Praktikum Wissenschaftliches Rechnen

Stefan Girke

Wintersemester 2012/13

Zum Losen der Aufgaben im Praktikum ,Wissenschaftliches Rechnen werden viele
verschiedene Verfahren, Konzepte und Software-Pakete benétigt. Dieses Skript soll
alle Informationen biindeln und eine Orientierungshilfe beim Bewéltigen der Aufga-
ben sein. Es handelt sich um kein vollstdndiges Skript, sondern nur um eine kurze
Zusammenfassung der im Praktikum vorgestellten Konzepte. Dieses Skript ist eine
Uberarbeitung und Ergéinzung des Skriptes [I1], gehalten von Bernard Haasdonk
im Wintersemester 2008/2009. Auch in diesem Skript stecken noch ein paar Feh-
ler. Korrekturen, Kommentare und Verbesserungsvorschlige zum Skript sind immer

willkommen.

Inhaltsverzeichnis

|4 4 Lineares Gleichungssysterrj
|4 5 Algorithmische Aspektel
|4 5.1 LGS—Eigenschafterl
|4 5.2 Assemblierung
|4 5.3 Symmetrisierung

o O ot ot O

11
11
11
12

13
13
13
14

15
15
16
16
16
17
17
17
18
18

4 INHALTSVERZEICHNIS
5.1.3 qtcreator 23

5.2 Versionkontrollsystemd o 23
D.2.1 gl . . 23
I&ZE_mgmm;mmmmszmgﬁl 32
B3 ghH oo 32
15..3.2_ma.]£4 32
5.3.3 edH 33

534 ddd. 34
B35 cedh . .o 35
5.3.6 valqrgi' 36

|5 4 atenvisualisierung 37
.............................. 37

.42 enuplotl 37
b5 remotearbeited 30
.01 ssh 39

|6_Br_Qgr_ammiemn_m.i.LELLLN.EJ 41

|6 1 DUNE-GRID . . . o oo i e e 41

|6.2_MLN.E;EEM 45

6.2.2 Onadrature;J 47

6.2.3 Operatoreno 48

6.24 Tterative LAS-Loser . . . o o oo 48

7.2 Header Filed 52
7.3 _Dvnamischer Polvmorphismus, Virtuelle Methodml 53
7.4 Statischer Polvmorphismus CRTP" 54
7.5 _Tvpdefinitionen/tyvpenamed 55
7.6 Interface, Defaultimplementation und Implementatiorj Hh)

7.7 Zeitmessu

g in C+4—I 56

7.8 Assertiond

Kapitel 1
Hierarchische und adaptive Gitter

Mochte man eine Differentialgleichung auf einem beschrankten, polygonalen Gebiet
Q C R? mit dim(Q) = d 16sen, so bendtigt man fiir viele Diskretisierungsmetho-
den (Finite Elemente, Finite Differenzen, Finite Volumen...) eine Aufteilung des
Gebietes in kleinere und ,einfachere,, Teilgebiete. Im folgenden Kapitel soll ein kurz-
er Einblick in haufig verwendete Begriffe und Problemstellungen beim Erstellen von

Gittern gegeben werden.

1.1 Referenzelement

Definition 1.1.1 (Referenzelement). Ein Referenzelement ¢ C R? ist ein konvexes
Polytop, d.h. beschrinkter Schnitt endlich vieler Halbraume.

Eine Menge von Referenzelementen bezeichnen wir mit € := {¢&;} .

Beispiel 1.1.2 (Referenzelement). Einheitsquadrat, Einheitsdreieck, Einheitswiirfel,

Einheitsintervall. . .

Definition 1.1.3 (Entitit, Referenzabbildung). Eine Entitit ¢ C R? ist das Bild
cines Referenzelementes é € & unter einer diffeomorphen Abbildung F. (der Refe-

renzabbildung).

Definition 1.1.4 (Subentitdten, Dimension, Kodimension, Elemente). Die Dimen-
sion einer Entitit ist dimé = dime. Subentitaten einer Entitat sind die Randfla-
chen/Kanten/Eckpunkte usw. Die Kodimension einer Subentitit e ist codime :=

d — dim e. Kodim-0-Entitaten bezeichnet man auch als Elemente.

1.2 Hierarchische Gitter

Definition 1.2.1 (Hierarchische Gitter). Ein hierarchisches Gitter auf €2 ist ein

Tupel G = (El)ﬁ‘;%", wobei & die Menge von Elementen auf Level [bezeichnet, und

5

6 KAPITEL 1. HIERARCHISCHE UND ADAPTIVE GITTER

codim 0
codim 1
Fe /
1 codim 2
1 Element e

Referenzelement é

Abbildung 1.1: Referenzelement, Referenzabbildung und Subentitéiten

gilt:
e die Level-O-Elemente iiberdecken €2, d.h. Ueeg0 e =,
e Elemente eines Levels iiberlappen sich nicht, d.h. fiir alle [gilt e N ¢ = 0 fiir
e#£eé ee €&,
e fiir alle I > 0, e € & existiert ein Eltern-Element ¢’ € £_; mit e C ¢, e heifst
umgekehrt Kind-Element
e Jedes Element mit mindestend einem Kind-Element zerfillt vollstdndig in Kind-

Elemente.

Elemente ohne Kind-Elemente nennt man Blatt-Elemente.

1.3 Gitterteile

Da man fiir konkrete Numerik meist nicht die komplette Gitterstruktur bendtigt,

beschrénkt man sich auf Gitterteile (GridParts).

Definition 1.3.1 (Makroelemente). Das Level-0-Gridpart besteht aus den Elementen

ohne Eltern, den sogenannten Makroelementen.

Definition 1.3.2 (Level-Gridpart). Sei ! € Ny. Dann besteht das Level-/-Gridpart

aus den Elementen auf Level [, d.h. &;.

Definition 1.3.3 (Level-Gridpart). Sei ! € Ny. Dann besteht das Level-/-Gridpart
aus den Elementen auf Level [, d.h. &. Mit &'} bezeichnen wir die Vereinigung

aller Elemente auf dem Level [.

1.3. GITTERTEILE

Level 0 = Makrogitter

AN

.
&x__

Level 1

\
N

Level 2

Y

/ / / Leaf
A

Abbildung 1.2: Hierarchisches Gitter mit Leaf- und Level-Sicht

hangender Knoten

8 KAPITEL 1. HIERARCHISCHE UND ADAPTIVE GITTER

globale Verfeinerung

lokale Verfeinerung

Abbildung 1.3: globale/lokale Verfeinerungen

Definition 1.3.4 (Leaf-Gridpart). Das Leaf-Gridpart besteht aus den Blatt-

Elementen aller Level. Mit £#f bezeichnen wir die Vereinigung aller Blatt-Elemente.

Definition 1.3.5 (Hangender Knoten). Ein hingender Knoten ist eine Kodim-d-
Entitét, die nicht auf dem Rand einer Kodim-d — 1-Entitéat des Leaf-Gridparts liegt.

1.4 Indexmengen und lokale Verfeinerungen

Viele Diskretisierungsmethoden sind darauf ausgelegt, dass Informationen, die lokal
auf einer Entitdt im Gitter gespeichert sind, auf einen globalen Kontext abgebildet
werden miissen. Dazu benétigt man Indexmengen, die jeder Entitét eine global ein-
deutige Nummer zuweisen. Indexmengen konnen sich auf verschiedene Mengen von
Entitéaten beziehen. Wéahrend das Erstellen einer Indexmenge fiir ein Makrogitter ein-
fach ist, benotigt man fiir hierarchische Gitter, die lokal verfeinert werden kénnen,

zusétzliche Funktionalitédt, um die Eigenschaften der Indexmenge nicht zu zerstoren.

Wir definieren mit
E¢:={e € & e hat die Kodimension c}
die Menge aller Kodim-c-Entitéten eines Gitters. Analog definieren wir

gc,leaf = &N gleaf

1.4. INDEXMENGEN UND LOKALE VERFEINERUNGEN 9

Verfeinerung

Abbildung 1.4: Beispiel einer Indexmenge fiir Elemente eines Leaf-Gridparts vor und
nach einem Adaptionsschritt

und
gc,level,l — gc N glevel,l.

Definition 1.4.1 (Indexmengen fiir Gitter, Indexabbildungen). Indexmengen de-
finieren eine Indexabbildung m : & — Ny, die eine Entitédt eines Gitters auf die

natiirlichen Zahlen abbildet. Die Indexabbildung m hat folgenden Eigenschaften:
e sie ist eindeutig innerhalb der Untermenge £¢,
e sie ist konsekutiv und startet bei 0, d.h. 0 < m(e) < |£°].

Definition 1.4.2 (Indexmengen fiir Level- und Leaf-Gridparts). Analog definiert

man Indexmengen fiir das Level- und Leaf-Gridpart:
e Die Indexabbildung m : £°f — Ny bzw. hat folgenden Eigenschaften:

— sie ist eindeutig innerhalb der Untermenge £%'¢3f,

— sie ist konsekutiv und startet bei 0, d.h. 0 < m(e) < |E¢eat|,
e Die Indexabbildung m : £¢v¢4 — N; bzw. hat folgenden Eigenschaften:

— sie ist eindeutig innerhalb der Untermenge £¢'evelbt,

— sie ist konsekutiv und startet bei 0, d.h. 0 < m(e) < |£eteveld|.

Bemerkung 1.4.3 (Indexmengen und lokale Verfeinerungen). Mit jedem Verfeine-

rungsschritt dndert sich die Indexmenge.

10

KAPITEL 1.

HIERARCHISCHE UND ADAPTIVE GITTER

Kapitel 2
Diskrete Funktionenraume

Wir fiithren einige Begriffe fiir (teilweise triviale) mathematische Konzepte ein, die
wir jedoch anschlieffend mit genau diesen Begriffen in DUNE realisiert finden, siehe
Abschnitt 6.2

2.1 Funktionenraume

Ohne spezielle Regularitdatsanforderungen und Einschrénkungen, ist ein Funktio-

nenraum (FunctionSpace) die Menge der Abbildungen
Vi={u: (Kp)*— (Kg)"}. (2.1)

Hier ist (Kp)¢ der Definitionsbereich (Domain) und (Ky)" der Wertebereich
(Range). Hier ist also Kp der Koordinatentyp des Definitionsbereichs (DomainField)
und Ky der Koordinatentyp des Wertebereichs (RangeField), z.B. reelle oder kom-
plexe Zahlen. Die Jacobi-Matrix einer solchen Funktion ausgewertet im Punkt x
(Du)(z) € K™ liegt also im Jacobi-Wertebereich (JacobianRange) K"*<.

2.2 Basisfunktionen auf Referenzelementen

Auf einem Referenzelement é C K¢, definieren wir uns eine lokale Menge von Ba-

sisfunktionen (BaseFunctionSet)

Bé = {@é’l, ey @é’m} (22)

von Funktionen ¢g; : K§, — K% mit Triger in é und @z laese) € C%(clos(é)) also

stetig auf dem Abschluss des Referenzelementes.

11

12 KAPITEL 2. DISKRETE FUNKTIONENRAUME

2.3 Diskrete Funktionenraume

Sei € die Menge der Elemente eines Gitterteils (GridPart). Sei I' := U.cg0e die Menge
aller Oberflachen aller Elemente. Wir nehmen an, dass eine surjektive Abbildung von
elementweisen lokalen Indizes in globale Indizes g : € x {1,...,m} — {1,...,N}
gegeben ist. Hierdurch werden globale Basisfunktionen ¢, : O\I' = K%,7 =1,..., N
definiert durch

pi= > GioF (2.3)

(e:i):g(ei)=j

Hierbei ist F, die (auf K%, erweiterte) Referenzabbildung eines Elementes e € £. Auf
Kanten sind diese Funktionen zunéchst nicht definiert. Wir definieren dann einen

diskreten Funktionenraum (DiscreteFunctionSpace) durch

N
v, = {uh eV wu,= Zb](p} (24)
j=1

Ein Element wuj, in einer solchen Funktionsmenge ist daher eine diskrete Funktion
(DiscreteFunction), welche global als Linearkombination von globalen Basisfunk-
tionen mit globalen Freiheitsgraden b; € Ky interpretiert werden kann. Fiir die

Numerik ist jedoch eine dquivalente lokale Darstellung wichtiger

Vi, = {uh eV: uyle= Zae,ig?;é,i o I mit ap; = byeiy Ve € 5} (2.5)

i=1

Ein wuj, kann demnach auf jedem Element e als lokale Funktion (LocalFunction)
uple mit lokalen Freiheitsgraden (DOFs) a.; dargestellt werden. Im Gegensatz zur
globalen Funktion, macht auf einer lokalen Funktion eine Auswertung auf Kanten
sinn, denn mit Stetigkeit der Basisfunktionen auf dem Referenzelement hat uy|. eine
stetige Erweiterung auf de. Durch geeignete Wahl der Indexabbildung g kénnen zu-
sitzliche Eigenschaften der diskreten Funktionen garantiert werden, z.B. stetige oder

differenzierbare Erweiterbarkeit auf ganz €.

Kapitel 3

Quadraturen

3.1 Integration uiiber Gebiet

Integration iiber das Gebiet wird auf eine Integration iiber Elemente und Summierung

zuriickgefiihrt:

/Q fl@)yde =>" [f(z)dx, . fla)ds(z) =) f(x)ds(x). (3.1)

ecE V€ eck eNo

3.2 Integration uiiber Gitterelemente

Integration tiber Elemente wird auf Referenzelemente zuriickgefiihrt durch Transfor-

mationssatz und Kettenregel

e Beispiel: globale Basisfunktionen:
[1@ei@xts = [£(F.(@)0(0)] det DEJi 32)

mit j = g(e, i) und ¢; = ¢; o F, 1. Die Groke | det DF,(Z)| wird Integrations-

element (IntegrationElement) genannt.
e Beispiel: Ableitungen von globalen Basisfunktionen:
Dipi(%) = Datpj(2) DaFe(2)

also
D¢;(2)(DF.(2))™" = Dypj(x)

und
Vapj(x) = (Dp;)" = (DF.(2)) ") Vagi(2)

13

14 KAPITEL 3. QUADRATUREN

Mit der Abkiirzung J(#) := ((DF.(2))™!)? fiir diese invertierte und transpo-

nierte Jacobi-Matrix (JacobianInverseTransposed) folgt dann fiir Integrale

/ v(z) 'V, = / v(F(2))T(J(2)V3p;)| det DF,|dz. (3.3)

3.3 Approximation durch Quadraturen

Eine Quadratur dient zur Approximation von Integralen iiber Referenzelementen.
Eine solche ist gegeben durch n, € N die Anzahl der Quadraturpunkte p; und Qua-

draturgewichte w;. Die Approximation geschieht durch

[1@is = s

Kapitel 4

Finite-Elemente fiir Elliptische

Probleme

Es soll im Folgenden die Diskretisierung fiir das Poisson-Problem mit gemischten

Randbedingungen hergeleitet werden. Als weiterfiihrende Referenzen dienen [4], 12, [5].

4.1 Elliptisches Problem

Sei 2 C R" polygonales Gebiet mit Dirichlet-Rand I'p C 992 und Neumann-Rand
[y := 0Q\I'p und dukeren Einheitsnormalen n(x). Gesucht ist u € C?(2) N CH(Q)

mit

-V - (a(z)Vu(x)) = f(zr) inQ (4.1)
u(x) = gp(x) auflp

(
a(x)Vu(z) -n(z) = gn(zr) aufly

mit a(x) > 0 und alle Datenfunktionen geniigend regulér.

Falls u klassische Losung ist, so gilt fiir alle o € C*(2) N C°(Q) mit p|p, = 0

|i@e@iar = [-9 (@) Tu@)pla)da
= /Qa(:c)Vu -V — / a(x)e(x)Vu - nds(z)
= /Qa(x)Vu(x) -V(x)dr — /FD a(z) p(z) Vu - nds(z)

—/ a(x)Vu - ne(z)ds(x).
Iy

gn (@)

15

16 KAPITEL 4. FINITE-ELEMENTE FUR ELLIPTISCHE PROBLEME

4.2 Schwache Form

Raum der H'-Funktionen mit Nullrandwerten auf I'p:
Hr,,(Q) = closi ({ € C*(2) N C*(Q) | ¢lr, = 0})
Funktionenraum mit inhomogenen Randwerten g € H'(2):
Vig) ={ve H'(Q) |v—yg€ H, (2}

Also ist insbesondere Hf = V/(0). Gesucht ist nun u € V(gp) mit

/Qa(:U)Vu(:c)~V<p(:c)d:c:/Qf(zzz)<p(:v)d:c—i—/F gy (z)p(x)ds(z) Ve € V(0). (4.2)

N

4.3 Finite-Elemente-Diskretisierung

Sei £ simpliziale Triangulierung von (2 und konform, d.h. ohne hingenden Knoten.
Als Basisfunktionen auf dem Referenzsimplex é mit Knoten v,k = 1,...,w + 1
werden die linearen Funktionen ¢; € P;(é) gewéhlt mit @;(0x) = dix.

Sei v;,j = 1,...,n eine Aufzdhlung der Knoten des Gitters. Durch die Indexab-
bildung g(e,) := j fir F.(0;) = v; werden die lokalen Freiheitsgrade mit globalen
Freiheitsgraden identifiziert.

Die resultierenden globalen Basisfunktionen ¢; sind stetig (erweiterbar) auf 2 und
erfiillen ¢,(v;) = d;;, sind also “Hiitchenfunktionen”.

Diskreter Funktionenraum mit inhomogenen Randwerten g:

Vi(g) = {v € span{g;} | v(v;) = g(vi) Voi € Ip}.

FEM-Diskretisierung: Gesucht ist uy, € Vj,(gp) mit

/Qa(:c)Vu(:L’)-Vw(x)d:c:/Qf(:v)go(x)daz—i—/F gy (z)p(x)ds(z) Ve € V,(0). (4.3)

N

4.4 Lineares Gleichungssystem

Wegen Linearitét von ([A3)) reicht es, als Testfunktionen ¢ = ¢; € V},(0) zu betrachten.

Der Ansatz uy(z) = D7, bjp;(x) liefert Bedingungen

/Qa(x)ijV%-Vgoidx = /chpidx+/r gneids(z) firv; € T'p. (4.4)
j N

4.5. ALGORITHMISCHE ASPEKTE 17

Damit uy, € V},(gp), fordern wir
bz‘ = gD(Ui) fiir V; € FD. (45)

Dies ergibt ein n x n lineares Gleichungssystem (LGS) Sb = r, eine Zeile pro Test-

funktion und eine Zeile pro Dirichletknoten, z.B. falls vy,v, € I'p und v; € I'p:

JoaVer-Ver [qaVe, Ve by Jo fer+ I, anven
0 ...0 1 0... 0 bi = gD(vi)
JoaVer- Ve, [qaVe, -V, b, Jo fon + fFN INPn

4.5 Algorithmische Aspekte

4.5.1 LGS-Eigenschaften
Die Steifigkeitsmatrix S ist im allgemeinen
e grof
e diinn besetzt (sparse)
e eventuell strukturiert (Band- / Blockstruktur)
e unsymmetrisch (falls v; € I'p,v; € I'p, so ist Sj; # 0 aber S;; = 0)

= Verwendung von Sparse-Matrix-Klassen und iterative LGS-16ser fiir unsymmetri-

sche Systeme.

4.5.2 Assemblierung

Jeder Eintrag von S, r beruht auf Element/Randintegrale, erfordern Gitterdurchlau-
fe zur Quadratur. Statt vielen teuren Gitterdurchlaufen fiir die einzelnen Eintréige
erfolgt Assemblierung der Matrix und der rechten Seite in einem (oder zwei) Gitter-

durchlaufen:
e Initialisiere S = 0,r = 0.

e [iir alle Elemente e € £ und alle lokalen Basisfunktionen ¢;, ¢; berechne die

lokalen Elementbeitrige

e e OdeNI' N

18 KAPITEL 4. FINITE-ELEMENTE FUR ELLIPTISCHE PROBLEME

und verteile diese durch Addition zu den richtigen Eintrédgen in S,r (globale

Spalten/Zeilenindizes g(e,i),g(e, 7)).

e Fiir jeden Dirichlet-Knoten v;, erzeuge Einheitszeile in S und setze i-ten Eintrag

in r auf Randwert gp(v;).

4.5.3 Symmetrisierung

Optional: Addiere fiir alle Paare v; & I'p,v; € T'p das (— [,aVy; - Vy;)-fache der

i-ten Zeile zur j-ten Zeile im LGS:

JoaVer-Ver ... 0 ... [qaVe, - Ve b ZvjepD gp(vj) [qaVe; - Ve
0 0 1 0 0 b; =r— 0
JoaVer-Ve, ... 0 ... [qaVe, Ve, bn, >vserp 90(05) Jo aVe; - Vi

LGS ist symmetrisch und positiv definit = Verwendung von iterativen Gleichungs-

systemloser fiir symmetrische, positiv definite Systeme.

4.6 Fehlerschatzer fiir Adaptivitat

Fiir den Fall obiger Gleichung mit gp = 0 kann man a posteriori Fehlerschéatzer
herleiten. Gegeben eine Losung uy, € Vi,(gp) = V4 (0) der schwachen Form, definieren
wir die Elementresiduen

r:=f+V-.(aVuy)

welche elementweise L? sind falls f in L?, a elementweise in C! ist und wir ele-
mentweise differenzierbare Ansatzfunktionen in Vj, haben. Weiter definieren wir die

Kantenresiduen
gy — (aVuy) -n auf I'n

R = 0 auf I'p
—3[aVuy)] auf 0&\0S.

Hierbei definieren wir den Sprung des Flusses in Normalenrichtung auf inneren Kan-

ten v = de N d¢’ zwischen den Elementen e, ¢’ € £ als
[aVuy] := al.V(uple) - ne + ale V(up|er) - ner
Mit der Notation h, := diam(e) kann man Elementfehlerschétzer definieren durch

2 2
n2 = h? 171172y + Pe 1R 22 5e) -

4.6. FEHLERSCHATZER FUR ADAPTIVITAT 19

Wir definieren die Energienorm fiir Funktionen v € V/(0) als [|[v[||* := [, a(Vv)>.
Man kann dann zeigen, dass eine von h, unabhéngige Konstante C' existiert (aber im

allgemeinen unbekannt ist), welche den Fehler beschréankt durch

llu—wnll? < CY .

ec&

Fiir eine Herleitung siehe z.B. [I]. Hiermit 148t sich eine adaptive Strategie zur Git-
terverfeinerung formulieren, welche eine Gleichverteilung der Fehlerschatzer zum Ziel

hat. Sei hierzu ¢ > 0 und 7 € (0, 1), z.B. typischerweise v = 0.5.

(i) Starte mit i = 0 und dem vorgegebenen Gitter £©) := &.

(ii) Berechne auf dem Gitter £ eine numerische Losung ug)

(iii) Ermittle fiir alle e € £@ die Elementfehlerschitzer n?, das maximum 72, =

max, 72 und die Summe 7? := > _nZ.
(iv) Fallsn > ¢

(a) markiere alle Elemente zum verfeinern, welche n? > yn?2, . erfiillen.
(b) Verfeinere das Gitter und erhalte £0+Y)

(c) setze i := i+ 1 und wiederhole Schritt 2.

Man kann zeigen, dass fiir einfache Probleme und geniigend feinem Anfangsgitter,

solche Verfahren konvergieren [7].

Bemerkung. Bei Arbeiten mit Finiten Elementen muss also nicht nur das Makro-
gitter konform sein, sondern ebenfalls die lokale Verfeinerungsregel ein konformes
Gitter erzeugen. Sonst ist eine separate Behandlung der Freiheitsgrade zu hingenden
Knoten erforderlich (Interpolation). In DUNE sind fiir ALUCUBEGRID und ALU-
SIMPLEXGRID keine konforme lokale Verfeinerung implementiert. Daher wird hierfiir
ein ALBERTAGRID empfohlen.

20 KAPITEL 4. FINITE-ELEMENTE FUR ELLIPTISCHE PROBLEME

Kapitel 5

Programmieren unter Linux

5.1 Editoren

Welcher Editor unter Linux zum Programmieren verwendet wird, hangt im Wesent-
lichen von den Vorlieben des Programmierers ab. Méchte er in der Konsole arbeiten
oder benotigt er eine komplette Gui? Hier sollen kurz ein paar Editoren mit ihren
Vor- und Nachteilen vorgestellt werden. In diesem Skript wird zum Editieren von

Textdatelien vim verwendet.

5.1.1 vim

vim ist ein leistungsstarker, konsolenbasierter Editor, der dazu ausgelegt ist, Befehle
mit moglichst wenig Tastenanschligen zu erreichen. Ungewohnt sind fiir Anfinger
die unterschiedlichen Befehlsmodi, denn nur im Editiermodus kann man seinen Text

editieren:

Befehlsmodus vim startet automatisch im Befehlsmodus. Mit i wechselt man in
den Editiermodus, mit : in die Kommandozeile und mit v in den visuellen

Modus. Ziel ist es, immer wieder in den Befehlsmodus zu kommen (mit Esc).
Editiermodus Hier lassen sich wie gewohnt Editieroptionen am Text durchfiihren.
Kommandozeilenmodus Dies ist eine Unterform des Befehlsmodus.

Visueller Modus Zum Markieren von Textstellen.

Zum Speichern und Schlieffen tippt man
W
und

-q

21

22 KAPITEL 5. PROGRAMMIEREN UNTER LINUX

Man kann in der Datei .vimrc alle personlichen Einstellungen speichern. Hier sind

eine kurze Auswahl von niitzlichen Einstellungen. Es gibt wesentlich mehr.

"syntax highlighting

syntax on

set showmatch

set showcmd

"indention

set autowrite

set smartindent

"incremental search

set incsearch

" Better command-line completion

set wildmenu

" Use case insensitive search, except when using capital letters
set ignorecase

set smartcase

" Allow backspacing over autoindent, line breaks and start of insert action
set backspace=indent,eol,start

" Display the cursor position on the last line of the screen or in the status
" line of a window

set ruler

" Enable use of the mouse for all modes

set mouse=a

" Display line numbers on the left

set number

" number of blanks for a tab

set tabstop=2

" mininmal distance between cursor and border while scrolling
set scrolloff=2

" indicator for a new line when a line is wrapped

set showbreak==>\ \ \

"global search

set hlsearch

Nur, wer die Default-Einstellungen von vim éndert, kann sich iiber die gesamte Leis-
tungsfahigkeit von vim bewusst werden. Wer eine Gui fiir vim benutzen méochte, sollte
gvim ausprobieren.

Ein wichtiger Vorteil von vim ist das fliissige Arbeiten per ssh.

5.2. VERSIONKONTROLLSYSTEME 23

5.1.2 emacs

Leistungstahiger Texteditor mit C++ Modus. Dient als Oberflache fiir externe Pro-
gramme: Compiler, Debugger, Shell, etc. Bedienung vollkommen ohne Maus durch

entsprechende Tastenkiirzel moglich. Siehe auch die Reference-Card [10]. Beispiele:

M-x help : (Driicken von esc gefolgt von x gefolgt von Texteingabe help und ab-

schliefender Bestatigungstaste) Zeigt die Hilfefumktionalitét des emacs
M-x apropos : Suchen von Kommandos anhand eines Suchwortes.

Ein wesentlicher Nachteil von emacs sind die etwas weniger intuitiven Tastenkiirzel.
Mochte man remote arbeiten, so bendtigt man eine gute Verbindung, um fliissig

arbeiten zu konnen.

5.1.3 qtcreator

5.2 Versionkontrollsysteme

Jeder, der an einem Projekt fiir ldngere Zeit gearbeitet hat, kennt das Problem: Aus
kleinen Projekten kénnen schnell grofse, uniibersichtliche Projekte werden. Mochte
man neue Ideen in solche Projekte einbauen, so passiert es haufig, dass man beim
Implementieren die neue Idee verwerfen muss. Hier bieten Versionskontrollsysteme

die einfache Mdglichkeit, alte Zustdnde wieder herzustellen.

5.2.1 git

git kann mehr als nur Versionkontrolle: Es lassen sich mehrere Ideen (“Zweige") par-
allel entwickeln, Projekte lassen sich einfach auf Servern sichern und das gemeinsame
Arbeiten mehrere Programmierer an einem Projekt wird erleichtert.

Man kann zum einen git iiber die Konsole oder mit einer Gui wie z.B. gitk, git gui
oder git cola arbeiten.

Zu git gibt es viele Tutorials, z.B. ist http://git-scm.com /book fiir Anfénger sehr gut
geeignet. Es sollen im folgenden die wichtigsten Grundlagen von git kurz vorgestellt

werden. Dies ist weder ein Tutorial noch vollstandig.

Ein erstes Projekt

Um die Funktionsweise von git zu verstehen, sollte man zunéchst lokal auf seinem
Rechner einen Ordner erstellen und den mit git verwalten, d.h. man gibt die Befehle
mkdir myfirstgit

cd myfirstgit/

24 KAPITEL 5. PROGRAMMIEREN UNTER LINUX

git init
ein. Beim letzten Befehl erhédlt man die Ausgabe
Initialized empty Git repository in /myfirstgit/.git/
oder eine dhnliche Meldung. Wir haben somit unser erstes git repository erstellt. Mit
1ls -a
listet man alle (auch versteckte) Dateien und Verzeichnisse in dem aktuellen Ordner
auf. Es sollte die Ausgabe

.git
erscheinen. In diesem Ordner liegen also nun alle benétigten Daten, um git starten
zu konnen. Hier sollte man besser nichts &ndern, wenn man nicht weifs, was man tut.
Nun legt man eine Testdatei an, um git zu testen
touch test
und schreibt etwas in die Datei.
Dateien werden nicht automatisch zur Versionskontrolle hinzugefiigt, sondern miissen
manuell hinzugefiigt werden. Mit
git status
zeigt man an, welche Dateien im Ordner myfirstgit nicht unter Versionkontrolle
stehen, welche gedndert wurden. In unserem Fall erhalten wir
On branch master
#

Initial commit

#
#
Untracked files:

(use “‘git add <file>...¢* to include in what will be committed)

#

test

Betrachten wir den unteren Abschnitt, so sehen wir, dass die Datei test nicht unter
Versionkontrolle steht. Wir folgen obigem Vorschlag und rufen

git add test

auf. Nun liefert git status

On branch master

#

Initial commit

#
#
Changes to be committed:

(use “‘git rm -cached <file>...‘" to unstage)
#

new file: test

Die Datei test steht nun unter Versionkontrolle. Zum Riickgdngig machen ruft man

5.2. VERSIONKONTROLLSYSTEME 25

(wo wie es da steht)

git rm -cached test

auf. Die Datei steht jetzt zwar unter Versionskontrolle, aber die Anderungen an der
Datei wurden noch nicht eingetragen. Wichtig: Nur wenn eine Anderung eingetragen
ist, kann man zu einem spéteren Zeitpunkt wieder in diesen Zustand wechseln.

git commit -m ‘“‘my first commit‘

macht die Eintragung und gibt dieser Eintragung den Namen ,my first commit*. Die
Anwort ist

[master (root-commit) 5ca2714] my first commit

1 file changed, 1 insertion(+)

create mode 100644 test

oder dhnliches. Nun liefert

git status

das Ergebnis

On branch master nothing to commit (working directory clean)

Das heift, dass alle Anderungen eingetragen worden sind. Wer lieber in einer Gui
arbeiten mochte, ruft nach dem Erstellen des git-Repositories mit

git gui

die Gui auf.

&G it GuimyFirstgit) home/stefan/myfirstgit 3 & &

Projektarchiv Bearbeiten Zweig Version Zusammenfiihren Andere Archive Werkzeuge Hilfe

Aktueller Zweig: master
Nicht bereitgestellte Anderul ngen

[test - =]

e
Bereitstellung (zum Eintragen)

Erste Versionsbeschreibung: @ Neue Version ™ Letzte nachbessern
Neu laden =

Alles bereitstellen
Abzeichnen

Eintragen

= Versenden

T =i
Bereit.

Mit einem Klick auf die Datei ,test” links oben, stellt man die Datei unter Versions-

kontrolle. Das sieht dann so aus:

26 KAPITEL 5. PROGRAMMIEREN UNTER LINUX

& @ Git Gui{myFirstgit) hame/stefan/myfirstgit o)
Projektarchiv Bearbeiten Zweig Version Zusammenfiihren Andere Archive Werkzeuge Hilfe ‘
Aktueller Zweig: master
Nicht bereitgestelite Anderungen
i
Bereitstellung (zum Eintragen) =
[test)] I
Erste Versionsbeschreibung: € Neue Version ™ Letzte nachbessern
Neu laden =
Alles bereitstellen
Abzeichnen
Eintragen
= Versenden
ey =
Bereit.

Nun trdgt man eine Nachricht in das Textfeld unten rechts ein und klickt auf ,Ein-
tragen”. Man erhéalt wieder:

& W it GuimyFirstgit) home/stefan/myfirstgit o & &

Projektarchiv Bearbeiten Zweig Version Zusammenfiihren Andere Archive Werkzeuge Hilfe

Aktueller Zweig: master

Nicht it _ﬂnderungeﬂ
[test - =]
ey
Bereitstellung (zum Eintragen) =
[5T [
Erste Versionsbeschreibung: @ Neue Version ™ Letzte nachbessern
Neu laden =
Alles bereitstellen
Abzeichnen
Eintragen
- Versenden
i =
Bereit.

Schliefft man das Programm und ruft

gitk

auf, so erhilt man ein Programm, in dem man den Verlauf aller Anderungen betrach-
ten kann. Noch sieht es ein bisschen langweilig aus; bei komplexeren Programmen ist

es aber sehr hilfreich.

EH®) gitk: myfirstgic RO

Datei Bearbeiten Ansicht Hilfe |

C—{master]| my first commit Stefan Girke <stefan.girke@gmx. 2012-09-19 10:04:13 =

SHALID: (& b3a34f0e27chBh7BRadSE] & | =3 |Zeile| 1/ 1
Suche néchste vorige | Version nach hreibung: | [Exakt /Alle Felder]
Suchen || # Patch © Baum

Vergleich ™ Alte Version ™ Neue Version Kontextzeilen ‘Beschreibung

Autor: Stefan Girke <stefan.girke@gmx.de> 2012-09-=!
Eintragender: Stefan Girke <stefan.girke@gmx.de> :
Zweiq: master

Folgt auf:

Vorganger won:

my first commit

E]

i I 0}

5.2. VERSIONKONTROLLSYSTEME 27

Zweige

Erstellt man nun ein paar weitere Commits, so kdnnte unser Projekt z.B. so aussehen.

3
A.)
(x

HHE gitk: myFirstgit

Datei Bearbeiten Ansicht Hilfe |

corrected typo Stefan Girke <stefan.girke@gmx.d 2012-09-19 17:33:04 E
one more test Stefan Girke <stefan.girke@gmx.d 2012-09-19 17:32:31
my first commit Stefan Girke <stefan.girke@gmx.d 2012-09-19 10:04:13
7]

(TS T Pl b2 50283 f c7ebe? fbcd f2d3265cc5e8667 fee2 RERE Ry 1/ 3| |
Suche nachste vorige Version nach Beschreibung: J [Exakt ﬂ|AHe Felder]
Suchen ‘ 4 Patch ™ Baum

@ Vergleich ™ Alte Version ~* Neue Version Kontextzeilen: festczhreibung
= |[tesl

Autor: Stefan Girke <stefan.girke@gmx.de> 2012-09-|
Eintragender: Stefan Girke <stefan.girke@gmx.de> 2
Eltern: 1ddcd95f45995d63fd@73aceb7ab5458ae6f5aae (o
Zweig: master

Folgt auf:

Vorganger von:

corrected typo

index 7d938bb..cb75c43 100644
@@ -1 +1 @@

-Noch ein Test!

+Noch ein Fest!

1 ¥ :

Bisher haben wir nur eine lineare Versionskontrolle verfolgt. Man kann allerdings von
jedem Commit einen neuen Zweig erstellen. Aktuell gibt es einen Zweig, den man mit
git branch

anzeigen lassen kann. Unser Zweig heifst ,master”. Mit

git branch newbranch

legt man einen neuen Zweig ,newbranch® an.

git branch

liefert nun

* master

newbranch

Wir haben ein neuen Zweig erstellt und konnen mit

git checkout newbranch

auf diesen Zweig wechseln. Erstellen wir nun eine Anderung und tragen sie ein, so

wiirde das wie folgt aussehen:

28 KAPITEL 5. PROGRAMMIEREN UNTER LINUX

R gitk: myfirstgit

3
O
=

Datei Bearbeiten Ansicht Hilfe |

new branch, yeah Stefan Girke <stefan.girke@gmx.de 2012-09-20 11:16:46
corrected typo Stefan Girke <stefan.girke@gmx.de 2012-09-20 10:27:56
one more test Stefan Girke <stefan.girke@gmx.de 2012-09-20 10:27:19

my first commit Stefan Girke <stefan.girke@gmx.de 2012-09-19 10:04:13

(TS 41 1 632002 18bd5ed fd3618daf633111ddc354d77e2 RSNV A 1/ 4 |
Suche nichste vorige | Version nach Beschreibung: _| [Exakt ~[Alle Felder Bl

[E R

Suchen ‘ & Patch ™ Baum
@ Vergleich ~ Alte Version ~ Neue Version Kontextzeile |Beschreibung W
newtest

Autor: Stefan Girke <stefan.girke@gmx.de> 2012-0¢|~
Eintragender: Stefan Girke <stefan.girke@gmx.de>
Eltern: b679f7697dc71652e5fb4f87afebcfdd0addf758 (
Zweig: newbranch

Folgt auf:

Vorganger von:

new branch, yeah

+Wir sind auf einem neuen Zweig...

|

T O] =

Da wir mit mehreren Zweigen arbeiten, rufen wir gitk mit

gitk --all

auf, um alle Zweige anzuzeigen. Der aktuelle Zweig steht auf dem neuen Commit, der
,master,-Zweig steht auf dem alten Zweig. Mit

git checkout master

kommt man wieder auf den alten Zweig und kann dort Anderungen durchfiihren. Hat

man dort einen Commit durchgefiihrt, so sieht das wie folgt aus:

5.2. VERSIONKONTROLLSYSTEME

29

e

G
(x

gitk: myFirstgic v
Datei Bearbeiten Ansicht Hilfe |
this is the master branch.. Stefan Girke <stefan.girke@gmx.de 2012-09-20 11:20:37 =l
new branch, yeah Stefan Girke <stefan.girke@gmx.de 2012-09-20 11:16:46
corrected typo Stefan Girke <stefan.girke@gmx.de 2012-09-20 10:27:56
one more test Stefan Girke <stefan.girke@gmx.de 2012-09-20 10:27:19
my first commit Stefan Girke <stefan.qirke@amx.de 2012-09-19 10:04:13 =l
SHAL ID: |c0481abee70388277f8e6fe7cc5621d675d33fe7 € | = |Zeile| 1/ 5 |
Suche nichste vorige | Version nach [Beschreibung: _| [Exakt ~[Alle Felder Bl

Suchen ||

4 Vergleich ~ Alte Version ™ Neue Version Kontextzeilel
Autor: Stefan Girke <stefan.girke@gmx.de> 2012-0¢

Eintragender: Stefan Girke <stefan.girke@gmx.de>
Eltern: b679f7697dc71652e5fb4f87afebcfdd0addf758 (
Zweig: master

Folgt auf:

Vorganger von:

this is the master branch...

in
@ -0,0 +1 @@
+Das ist der master...

@ Patch ™ Baum

[E1]

[«] O

Beschreibung
master

Ll

Mochte man beide Zweige zusammenfiigen, weil beide Zweige niitzliche Features be-

sitzen, so funktioniert das mit

git merge newbranch

Man fiigt also immer den aktuellen Zweig mit dem im letzten Argument angegebenen

Zweig zusammen. Das sieht dann wie folgt aus:

30 KAPITEL 5. PROGRAMMIEREN UNTER LINUX

s L gitk: myfFirstgit & & |
Datei Bearbeiten Ansicht Hilfe |
Merge branch 'newbranch' Stefan Girke <stefan.girke@gmx.de 2012-09-20 11:24:40 =l
new branch, yeah Stefan Girke <stefan.girke@gmx.de 2012-09-20 11:16:46
this is the master branch... Stefan Girke <stefan.girke@gmx.de 2012-09-20 11:20:37
corrected typo Stefan Girke <stefan.girke@gmx.de 2012-09-20 10:27:56
one more test Stefan Girke <stefan.girke@gmx.de 2012-09-20 10:27:19
my first commit Stefan Girke <stefan.girke@gmx.de 2012-09-19 10:04:13
E4)

SHAL ID: 3bbe21aea3e57351168868596543 fhd233bo[C SRS 1/ 6| I

Suche nachste vorige Version nach |Beschreibung: J |Exakt ﬂ|AHe Felder =
Suchen || & Patch “* Baum i

@ Vergleich ~ Alte Version Neue Version Kontextzeiles BeSChreibung W

Autor: Stefan Girke <stefan.girke@gmx.de> 2012-0¢
Eintragender: Stefan Girke <stefan.girke@gmx.de>
Eltern: c048labee70388277f8e6felcc5621d675d33fe7
Eltern: e6320d218bd5edfd3618daf633111ddc354d77e2 (
Zwelg: master

Folgt auf:

Vorganger von:

Merge branch 'newbranch'

Man kann auch Zweige
git branch -d newbranch
16schen. Wichtig: Auf jedes Zweigende muss ein Zweig stehen, wenn man noch darauf

zugreifen will.

Alte Versionen wiederherstellen

Ein alter Commit kann nun wiederhergestellt. Dazu sollte man unbedingt einen neuen
Zweig anlegen und anschliefsend den Befehl

git reset --hard

anwenden. Achtung: Dabei gehen alle Anderungen, die nicht eingetragen wurden,
verloren! Mit gitk wéhlt man rechts oben ,my first commit® mit Rechtsklick aus
und wahlt | Zweig 'master’ hierher zuriickversetzen“. Danach wahlt man im nachsten

Fenster ,Hart“

5.2. VERSIONKONTROLLSYSTEME 31

Zuriicksetzen bestitigen DRRES

Zweig »master« auf »5ca27146« zuriicksetzen?

Art des Zuriicksetzens:
Harmlos: Arbeitskopie und Bereitstellung unverandert.
-~ Gemischt: Arbeitskopie unverandert,
Bereitstellung zuriickgesetzt
iHart: Arbeitskopie und Bereitstellung i
{Alle lokalen Anderungen werden geloscht)

ok Abbrechen

Alternativ kann man natiirlich auch lokale Anderungen bestehen lassen.

Verteiltes Arbeiten

Hat man ein schon existierendes git-Repository auf einem Server und kennt die Adres-
se, so kann man mit dem Befehl

git clone adressewoauchimmer.git

eine lokale Kopie auf seinem Rechner erstellen. Mit dem Befehl

git pull

werden Anderungen, die auf dem Server passiert sind, im lokalen Verzeichnis aktua-
lisiert. Hat man Schreibrechte und mochte seine Anderungen auf den Server laden,
so geniligt ein

git push

nachdem man alle lokalen Anderungen eingetragen hat. Im iibrigen kann man mit
git branch -a

alle Zweige (lokale und remote |auf dem Server|) anzeigen lassen.

32 KAPITEL 5. PROGRAMMIEREN UNTER LINUX

5.3 Programmierwerkzeuge

5.3.1 g++

Der GNU C++-Compiler, Erzeugung von Object-Dateien aus C++-Quelldateien,
bzw. Linken von Objektdateien zu einem ausfiihrbaren Programm. Beispiel:
g++ mytest.cc -o mytest

erzeugt eine ausfithrbares Programm ,mytest” aus dem Quellcode mytest.cc.

e -I/pfad/zu/includes/: Gibt die Verzeichnisse an, in denen Header-Dateien
gesucht werden sollen, welche mit
#include <myheader.hh>

im Programm verwendet werden.
e -L/meine/1ib: Gibt den Pfad von Bibliotheken an.

e -g: Bewahrt beim Kompilieren symbolische Informationen (Variablennamen

etc.). So ldsst sich ein spéteres Debuggen des Programms erlauben.
e —ggdb: Produziert fiir gdb optimierte Informationen.

e -01,-02,-03: Spezifikation des Optimierungslevels. Je hoher die Nummer, de-

sto ldnger ist die Compilezeit, aber die Ausfiihrung des Programms kiirzer.
e -std=gnu++0x und -std=gnu++11: Aktiviert aktuelle C+-+-Standards.

e -DDEFINITION=1: Dies definiert eine Konstante DEFINITION mit dem Wert 1.

Man kann also verschiedene Versionen fir seinen Code schreiben.

Mit
g+t+ --version

erhilt man die aktuelle Version.

5.3.2 make

Das Programm make ist fiir die Steuerung von Dateierzeugungsprozessen durch Re-
geln, die in einer Datei namens Makefile enthalten sind, zustdndig. Insbesondere kon-
nen Makefiles auch beim Erstellen von C+-+-Programmen helfen sein. Ein Beispiel

ist

mytest: my_main.o my_sub.o

g++ my_main.o my_sub.o -o mytest

5.3. PROGRAMMIERWERKZEUGE 33

Dabei muss die zweite Zeile mit genau einem Tab beginnen. Die erste Datei spezifi-
ziert das Ziel (mytest), die notwendigen Eingabedaten (my_main.o, my_sub.o). Die
folgenden Zeilen spezifizieren den Befehl, der ausgefiihrt wird, um das Ziel zu erzeu-
gen. Ruft man nun

make mytest

auf, so wird das Vorhandensein der Quellen my_main.o und my_sub.o, erzeugt diese
gegebenenfalls durch weiter Regeln, und anschliefend wird der Befehl zur Konstruk-

tion des Ziels ausgefiihrt.

5.3.3 gdb

gdb ist ein Gnu-Debugger zum schrittweisen Ausfithren von Programmen, Varia-
bleninspektionen und -manipulationen etc. Hat man sein Programm myprog mit der
Compileroption

-8

bzw.

-ggdb

erstellt, so kann man mit dem Befehl

gdb ./myprog

den Debugger starten. Mit

r

startet der Debugger und durchlauft das Programm. Md&chte man einzeln Quellcode-
zeilen durchlaufen, so muss man einen Breakpoint setzen. Mit

b 13

setzt man den Breakpoint in Zeile 13 der aktuellen Datei. Mit

b foo

setzt man den Breakpoint in der aktuellen Datei auf die Funktion foo. Mit

b file.hh:13

setzt man den Breakpoint in der Datei file.hh in Zeile 13. Startet man den Debugger,
so halt er bei jedem Breakpoint an. Mit

n

geht man eine Zeile weiter. Mit

S

folgt man z.B. einem Funktionsaufruf. Man kann sich mit

p var

den Wert der Variablen var anzeigen lassen. Mit

bt

erhélt man den aktuellen Stack. Mit

C

34 KAPITEL 5. PROGRAMMIEREN UNTER LINUX

lasst man das Programm weiterlaufen.

5.3.4 ddd

Da nicht jeder gerne in der Konsole arbeitet, gibt es mit ddd eine graphische Ober-
flache fiir gdb.

ﬁ " DDD: fhomeystefan/Prakcikum/main.cc X &
File Edit Yiew Program Commands Status Source Data ﬂelpl
{): | wain By @ @ 2 oA Ay G745 ki
Lookup Fihds: Break Watch Print Display Plot SHo Rotate Set gjeliz el
//stor,erase{ stor,begin{)}->right(} }: ooo (<) A
//stor,erase{ stor,begin{}->left(} }; I
//stor erase{ stor.begin{} }; RBun
I

//stor urite(); Interrupt

//stdszcout << " " << stdizendl; Step | Stepi

SinpleGrid grid{ 0, 1, 5 }3 MNext | Mexti

i
LeafIterator it = grid.leafbegin{};
LeafIterator itend = grid,leafend{}; Cont | Kill

for{ int 1 = 03 it != itend; ++it, ++i }

Entityd en = =xit3
ift i <23
grid.nark{ 1, en 3 Edit .

3
grid,adapt(); |

=

HEHEHE

Bl |=[g[z[2|e

3

i
LeafIterator it = grid,leafbegin{};
LeafIterator itend = grid,leafend{};
for{ 3 it != itend; ++it }
i
Entityd en = =xit;
grid.nark{ 1, en ;

{gdb} watch nain

Cannot watch constant value “main'.
{gdb} graph plot main

rHothing to plot.

FETIEY
AgOD §

_% Nothing to plot.

:_-}T‘hl

Man kann einfach durch den Quellcode scrollen und Breakpoints setzen. Alternativ

kann man zusétzlich die gdb-Konsole benutzen.

5.3. PROGRAMMIERWERKZEUGE 35

] %_ Y oD: fhome/stefan Praktikum/main.cc % & &
File Edit Yiew Program Commands Status Source Data Help
0 | “info locals™ - @' @v eely ?) év ’"\.f\v &l\: ‘3' 7 ﬁv

Lookup Finds= Ereak Watch Print Display Flot Show Rotate Sef Undisp

: Locals

ST fros

it
N z N o - 1
;’Efgd;gi C o |arav = Ox7FEEFFFFeS3S
//stor,erasel stor,begin{}->right{} }; ooo ¢ A
//stor .erase{ stor.begin{}->left{(} };
//stor.erase{ stor,.begin{} }; RBun
i
/stor,urite(); Interrupt
//stdzzcout << " " << std:zendl; EE
@ SinpleGrid grid{ 0, 1, 5 }; Mext | Nexti
H Urtil | Finish
’ LeafIterator it = grid.leafbegin{};
LeafIterator itend = grid,leafend{}; Caont | Kill
for{ int i = 03 it != itend} ++it, ++i) Up | Down
Entityd en = =xit3
ifFCi<2) ”@JM"
; grid.mark{ 1, en 3 Edit | Make
grid,adapt(};
3
i
{gdb} run A
Breakpoint 1, main {argc=1, argv=0x7fffffffeb38) at main.cc:d0
{gdb} next
(gdb)

.___'T\.I.

_% Display -1; “info locals® {enabled)

Zusatzlich bietet ddd die Mdéglichkeit viele Variablen gleichzeitig zu {iberwachen und

beliebig anzuordnen.

5.3.5 cgdb

Wer mit vim arbeitet, mochte vielleicht eine etwas konsolennéhere, aber graphische
Umgebung fiir gdb ausprobieren. Folgende Einstellung sollten beim Arbeiten helfen
:set tabstop=2

:set winsplit=top_big

:set syntax=c

:set print pretty on

Man kann sie auch in die Datei .cgdb/cgdbre schreiben, damit sie bei jedem Start

geladen werden.

36 KAPITEL 5. PROGRAMMIEREN UNTER LINUX
|! Praktikum : cgdb & & 8

Datei Bearbeiten Ansicht Lesezeichen Einstellungen Hilfe

B.sh | B im | (@ im | B sh | B ot | [im | B im | (@l | (. db >
34 I

35 fistor.writel); =
36

37

38 fistdiicout <€ "--c-ecemeoeo e << std::endl;

39

40 SimpleGrid grid(©, 1, 5);

41

42 i

43 LeafIterator it = grid.leafbegini);

LeafIterator itend = grid.leafend():;

45

45 forl 1= 0; 1t != itend; ++it, ++1

47 {

48 Entity& en = #*¥it;

439 ifl i «2)

50 grid.mark(1, en)

51 T

52 grid.adapti();

! 'stefan/Praktikum/main.cc

<http://bugs.launchpad.net/gdb-linaro/=. ..
Reading symbols from /home/stefan/Praktikum/grid...done.
(gdb])
Breakpoint 1 at 0x40137a: file main.cc, line 43.
{gdb)

Starting program:

Breakpoint 1, main (argc=1,
{gdb) n
(gdb)

5.3.6 valgrind

Wer mit C++ programmiert

die Speicherverwaltung werfen

Jhome/stefan/Praktikum/grid

argu=0x7fffffffe578) at main.cc:43

und mit Zeigern arbeitet, muss immer ein Auge auf

. Speicherlecks und Segmentation Faults sind schwie-

rig zu finden. Hierbei kann valgrind helfen und zeigt potentielle Kandidaten fiir ein

Speicherleck an. Wer schon einmal lange nach einem Zugriffsfehler gesucht hat, weifs

dieses Programm zu schétzen.

5.4. DATENVISUALISIERUNG 37

5.4 Datenvisualisierung

5.4.1 paraview

5.4.2 gnuplot

Mit gnuplot erhélt man ein einfaches, konsolenbasiertes Programm zum Plotten von
Daten und Funktionen. Mit

gnuplot

startet man die interaktive Shell. Nun kann man sich z.B. beliebige Funktionen und
Variablen definieren. Zum Darstellen der Sinusfunktion schreibt man z.B.

f(x) = sin(x)

plot f(x)

Gnuplot (window id :) ¥ o X

1.59549, 1.09276

Man kann auch Oberflichen plotten und Beschriftungen setzen. Mit
g(x,y)=sin(x)*sin(y)

set xrange[-2:2]

set yrange[-2:2]

set xlabel ’labelx’

set ylabel ’labely’

set zlabel ’labelz’

38 KAPITEL 5. PROGRAMMIEREN UNTER LINUX

splot g(x,y) with pm3d

erhalt man

E o Gruplot (window id : @)

m eH@@aQ A ?

(<
2
(%

, OO0 odbo
[t el T o e SN ey Te s 2]

labe

Y =T==t=1=1-T-1-T%
ki NEO©

15

1

0.5
0

labelx -0.5

view: 51.0000, 232.000 scale: 1.00000, 1.00000

Die wichtigste Eigenschaft von gnuplot ist fiir uns allerdings das Darstellen von
Daten. Legt man eine Datei data mit dem Inhalt

0.0 1.0

0.25 1.5

0.5 2.0

0.75 2.5

1.0 3.0

so kann man mit
plot ’data’ with linesp

die Daten visualisieren:

5.5. REMOTE ARBEITEN 39

'@ Gnuplot
B RHe@eqQ 1§ ?
3 T T T p { —
data
-"‘/
P
25 A -
'///
./’/
2 A .
~
’/
15 - //,« d |
1 -~ I | I I
0 0.2 0.4 0.6 0.8 1

0.966446, 2.42665

Auch mehrere Funktionen in einem Plot sind moéglich. Mit
help

liefert eine Hilfe.

q
verlasst man die Shell.

5.5 remote arbeiten

5.5.1 ssh

Mit
ssh -XC nutzerkennung@servername.uni-muenster.de
kann man sich iiber die Konsole auf einem Rechner an der Uni Miinster einlog-

gen. Dazu ersetzt man die nutzerkennung durch seine eigene Nutzerkennung und

40 KAPITEL 5. PROGRAMMIEREN UNTER LINUX

servername durch einen Computernamen (z.B. schafO1, schaf02...), der an der

Uni Miinster steht. Wem dieser Befehl zu lang ist, kann den Ordner ./ssh mit einer

Datei config anlegen, falls sie noch nicht existieren und folgende Eintrdge machen:

Host servername

Hostname servername.uni-muenster.de

User nutzerkennung

wobeil servername und nutzerkennung wieder zu ersetzen sind. Mit

ssh servername

kann man sich nun schneller einloggen.

Méchte man Dateien von einem Uni-Computer auf den eigenen Computer kopieren,

so verwendet man

scp nutzerkennung@servername.uni-muenster.de: /quellpfad/datei

zielpfad/datei

oder

scp quellpfad/datei nutzerkennung@servername.uni-muenster.de: /zielpfad/datei
fiir den umgekehrten Vorgang. Mit

scp -r quellpfad/datei nutzerkennung@servername.uni-muenster.de: /zielpfad/datei
kopiert man rekursiv.

Wer sich nicht immer sein Passwort eingeben mdchten, sollte sich ssh-keygen und

keychain anschauen.

Kapitel 6

Programmieren mit DUNE

6.1 DUNE-GRID

Das Kern-Modul DUNE-GRID stellt eine abstrakte Schnittstelle fiir hier-
archische Gitter bereit. Hierdurch werden Daten und Algorithmen ge-
trennt. Durch Gitterzugriff iiber die Schnittstellen-Methoden, koénnen nu-
merische Algorithmen mit Variation der Gitterimplementationen verwen-
det werden. Fir weitere Details siche die Online-Dokumentation [9] unter
http://www.dune-project.org/doc/doxygen/dune-grid-html/index.html

und das Grid-Howto [3] der Kursseite.

6.1.1 Installation

Zunéchst erstellt man einen eigenen Ordner

mkdir prakikum

cd praktikum

Um DUNE-GRID zu verwenden, benétigt man zumindest die beiden weiteren
Module DUNE-COMMON und DUNE-GEOMETRY. Es gibt verschiedene Wege,
um an ein DUNE-Modul zu kommen. Als Anfinger sollte man sich fiir ei-
ne stabile Version entscheiden, aktuell Version 2.2.0. Hierzu reicht es, die ge-
zippten Datei dune-common-2.2.0.tar.gz, dune-geometry-2.2.0.tar.gz und
dune-grid-2.2.0.tar.gz von der DUNE-Homepage
http://www.dune-project.org/download.html

herunterzuladen und zu entpacken

tar xfz dune-common-2.2.0.tar.gz

tar xfz dune-geometry-2.2.0.tar.gz

tar xfz dune-grid-2.2.0.tar.gz

Alternativ kann man sich auch auf dem aktuellen Entwicklungszweig arbeiten

(,trunk®). Mochte man ein git-Repository verwenden, so gibt man den Befehl

41

42 KAPITEL 6. PROGRAMMIEREN MIT DUNE

git svn clone https://svn.dune-project.org/svn/dune-common/trunk
git svn clone https://svn.dune-project.org/svn/dune-geometry/trunk
git svn clone https://svn.dune-project.org/svn/dune-grid/trunk

Das Erstellen der Repositorys dauert allerdings etwas langer.

Im Verzeichnis praktikum ruft man nun den Befehl
./dune-common/bin/dunecontrol all

auf. Mochte man ein eigenes DUNE-Modul erstellen, so ruft man
./dune-common/bin/duneproject

auf und folgt den Anweisungen.

6.1.2 Gitter-Implementationen

Konkrete Implementationen der Gitter-Schnittstelle sind fiir einfache strukturierte
Gitter implementiert, und es existieren Implementationen der Schnittstelle fiir ver-

schiedene Gittermanager-Pakete:

Klasse dim | adaptiv | parallel
SGRID N - -
YASPGRID N - X
ONEDGRID 1 X -
ALBERTAGRID 2,3 X -
ALUSIMPLEXGRID | 2,3 X X
ALUCUBEGRID 2,3 X X
UGGRID 2,3 X X

6.1.3 Wichtige Klassen

Einige wichtige Klassen sind die folgenden:

FieldVector Vektor-Klasse mit mit Arithmetik, fiir kleine Vektoren, Dimension wird

zur Compile-Zeit spezifiziert.

FieldMatrix Matrix-Klasse mit mit Arithmetik, fiir kleine Matrizen, Dimension wird

zur Compile-Zeit spezifiziert.

Entity Die Entity Klasse enthélt topologische Informationen iiber eine Entitét eines

Gitters. Erlaubt nur lesenden Zugriff.

Geometry Die Geometry einer Entitit enthéalt geometrische Informationen: Referenz-

abbildung, Koordinaten, Volumen, etc.

LeafGridPart Blatt-Gitterteil des hierarchischen Gitters.

6.1. DUNE-GRID 43

LevelGridPart bestimmte Ebene als Teil des hierarchischen Gitters.

LevelIndexSet, LeafIndexSet Konsekutive Numerierung von Entitdten eines

Gridparts. Wichtig fiir Verwaltung von diskreten Funktionen.

VTKWriter Ermoglicht das Schreiben eines Gitters im VTK-Format, um dies z.B.

mit Paraview zu visualisieren.

VTKIO Ermoglicht das Schreiben eines Gitters mit Daten im VTK-Format, um dies

z.B. mit Paraview zu visualisieren.

6.1.4 Iteratoren

Da Gitter als Container von Elementen gesehen werden konnen, wurde eine STL-
dhnlicher Zugriff auf Elementen /Entitéten realisiert. In der STL wiirde man z.B: eine

Schleife iiber alle Eintrége eines Vektors durchfithren mit

vector<double> v(6);
for (vector<double>::iterator it=v.begin(); it!=v.end(); it++)

cout << (¥it) << "

Ahnliche Funktionalitit haben Iteratoren in DUNE, insbesondere Initialisierung und
Abfrage des Endes durch entsprechende Methoden und Dereferenzieren eines Iterators

fiir den Zugriff auf das Element. Einige Klassen sind

Levellterator: erlaubt Iteration iiber die Elemente eines bestimmten Level eines
Gitters.

Hierarchiclterator: erlaubt Iteration iiber die Kinder eines Elementes
Leaflterator: erlaubt Iteration iiber die Blatt-Elemente eines Gitters.

Intersectionlterator: erlaubt Iteration iiber die Randentititen, d.h. Codim 1
Entitdten eines Elementes. Ein Intersectionlterator ermoglicht Zugriff auf

Gebietsrand-Information, Normalen, Nachbarelemente, etc.

Diese Gitterspezifischen Typen sind in einer Template-Struktur Codim im Gitter ver-

fiigbar. Beispiel Initialisierung eines Levellterators:

GridType: :template Codim<0>::Levellterator
1lit = grid.template lbegin<0>(level)

Alternativ konnen die Iteratoren auch aus einem GridPart extrahiert werden

44 KAPITEL 6. PROGRAMMIEREN MIT DUNE

typedef GridPartType::Codim<0>::IteratorType IteratorType;
typedef GridPartType::IntersectionIteratorType

IntersectionlteratorType;

Entsprechende Methoden sind dann begin<0>(), end<0>() und ibegin(entity),
iend(entity) auf dem Gridpart.

6.1.5 Gitter-Verfeinerung
Bei adaptiven Gittern gibt es im wesentlichen zwei Methoden zur Verfeinerung

a) Globale Verfeinerung: Methode globalRefine(reflevel) verfeinert ein Gitter

reflevel mal.

b) Lokale Verfeinerung: Methode mark (reflevel, entity) markiert ein Element
zum Verfeinern (reflevel=1) oder Vergrébern (reflevel=-1). Eine anschlie-
Kende Adaption des Gitters erfolgt mit der adapt Methode des Gitters.

Fiir Details zu Gitteradaption, siche Abschnitt 7 des Grid-Howto [3].

6.1.6 DUNE-GRID-Parser

Fiir die Verschiedenen Gitter-Typen benotigte man zunédchst individuelle
Makrogitter-Dateien zur Initialisierung, z.B. *.tetra, *.hexa und *.al fir ALU-
SIMPLEXGRID, ALUCUBEGRID und ALBERTAGRID Gitter. Um hier eine Verein-
heitlichung zu schaffen, wurde das DUNE-GRID-Format eingefiihrt mit einem Parser,
der diese Files einliest und in ein gewiinschtes Gitterformat verwandelt. Eine Bei-

spieldatei cube.dgf:

DGF

Interval

0O 00 % first corner

1.0 1.0 1.0 % second corner

3 3 3 %3 cells in three directions

now we define the boundary

BOUNDARYDOMAIN

default 1 % all other boundarys have id 1
2 0 0 O 01 1 %x=0->1id 2

3 1 0 0 1 1 1 %x=1->1id 3

Die erste Zeile identifiziert die Datei als DUNE-GRID-Format. In weiteren Blocken

sind Inhalte definiert. Ein Interval-Block definiert eine dquidistante Zerlegung eines

6.2. DUNE-FEM 45

rechtwinkliges Parallelogramms. Alternativ kann man auch Punktelisten und Elemen-
te durch die Punkte definieren. Die Randelemente kénnen mit ganzzahligen Labels
versehen werden. Eine Zeile in in einem Boundarydomain Block besteht aus einem
Index und zwei Tupel. Hierdurch werden die Randelemente des Gitters, die in dem
durch die beiden Tupel spezifizierten rechteckigen Bereich liegen, die erste Zahl in
der Zeile als Markierung bekommen. Weitere Blocke sind moglich, auch teilweise nur
von bestimmten Gittern umsetzbar. Insbesondere sind vielfaltige herkémmliche 3D-
Datenformate verwendbar.

Einlesen eines solchen Files ist mittels eines Grid-Pointers moglich, wobei angenom-

men wird, dass GridType definiert ist:

Dune: :GridPtr<GridType> gridptr(filename);
GridType& grid = *gridptr;

Fiir weitere Informationen zu dem DUNE-GRID-Format und der Verwendung von
GridPtr, siehe die Online-Dokumentation (Modules — /O — DUNE-GRID-Format).

6.2 DUNE-FEM

DUNE-FEM ist ein in Freiburg entwickeltes DUNE-Modul, welches PDE-
Diskretisierungskomponenten zur Verfiigung stellt. Dies umfasst Klassen fiir Funk-
tionen, Funktionenrdumen, diskrete Funktionen, FEM /FV /LDG-Operatoren, lineare

Gleichungsystemloser, Quadraturen, etc. Dokumentation findet sich unter [§].

6.2.1 Diskrete Funktionen

Das Konzept von Funktionenrdumen aus Abschnitt [2] ist in DUNE umgesetzt. Die

wichtigsten Klassen sind:

FunctionSpace: In Abhéngigkeit von DomainFieldType, RangeFieldType und den
Dimensionen d und n von Definitions- und Wertebereich wird hierdurch ein

Funktionenraum definiert im Sinne von (2.1]).

Function: Ist eine allgemeine Klasse, welche eine (analytische) Funktion aus einem

FunctionSpace reprasentiert. Wichtigster Bestandteil ist eine evaluate() Me-
thode.

LagrangeDiscreteFunctionSpace: Eine Implementation eines diskreten Funktio-
nenraums, welches elementweise polynomial und global stetige Funktionen
reprasentiert. Die Klasse bendétigt als Template-Parameter den FunctionS-
paceType, den GridPartType und eine Polynomordnung p > 1. Die loka-

len Basisfunktionen sind Lagrange-Basisfunktionen, d.h. es ist eine nodale

46

KAPITEL 6. PROGRAMMIEREN MIT DUNE

Basis, bei denen die DOFs direkt mit Funktionswerten an Lagrange-Knoten
iibereinstimmen. Diese Lagrange-Knoten sind ebenfalls verfiighar iiber den
Typ LagrangePointSetType und der Methode lagrangePointSet (entity).
Ein LagrangePointSet hat Methoden nop() fiir die Anzahl der Punkte, und
point (i) fiir Zugriff auf die Punkte.

DiscontinuousGalerkinSpace: Eine Implementation eines diskreten Funktionen-

raums, welches elementweise polynomiale Funktionen ohne Stetigkeitsbedin-
gung reprasentiert. Die Klasse bendtigt als Template-Parameter den Functi-
onSpaceType, den GridPartType und eine Polynomordnung p > 0. Die lokalen
Basisfunktionen sind orthonormiert beziiglich der L?-norm auf dem Referenz-
element. Es gibt daher keine eindeutige Zuordnung von Funktionswerten und
DOFs.

AdaptiveDiscreteFunction: Dies ist eine Implementation eines Diskreten Funkti-

onstyps. Als einziger Template-Parameter wird der DiskreteFunctionType be-
notigt. Die Klasse stellt Speicherverwaltung der globalen DOFs und Unterstiit-

zung von Gittersadaptivitat zur Verfiigung.

BaseFunctionSet: Statt Auswertung von globalen Basisfunktionen ¢;, ist mit die-

ser Klasse Auswertung von lokalen Basisfunktionen ¢;; mittels evaluate(...)

und deren Ableitungen mittels jacobian moglich.

Der Riickgabetyp von letzterem ist JacobianRangeType, welches ei-
ne FieldMatrix ist, d.h. jede Zeile ein FieldVector. Ein Zugriff
auf das BaseFunctionSet eines Elementes ist durch die Methode

baseFunctionSet(entity) des diskreten Funktionenraumes moglich.

Anlegen von Diskreten Funktionen

Die Template-Abhéngigkeiten der Hilfsklassen implizieren bereits die Schritte

zum Anlegen einer diskreten Funktion: Nach dem Initialieren eines Gitters und

GridParts wird hierauf ein Funktionenraum und hiermit ein Diskreter Funk-

tionenraum definiert. Bei Vorliegen einer Instanz eines diskreten Funktionen-

raumes dfspace kann eine diskrete Funktion einfach angelegt werden mittels

DiscreteFunctionType df ("my_function",dfspace).

Zugriff auf Diskrete Funktionen

Im allgemeinen soll man globale Auswertungen von diskreten Funktionen vermeiden,

weil dies immer mit einem teuren Gitter-Suchdurchlauf verbunden ist, in dem das

Element zum Auswertepunkt bestimmt wird.

6.2. DUNE-FEM 47

Problemlos ist eine Iteration tiber die globalen DOFs b; in (2.4]) zum Lesen und Schrei-
ben. Hierzu gibt es in der diskreten Funktionsklasse einen DofIteratorType und die
Methoden dbegin() und dend (). Zusétzlich ist die Abbildung g(e, i) der lokalen in
globalen DOF-Indizes in (Z3]) realisiert durch die Methode mapToGlobal (entity,1i)
des diskreten Funktionenraumes.

Ein lokaler Zugriff ist iiber den Typ LocalFunctionType und der Methode
LocalFunctionType localFunction(entity) der diskreten Funktion moglich. Ei-
ne LocalFunction erlaubt lesenden und schreibenden Zugriff auf die lokalen DOFs a, ;
aus (23 durch den operator[], wobei man einfach i — 1 in der eckigen Klammer
angibt (Z&hlung beginnt in C++ ja bei 0).

Eine localFunction,auf einem Element initialisiert, liefert auch die Moglichkeit mit
der evaluate Methode eine lokale Auswertung einer diskreten Funktion durchzu-
fithren. Die Koordinaten miissen dann auch lokale Koordinaten (d.h. beziiglich dem

Referenzelement) sein.

6.2.2 Quadraturen

Die folgenden DUNE-FEM Klassen erméglichen Integration auf Entitdten mittels Qua-
draturen, sieche Abschnitt

e CachingQuadrature<GridPartType,0> kann fiir Elementintegration verwen-

det werden.

e CachingQuadrature<GridPartType, 1> kann fiir Integration iiber Intersections
verwendet werden. Diese Klasse enthélt einen enum, der die Konstanten INSIDE
und OUTSIDE definiert. Diese sind im Konstruktur der Quadratur zu verwenden,
um anzugeben, ob man die Quadratur bzgl. dem innen oder aufen liegenden

Element orientieren will.

Die Methoden liefern die Quadraturinformationen:
e nop(): Anzahl der Quadraturpunkte n,
e point(i): Quadraturpunkt p;11 ,7=0,...,n0p() — 1.
e weight(i): Quadraturgewicht w; .

In den Integrationsformeln tauchen héufig bestimmte Ableitungen der Referenzab-

bildung auf. Diese stehen in der Geometry eines Elementes zur Verfiigung:
e |det DF,| erhaltlich via Methode integrationElement(. . .)

e ((DFE,)™YH)T erhiltlich via Methode jacobianInverseTransposed(. . .)

48 KAPITEL 6. PROGRAMMIEREN MIT DUNE

6.2.3 Operatoren

Ubereinstimmend zur mathematischen Verwendung des Begriffs ist ein Operator in

DUNE eine Realisierung einer Abbildung zwischen Funktionenrdumen.

e Die Template Parameter in der Deklaration
Operator< DFieldType, RFieldType, DType, RType > spezifizieren die Ty-

pen der Eingangsfunktionen und der Ergebnisfunktionen.

e Durch die Methode apply(arg,dest) und operator() (arg,dest) wird der
Operator auf eine Funktion DType& arg angewendet und das Ergebnis in

RType& dest gespeichert.

Operatoren auf diskreten Funktionen, deren Anwendung durch einen Gitterdurchlauf
mit elementweiser Operation beschrieben werden kann, kénnen durch die Klassen

DiscreteOperator und LocalOperator realisiert werden.

6.2.4 Iterative LGS-Loser

Die Klasse der orthogonal error methods (OEM) bezeichnet Verfahren zum Ite-
rativen Losen von Gleichungssystemen Ax = b. Der Bekannteste Vertreter ist das
Konjugierte Gradienten (CG) Verfahren. Die folgenden Verfahren sind in DUNE-FEM

als Operatoren realisiert, fiir Details verweisen wir auf [2, [6].

Losungsoperator | A sym., p.d. | A non-sym, non-pd
OEMCGOp ja nein
OEMBICGSTABQOp ja ja
OEMBICGSQOp ja ja
OEMGMRESOp ja ja

Verwendung dieser Klassen:
e oemsolver.hh einbinden

e Typdefinition des Losers, z.B.

typedef OEMBICGSTABOp <DiscreteFunctionType,MyOperatorType>

InverseOperatorType;

Hierbei ist MyOperatorType ein Klassentyp, der die Matrixmultiplikation Ax

realisiert. (Details zu Anforderungen siehe weiter unten).

e Initialisierung des Losers z.B. mit

6.2. DUNE-FEM 49

double redEps = 0.0, absLimit = le-15, maxIter=20000;
bool verbose = true;
InverseOperatorType solver(myOp, redEps, absLimit,

maxIter,verbose);

wobei myOp eine existierende Instanz der Klasse MyOperatorType ist, redEps
die relative Toleranz des Residuums, absLimit die absolute Losungstoleranz
des Residuums, maxIter die maximale Anzahl an Iterationen und verbose ein
Flag zur Bildschirm-Detailausgabe.

Achtung: Nicht alle Parameter sind in allen Losern realisiert.

e Konkretes Losen eines Gleichungssystems durch solver(b,x) zu einer gegebe-
nen diskreten Funktion b und Ziel in der diskreten Funktion x.
Achtung: Der vor dem Aufruf vorhandene Wert von x dient zugleich als An-

fangswert der Iteration. Eventuell ist also Null-Initialisierung sinnvoll.

e Die Klasse MyOperatorType muss zur Verwendung mit den OEM-Methoden
nicht notwendigerweise von einem Dune::0Operator abgeleitet werden. Es

reicht, wenn diese Klasse eine Methode

void multOEM(const doublex & arg, doublex & dest)
{

. // do your matrix multiplication

};
und eine Methode

MyOperatorType& systemMatrix()
{

return *this;

};

besitzt.

20

KAPITEL 6. PROGRAMMIEREN MIT DUNE

Kapitel 7
Programmierkonzepte in C++

Hier folgt eine unsortierte Liste von Hinweise zur Programmierung mit C-++-. Einiges
ist hiervon ist im Grunde in C++ Programmier-Handbiichern auffindbar. Weiter
enthéilt die Liste Empfehlungen zu Programmierstil, die sich insbesondere in dem
DUNE-Projekt durchgesetzt haben.

7.1 Namensgebung

e Wir schreiben Klassennamen durchgehend grofs, Instanzen einer Klasse klein.
Methodennamen (aufer Konstruktor und Destruktor) werden ebenfalls klein

geschrieben.

// Klassendefinition
class MyClass

{
public:

MyClass();

void myMethod();
“MyClass();

s

// Objekt der Klasse:
MyClass myclass;

e Membervariablen bekommen grundsétzlich ein _ angehdngt, damit man auf den
ersten Blick in einer Methode sieht, was Membervariablen und was lokale Va-
riablen sind. Auch ist eine Initialisierung der Membervariablen im Konstruktor
dann sehr generisch machbar, weil die Einkommenden Variablen einfach iden-

tisch (nur ohne _) wie die Membervariablen gewéhlt werden konnen.

o1

52

KAPITEL 7. PROGRAMMIERKONZEPTE IN C++

7.2

class MyClass

{
public:
MyClass(const double a, const int t): a_(a), t_(t)
{3
private:
double a_;
int t_;
s

Header Files

Wir nennen C++Header-Files grundsétzlich *.hh zur Abgrenzung von C-
Header Files (*.h).

Zwecks Verhindern von Kompiler-Fehlermeldungen bei Mehrfach-Einbindung
wird in Header-Files mit Defines gearbeitet. Voraussetzung ist ein moglichst
eindeutiger Bezeichner, der aus dem Dateinamen generiert werden kann. Bei-

spiel myheader . hh:

// myheader.hh: example file
#ifndef MYHEADER_HH
#define MYHEADER_HH

// hier der eigentliche Header Code ...

#endif

So wird der Header-Code also genau einmal in einem Object-Datei eincompi-

liert, unabhéngig wieviele Quelldateien dieses Header-File einbinden.

In Header Files sollten keine Komponenten enthalten sein, welche Object-Code
erzeugen, wie z.B. Implementationen von Klassenmethoden, oder statische Da-
tenstrukturen, etc. Falls diese Header-Datei von zwei Quelldateien eingebunden
wird, diese beiden Quelldateien in einzelne Object-Dateien kompiliert werden,
und versucht wird, diese Object-Datei zu linken, wird der Linker einen Fehler
erzeugen wegen doppeltem Vorhandensein von Implementationen. Stattdessen
sollten diese Implementationen in einer separaten *.cc Datei erfolgen. Es ist
jedoch moglich, Inline-Implementationen in Header Files zu halten, weil diese
schlieflich ohne Funktionskopf in die einzelnen Object-Dateien hineincompiliert

werden, also keine Probleme erzeugen.

7.3. DYNAMISCHER POLYMORPHISMUS, VIRTUELLE METHODEN o3

7.3 Dynamischer Polymorphismus, Virtuelle Metho-
den

Objektorientierte Implementation einer einfachen Klassenhierarchie mit Hilfe von vir-

tuellen Funktionen:

// Base class
class VectorInterface
{
public:
virtual void print() { cout << "Base class, no data!\n"; }

};

// Implementation derived from base class
class VectorImpll: public VectorInterface
{
public:
virtual void print() {
for (int i=0;i<50;i++) cout << data_[i] << " ";
cout << "\n";
}
private:
double data_[50];
s

// some routine that uses the interface
void do_something(VectorInterface& vec) {

vec.print();

b

void main(..) {
VectorImpll vec;
do_something(vec);

b

Ohne die Schliisselworte virtual wiirde die Ausgabe der Basisklasse erfolgen.
Durch die Verwendung der virtuellen Routinen wird die korrekte print() Metho-
de der abgeleiteten Klasse aufgerufen, trotz Verwendung der Schnittstellenklasse in
do_something (). Solche virtuellen Aufrufe sind jedoch immer mit einem Nachschla-
gen eines Funktionspointers in einer Tabelle und einem Funktionsaufruf verbunden.
Bei kleinen und haufig aufgerufenen Funktionen ist dies sehr teuer. Eine Moglichkeit,

diese virtuellen Funktionen zu umgehen ist das CRTP im folgenden Abschnitt.

o4 KAPITEL 7. PROGRAMMIERKONZEPTE IN C++

7.4 Statischer Polymorphismus, CRTP

Das Curiously Recurrent Template Pattern ermoglicht ein imitieren von dyna-
mischer Bindung durch Template-Techniken ohne Verwendung von virtuellen Funk-
tionen. Manchmal wird es auch (félschlicherweise) als Barton-Nackman-Trick bezeich-
net. Dasselbe Beispiel wie oben mit CRTP Technik:

// Base class "knowing the later derived class" as template argument
template <class VectorImp>
class VectorInterface
{
public:
// forwarding of interface method to the derived object
void print() {
asImp() .print();
¥
protected:
// change of current object type from base class to derived class
VectorImp& asImp() {

return static_cast<VectorImp&>(*this);
s

// Implementation derived from base class
class VectorImpll: public VectorInterface<VectorImpl>
{
public:
void print() {
for (int i=0;i<50;i++) cout << data_[i] << " ";
cout << "\n";
}
private:
double data_[50];
s

// some routine that uses an interface Routine
template <class VectorImp>
void do_something(VectorImp& vec) {

vec.print();

void main(..) {

7.5. TYPDEFINITIONEN/TYPENAME 55

VectorImpll vec;

do_something(vec) ;

Die Basisklasse “kennt” die spéter abgeleitete Klasse in Form eines Template-
Argumentes. Daher kann die “Sicht” auf ein vorliegendes Objekt der Basisklasse
erweitert werden durch einen entsprechenden Cast. In der Interface-Klasse miissen
alle Schnittstellen-Methoden weitergeleitet werden an die abgeleitete Klasse durch
asImp(). Diese Technik ermoglicht dem Compiler, optimalen Code zu produzieren
durch z.B. inlining. Der Geschwindigkeitsgewinn wird sichtbar, wenn entsprechend

hohe Optimierungslevel beim Compilieren eingestellt sind.

7.5 Typdefinitionen /typename

Die Verwendung von Typdefinitionen erleichtert spétere Austauschbarkeit von Klas-
sentypen, indem nur an einer Stelle eine Typdefinition gedndert werden muss und
nicht an zahlreichen Stellen. Dieses Prinzip ist bei Templatebasierter Programmie-

rung sehr zu empfehlen.

typedef VectorImpl VectorType;
\\ typedef VectorImp2 VectorType;
VectorType vec;

Matrix<VectorType> mat;

Sind Typdefinitionen in einer Klasse offentlich definiert, so kann Typdefinitionen von
diesen Typen erstellen. Ist z.B. FieldType eine Typedefinition in VectorType, so

kann man schreiben
typedef typename VectorImpl VectorType::FieldType;

In diesem Fall stellt man das Schliisselwort typename voran, damit der Compiler

14

weifs, dass es sich hinter ,,VectorType::“ um einen Typen handelt und nicht um

eine statische Methode. Fehlermeldungen bei Typdefinition entstehen meistens durch

Vergessen von typename oder aufgrund anderer fehlender Typdefinitionen.

7.6 Interface, Defaultimplementation und Imple-

mentation

Ein in DUNE héaufig auffindbares Programmmuster mittels CRTP ist folgende Zerle-
gung:

56 KAPITEL 7. PROGRAMMIERKONZEPTE IN C++

Interface: Eine Basisklasse deklariert eine Reihe von Schnittstellenmethoden, die
eine abgeleitete und instanzierte Klasse implementiert haben muss. Diese Klasse

wird selbst nicht instanziert.

DefaultImplementation: Einige der Schnittstellenmethoden koénnen mit Hilfe
von weiteren Schnittstellen-Methoden manchmal default-implementiert werden,
d.h. eine funktionierende, aber eventuell langsame Version kann bereitgestellt
werden. Eine hiervon abgeleitete Klasse kann diese eventuell durch effizientere
Versionen ersetzen. Falls die DefaultImplementation-Klasse bereits alle Schnitt-
stellenmethoden implementiert, ist sie instanzierbar. Meist wird aber weiter

abgeleitet.

Implementation: Eine Spezialimplementation einer Schnittstelle kann von der
DefaultImplementation-Klasse abgeleitet werden. Damit stehen die Default-
Implementationen zur Verfiigung oder konnen iiberladen werden. Diese Klasse
muss die noch nicht implementierten Schnittstellenmethoden bereitstellen, da-

mit Objekte instanziert werden kénnen.

Ein Beispielprogramm ist crtp.cc auf der Kursseite.

7.7 Zeitmessung in C+H+

Mittels der ctime Bibliothek kann Laufzeit sehr einfach gemessen werden

#include <ctime>

clock_t start = clock();

... // do some computations

clock_t finish = clock();

double time = (double(finish)-double(start))/CLOCKS_PER_SEC;

7.8 Assertions

Ein sehr praktisches Konzept zum Debuggen ist die Verwendung von sogenannten
Assertions in einem Programm. Durch einbinden von <assert.h> kann man an belie-

bigen Programmstellen iiberpriifen, ob bestimmte Bedingungen erfiillt sind. Beispiel:

double* meinpointer = new double[10000000]
// Test der Initialisierung vor dem Schreiben:
assert(meinpointer != 0);

meinpointer [5600] = 10.0

7.8. ASSERTIONS 57

Die Assertions werden zur Laufzeit tiberpriift. Ist die Assertion erfiillt, lauft das
Programm einfach weiter. Ist die Assertion nicht erfiillt, bekommt man eine Fehler-
meldung: “assert 'meinpointer != 0’ failed” welche wesentlich informativer ist, als ein
nichtssagendes “Segmentation Fault”. Hierdurch findet man die Stelle im Programm-
code sehr schnell.

Ist ein Programm lauffahig, ohne dass es Abbriiche durch Assertions gibt, kann man
diese alle ausschalten durch das Precompiler-flag #define NDEBUG und anschliefsen-
dem Neucompilieren. Die Empfehlung lautet daher, solche asserts(...) in beliebiger

ausgiebiger Anzahl in eigenen Programmen verwenden.

o8

KAPITEL 7. PROGRAMMIERKONZEPTE IN C++

Literaturverzeichnis

1]

2l

3]

4]

5]

6]

7]

8]
9]

[10]

[11]

M. Ainsworth and J.T. Oden. A Posteriori Error Estimation in Finite Element

Analysis. Wiley Interscience, 2000.

S.F. Ashby, T.A. Manteuffel, and P.E. Saylor. A taxononmy for conjugate gra-
dient methods. SIAM J Numer Anal, 27:1542-1568, 1990.

P. Bastian, M. Blatt, A. Dedner, C. Engwer, R. Klofkorn, M. Ohlberger, and
O. Sander. The distributed and unified numerics environment (dune) grid inter-

face howto, 2008, http://www.dune-project.org/doc/grid-howto /grid-howto.pdf.
D. Braess. Finite Elemente. Springer, 2003.

A. Dedner and M. Ohlberger, Skriptum zur Vorlesung Wissenschaftliches Rech-
nen SS06, Universitat Freiburg, 2006.

W. Dorfler: Orthogonale Fehler-Methoden. Universitdt Freiburg,
http: //www.mathematik.uni-freiburg.de/iam /homepages/willy /paperol.html,
1997.

W. Dérfler. A convergent adaptive algorithm for poisson’s equation. SIAM J.
Numer. Anal., 33:1106-1124, 1996.

DUNE-fem Projektwebseite: http://dune.mathematik.uni-freiburg.de.
DUNE Projektwebseite: www.dune-project.org.

Emacs reference card, http://refcards.com/docs/gildeas/gnu-emacs/emacs-
refcard-a4.pdf.

Bernard Haasdonk. Praktikum Numerik Partielle Differentialgleichungen I WS
2008,/20009.

R. Verfiirth. A review of a posteriori error estimation and adaptive mesh-

refinement techniques. Wiley-Teubner, 1996.

29

	Hierarchische und adaptive Gitter
	Referenzelement
	Hierarchische Gitter
	Gitterteile
	Indexmengen und lokale Verfeinerungen

	Diskrete Funktionenräume
	Funktionenräume
	Basisfunktionen auf Referenzelementen
	Diskrete Funktionenräume

	Quadraturen
	Integration über Gebiet
	Integration über Gitterelemente
	Approximation durch Quadraturen

	Finite-Elemente für Elliptische Probleme
	Elliptisches Problem
	Schwache Form
	Finite-Elemente-Diskretisierung
	Lineares Gleichungssystem
	Algorithmische Aspekte
	LGS-Eigenschaften
	Assemblierung
	Symmetrisierung

	Fehlerschätzer für Adaptivität

	Programmieren unter Linux
	Editoren
	vim
	emacs
	qtcreator

	Versionkontrollsysteme
	git

	Programmierwerkzeuge
	g++
	make
	gdb
	ddd
	cgdb
	valgrind

	Datenvisualisierung
	paraview
	gnuplot

	remote arbeiten
	ssh

	Programmieren mit Dune
	Dune-Grid
	Installation
	Gitter-Implementationen
	Wichtige Klassen
	Iteratoren
	Gitter-Verfeinerung
	Dune-Grid-Parser

	Dune-Fem
	Diskrete Funktionen
	Quadraturen
	Operatoren
	Iterative LGS-Löser

	Programmierkonzepte in C++
	Namensgebung
	Header Files
	Dynamischer Polymorphismus, Virtuelle Methoden
	Statischer Polymorphismus, CRTP
	Typdefinitionen/typename
	Interface, Defaultimplementation und Implementation
	Zeitmessung in C++
	Assertions

