Institut fiir Numerische und Angewandte Mathematik 12.10.2017
FB Mathematik und Informatik der Universitat Miinster
Prof. Dr. Christian Engwer, MSc Marcel Koch

Ubung zur Vorlesung
Wissenschaftliches Rechnen
WS 2017/18 — Blatt 0

Abgabe: Keine Abgabe (Anwesenheitsaufgaben)

Achtung: Achten Sie darauf, Thre Programme ordentlich zu formatieren und gut zu kommen-
tieren. Die Form wird mit in die Bewertung eingehen.

Aufgabe 1 (Wertebereich von Basisdatentypen)

Schreiben Sie ein Programm, welches eine positive ganze Zahl einliest und in einem short int
speichert. Addieren Sie anschliefend 1 auf die Zahl und geben Sie das Ergebnis aus.

(a) Was passiert, wenn Sie 32.767 eingeben?
(b) Was passiert, wenn Sie 65.535 eingeben?

(c) Was passiert, wenn Sie statt eines short int einen unsigned short int verwenden und
die Eingaben wiederholen?

(d) Was passiert, wenn Sie (long) int verwenden und die Eingaben wiederholen?

(e) Was passiert jeweils, wenn Sie stattdessen —1 addieren und Sie 0 eingeben?

Hinweis: Fiir das Einlesen der Zahl kénnen Sie sich an Aufgabe 3 orientieren.

Aufgabe 2 (Fehlersuche)

51 {

#include <iostream>

// summiert alle Zahlen im Intervall [a,b]
int summieren (int a, int b)
{

int summe;

for (int i = a; i <= b; i++)

{

int summe = summe + i;
}

return 0;

}
int main ()

std :: cout << summieren(1,10) << std ::endl;
return O;

}

Das obige Programm soll alle Zahlen von 1 bis 10 aufsummieren. Obwohl es syntaktisch korrekt
ist, rechnet es falsch. Der Code enthélt drei Fehler. Finden und reparieren Sie diese.

¥

Aufgabe 3 (Fehlersuche 2)

#include <iostream>

int main ()
{
double 1; double h;
std :: cout << "Geben Sie die Laenge ein: ";
std::cin >> 1;
std::cout << "Geben Sie die Hoehe ein: ";
std :: cin >> h;

std :: cout << "Flaeche: " << flaeche (1,h) << std::endl;
return 0;

}

double flaeche (double laenge, double hoehe)

double ergebnis;
ergebnis = laenge x hoehe;
return ergebnis;

}

Das obige Programm soll die Flédche eines Rechtecks berechnen, kann jedoch nicht fehlerfrei
iibersetzt werden. Finden und korrigieren Sie den Fehler.
Aufgabe 4 (Verniinftige Formatierung des Code)
Welcher Unterschied besteht bei der Ausfithrung folgender C+4 Codefragmente?
(a) if (x>0.0) y=sqrt(x); z=x*x; (¢) if (x>0.0) {y=sqrt(x);} z=x*x;
(b) if (x>0.0) {y=sqrt(x); z=x*x;} (d) if (x>0.0) {y=sqrt(x)}; z=x*x;

Schreiben Sie die Ausdriicke so auf, dass der Ablauf der Ausfithrung deutlich wird!

Aufgabe 5 (Fakultét)

Schreiben Sie ein Programm, welches die Fakultdt n! = 1-2-....n fir alle ganzen Zahlen
0 < n < 10 berechnet und ausgibt.

e Verlagern Sie die Fakultatsberechnung in eine Prozedur
unsigned int fakultaet (unsigned int n)

e Das Hauptprogramm soll diese Prozedur fiir die gewiinschten Werte von n aufrufen

Hinweis: Die Prozedur fakultaet kann sowohl iterativ als auch rekusiv implementiert werden.

Aufgabe 6 (Primzahlen)

Schreiben Sie ein Programm das alle Primzahlen bis n sucht und ausgibt, wobei n eine vom
Benutzer festzulegende natiirliche Zahl ist.

e Uberlegen Sie sich einen einfachen Algorithmus um zu testen, ob eine Zahl prim ist

e Fiihren Sie diesen Test fiir alle Zahlen bis n durch

Aufgabe 7 (Zeiger 1)

Mit den Definitionen

int x
int* pl

25; int y = -12;
&x; int* p2 = &y;

erldutere man die Unterschiede folgender Anweisungen:
(a) pl = p2; und #*pl = *p2;
(b) if (p1 == p2) { ... } und if (xpl == *p2) { ... }
(c) if (p1) { ... } und if (xp1) { ... }

Aufgabe 8 (Zeiger 2)

Nach Definition der Variablen test und zeiger durch:
int test = 51; int* zeiger = &test;

stehen folgende Inkrementierungsanweisungen zur Auswahl:
(a) *zeiger++ (c) *(zeiger++) (e) *++zeiger (g) ++*xzeiger
(b) (xzeiger)++ (d) *(++zeiger) (f) ++(*zeiger)

Sind alle syntaktisch korrekt? Erlautern Sie die Wirkungsweisen.

Aufgabe 9 (Zeiger 3)
Nach den Definitionen:
int i = 5;
int* pi; int* pj;
char* pc; char* pd;

sollen die folgenden Zuweisungen durchgefiithrt werden:

(a) pi = 1; (d) *pi = &i; (2) pi = pc; (j) pi = 0;
(b) pi = &i; (e) pi = pj; (h) pd = *pi;
(c) *pi = i (f) pc = &pd; (i) *pi = i**pc;

Sind alle syntaktisch korrekt? Erldutern Sie die Wirkungsweisen bzw. nennen Sie die Werte der
Variablen auf der rechten und linken Seite.

Aufgabe 10 (Klassen und Objekte)

Quadratische Funktionen in einer Variablen lassen sich allgemein durch folgende Normalform
beschreiben:

(a)

f(z) =az® +bx+c mit a,bc,zcR.

Schreiben Sie eine Klasse QuadF zur Repréisentation solcher quadratischer Funktionen.
Dem Konstruktor der Klasse sollen dabei die drei Koeffizienten a, b und ¢ als Parameter
iibergeben werden konnen, welche dann in Attributen eines von Ihnen sinnvoll zu wéhlen-
den Datentyps gespeichert werden. Zusétzlich zu dem Konstruktor soll die Klasse die drei
Methoden getA, getB und getC zur Verfiigung stellen, mit denen die Koeffizienten einer
Funktion ausgelesen werden kénnen. Achten Sie darauf, die Attribute der Klasse QuadF
vor Zugriffen aus fremden Klassen zu schiitzen.

Ergénzen Sie die Klasse QuadF um eine Methode double evaluate (double x), die den
Wert der Funktion fiir den iibergebenen Parameter x berechnet und das Ergebnis zuriick-
gibt.

Jede der oben beschriebenen Funktionen (mit a # 0) besitzt eine Stelle, an der die Funk-
tion einen Extremwert (Minimum oder Maximum) annimmt. Bestimmen Sie allgemein
die z-Koordinate der Extremstelle einer solchen Funktion und fiigen Sie der Klasse QuadF
eine Methode double getExtremePos () hinzu, welche diese zuriickgibt.

Schreiben Sie ein Hauptprogramm TestQuadF, dessem Prozedur main zwei unterschied-
liche Instanzen der Klasse QuadF angelegt und die Koeffizienten, die Extremstelle sowie
den zugehorigen Extremwert der Funktionen auf der Konsole ausgibt.

Aufgabe 11 (Abstrakte Klassen, Vererbung, Virtuelle Methoden)

(a)

Schreiben Sie ein eine abstrakte Klasse Expression zur Représentation arithmetischer
Ausdriicke in C++. Die Klasse soll eine abstrakte Methode evaluate () definieren, die
zur Berechnung des Wertes eines arithmetischen Ausdrucks dient und als Ergebnis eine
Zahl von Typ double zuriickgibt. Auflierdem soll die Klasse eine Methode int compareTo
(const Expression& exp2) enthalten, die den Wert des Ausdrucks mit dem des iiber-
gebenen Ausdrucks vergleicht und —1, 0 oder 1 zuriickgibt, wenn der Wert kleiner, gleich
oder grofler als der Wert von exp?2 ist.

Implementieren Sie die konkreten Klassen Constant, Sum und Product als Unterklassen
der Klasse Expression. Die Klasse Constant dient dabei der Darstellung konstanter Zah-
len vom Typ double, die vom Konstruktor in ein Attribut value gespeichert werden. Die
Konstruktoren der Klassen Sum und Product zur Realisierung von Summen bzw. Pro-
dukten sollen jeweils zwei Objekte vom Typ const Expression& entgegennehmen und in
geeigneten, vor Zugriffen von auflen gekapselten Attributen speichern. Natirlich ist die
Methode evaluate () in allen drei Klassen auf sinnvolle Weise zu implementieren.

Schreiben Sie ein Testprogramm ExpressionTest, welches verschiedene arithmetische
Ausdriicke erzeugt und sdmtliche Methoden der Klassen auf sinnvolle Weise iiberpriift.
Bei den Tests sollen mindestens die folgenden Ausdriicke verwendet werden:

((5.5%7.5)+0.75), (3*(2+9)) und ((7—1)=x(4.3+2.7))

(d) Jeder arithmetische Ausdruck soll mit Hilfe einer Methode
std: :string toString ()

in einer lesbaren Weise dargestellt werden kénnen. Uberlegen Sie sich, wie solch eine
Methode sinnvollerweise implementiert werden kann (welche Rolle spielt insbesondere die
Klasse Expression), implementieren und testen Sie die Methode. Achten Sie auf eine
korrekte Klammerung der Ausdriicke, die moglicherweise auch noch sinnvoller sein kann
als jene in Aufgabenstellung (c).

Aufgabe 12 (Templates)

Kopieren Sie Thren Code aus Aufgabe 11 und modifizieren Sie die Kopie derart, dass die Be-
standteile eines arithmetischen Ausdrucks auch durch andere Datentypen repréisentiert werden
konnen als double.

(a) Realisieren Sie analog zu Aufgabe 11 (a), (b) und (d) ein abstraktes Klassentemplate
Expression und davon abgeleitete Klassentemplates Constant, Sum und Product in C++.

(b) Implementieren Sie ein Aufgabe 11 (c) entsprechendes Testprogramm ExpressionTest.
Verwenden Sie fiir die Bestandteile der arithmetischen Ausdriicke dabei nun passendere
Datentypen.

Aufgabe 13 (Interfaces und Templates: Vorbereitung zu Blatt 1)

Sei g1 : R — R integrierbar auf [0,1] und g : R? — R eine auf [0, 1]? integrierbare Funktion.
Aus der eindimensionalen Gau-Quadraturformel mit zwei Stiitzstellen fiir das Intervall [0, 1]

1 1 V3 1 V3
Q2(q1] == 591(81) + 591(82), S1=5 - s2i=gt

N =

ergibt sich folgende zweidimensionale Gau-Quadraturformel fiir das Einheitsquadrat [0, 1]%:

1 1

1 1
Qf) [92] == 192(817 s1) + 192(51, s2) + 192(52, s1) + 192(82, 52)

Sie ist fiir alle Polynomfunktionen exakt, die aus Monomen x’flxg” mit 0 < k1, ko < 3 bestehen.
Sei f:R x R?2 — R, (t,x) — f(t,2), eine Funktion mit f(¢,-) : R*> — R ist fiir alle t € R eine
auf [0, 1)? integrierbare Funktion. Dann lisst sich das Integral

I[f](t) = /01 /01 f(t,x1, x2) dzy dao mit (x1,x2) = (1)

zu jedem Zeitpunkt durch I[f](t) =~ ng) [f(t,-)] approximieren.

(a) Implementieren Sie ein Klassentemplate UnitSquareIntegrator zur approximativen Be-
rechnung des Integrals (1) zu verschiedenen Zeitpunkten. Das Verfahren soll fiir verschie-
dene Datentypen anwendbar sein, mit denen sich Vektoren in R? und das Ergebnis sowie
Zeitpunkte in R reprasentieren lassen. Zu diesem Zweck soll UnitSquareIntegrator drei

Template-Parameter VectorType, ResultType und TimeType besitzen. Setzen Sie voraus,
dass VectorType eine Methode operator[] fiir den indexbasierten Zugriff auf die Ele-
mente des Vektors und eine Methode size zu Verfligung stellt, wie es viele Container der
C+-+-Standardbibliothek machen (siehe z.B. std: :array).

Der Konstruktor des Klassentemplates soll die Funktion f als Objekt einer Klasse erhalten,
die das Interface TimeFunction fiir zeitabhiingige Funktionen von Blatt 1 geeignet erfiillt.

Die Methode ResultType integrate (const TimeType& t) const soll obiges Integral
zu einem gegebenen Zeitpunkt t geméf obiger Quadraturformel berechnen und den Wert
zurickgeben.

Testen Sie UnitSquareIntegrator anhand von Funktionen ihrer Wahl. Beachten Sie dabei
die Aussage zur Exaktheit fiir bestimmte Polynomfunktionen.

Wihlen Sie als Template-Parameter VectorType den Datentyp std::array und fiir die
Komponenten des Vektors sowie als ResultType und TimeType den Datentyp double.

