
Institut für Numerische und Angewandte Mathematik 07.12.2017
FB Mathematik und Informatik der Universität Münster
Prof. Dr. Christian Engwer, MSc. Marcel Koch

Übung zur Vorlesung
Wissenschaftliches Rechnen

WS 2017/18 — Blatt 9

Abgabe: 14.12.2017, 10:00 Uhr, Briefkasten 111
Code zusätzlich per e-mail an marcel.koch@uni-muenster.de

Aufgabe 1 (Massenerhaltung im FV-Kontext) (2 Punkte)

Zeigen Sie die „⇒“ Richtung folgender Aussage aus der Vorlesung. Aus der lokalen Massener-
haltung folgt globale Massenerhaltung genau dann, wenn die Flussberechnung von links und
von rechts gleich ist, d.h. wenn

∇u(γ)|V1 = ∇u(γ)|V2 für alle V1, V2 ∈ V mit einem gemeinsamen Face γ.

Aufgabe 2 (Finite Elemente mit P1 auf strukturierten Gitter) (4 Punkte)

Betrachten Sie das Poissonproblem in schwacher Formulierung mit Dirichlet Null Randwerten∫
Ω
∇u · ∇v dx =

∫
Ω

1 · vdx ∀v ∈ H1
0 , (1)

auf dem Einheitsquadrat Ω = (0, 1)2. Sie sollen nun die globale Steifigkeitsmatrix und rechte
Seite einer P1 Finite Elemente Diskretisierung analytisch berechnen.
Das Gebiet wird zunächst in Rechtecke mit Kantenlänge h = 1/N zerlegt, wobei N + 1 die
Anzahl an Knoten in x- und y-Richtung ist. Die Rechtecke werden weiter entlang der y = x
Diagonalen in zwei Dreiecke unterteilt. Dies liefert eine strukturierte Triangulierung von Ω mit
(N + 1)2 Freiheitsgraden.

Abbildung 1: Triangulierungen mit N = 2

Berechnen Sie explizit die Einträge der Steifigkeitsmatrix un der rechnten Seite im inneren des
Gebiets, d.h.

A = (a(ϕj , ϕi)) , b = (1, ϕi)L2 für i, j = 1, . . . , N2,

wobei ϕi, i = 0, . . . , N2 die nodale Basis des Ansatzraums ist, d.h. ϕi(xj) = δij . Setzen Sie die
Einträge für Randknoten so, dass die Matrix positiv definit bleibt.

In den kommenden zwei Wochen werden Sie in den Programmieraufgaben ein Finite Elemente
Programm schreiben, das in der Lage ist die Poissongleichung

−∆u = f in Ω
u = g auf ∂Ω

für verschiedene rechte Seiten, Randwerte und Gebiete zu lösen. Auf diesem Aufgabenblatt
werden Sie ein simples unstrukturiertes Dreiecksgitter implementieren, so wie sich mit dem
Gebrauch von dünnbesetzten Matrizen vertraut machen.
Das nächste Aufgabenblatt behandelt die Berechnung der lokalen Steifigkeitsmatrizen und der
lokalen rechten Seite und deren Speicherung in den globalen Datenstrukturen. Zusätzlich werden
die Dirichlet-Knoten behandelt.

Aufgabe 3 (Implementierung eines Dreiecksgitters) (5 Punkte)

Es gibt verschiedenste Möglichkeiten eine Triangulierung in C++ zu implementieren. Wir be-
schränken uns hier auf die einfachste. Dazu benötigen wir nur die Koordinaten der Knoten im
Gitter und für jedes Dreieck die Indizes der Knoten die das Dreieck erzeugen. Insgesamt lässt
sich diese Gitterformat in Textform wie folgt darstellen:

1 NNODES number_of_nodes //=N
x0 y0

3 x1 y1
.

5 .
.

7 xN−1 yN−1
NELEMENTS number_of_elements //=E

9 i0 j0 k0
i1 j1 k1

11 .
.

13 .
iE−1 jE−1 kE−1

Die Triangulierung in Abbildung 1 entrspräche folgender Darstellung:

NNODES 9
2 0 0

0.5 0
4 1 0

0 0.5
6 0.5 0.5

1 0.5
8 0 1

0.5 1
10 1 1

NELEMENTS 8
12 0 1 4

1 2 5
14 3 0 4

4 1 5
16 3 4 7

4 5 8
18 6 3 7

7 4 8

(a) Implementieren Sie eine Klasse P1Triangle die ein Gitterelement darstellt. Die Klasse
soll mindestens folgende Methoden zur Verfügung stellen:

• std::size_t local2global(std::size_t local) gibt zu einem lokalen Knoten
die globale Nummerierung zurück,
• std::size_t size() gibt die Anzahl an lokalen Knoten zurück,
• double jacDet() gibt die für ein Dreieck E die Determinate der Jacobimatrix der
Transformation T : Ê 7→ E zurück,
• Matrix_Type jacInvT() gibt die transponierte Inverse Jacobimatrix der oben ge-
nannten Transformation T zurück.

(b) Implementieren Sie eine Klasse P1Grid die die Knoten und Elemente im Gitter verwaltet.
Die Klasse soll mindestens folgende Attribute und Methoden zur Verfügung stellen:

• jeweils einen Container für die Knoten im Gitter und die Elemente im Gitter,
• einen Konstruktor der einen string übernimmt und damit eine Datei im obigen
Format einließt und daraus das Gitter erstellt,
• std::size_t size_dofs() gibt die Anzahl an Freiheitsgraden zurück,
• T elements() liefert einen Lesezugriff auf die Elemente im Gitter, den Typen passen
sie an Ihre gewählten Container an.

(c) Testen Sie Ihre Implementierung, in dem Sie die auf die auf der Homepage zur verfügung
gestellten Gitter einlesen und deren Fläche berechnen.

Die Knoten des Gitters können Sie durch den bereits für das N-Körper Problem verwendeten
Typen realisieren. Dieser ist auch auf der Homepage verfügbar.

Aufgabe 4 (Verwendung von Sparse-Matrizen) (5 Punkte)

Die bei der diskretisierung des Poissonproblems (1) entstehenden Matrizen haben nur sehr
wenige Einträge ungleich Null. Bei einem strukturierten Gitter wie in Aufgabe 2 beschrieben
sind nur maximal sieben Einträge einer Zeile ungleich Null. Es macht daher Sinn sich nur die
nicht Null-Einträge abzuspeichern. Dies kann z.B. durch Bandmatrizen realisiert werden. Für
unstrukturierte Gitter wird ein allgemeineres Format benötigt, oft greift man dabei auf das
compressed row storage (CRS) oder das compressed column storage (CCS) Format zurück. Bei
diesen Formaten speichert man folgende Informationen:

• values: ein Array mit den Werten der nicht Null-Einträge,

• row_indices: ein Array mit den Zeilenindzes der nicht Null-Einträge, d.h. row_indices[i]
gibt an in welcher Zeile sich der Wert values[i] befindet,

• col_start: ein Array das für jede Spalte der Matrix den Index ihres ersten nicht Null-
Eintrags, bezogen auf die values und row_indices Arrays, enthält. Das Array einthält
einen zusätzlichen Eintrag, die Anzahl aller nich Null-Einträge.

Um das CCS Format zu verdeutlichen, betrachten wir folgendes Beispiel:

M =


0 3 0 0 0
22 0 0 0 17
7 5 0 1 0
0 0 0 0 0
0 0 14 0 8


values 22 7 3 5 14 1 17 8
row_indices 1 2 0 2 4 2 1 4
col_start 0 2 4 5 6 8

Ihre Aufgabe ist es nun die in Aufgabe 2 aufgestellte Matrix als CCS Matrix zu implemen-
tieren. Dazu werden Sie das CCS Format der linearen Algebra Bibliothek Eigen1 benutzen.
Eigen ist eine Header Bibliothekt, d.h. Sie müssen Eigen nicht auf Ihrem System installie-
ren, es reicht wenn Sie dem Kompiler den Pfad zu den Header Dateien angeben mit der -I
/path/to/eigen/include Option. Sie können die dazu die Makefile von der Homepage be-
nutzen. Um die CCS Matrix mit den aus Aufgabe 2 bekannten Werten zufüllen, verwenden
Sie die setFromTriplets Funktion der CCS Matrix. An diese Funktion übergeben Sie den
begin() und end() Iterator eines Vektors von Eigen::Triplets. Diese Triplets bestehen aus
drei Komponenten, den Zeilenindex, den Spaltenindex und den Wert eines nicht Null-Eintrags.

• In der Aufgabe 2 habe Sie nur Dirichlet Null Randwerte betrachtet. Hier betrachten wir
das Problem ∫

Ω
∇u · ∇v dx =

∫
Ω

1 · vdx ∀v ∈ H1
0 ,

u|∂Ω = g,

mit g(x) = 1
4 |x|

2. Die Funktion g entspricht in diesem Fall der exakten Lösung. Stellen
Sie die globale Steifigkeitsmatrix A und die globale rechte Seite b auf. Passen Sie die
Randwerte in b entsprechend der Funktion g an.

• Lösen Sie das System Ax = b mit einem in Eigen verfügbaren Löser2 ihrer Wahl, für
verschiedene Schrittweiten h. Stellen Sie den maximalen Fehler in abhängigkeit von h dar.

1http://eigen.tuxfamily.org
2http://eigen.tuxfamily.org/dox/group__TopicSparseSystems.html

