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Aufgabe 1 (Lie-Trotter-Splitting) (4 Punkte)

In der Vorlesung haben Sie das sogenannte Lie- Trotter-Splitting kennen gelernt. Dabei wird die
Losung eines Anfangswertproblems mit additiv zerlegter rechter Seite

M@ +ga), a0)=a (1)

approximiert. Angenommen q)fAt liefert eine Losung fiir die Gleichung % = f(a) und @?t liefert
eine Losung fiir die Gleichung % = f (a). Dann bestimmt man beim Lie- Trotter- Verfahren eine
Néherungslosung von (1) durch
At AL At
¢f+g ~ ®g O ®f .

Zeigen Sie, dass das Lie-Trotter-Splitting die Konsistenzordnung 1 hat. Zeigen Sie dabei insbe-
sondere, dass es nicht von Konsistenzordnung 2 ist.

Aufgabe 2 (P,— Lagrangebasis in 1D ) (5 Punkte)

In der Vorlesung haben sie die Lagrangebasisfunktionen erster Ordnung fiir Finite Elemente
Verfahren kennen gelernt. Dabei waren die stiickweise linearen Basisfunktionen ; definiert
durch ¢; (aj) = 6;; fiir jeden Knoten a; des Gitters. Zur Definition von Basisfunktionen héherer
Ordnung werden weitere Stiitzstellen benotigt. Im Falle der Lagrangebasis zweiter Ordnung
wahlt man die Elementmittelpunkte und definiert erneut ¢; (a;) = d;;. Dabei sind die a; jetzt
alle Stiitzstellen, das heiffit Elementecken und -mittelpunkte, siche auch Abbildung 1.

(a) Bestimmen Sie die Basisfunktionen ¢g, ¢1 und @9 der Po— Basis auf dem Referenzelement
E = [0, 1]. Skizzieren Sie ¢g, $1 und @s.

(b) Bestimmen Sie die Transformation T : [0, 1] — [a2;, a2i12] des Referenzelements auf ein
beliebiges Element und ihre Inverse T L



(c) Berechnen Sie die Eintrage der sogenannten lokale Steifigkeitsmatriz fiir das Referenzele-
ment

Al Al
Ap = /E D9tk P2it1 AX.

Nutzen Sie die Transformation und die Basisfunktionen auf dem Referenzelement um
die Basisfunktionen ¢g;, p2i4+1 und @942 auf dem beliebigen Element E = [ag;, azit2]
darzustellen und berechnen Sie damit die lokale Steifigkeitsmatrix Ag fiir das Element E.

Hinweis: Benutzen Sie A um Ag auszurechnen.
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Abbildung 1: P;— Basisfunktionen und zuséitzliche Stiitzstellen fiir P,— Basisfunktionen in 1D

Aufgabe 3 (Turing-Modell, Computermodell mit Operator-Splitting) (7 Punkte)

Betrachten Sie das Reaktions-Diffusions-System

O, (f; :; } i QCRx[0,7] (20)
mit Neumann-Randbedingungen

Va-n=0, Vb-n=0 auf 900 x [0,7 (2b)
und Anfangsbedingungen

a(+,0) = ap, b(-,0) = by in Q, (2¢)

welches Sie in der Vorlesung als Turing-Modell kennengelernt haben. Um dieses zu simulieren
wollen wir ein Computermodell fiir (2) herleiten. Dabei beschrénken wir uns auf ein rechteckiges
Gebiet 2 = [0, L)> € R?, welches durch ein kartesisches Gitter! partitioniert ist.

(a) Leiten Sie mit der Linienmethode und dem zellzentrierten Finite-Volumen-Verfahren eine
Semidiskretisierung im Ort her. Beide Methoden sind aus der Vorlesung bekannt. Dort ha-
ben Sie dariiber hinaus das Strang-Splitting kennengelernt. Verwenden Sie dieses, um den
Diffusions- und den Reaktionsanteil in der Semidiskretisierung voneinander zu splitten.

'Ein kartesisches Gitter ist ein gleichméaBiges Gitter mit uniformer Kantenlinge, d.h. es besteht aus rechte-
ckigen Zellen mit achsenparallelen Kanten, die alle gleich lang sind.



(b) Diskretisieren wir die semidiskreten Probleme nun in der Zeit, erhalten wir ein Compu-
termodell. Fiir das Diffusionsproblem wollen wir das explizite Euler-Verfahren verwenden
und fiir das Reaktionsproblem das implizite Euler-Verfahren. Implementieren Sie das re-
sultierende Computermodell in C++.

e Auf der Vorlesungshomepage finden Sie Code zur Generierung von Anfangswerten,
zur Generierung von Gitterinformationen fiir Finite-Volumen-Verfahren auf kartesi-
schen Gittern und fiir die Datenausgabe im VTK Dateiformat (— Paraview).

e Verwenden Sie die Implementierung des Theta-Verfahrens von Blatt 6. Wéhlen Sie
dabei als Template-Parameter VectorType, MatrixType und TimeType geeignete Da-
tentypen. Benutzen Sie als Gleichungssystemsloser fiir das implizite Euler-Verfahren
die Implementierung des Newton-Verfahrens von Blatt 5.

e Wihlen Sie die Zeitschrittweite geeignet. Beachten Sie die CFL-Bedingung beim ex-
pliziten Euler-Verfahren, die eine Beschrankung der Zeitschrittweite mit sich bringt.

(¢) Verwenden Sie die Anfangswerte ag und by aus dem zur Verfiigung gestellten Code und
testen Sie Ihre Implementierung an dem konkreten Modell

g1(a,b) := 1/gg (wo(b) a + wi(a) b — a?), wo(b) := (1.0 — mb) /(1.0 — mb + ¢1),

g2(a,b) == wo(b)a —b, wy(a) == plg—a)/(q+ a),
. D, = 1.0, Dy, =10.0, & =22, e1 = 0.02,
mai
q = 0.0002, p=11, m = 0.0007.

Dieses Modell beschreibt chemische Experimente fir die Belousov-Zhabotinsky Reaktion,
die in [Bansagi et al., 2011]? priisentiert werden. Die Experimente fithren zu einer (eigent-
lich dreidimensionalen) Musterbildung, welche mit Hilfe eines Tomographen beobachtet
werden kann.

Hinweise: Die Semidiskretisierung im Ort kann komponentenweise erfolgen. Durch das Splitting
entkoppeln die beiden Komponenten des Diffusionsproblems. Die CFL-Bedingung
beschrinkt die maximale Zeitschrittweite in Abhé&ngigkeit von beiden Komponenten
des Diffusionsproblems.

2Béansagi, Tamés, Vladimir K. Vanag, and Irving R. Epstein. “Tomography of reaction-diffusion microemulsi-
ons reveals three-dimensional Turing patterns.” Science 331.6022 (2011): 1309-1312.



