Institut fiir Numerische und Angewandte Mathematik 9.11.2017
FB Mathematik und Informatik der Universitat Miinster
Prof. Dr. Christian Engwer, MSc. Marcel Koch

Ubung zur Vorlesung
Wissenschaftliches Rechnen
WS 2017/18 — Blatt 5

Abgabe: 16.11.2017, 10:00 Uhr, Briefkasten 111
Code zusétzlich per e-mail an marcel.koch@uni-muenster.de

Aufgabe 1 (Loop Order) (2 Punkte)

Ein Matrix-Vektor Produkt lasst sich auf folgende zwei Arten realisieren:

for(int i = 0; i < 256; ++i){ for(int j = 0; j < 640; ++j){
for(int j = 0; j < 640; ++j){ for(int i = 0; j < 256; ++i){
ylil += A[iT[3] * x[j]; ylil += ALiT (3] * x[j];
b +
} }
(i) Innerste Schleife iiber die Spalten (ii) Innerste Schleife tiber die Zeilen

Gehen Sie davon aus, dass die Arrays vom Typ double (8 Byte) bereits sinnvoll initialisiert
sind. Die Matrix A ist spaltenweise gespeichert, d.h. Eintrége in der selben Spalte liegen im
Speicher nebeneinander. Der Eintrag A[i] [j] liegt somit an Stelle [i+640%j] nach dem ersten
Eintrag A[0] [0].

Betrachten Sie einen vollassoziativen L1-Datencache eines Prozessorkerns mit einer Gréfle von
32kB (1 kB = 1024 Byte) und einer Cachelinegroie von 64 Byte.

(a) Von welcher Variante erwarten Sie eine bessere Performance? Begriinden Sie ihre Ent-
scheidung.

(b) Gibt es Matrizengréfien, bei denen ein Unterschied nicht mehr feststellbar ist?

Aufgabe 2 (1D-Wairmeleitungsgleichung mit Cache-Effekten) (3 Punkte)

Betrachten Sie die homogene Warmeleitungsgleichung in 1D mit Dirichlet Randbedingungen:

0w — Ogzu =0 in (0,77 x (0,1), (1)
u(t,0) = ug,
u(t, 1) = uy.

Diskretisieren Sie die Gleichung im Ort mit dem zentralen Differenzenquotienten und in der
Zeit mit dem expliziten Eulerverfahren. Untersuchen Sie die Anzahl an Gleitkommaoperationen



pro Sekunde (FLOPS) die Thr Code fiir verschieden feine Ortsdiskretisierungen erreicht. Stellen
Sie die Ergebnisse graphisch dar und und diskutieren Sie diese. Bestimmen Sie anhand Ihrer
FErgebnisse approximativ die Cachegrofien.

Aufgabe 3 (Tiling beim Matrix-Matrix Produkt) (4 Punkte)

Betrachten Sie folgende Implementierung eines Produkts zweier dicht besetzten Matrizen:

for(int 1 = 0; i < N; ++i)
for(int j = 0; j < N; ++j)
for(int k = 0; k < N; ++k)
C[il[j] += A[il[k] = B[k][j];

Wie in Aufgabe 1 wird wieder ein Prozessorkern mit vollassoziativen L1-Datencache der Grofe
32kB und einer Cachelinegréfie von 64 Byte betrachtet.

(a) Bestimmen Sie die Grofle N der Matrizen, ab der eine ineffiziente Cache Ausnutzung ein-
tritt. Ab dieser Grofie ist es sinnvoll, die Matrizen in mxm grofe Blocke zu zerlegen und das
Produkt als Blockmatrix Produkt umzusetzen. Wieso lasst sich dadurch ein Performan-
cegewinn erreichen fiir bestimmte Blockgréflen erreichen. Fiir welche Blockgréfien wiirden
Sie die meiste Verbesserung erwarten?

(b) Implementieren Sie ein geblockte und eine nicht geblockte Version und vergleichen Sie die
FLOPS fiir unterschiedliche Matrix- und Blockgréfien.

Bemerkung 1 (Hinweise zu Aufgabe 2 und 3)

Neueste Kompiler konnen stirker optimieren als Thnen vielleicht bewusst ist. Dies kann bei der
Zeitmessung von kleinen Code-Aussschnitten zu unerwarteten Ergebnissen fiihren. Beispielswei-
se mochten Sie die Zeit fiir eine skalierte Vektoraddition messen:

for(int i = 0; i < MAX_ITER; ++i){
for(int d = 0; d < DIM; ++d)
y[i] += alphax*x[i];
}
Hier kann es passieren, falls Sie nicht mehr auf Werte von y zugreifen, der Kompiler beide

Schleifen, und damit auch den zu testenden Code, entfernt. Um dies zu verhindern fligen Sie
folgende Befehle ein:

asm volatile("" : : "i,r,m"(y) : "memory");

for(int i = 0; i < MAX_ITER; ++i){
for(int d = 0; d < DIM; ++d)
y[i] += alpha*x[i];

asm volatile("" : : : "memory");

3

Der Kompiler ist dann gezwungen beide Schleifen zu erhalten und somit ist eine sinnvolle
Zeitmessung moglich.



