
Institut für Numerische und Angewandte Mathematik 12.10.2017
FB Mathematik und Informatik der Universität Münster
Prof. Dr. Christian Engwer, MSc Marcel Koch

Übung zur Vorlesung
Wissenschaftliches Rechnen

WS 2017/18 — Blatt 0

Abgabe: Keine Abgabe (Anwesenheitsaufgaben)

Achtung: Achten Sie darauf, Ihre Programme ordentlich zu formatieren und gut zu kommen-
tieren. Die Form wird mit in die Bewertung eingehen.

Aufgabe 1 (Wertebereich von Basisdatentypen)

Schreiben Sie ein Programm, welches eine positive ganze Zahl einliest und in einem short int
speichert. Addieren Sie anschließend 1 auf die Zahl und geben Sie das Ergebnis aus.
(a) Was passiert, wenn Sie 32.767 eingeben?

(b) Was passiert, wenn Sie 65.535 eingeben?

(c) Was passiert, wenn Sie statt eines short int einen unsigned short int verwenden und
die Eingaben wiederholen?

(d) Was passiert, wenn Sie (long) int verwenden und die Eingaben wiederholen?

(e) Was passiert jeweils, wenn Sie stattdessen −1 addieren und Sie 0 eingeben?
Hinweis: Für das Einlesen der Zahl können Sie sich an Aufgabe 3 orientieren.

Aufgabe 2 (Fehlersuche)

1 #i n c l u d e <iostream>

3 // summiert a l l e Zahlen im I n t e r v a l l [a , b]
i n t summieren (i n t a , i n t b)

5 {
i n t summe ;

7 f o r (i n t i = a ; i <= b ; i++)
{

9 i n t summe = summe + i ;
}

11 r e turn 0 ;
}

13
i n t main ()

15 {
std : : cout << summieren (1 ,10) << std : : endl ;

17 r e turn 0 ;
}

Das obige Programm soll alle Zahlen von 1 bis 10 aufsummieren. Obwohl es syntaktisch korrekt
ist, rechnet es falsch. Der Code enthält drei Fehler. Finden und reparieren Sie diese.

Aufgabe 3 (Fehlersuche 2)

#i n c l u d e <iostream>
2

i n t main ()
4 {

double l ; double h ;
6 std : : cout << " Geben S i e d i e Laenge e in : " ;

s td : : c in >> l ;
8 std : : cout << " Geben S i e d i e Hoehe e in : " ;

s td : : c in >> h ;
10

std : : cout << " Flaeche : " << f l a e c h e (l , h) << std : : endl ;
12 r e turn 0 ;

}
14

double f l a e c h e (double laenge , double hoehe)
16 {

double e r g e b n i s ;
18 e r g e b n i s = laenge ∗ hoehe ;

r e turn e r g e b n i s ;
20 }

Das obige Programm soll die Fläche eines Rechtecks berechnen, kann jedoch nicht fehlerfrei
übersetzt werden. Finden und korrigieren Sie den Fehler.

Aufgabe 4 (Vernünftige Formatierung des Code)

Welcher Unterschied besteht bei der Ausführung folgender C++ Codefragmente?

(a) if (x>0.0) y=sqrt(x); z=x*x;

(b) if (x>0.0) {y=sqrt(x); z=x*x;}

(c) if (x>0.0) {y=sqrt(x);} z=x*x;

(d) if (x>0.0) {y=sqrt(x)}; z=x*x;

Schreiben Sie die Ausdrücke so auf, dass der Ablauf der Ausführung deutlich wird!

Aufgabe 5 (Fakultät)

Schreiben Sie ein Programm, welches die Fakultät n! = 1 · 2 · . . . · n für alle ganzen Zahlen
0 < n ≤ 10 berechnet und ausgibt.

• Verlagern Sie die Fakultätsberechnung in eine Prozedur
unsigned int fakultaet (unsigned int n)

• Das Hauptprogramm soll diese Prozedur für die gewünschten Werte von n aufrufen

Hinweis: Die Prozedur fakultaet kann sowohl iterativ als auch rekusiv implementiert werden.

Aufgabe 6 (Primzahlen)

Schreiben Sie ein Programm das alle Primzahlen bis n sucht und ausgibt, wobei n eine vom
Benutzer festzulegende natürliche Zahl ist.

• Überlegen Sie sich einen einfachen Algorithmus um zu testen, ob eine Zahl prim ist

• Führen Sie diesen Test für alle Zahlen bis n durch

Aufgabe 7 (Zeiger 1)

Mit den Definitionen

int x = 25; int y = -12;
int* p1 = &x; int* p2 = &y;

erläutere man die Unterschiede folgender Anweisungen:

(a) p1 = p2; und *p1 = *p2;

(b) if (p1 == p2) { ... } und if (*p1 == *p2) { ... }

(c) if (p1) { ... } und if (*p1) { ... }

Aufgabe 8 (Zeiger 2)

Nach Definition der Variablen test und zeiger durch:

int test = 51; int* zeiger = &test;

stehen folgende Inkrementierungsanweisungen zur Auswahl:

(a) *zeiger++

(b) (*zeiger)++

(c) *(zeiger++)

(d) *(++zeiger)

(e) *++zeiger

(f) ++(*zeiger)

(g) ++*zeiger

Sind alle syntaktisch korrekt? Erläutern Sie die Wirkungsweisen.

Aufgabe 9 (Zeiger 3)

Nach den Definitionen:

int i = 5;
int* pi; int* pj;
char* pc; char* pd;

sollen die folgenden Zuweisungen durchgeführt werden:

(a) pi = i;

(b) pi = &i;

(c) *pi = i;

(d) *pi = &i;

(e) pi = pj;

(f) pc = &pd;

(g) pi = pc;

(h) pd = *pi;

(i) *pi = i**pc;

(j) pi = 0;

Sind alle syntaktisch korrekt? Erläutern Sie die Wirkungsweisen bzw. nennen Sie die Werte der
Variablen auf der rechten und linken Seite.

Aufgabe 10 (Klassen und Objekte)

Quadratische Funktionen in einer Variablen lassen sich allgemein durch folgende Normalform
beschreiben:

f(x) = ax2 + bx + c mit a, b, c, x ∈ R.

(a) Schreiben Sie eine Klasse QuadF zur Repräsentation solcher quadratischer Funktionen.
Dem Konstruktor der Klasse sollen dabei die drei Koeffizienten a, b und c als Parameter
übergeben werden können, welche dann in Attributen eines von Ihnen sinnvoll zu wählen-
den Datentyps gespeichert werden. Zusätzlich zu dem Konstruktor soll die Klasse die drei
Methoden getA, getB und getC zur Verfügung stellen, mit denen die Koeffizienten einer
Funktion ausgelesen werden können. Achten Sie darauf, die Attribute der Klasse QuadF
vor Zugriffen aus fremden Klassen zu schützen.

(b) Ergänzen Sie die Klasse QuadF um eine Methode double evaluate (double x), die den
Wert der Funktion für den übergebenen Parameter x berechnet und das Ergebnis zurück-
gibt.

(c) Jede der oben beschriebenen Funktionen (mit a 6= 0) besitzt eine Stelle, an der die Funk-
tion einen Extremwert (Minimum oder Maximum) annimmt. Bestimmen Sie allgemein
die x-Koordinate der Extremstelle einer solchen Funktion und fügen Sie der Klasse QuadF
eine Methode double getExtremePos () hinzu, welche diese zurückgibt.

(d) Schreiben Sie ein Hauptprogramm TestQuadF, dessem Prozedur main zwei unterschied-
liche Instanzen der Klasse QuadF angelegt und die Koeffizienten, die Extremstelle sowie
den zugehörigen Extremwert der Funktionen auf der Konsole ausgibt.

Aufgabe 11 (Abstrakte Klassen, Vererbung, Virtuelle Methoden)

(a) Schreiben Sie ein eine abstrakte Klasse Expression zur Repräsentation arithmetischer
Ausdrücke in C++. Die Klasse soll eine abstrakte Methode evaluate () definieren, die
zur Berechnung des Wertes eines arithmetischen Ausdrucks dient und als Ergebnis eine
Zahl von Typ double zurückgibt. Außerdem soll die Klasse eine Methode int compareTo
(const Expression& exp2) enthalten, die den Wert des Ausdrucks mit dem des über-
gebenen Ausdrucks vergleicht und −1, 0 oder 1 zurückgibt, wenn der Wert kleiner, gleich
oder größer als der Wert von exp2 ist.

(b) Implementieren Sie die konkreten Klassen Constant, Sum und Product als Unterklassen
der Klasse Expression. Die Klasse Constant dient dabei der Darstellung konstanter Zah-
len vom Typ double, die vom Konstruktor in ein Attribut value gespeichert werden. Die
Konstruktoren der Klassen Sum und Product zur Realisierung von Summen bzw. Pro-
dukten sollen jeweils zwei Objekte vom Typ const Expression& entgegennehmen und in
geeigneten, vor Zugriffen von außen gekapselten Attributen speichern. Natürlich ist die
Methode evaluate () in allen drei Klassen auf sinnvolle Weise zu implementieren.

(c) Schreiben Sie ein Testprogramm ExpressionTest, welches verschiedene arithmetische
Ausdrücke erzeugt und sämtliche Methoden der Klassen auf sinnvolle Weise überprüft.
Bei den Tests sollen mindestens die folgenden Ausdrücke verwendet werden:(

(5.5 ∗ 7.5) + 0.75
)
,
(
3 ∗ (2 + 9)

)
und

(
(7− 1) ∗ (4.3 + 2.7)

)

(d) Jeder arithmetische Ausdruck soll mit Hilfe einer Methode

std::string toString ()

in einer lesbaren Weise dargestellt werden können. Überlegen Sie sich, wie solch eine
Methode sinnvollerweise implementiert werden kann (welche Rolle spielt insbesondere die
Klasse Expression), implementieren und testen Sie die Methode. Achten Sie auf eine
korrekte Klammerung der Ausdrücke, die möglicherweise auch noch sinnvoller sein kann
als jene in Aufgabenstellung (c).

Aufgabe 12 (Templates)

Kopieren Sie Ihren Code aus Aufgabe 11 und modifizieren Sie die Kopie derart, dass die Be-
standteile eines arithmetischen Ausdrucks auch durch andere Datentypen repräsentiert werden
können als double.

(a) Realisieren Sie analog zu Aufgabe 11 (a), (b) und (d) ein abstraktes Klassentemplate
Expression und davon abgeleitete Klassentemplates Constant, Sum und Product in C++.

(b) Implementieren Sie ein Aufgabe 11 (c) entsprechendes Testprogramm ExpressionTest.
Verwenden Sie für die Bestandteile der arithmetischen Ausdrücke dabei nun passendere
Datentypen.

Aufgabe 13 (Interfaces und Templates: Vorbereitung zu Blatt 1)

Sei g1 : R → R integrierbar auf [0, 1] und g2 : R2 → R eine auf [0, 1]2 integrierbare Funktion.
Aus der eindimensionalen Gauß-Quadraturformel mit zwei Stützstellen für das Intervall [0, 1]

Q2[g1] := 1
2g1(s1) + 1

2g1(s2), s1 := 1
2 −
√

3
6 , s2 := 1

2 +
√

3
6 ,

ergibt sich folgende zweidimensionale Gauß-Quadraturformel für das Einheitsquadrat [0, 1]2:

Q
(2)
2 [g2] := 1

4g2(s1, s1) + 1
4g2(s1, s2) + 1

4g2(s2, s1) + 1
4g2(s2, s2)

Sie ist für alle Polynomfunktionen exakt, die aus Monomen xk1
1 xk2

2 mit 0 ≤ k1, k2 ≤ 3 bestehen.
Sei f : R×R2 → R, (t, x) 7→ f(t, x), eine Funktion mit f(t, ·) : R2 → R ist für alle t ∈ R eine
auf [0, 1]2 integrierbare Funktion. Dann lässt sich das Integral

I[f](t) :=
∫ 1

0

∫ 1

0
f(t, x1, x2) dx1 dx2 mit (x1, x2) = x (1)

zu jedem Zeitpunkt durch I[f](t) ≈ Q
(2)
2
[
f(t, ·)

]
approximieren.

(a) Implementieren Sie ein Klassentemplate UnitSquareIntegrator zur approximativen Be-
rechnung des Integrals (1) zu verschiedenen Zeitpunkten. Das Verfahren soll für verschie-
dene Datentypen anwendbar sein, mit denen sich Vektoren in R2 und das Ergebnis sowie
Zeitpunkte in R repräsentieren lassen. Zu diesem Zweck soll UnitSquareIntegrator drei

Template-Parameter VectorType, ResultType und TimeType besitzen. Setzen Sie voraus,
dass VectorType eine Methode operator[] für den indexbasierten Zugriff auf die Ele-
mente des Vektors und eine Methode size zu Verfügung stellt, wie es viele Container der
C++-Standardbibliothek machen (siehe z.B. std::array).
Der Konstruktor des Klassentemplates soll die Funktion f als Objekt einer Klasse erhalten,
die das Interface TimeFunction für zeitabhängige Funktionen von Blatt 1 geeignet erfüllt.

(b) Die Methode ResultType integrate (const TimeType& t) const soll obiges Integral
zu einem gegebenen Zeitpunkt t gemäß obiger Quadraturformel berechnen und den Wert
zurückgeben.

(c) Testen Sie UnitSquareIntegrator anhand von Funktionen ihrer Wahl. Beachten Sie dabei
die Aussage zur Exaktheit für bestimmte Polynomfunktionen.
Wählen Sie als Template-Parameter VectorType den Datentyp std::array und für die
Komponenten des Vektors sowie als ResultType und TimeType den Datentyp double.

