigen Punkte. Bestimme x,, € R", so dass
flzm) > fx)Vaz e M.

Dies deckt alle linearen Aufgaben ab. Ist etwa x;, unbeschrankt, so ersetzen wir x;, =
yr — 2z und wir kdnnen ungestraft die Positivitdt der neuen Variablen annehmen.

202

Falls wir eine Ungleichungnebenbedingung der Form (Ax); < b; haben, so fiihren
wir eine neue (Schlupf-) Variable u; ein und schreiben

(Az); +u; = b;

was mit der Bedingung u; > 0 dquivalent zur alten Bedingung ist. Insgesamt er-
halten wir in diesen neuen Variablen dann ein Gleichungssystem (unter Umstdanden
mit wesentlich mehr Variablen) in Normalform, das nur nichtnegative Variable und
Gleichungen (keine Ungleichungen) enthilt.

Offensichtlich macht die Minimierungsaufgabe nur Sinn, wenn n > Rang A.

M ist konvex. Die Ecken von M definieren wir geometrisch mit

Definition 9.2 (Ecken des zuldssigen Gebiets)
x € M heifit Ecke von M, wenn es nicht als Konvexkombination zweier Punkte x,
und x4 von M dargestellt werden kann, die verschieden von x sind.

Wir bemerken ohne Beweis
Satz 9.3 Sei M konvex und beschrdnkt. Dann ist M die konvexe Hiille seiner Ecken.

Beweisidee: Per Induktion liber die Dimension des zugrunde liegenden Raums. Sei
x € M. Falls z auf dem Rand von M liegt (einer (n — 1)-dimensionalen Unter-
mannigfaltigkeit), so ist x Konvexkombination der Ecken des Randes nach Indukti-
onsvoraussetzung. Falls nicht, so ist z Konvexkombination zweier Punkte z(!) und
. Die Gerade durch diese Punkte schneidet den Rand in zwei Punkten, die wie-
der nach Induktionsvoraussetzung Konvexkombination von Ecken des Randes sind,
und damit ist auch = Konvexkombination von Punkten des Randes.

Damit gilt sofort der

Satz 9.4 (Eckensatz)
Sei M beschrdnkt. Dann gibt es eine Ecke von M, die Lésung der Optimierungsauf-
gabe ist.

Beweis: f ist stetig auf einem Kompaktum, also wird das Maximum angenommen.
Sei z Losung der Optimierungsaufgabe. z ist Konvexkombination von Ecken von M,

also
2= ™ 0< Y N =1
k k

Damit gilt aber auch

F2) = Mef(@®)

und damit f(z®) = f(2). O

203

Dies motiviert sofort einen Algorithmus: Berechne alle Ecken von M und die zu-
gehorigen Werte von f. Die Ecke, die das Maximum liefert, [6st die Optimierungs-
aufgabe.

Um dies zu realisieren, bendtigen wir zunachst

Satz 9.5 (Charakterisierung der Ecken)
x ist genau dann Ecke von M, wenn es eine Indexmenge I C {1...n} mit|I| = m
gibt, so dass

1. x > 0.

2. Ax =b.

3. x; =0Vi & 1.

4. Die Spalten a;, i € I, sind linear unabhdngig.
I heift Basis der Ecke, {1...n} \ I heifit Nichtbasis.

Schauen wir kurz auf unser grafisches Beispiel. Dort hatten wir nur Ungleichungen,
die wir durch Schlupfvariable realisieren, d.h. wir haben die Variablen x, x5, u1,
uo und us. Die Ecken lagen jeweils auf zwei begrenzenden Geraden. Die dritte Glei-
chung war dort nicht erfiillt. Zu den Ecken unserer Grafik gehort also jeweils ein
Losungstupel, bei dem héchstens x1, x5 und ein wu; nicht verschwinden, also gera-
de drei (= m).

Beweis:

1. Es gelten 1-4. Angenommen, x sei keine Ecke. Dann ist x Konvexkombination
zweier verschiedener Punkte (V) und (. Wegen z; = 0,7 ¢ I, gilt auch
x§1) = xZ@) = 0 (denn alle Komponenten der Vektoren sind nichtnegativ), und

damit z; = 2" = & fiiri & I.
Die restlichen Unbekannten l6sen das Gleichungssystem

b= Ax = Z Ti0;
i€l

und entsprechend fiir 2 und 2(?). Da die g, linear unabhingig sind und |I| =
m, gilt auch =i = 2 fiiri € I, also gilt 2 = 2® im Widerspruch zur
Annahme.

2. Sei x eine Ecke von M. Sei I die Indexmenge der Koordinaten mit z; > 0.
Angenommen, die zugehdrigen a; seien linear abhdngig. Dann gibt es eine
nichttriviale Linearkombination

Aa:Zaiai:()

204

mita; = 0 filiri & 1. Sei ¢ = = + ea. Dann gilt Az¢ = b. Fiir ausreichend klei-
nes |e| bleibt die Losung also in M. Damit wdre aber z Linearkombination von
x + eav und damit keine Ecke. Also sind die zugehdorigen a; linear unabhangig,
insbesondere sind es hochstens m. Falls es weniger sind, ergdanzen wir I ent-
sprechend.

g

9.2 Simplex—Verfahren

Zur Herleitung des Simplex—Verfahrens betrachten wir zundchst nur den einfach-
sten Fall. In der Normalform stamme jede Gleichung aus einer Ungleichung, die wir
mit Hilfe einer Schlupfvariablen g, umgewandelt haben, & = 1...m. Weiter sei
by > 0, k = 1...m.Dannist (0,b)" eine Ecke von M. lhre Basis ist y;, ihre
Nichtbasisist z; ... z,.

Die Idee des Simplex—Verfahrens ist, ausgehend von dieser Ecke eine Folge von
zulassigen Ecken zu konstruieren, bei denen der Wert des Zielfunktionals ansteigt.
Hierbei tauschen wir jeweils eine Variable aus der Basis mit einer aus der Nichtba-
sis. Es gilt fiir alle Elemente aus M

Az +y=b,also (A 1)(“;):1)

oderin der p. Zeile

Z(ak)pxk + Yp = by. (9.1)

k

Wir wollen nun z, anstelle von y, in die Basis bringen, d.h. wir suchen eine neue
Ecke (Z,7), so dass 3, = 0 und &, # 0 und nach wie vor &;, = 0 fiir k # s.
Diese ist leicht bestimmt: Wir setzen (Z,) in[9.1/ein und erhalten wegen g, = 0

by
(as)p

Tsg =

Fiir k # p ergibt sich entsprechend
Uk = b — (as)Ts.

Damit haben wir bereits die neue Ecke gefunden. Dies war aber nur deshalb so
leicht, weil unser Gleichungssystem eine so einfache Form hatte, die wir jetzt
natiirlich zerstort haben. Wir stellen diese Form wieder her, indem wir die Positio-
nen von x,; und y, im Vektor vertauschen (was wir uns natiirlich merken missen).

205

Dadurch steht im Vektor die Nichtbasis wieder oben, die Basis unten. In der Matrix
missen wir die zugehdorigen Spalten vertauschen, wir erhalten

(@1 ... Qs_1€pQs41 - .. QpeY ... Ep_1A5€pi1 - . Ep).

Wir haben durch die Vertauschung also die einfache Form der Matrix zerstort. Diese
stellen wir nun durch Zeilenoperationen wieder her.

1. Damit im rechten Teil der Matrix auf der Hauptdiagonalen wieder eine 1 steht,
multiplizieren wir die p. Gleichung mit 1/(as),.

2. Damit im rechten Teil der Matrix in der p. Spalte die Elemente auf3erhalb der
Hauptdiagonalen verschwinden, ziehen wir fiir £ # p das (as)x—fache der p.
Gleichung von der k. Gleichung ab.

Hier wie im Folgenden machen wir natiirlich stillschweigend die Annahme, dass das
Pivotelement nicht verschwindet. Darauf kann man verzichten (Stichwort: Berech-
nung von entarteten Lésungen).

Damit haben wir hier die Form fast wiederhergestellt: Wir miissen noch bei der Aus-
wahlvon s und p sicherstellen, dass die rechte Seite positiv bleibt.

Bleibt noch die Zielfunktion. Sie war vor der Vertauschung natiirlich eine Funktion
in den ersten n Variablen des Vektors, das wollen wir auch beibehalten. Wieder gilt

mit[9.1]
(a8>pxs =b, —yp — Z (ak)pl’k-

k+#s
Wir kdnnen also z, in der Zielfunktion durch y,, ersetzen. Es gilt

T
Tg—1 b

floy)y=cde=¢| y |+
Ls4+1 (as)p
Tn

mit . (ax)
~ ~ ak)p
Gom — oy G = Ok — 1Ry £).
(CLS)p (as)p

Der Funktionswert des Zielfunktionals an der neuen Ecke ist damit insbesondere

206

bp
(as)p
Falls dieser Wert positiv ist fiir ein Pdrchen (s, p), so steigt der Funktionswert in
dieser benachbarten Ecke an und wir miissen nur noch sicherstellen, dass die neue
Ecke die Voraussetzung erfiillt, dass die rechte Seite positiv ist.
Mit dieser neuen Ecke kénnen wir nun den Algorithmus fortfiihren. Ublicherweise
wird dies in einem Tableau (dem Simplex—Tableau) durchgefiihrt.

Cs

207

Kapitel 10
Ausblick

Ubersicht iiber weiterfiihrende Vorlesungen/Themen der Angewandten Mathema-
tik.

208

| iteraturverzeichnis

M. Abramowitz and I.A. Stegun. Handbook of Mathematical Functions: With For-
mulas, Graphs, and Mathematical Tables : [is an Outgrowth of a Conference on
Mathematical Tables Held at Cambridge, Mass., on 1954. Applied mathematics
series. Dover Publ., 1965. ISBN 9780486612720. URL http://people.math.
sfu.ca/~cbm/aands/abramowitz_and_stegun.pdf.

D. Braess. Finite Elemente: Theorie, schnelle Loser und Anwendungen in der Ela-
stizitdtstheorie. Springer-Verlag Berlin Heidelberg, 2007. ISBN 9783540724506.
URLhttp://books.google.de/books?id=s1M-jAqilsYC.

J. G. F. Francis. The gr transformation a unitary analogue to the Ir transformati-
on—part 1. The Computer Journal, 4(3):265-271, 1961. doi: 10.1093/comjnl/4.3.
265. URLhttp://comjnl.oxfordjournals.org/content/4/3/265.abstract.

J. G. F. Francis. The qgr transformation—part 2. The Computer Journal, 4(4):
332-345,1962. URLhttp://comjnl.oxfordjournals.org/content/4/4/332.
abstract.

Gene Golub and Frank Uhlig. The gr algorithm: 50 years later its genesis by john
francis and vera kublanovskaya and subsequent developments. IMA Journal of
Numerical Analysis, 29(3):467-485, 2009. doi: 10.1093/imanum/drpo12. URL
http://imajna.oxfordjournals.org/content/29/3/467.abstract.

A. Greenbaum. [terative Methods for Solving Linear Systems. Frontiers in App-
lied Mathematics. Society for Industrial and Applied Mathematics, 1987. ISBN
9780898713961. URLhttp://books.google.de/books?id=WwMDNLxrwocC.

Martin H. Gutknecht and Beresford N. Parlett. From gd to LR, or, how were the
gd and LR algorithms discovered? IMA J. Numer. Anal., 31(3):741-754, 2011.
doi: 10.1093/imanum/drqoo3. URL http://www.google.de/url?sa=t&rct=
j&g=&esrc=s&source=web&cd=1&cad=r ja&ved=0CDgQF jAA&url=http%3A%
2F},2Fwww.sam.math.ethz. ch’%2F~mhg/2Ftalks’2FqdLR1ongH0. pdf&ei=KkT_
QUJ6tDM3JswbopoDYBQ&usg=AFQjCNEO_OO9PVIL7orytkMjte6KOPIWZg&ksig2=
pDTgxytaJzeaylREfnQKYFg&bvm=bv.135565634169, d. Yms.

209

http://people.math.sfu.ca/~cbm/aands/abramowitz_and_stegun.pdf
http://people.math.sfu.ca/~cbm/aands/abramowitz_and_stegun.pdf
http://books.google.de/books?id=s1M-jAqi1sYC
http://comjnl.oxfordjournals.org/content/4/3/265.abstract
http://comjnl.oxfordjournals.org/content/4/4/332.abstract
http://comjnl.oxfordjournals.org/content/4/4/332.abstract
http://imajna.oxfordjournals.org/content/29/3/467.abstract
http://books.google.de/books?id=WwMDNLxrwocC
http://www.google.de/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&ved=0CDgQFjAA&url=http%3A%2F%2Fwww.sam.math.ethz.ch%2F~mhg%2Ftalks%2FqdLRlongHO.pdf&ei=kT_QUJ6tDM3JswbopoDYBQ&usg=AFQjCNE0_009PVIL7orytkMjte6KQPIWZg&sig2=pDTqxytaJzeay1RfnQKYFg&bvm=bv.1355534169,d.Yms
http://www.google.de/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&ved=0CDgQFjAA&url=http%3A%2F%2Fwww.sam.math.ethz.ch%2F~mhg%2Ftalks%2FqdLRlongHO.pdf&ei=kT_QUJ6tDM3JswbopoDYBQ&usg=AFQjCNE0_009PVIL7orytkMjte6KQPIWZg&sig2=pDTqxytaJzeay1RfnQKYFg&bvm=bv.1355534169,d.Yms
http://www.google.de/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&ved=0CDgQFjAA&url=http%3A%2F%2Fwww.sam.math.ethz.ch%2F~mhg%2Ftalks%2FqdLRlongHO.pdf&ei=kT_QUJ6tDM3JswbopoDYBQ&usg=AFQjCNE0_009PVIL7orytkMjte6KQPIWZg&sig2=pDTqxytaJzeay1RfnQKYFg&bvm=bv.1355534169,d.Yms
http://www.google.de/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&ved=0CDgQFjAA&url=http%3A%2F%2Fwww.sam.math.ethz.ch%2F~mhg%2Ftalks%2FqdLRlongHO.pdf&ei=kT_QUJ6tDM3JswbopoDYBQ&usg=AFQjCNE0_009PVIL7orytkMjte6KQPIWZg&sig2=pDTqxytaJzeay1RfnQKYFg&bvm=bv.1355534169,d.Yms
http://www.google.de/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&ved=0CDgQFjAA&url=http%3A%2F%2Fwww.sam.math.ethz.ch%2F~mhg%2Ftalks%2FqdLRlongHO.pdf&ei=kT_QUJ6tDM3JswbopoDYBQ&usg=AFQjCNE0_009PVIL7orytkMjte6KQPIWZg&sig2=pDTqxytaJzeay1RfnQKYFg&bvm=bv.1355534169,d.Yms

M. Hanke-Bourgeois. Grundlagen der Numerischen Mathematik und des Wis-
senschaftlichen Rechnens. Mathematische Leitfaden. Teubner, 2006. ISBN
9783835100909. URLhttp://books.google.de/books?id=tKrhTUmYNEoC.

John Harrison. Formal verification of ia-64 division algorithms. In Proceedings of
the 13th International Conference on Theorem Proving in Higher Order Logics,
TPHOLs ’00, pages 233-251, London, UK, UK, 2000. Springer-Verlag. ISBN 3-
540-67863-8. URL http://citeseerx.ist.psu.edu/viewdoc/download?doi=
10.1.1.115.7123&%rep=repl&type=pdf.

K. R. James. Convergence of matrix iterations subject to diagonal dominance. SIAM
Journal on Numerical Analysis, 10(3):pp. 478—484, 1973. ISSN 00361429. URL
http://www.jstor.org/stable/2156114.

T. Kato. Perturbation Theory of Linear Operators. Classics in mathematics. Springer,
1995. URLhttp://books.google.de/books?id=zzNqMgEACAAJ.

K. Levenberg. A method for the solution of certain problems in least squares. Quart.
Applied Math., 2:164—-168, 1944.

D. Marquardt. An algorithm for least-squares estimation of nonlinear parame-
ters. Journal of the Society for Industrial and Applied Mathematics, 11(2):431-441,
1963. doi: 10.1137/0111030. URLhttp://www. jstor.org/stable/2098941.

P.J. McKenna. Large torsional oscillations in suspension bridges revisited: Fixing an
old approximation. The American Mathematical Monthly, 106(1):pp. 1-18, 1999.
ISSN 00029890. URL http://scholar.google.de/scholar_url?hl=de&q=
http://actuarialscience.math.uconn.edu/~mckenna/2410f09/monthlyl.
pdf&sa=X&scisig=AAGBfm1WnlubV1hU3qHM]j1bRcNul9-GvDQ&oi=scholarr&
e1=99zKUIMWyNWyBom4gbgC&ved=0CDUQgAMoADAA.

G. Meinardus. Approximation von Funktionen und ihre numerische Behandlung.
Springer Tracts in Natural Philosophy. New York, 1964. URL http://books.
google.de/books?id=1Fs0090hn_AC.

J.M. Muller. Elementary Functions: Algorithms and Implementation. Computer
Science. Birkhduser Boston, 2005. ISBN 9780817643720. URL http://books.
google.de/books?id=g3A1Wip4R38C.

F. Natterer. The Mathematics of Computerized Tomography. Classics in App-
lied Mathematics. Society for Industrial and Applied Mathematics, 2001. ISBN
9780898714937. URLhttp://books.google.de/books?id=gjS01hLbcDOC.

210

http://books.google.de/books?id=tKrhTUmYNEoC
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.115.7123&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.115.7123&rep=rep1&type=pdf
http://www.jstor.org/stable/2156114
http://books.google.de/books?id=zzNqMgEACAAJ
http://www.jstor.org/stable/2098941
http://scholar.google.de/scholar_url?hl=de&q=http://actuarialscience.math.uconn.edu/~mckenna/2410f09/monthly1.pdf&sa=X&scisig=AAGBfm1Wn1ubV1hU3qHMj1bRcNul9-GvDQ&oi=scholarr&ei=99zKUJMWyNWyBom4gbgC&ved=0CDUQgAMoADAA
http://scholar.google.de/scholar_url?hl=de&q=http://actuarialscience.math.uconn.edu/~mckenna/2410f09/monthly1.pdf&sa=X&scisig=AAGBfm1Wn1ubV1hU3qHMj1bRcNul9-GvDQ&oi=scholarr&ei=99zKUJMWyNWyBom4gbgC&ved=0CDUQgAMoADAA
http://scholar.google.de/scholar_url?hl=de&q=http://actuarialscience.math.uconn.edu/~mckenna/2410f09/monthly1.pdf&sa=X&scisig=AAGBfm1Wn1ubV1hU3qHMj1bRcNul9-GvDQ&oi=scholarr&ei=99zKUJMWyNWyBom4gbgC&ved=0CDUQgAMoADAA
http://scholar.google.de/scholar_url?hl=de&q=http://actuarialscience.math.uconn.edu/~mckenna/2410f09/monthly1.pdf&sa=X&scisig=AAGBfm1Wn1ubV1hU3qHMj1bRcNul9-GvDQ&oi=scholarr&ei=99zKUJMWyNWyBom4gbgC&ved=0CDUQgAMoADAA
http://books.google.de/books?id=1Fs0o90hn_AC
http://books.google.de/books?id=1Fs0o90hn_AC
http://books.google.de/books?id=g3AlWip4R38C
http://books.google.de/books?id=g3AlWip4R38C
http://books.google.de/books?id=gjSO1hLbcD0C

F. Natterer and F. Wiibbeling. Mathematical Methods in Image Reconstruction. Mo-
nographs on Mathematical Modeling and Computation, No 5 Series. Society for
Industrial & Applied, 2001. ISBN 9780898714722. URLhttp://books.google.
de/books?id=u8W9I32wNRMC.

H.). Oberle. Skript zur Vorlesung Approximation. 2007. URL http://www.math.
uni-hamburg.de/home/oberle/skripte/approximation.html.

Thomas Risse. Cordic-algorithmen verbinden mathematik, computer-architektur
und anwendungen. Global . of Engng. Educ., 8(3), 2004. URL http://www.
wiete.com.au/journals/GJEE/Publish/TOCVol8No3.html.

H. Rutishauser. Solution of eigenvalue problems with the LR transformation. In
Applied Mathematics Series, volume 49, pages 47-81. 1958.

Y. Saad. [terative Methods for Sparse Linear Systems. Society for Industrial and
Applied Mathematics, 2003. ISBN 9780898715347. URLhttp://books.google.
de/books?id=Uoe7xBOhS5AC.

R. Schaback and H. Wendland. Numerische Mathematik. Springer-Lehrbuch. Sprin-
ger, 2004. ISBN 9783540213949. URL http://books.google.de/books?id=
hHOY09xuJjcC.

J. Steppeler, R. Hess, U. Schattler, and L. Bonaventura. @ Review of nume-

rical methods for nonhydrostatic weather prediction models. Meteo-
rology and Atmospheric Physics, 82:287-301, 2003. ISSN 0177-7971.
doi: 10.1007/500703-001-0593-8. URL http://scholar.google.de/

scholar_url?hl=de&q=http://dvgu.ru/meteo/library/30820287.pdf&
sa=X&scisig=AAGBfm3oRnh-17aCUJCqMOVvhjiLQL1UjQ&oi=scholarr&ei=
rtelUPpkpoziB0f9gbgl&ved=0CDIgAMoATAA.

211

http://books.google.de/books?id=u8W9I32wNRMC
http://books.google.de/books?id=u8W9I32wNRMC
http://www.math.uni-hamburg.de/home/oberle/skripte/approximation.html
http://www.math.uni-hamburg.de/home/oberle/skripte/approximation.html
http://www.wiete.com.au/journals/GJEE/Publish/TOCVol8No3.html
http://www.wiete.com.au/journals/GJEE/Publish/TOCVol8No3.html
http://books.google.de/books?id=Uoe7xBOhS5AC
http://books.google.de/books?id=Uoe7xBOhS5AC
http://books.google.de/books?id=hH0Y09xuJjcC
http://books.google.de/books?id=hH0Y09xuJjcC
http://scholar.google.de/scholar_url?hl=de&q=http://dvgu.ru/meteo/library/30820287.pdf&sa=X&scisig=AAGBfm3oRnh-l7aCUJCqMOVvhjiLQLlUjQ&oi=scholarr&ei=rte1UPpkpoziBOf9gbgL&ved=0CDIQgAMoATAA
http://scholar.google.de/scholar_url?hl=de&q=http://dvgu.ru/meteo/library/30820287.pdf&sa=X&scisig=AAGBfm3oRnh-l7aCUJCqMOVvhjiLQLlUjQ&oi=scholarr&ei=rte1UPpkpoziBOf9gbgL&ved=0CDIQgAMoATAA
http://scholar.google.de/scholar_url?hl=de&q=http://dvgu.ru/meteo/library/30820287.pdf&sa=X&scisig=AAGBfm3oRnh-l7aCUJCqMOVvhjiLQLlUjQ&oi=scholarr&ei=rte1UPpkpoziBOf9gbgL&ved=0CDIQgAMoATAA
http://scholar.google.de/scholar_url?hl=de&q=http://dvgu.ru/meteo/library/30820287.pdf&sa=X&scisig=AAGBfm3oRnh-l7aCUJCqMOVvhjiLQLlUjQ&oi=scholarr&ei=rte1UPpkpoziBOf9gbgL&ved=0CDIQgAMoATAA

Abbildungsverzeichnis

[1.1 Rontgenbild/Tomographie eines Uberraschungseis. Nur in der Tomo- |
L graphie sind Details erkennbarf. 8
[1.2 Analytische/Diskrete Losung der stationdren Warmeleitungsgleichung 13
1.3 Vergleich der diskreten/analytischen Losung der stationdren Warme- |

| leitungsgleichung o 13
[1.4 Vergleich der stationaren Losung mit der zeitabhdngigen Losung| . . . 15
[1.5 Vergleich der stationaren Losung mit der zeitabhangigen Losung, in- |

I stabill. e e e e e 16
[2.1 Graphische Losung von Gleichungssystemen| 36
[3.1 Householder-Spiegelung 59
l4.1 10 DM-Schein (Quelle: Bundesbank)|. 66
[4.2 Beispiel: Polynomiale Regression. Unterbestimmt, bestimmt, liber- |

| bestimmt. e e e 69
4.3 Beispiel zur Ausgleichsgeraden|. 73
|5.1 Bestimmung des Fixpunktsvontan(z) =2 93
[5.2 Chaotisches Verhalten von Fixpunktiterationen| 99
[5.3 Gerschgorin—Kreisevon Al. 104

[5.4 Newtonverfahren und Sekantenverfahren fiir z> — 1 und Startwert 0.7 123
[s.5 Vereinfachtes Newtonverfahren und typisches Verhalten bei Nicht- |

| Konvergenz| @ . @ e e e e e e e e 123
[5.6 Nullstellen z;.(¢) flr f(z,t).« o v v v v v i i i i s oo 126
[6.1 Surface Plot von f in 2D und Iterationsverlauf im echten Gradienten- |

| verfahren|. e 131
|6.2 Vergleich der Iterationszahlen von cg und Gradientenverfahren| 144

{71 Schnelle Konvergenz der Potenzmethode. Links: Folge o), rechts: |
| log A\ —aD|| . .o o e 156

212

[7.2 Langsame Konvergenz der Potenzmethode.| 156

[7.3 Divergenz der Potenzmethode.| 157
[7.4 Konvergenz bei unglinstigem Anfangswert 160
[7.5 QR-Algorithmus: Typisches Konvergenzverhalten| 167

[8.1 Approximation durch abgeschnittene Taylorentwicklung, Polynomin-

terpolation|. e 172
8.2 Approximation durch Regression| 173
83 ApproximationimRZ 175
[8.4 Gauss—Approximation des Cosinus|. 182
[8.5 Gauss—Approximation. Links Legendre, rechts Tschebyscheff| 183
[8.6 Approximation einer Treppenfunktion mit Gauss|. 184
8.7 Tschebyscheff-Approximationvom GradO| 186
8.8 Tschebyscheff-Approximation vom Grad 0 (f(z) =) 186
8.9 Tschebyscheff-Approximation vom Grad 1 (geraten)| 187
8.10 Tschebyscheff-Approximationanz? 191
[8.11 Erste Iteration des Remez—Algorithmus|. 194
[8.12 Zweite Iteration des Remez—Algorithmus|. 195

213

Listings

214

	Einleitung
	Angewandte Mathematik
	Grundlagen der LA und der Fehlerrechnung
	Lineare Algebra
	Normierte Vektorräume
	Lineare Operatoren

	Fehler beim numerischen Rechnen
	Fehlerverstärkung

	Direkte Verfahren zur Lösung linearer Gleichungssysteme
	Gauß–Elimination und LR–Zerlegung
	Cholesky–Zerlegung
	QR–Zerlegung
	Übersicht: Direkte Lösung von LGS

	Über- und unterbestimmte Gleichungssysteme
	Die Methode der kleinsten Quadrate
	Die Minimum Norm–Lösung
	Die Pseudoinverse
	Die Singulärwertzerlegung

	Iterative Lösung von Gleichungssystemen mit Fixpunktiterationen
	Der Banachsche Fixpunktsatz
	Fixpunktverfahren zur Lösung linearer Gleichungen
	Iterative Lösung nichtlinearer Gleichungssysteme

	Krylovraumverfahrren zur Lösung linearer Gleichungen
	Gradientenverfahren
	Konjugierte Richtungen und das CG–Verfahren
	Der Uzawa–Algorithmus: Optimierung mit Nebenbedingungen

	Numerische Berechnung von Eigenwerten
	Kondition des Eigenwertproblems
	Potenzmethode
	Der QR–Algorithmus zur Bestimmung aller Eigenwerte einer Matrix

	Numerische Approximation in metrischen Räumen
	Bestapproximationen
	Gauss–Approximation
	Tschebyscheff–Approximation
	Der Approximationssatz von Weierstrass

	Grundzüge der linearen und nichtlinearen Optimierung
	Lineare Optimierung
	Simplex–Verfahren

	Ausblick
	Literaturverzeichnis

