Institut fiir Numerische und Angewandte Mathematik 07.12.2017
FB Mathematik und Informatik der Universitat Miinster
Prof. Dr. Christian Engwer, MSc. Marcel Koch

Ubung zur Vorlesung
Wissenschaftliches Rechnen
WS 2017/18 — Blatt 9

Abgabe: 14.12.2017, 10:00 Uhr, Briefkasten 111
Code zusétzlich per e-mail an marcel.koch@uni-muenster.de

Aufgabe 1 (Massenerhaltung im FV-Kontext) (2 Punkte)

Zeigen Sie die ,=“ Richtung folgender Aussage aus der Vorlesung. Aus der lokalen Massener-
haltung folgt globale Massenerhaltung genau dann, wenn die Flussberechnung von links und
von rechts gleich ist, d.h. wenn

Vu(y) |y, = Vu(y)ly, fiir alle Vi, Vo € V mit einem gemeinsamen Face 7.

Aufgabe 2 (Finite Elemente mit P; auf strukturierten Gitter) (4 Punkte)

Betrachten Sie das Poissonproblem in schwacher Formulierung mit Dirichlet Null Randwerten
/Vu-Vvdx:/l'vdX Vv € H}, (1)
Q Q

auf dem Einheitsquadrat Q = (0,1)2. Sie sollen nun die globale Steifigkeitsmatrix und rechte
Seite einer P; Finite Elemente Diskretisierung analytisch berechnen.

Das Gebiet wird zunéchst in Rechtecke mit Kantenldnge h = 1/N zerlegt, wobei N + 1 die
Anzahl an Knoten in z- und y-Richtung ist. Die Rechtecke werden weiter entlang der y = x
Diagonalen in zwei Dreiecke unterteilt. Dies liefert eine strukturierte Triangulierung von €2 mit
(N + 1)? Freiheitsgraden.

Abbildung 1: Triangulierungen mit N = 2

Berechnen Sie explizit die Eintrdge der Steifigkeitsmatrix un der rechnten Seite im inneren des
Gebiets, d.h.

A= (a(pj,0i), b= (1) firi,j=1,...,N%
wobei ¢;, i = 0,..., N? die nodale Basis des Ansatzraums ist, d.h. ¢;(z;) = di;. Setzen Sie die
Eintrége fiir Randknoten so, dass die Matrix positiv definit bleibt.

%)

In den kommenden zwei Wochen werden Sie in den Programmieraufgaben ein Finite Elemente
Programm schreiben, das in der Lage ist die Poissongleichung

—Au=f inQ
u=g auf 0

flir verschiedene rechte Seiten, Randwerte und Gebiete zu 16sen. Auf diesem Aufgabenblatt
werden Sie ein simples unstrukturiertes Dreiecksgitter implementieren, so wie sich mit dem
Gebrauch von diinnbesetzten Matrizen vertraut machen.

Das néchste Aufgabenblatt behandelt die Berechnung der lokalen Steifigkeitsmatrizen und der
lokalen rechten Seite und deren Speicherung in den globalen Datenstrukturen. Zusétzlich werden
die Dirichlet-Knoten behandelt.

Aufgabe 3 (Implementierung eines Dreiecksgitters) (5 Punkte)

Es gibt verschiedenste Moglichkeiten eine Triangulierung in C++ zu implementieren. Wir be-
schréanken uns hier auf die einfachste. Dazu benétigen wir nur die Koordinaten der Knoten im
Gitter und fiir jedes Dreieck die Indizes der Knoten die das Dreieck erzeugen. Insgesamt lasst
sich diese Gitterformat in Textform wie folgt darstellen:

NNODES number of nodes //=N

X0 Yo
X1 ¥y1

XN-1 YN-1
NELEMENTS number_of_elements //=E

iop jo ko
i1 j1 ki

ip1 jJE-1 kE1

Die Triangulierung in Abbildung 1 entrsprache folgender Darstellung:

NNODES 9
0

O OkFr OO+ oo
EJ'II—\O.CHOOEJ'I
oo ;

o

1
NELEMENTS 8
01 4

~No b Wb wR
D woh R, ON
0~ 0~ oo

(a) Implementieren Sie eine Klasse P1Triangle die ein Gitterelement darstellt. Die Klasse
soll mindestens folgende Methoden zur Verfiigung stellen:

e std::size_t local2global(std::size_t local) gibt zu einem lokalen Knoten
die globale Nummerierung zuriick,
e std::size_t size() gibt die Anzahl an lokalen Knoten zuriick,

e double jacDet() gibt die fiir ein Dreieck E die Determinate der Jacobimatrix der
Transformation T : E — FE zuriick,

e Matrix_Type jacInvT() gibt die transponierte Inverse Jacobimatrix der oben ge-
nannten Transformation 7" zuriick.

(b) Implementieren Sie eine Klasse P1Grid die die Knoten und Elemente im Gitter verwaltet.
Die Klasse soll mindestens folgende Attribute und Methoden zur Verfiigung stellen:

e jeweils einen Container fiir die Knoten im Gitter und die Elemente im Gitter,

e einen Konstruktor der einen string iibernimmt und damit eine Datei im obigen
Format einlief3t und daraus das Gitter erstellt,

e std::size_t size_dofs() gibt die Anzahl an Freiheitsgraden zuriick,

o T elements() liefert einen Lesezugriff auf die Elemente im Gitter, den Typen passen
sie an Thre gewahlten Container an.

(¢) Testen Sie Thre Implementierung, in dem Sie die auf die auf der Homepage zur verfiigung
gestellten Gitter einlesen und deren Flédche berechnen.

Die Knoten des Gitters kénnen Sie durch den bereits fiir das N-Korper Problem verwendeten
Typen realisieren. Dieser ist auch auf der Homepage verfiigbar.

Aufgabe 4 (Verwendung von Sparse-Matrizen) (5 Punkte)

Die bei der diskretisierung des Poissonproblems (1) entstehenden Matrizen haben nur sehr
wenige Eintrige ungleich Null. Bei einem strukturierten Gitter wie in Aufgabe 2 beschrieben
sind nur maximal sieben Eintrdge einer Zeile ungleich Null. Es macht daher Sinn sich nur die
nicht Null-Eintrage abzuspeichern. Dies kann z.B. durch Bandmatrizen realisiert werden. Fiir
unstrukturierte Gitter wird ein allgemeineres Format benétigt, oft greift man dabei auf das
compressed row storage (CRS) oder das compressed column storage (CCS) Format zuriick. Bei
diesen Formaten speichert man folgende Informationen:

e values: ein Array mit den Werten der nicht Null-Eintrage,

e row_indices: ein Array mit den Zeilenindzes der nicht Null-Eintrédge, d.h. row_indices[i]
gibt an in welcher Zeile sich der Wert values[i] befindet,

e col_start: ein Array das fiir jede Spalte der Matrix den Index ihres ersten nicht Null-
Eintrags, bezogen auf die values und row_indices Arrays, enthilt. Das Array einthilt
einen zusétzlichen Eintrag, die Anzahl aller nich Null-Eintrége.

Um das CCS Format zu verdeutlichen, betrachten wir folgendes Beispiel:

0 3 0 0 O
22 0 0 0 17
M=|7 5 0 1 0
0O 0 0 0 O
0 0 14 0 8
values 22 7 3 5 14 1 17 8
row_indices 1 2 0 2 1 4
col_start 0 2 4 5 ©6

Thre Aufgabe ist es nun die in Aufgabe 2 aufgestellte Matrix als CCS Matrix zu implemen-
tieren. Dazu werden Sie das CCS Format der linearen Algebra Bibliothek Figen' benutzen.
FEigen ist eine Header Bibliothekt, d.h. Sie miissen Eigen nicht auf Threm System installie-
ren, es reicht wenn Sie dem Kompiler den Pfad zu den Header Dateien angeben mit der -I
/path/to/eigen/include Option. Sie konnen die dazu die Makefile von der Homepage be-
nutzen. Um die CCS Matrix mit den aus Aufgabe 2 bekannten Werten zufiillen, verwenden
Sie die setFromTriplets Funktion der CCS Matrix. An diese Funktion iibergeben Sie den
begin() und end() Iterator eines Vektors von Eigen: :Triplets. Diese Triplets bestehen aus
drei Komponenten, den Zeilenindex, den Spaltenindex und den Wert eines nicht Null-Eintrags.

e In der Aufgabe 2 habe Sie nur Dirichlet Null Randwerte betrachtet. Hier betrachten wir
das Problem

/Vu-Vvdx:/l-vdX VUGH&,
Q Q

ulon = g,

mit g(z) = }|z|*>. Die Funktion g entspricht in diesem Fall der exakten Losung. Stellen

Sie die globale Steifigkeitsmatrix A und die globale rechte Seite b auf. Passen Sie die
Randwerte in b entsprechend der Funktion g an.

e Losen Sie das System Ar = b mit einem in Eigen verfiigbaren Loéser? ihrer Wahl, fiir
verschiedene Schrittweiten h. Stellen Sie den maximalen Fehler in abhéngigkeit von h dar.

"http://eigen.tuxfamily.org
http://eigen.tuxfamily.org/dox/group__ TopicSparseSystems.html

