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Aufgabe 1 (Loop Order) (2 Punkte)

Ein Matrix-Vektor Produkt lässt sich auf folgende zwei Arten realisieren:

for(int i = 0; i < 256; ++i){
for(int j = 0; j < 640; ++j){

y[i] += A[i][j] * x[j];
}

}

(i) Innerste Schleife über die Spalten

for(int j = 0; j < 640; ++j){
for(int i = 0; j < 256; ++i){

y[i] += A[i][j] * x[j];
}

}

(ii) Innerste Schleife über die Zeilen

Gehen Sie davon aus, dass die Arrays vom Typ double (8 Byte) bereits sinnvoll initialisiert
sind. Die Matrix A ist spaltenweise gespeichert, d.h. Einträge in der selben Spalte liegen im
Speicher nebeneinander. Der Eintrag A[i][j] liegt somit an Stelle [i+640*j] nach dem ersten
Eintrag A[0][0].
Betrachten Sie einen vollassoziativen L1-Datencache eines Prozessorkerns mit einer Größe von
32kB (1 kB = 1024 Byte) und einer Cachelinegröße von 64 Byte.

(a) Von welcher Variante erwarten Sie eine bessere Performance? Begründen Sie ihre Ent-
scheidung.

(b) Gibt es Matrizengrößen, bei denen ein Unterschied nicht mehr feststellbar ist?

Aufgabe 2 (1D-Wärmeleitungsgleichung mit Cache-Effekten) (3 Punkte)

Betrachten Sie die homogene Wärmeleitungsgleichung in 1D mit Dirichlet Randbedingungen:

∂tu − ∂xxu = 0 in (0, T ] × (0, 1), (1)
u(t, 0) = ua,

u(t, 1) = ub.

Diskretisieren Sie die Gleichung im Ort mit dem zentralen Differenzenquotienten und in der
Zeit mit dem expliziten Eulerverfahren. Untersuchen Sie die Anzahl an Gleitkommaoperationen



pro Sekunde (FLOPS) die Ihr Code für verschieden feine Ortsdiskretisierungen erreicht. Stellen
Sie die Ergebnisse graphisch dar und und diskutieren Sie diese. Bestimmen Sie anhand Ihrer
Ergebnisse approximativ die Cachegrößen.

Aufgabe 3 (Tiling beim Matrix-Matrix Produkt) (4 Punkte)

Betrachten Sie folgende Implementierung eines Produkts zweier dicht besetzten Matrizen:
for(int i = 0; i < N; ++i)

for(int j = 0; j < N; ++j)
for(int k = 0; k < N; ++k)

C[i][j] += A[i][k] * B[k][j];

Wie in Aufgabe 1 wird wieder ein Prozessorkern mit vollassoziativen L1-Datencache der Größe
32kB und einer Cachelinegröße von 64 Byte betrachtet.
(a) Bestimmen Sie die Größe N der Matrizen, ab der eine ineffiziente Cache Ausnutzung ein-

tritt. Ab dieser Größe ist es sinnvoll, die Matrizen in m×m große Blöcke zu zerlegen und das
Produkt als Blockmatrix Produkt umzusetzen. Wieso lässt sich dadurch ein Performan-
cegewinn erreichen für bestimmte Blockgrößen erreichen. Für welche Blockgrößen würden
Sie die meiste Verbesserung erwarten?

(b) Implementieren Sie ein geblockte und eine nicht geblockte Version und vergleichen Sie die
FLOPS für unterschiedliche Matrix- und Blockgrößen.

Bemerkung 1 (Hinweise zu Aufgabe 2 und 3)

Neueste Kompiler können stärker optimieren als Ihnen vielleicht bewusst ist. Dies kann bei der
Zeitmessung von kleinen Code-Aussschnitten zu unerwarteten Ergebnissen führen. Beispielswei-
se möchten Sie die Zeit für eine skalierte Vektoraddition messen:
for(int i = 0; i < MAX_ITER; ++i){

for(int d = 0; d < DIM; ++d)
y[i] += alpha*x[i];

}

Hier kann es passieren, falls Sie nicht mehr auf Werte von y zugreifen, der Kompiler beide
Schleifen, und damit auch den zu testenden Code, entfernt. Um dies zu verhindern fügen Sie
folgende Befehle ein:
asm volatile("" : : "i,r,m"(y) : "memory");

for(int i = 0; i < MAX_ITER; ++i){
for(int d = 0; d < DIM; ++d)

y[i] += alpha*x[i];

asm volatile("" : : : "memory");
}

Der Kompiler ist dann gezwungen beide Schleifen zu erhalten und somit ist eine sinnvolle
Zeitmessung möglich.


