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Aufgabe 1 (Lie-Trotter-Splitting) (4 Punkte)

In der Vorlesung haben Sie das sogenannte Lie-Trotter-Splitting kennen gelernt. Dabei wird die
Lösung eines Anfangswertproblems mit additiv zerlegter rechter Seite

∂a

∂t
= f (a) + g (a) , a (0) = a0 (1)

approximiert. Angenommen Φ∆t
f liefert eine Lösung für die Gleichung ∂a

∂t = f (a) und Φ∆t
f liefert

eine Lösung für die Gleichung ∂a
∂t = f (a). Dann bestimmt man beim Lie-Trotter-Verfahren eine

Näherungslösung von (1) durch

Φ∆t
f+g ≈ Φ∆t

g ◦ Φ∆t
f .

Zeigen Sie, dass das Lie-Trotter-Splitting die Konsistenzordnung 1 hat. Zeigen Sie dabei insbe-
sondere, dass es nicht von Konsistenzordnung 2 ist.

Aufgabe 2 (P2− Lagrangebasis in 1D ) (5 Punkte)

In der Vorlesung haben sie die Lagrangebasisfunktionen erster Ordnung für Finite Elemente
Verfahren kennen gelernt. Dabei waren die stückweise linearen Basisfunktionen ϕi definiert
durch ϕi (aj) = δij für jeden Knoten aj des Gitters. Zur Definition von Basisfunktionen höherer
Ordnung werden weitere Stützstellen benötigt. Im Falle der Lagrangebasis zweiter Ordnung
wählt man die Elementmittelpunkte und definiert erneut ϕi (aj) = δij . Dabei sind die aj jetzt
alle Stützstellen, das heißt Elementecken und -mittelpunkte, siehe auch Abbildung 1.

(a) Bestimmen Sie die Basisfunktionen ϕ̂0, ϕ̂1 und ϕ̂2 der P2− Basis auf dem Referenzelement
Ê = [0, 1]. Skizzieren Sie ϕ̂0, ϕ̂1 und ϕ̂2.

(b) Bestimmen Sie die Transformation TE : [0, 1] → [a2i, a2i+2] des Referenzelements auf ein
beliebiges Element und ihre Inverse T−1

E .



(c) Berechnen Sie die Einträge der sogenannten lokale Steifigkeitsmatrix für das Referenzele-
ment

Akl =
∫

Ê
ϕ̂′2i+kϕ̂

′
2i+l dx.

Nutzen Sie die Transformation und die Basisfunktionen auf dem Referenzelement um
die Basisfunktionen ϕ2i, ϕ2i+1 und ϕ2i+2 auf dem beliebigen Element E = [a2i, a2i+2]
darzustellen und berechnen Sie damit die lokale Steifigkeitsmatrix AE für das Element E.
Hinweis: Benutzen Sie A um AE auszurechnen.
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Abbildung 1: P1− Basisfunktionen und zusätzliche Stützstellen für P2− Basisfunktionen in 1D

Aufgabe 3 (Turing-Modell, Computermodell mit Operator-Splitting) (7 Punkte)

Betrachten Sie das Reaktions-Diffusions-System

∂ta = Da∆a+ g1(a, b)
∂tb = Db∆b+ g2(a, b)

}
in Ω ⊂ Rd × [0, T ] (2a)

mit Neumann-Randbedingungen

∇a · n = 0, ∇b · n = 0 auf ∂Ω× [0, T ] (2b)

und Anfangsbedingungen

a(·, 0) = a0, b(·, 0) = b0 in Ω, (2c)

welches Sie in der Vorlesung als Turing-Modell kennengelernt haben. Um dieses zu simulieren
wollen wir ein Computermodell für (2) herleiten. Dabei beschränken wir uns auf ein rechteckiges
Gebiet Ω = [0, L]2 ⊂ R2, welches durch ein kartesisches Gitter1 partitioniert ist.

(a) Leiten Sie mit der Linienmethode und dem zellzentrierten Finite-Volumen-Verfahren eine
Semidiskretisierung im Ort her. Beide Methoden sind aus der Vorlesung bekannt. Dort ha-
ben Sie darüber hinaus das Strang-Splitting kennengelernt. Verwenden Sie dieses, um den
Diffusions- und den Reaktionsanteil in der Semidiskretisierung voneinander zu splitten.

1Ein kartesisches Gitter ist ein gleichmäßiges Gitter mit uniformer Kantenlänge, d.h. es besteht aus rechte-
ckigen Zellen mit achsenparallelen Kanten, die alle gleich lang sind.



(b) Diskretisieren wir die semidiskreten Probleme nun in der Zeit, erhalten wir ein Compu-
termodell. Für das Diffusionsproblem wollen wir das explizite Euler-Verfahren verwenden
und für das Reaktionsproblem das implizite Euler-Verfahren. Implementieren Sie das re-
sultierende Computermodell in C++.

• Auf der Vorlesungshomepage finden Sie Code zur Generierung von Anfangswerten,
zur Generierung von Gitterinformationen für Finite-Volumen-Verfahren auf kartesi-
schen Gittern und für die Datenausgabe im VTK Dateiformat (→ Paraview).
• Verwenden Sie die Implementierung des Theta-Verfahrens von Blatt 6. Wählen Sie
dabei als Template-Parameter VectorType, MatrixType und TimeType geeignete Da-
tentypen. Benutzen Sie als Gleichungssystemslöser für das implizite Euler-Verfahren
die Implementierung des Newton-Verfahrens von Blatt 5.
• Wählen Sie die Zeitschrittweite geeignet. Beachten Sie die CFL-Bedingung beim ex-
pliziten Euler-Verfahren, die eine Beschränkung der Zeitschrittweite mit sich bringt.

(c) Verwenden Sie die Anfangswerte a0 und b0 aus dem zur Verfügung gestellten Code und
testen Sie Ihre Implementierung an dem konkreten Modell

g1(a, b) := 1/ε0
(
w0(b) a+ w1(a) b− a2), w0(b) := (1.0−mb)/(1.0−mb+ ε1),

g2(a, b) := w0(b) a− b, w1(a) := p(q − a)/(q + a),

mit
Da = 1.0, Db = 10.0, ε0 = 2.2, ε1 = 0.02,
q = 0.0002, p = 1.1, m = 0.0007.

Dieses Modell beschreibt chemische Experimente für die Belousov-Zhabotinsky Reaktion,
die in [Bánsági et al., 2011]2 präsentiert werden. Die Experimente führen zu einer (eigent-
lich dreidimensionalen) Musterbildung, welche mit Hilfe eines Tomographen beobachtet
werden kann.

Hinweise: Die Semidiskretisierung im Ort kann komponentenweise erfolgen. Durch das Splitting
entkoppeln die beiden Komponenten des Diffusionsproblems. Die CFL-Bedingung
beschränkt die maximale Zeitschrittweite in Abhängigkeit von beiden Komponenten
des Diffusionsproblems.

2Bánsági, Tamás, Vladimir K. Vanag, and Irving R. Epstein. “Tomography of reaction-diffusion microemulsi-
ons reveals three-dimensional Turing patterns.” Science 331.6022 (2011): 1309-1312.


