
Übung zur Vorlesung Wissenschaftliches
Rechnen — Sommersemester 2012
Auffrischung zur Programmierung in C++, 1. Teil

Sebastian Westerheide
11. April 2012

living knowledge
WWU Münster

WESTFÄLISCHE
WILHELMS-UNIVERSITÄT
MÜNSTER

liv
in

g
kn

ow
le

dg
e

W
W

U
M

ün
st

er

WESTFÄLISCHE
WILHELMS-UNIVERSITÄT
MÜNSTER Übung zur Vorlesung Wissenschaftliches Rechnen — SS 2012 2 /21

Organisatorisches

I Ausgabe der Übungszettel jeweils Dienstags
I Erster Übungszettel am 17.04.

I Abgabe Dienstags, pünktlich 10:00 Uhr, Briefkasten 89
I Abgabe in festen Zweiergruppen (jetzt Partnersuche)

I Schriftliche Abgabe, Code zusätzlich per e-mail
I Code muss kompilieren, sonst wird er nicht bewertet

I e-mail an sebastian.westerheide@uni-muenster.de

,
,

Sebastian Westerheide

liv
in

g
kn

ow
le

dg
e

W
W

U
M

ün
st

er

WESTFÄLISCHE
WILHELMS-UNIVERSITÄT
MÜNSTER Übung zur Vorlesung Wissenschaftliches Rechnen — SS 2012 2 /21

Organisatorisches

I Ausgabe der Übungszettel jeweils Dienstags
I Erster Übungszettel am 17.04.

I Abgabe Dienstags, pünktlich 10:00 Uhr, Briefkasten 89
I Abgabe in festen Zweiergruppen (jetzt Partnersuche)

I Schriftliche Abgabe, Code zusätzlich per e-mail
I Code muss kompilieren, sonst wird er nicht bewertet

I e-mail an sebastian.westerheide@uni-muenster.de

,
,

Sebastian Westerheide

liv
in

g
kn

ow
le

dg
e

W
W

U
M

ün
st

er

WESTFÄLISCHE
WILHELMS-UNIVERSITÄT
MÜNSTER Übung zur Vorlesung Wissenschaftliches Rechnen — SS 2012 2 /21

Organisatorisches

I Ausgabe der Übungszettel jeweils Dienstags
I Erster Übungszettel am 17.04.

I Abgabe Dienstags, pünktlich 10:00 Uhr, Briefkasten 89
I Abgabe in festen Zweiergruppen (jetzt Partnersuche)

I Schriftliche Abgabe, Code zusätzlich per e-mail
I Code muss kompilieren, sonst wird er nicht bewertet

I e-mail an sebastian.westerheide@uni-muenster.de

,
,

Sebastian Westerheide

liv
in

g
kn

ow
le

dg
e

W
W

U
M

ün
st

er

WESTFÄLISCHE
WILHELMS-UNIVERSITÄT
MÜNSTER Übung zur Vorlesung Wissenschaftliches Rechnen — SS 2012 2 /21

Organisatorisches

I Ausgabe der Übungszettel jeweils Dienstags
I Erster Übungszettel am 17.04.

I Abgabe Dienstags, pünktlich 10:00 Uhr, Briefkasten 89
I Abgabe in festen Zweiergruppen (jetzt Partnersuche)

I Schriftliche Abgabe, Code zusätzlich per e-mail
I Code muss kompilieren, sonst wird er nicht bewertet

I e-mail an sebastian.westerheide@uni-muenster.de

,
,

Sebastian Westerheide

liv
in

g
kn

ow
le

dg
e

W
W

U
M

ün
st

er

WESTFÄLISCHE
WILHELMS-UNIVERSITÄT
MÜNSTER Übung zur Vorlesung Wissenschaftliches Rechnen — SS 2012 3 /21

Eingliederung C++
Klassifikation höherer Programmiersprachen nach Paradigmen:

I Deklarative Programmiersprachen (funktionale und logische P.)

I Imperative Programmiersprachen
I Grundidee: Programm bewirkt Speichertransformation
I Rein prozedurale Programmiersprachen

z.B. C, Fortran, Pascal, Basic, Cobol, Algol, . . . und Matlab

I Objektorientierte Programmiersprachen
z.B. C++, Java, C#, Eiffel, Smalltalk, . . . und neuerdings auch Matlab

C++:
I Imperative Programmiersprache
I Hybrider Ansatz:

Prozedurale und objektorientierte Programmierung möglich

,
,

Sebastian Westerheide

liv
in

g
kn

ow
le

dg
e

W
W

U
M

ün
st

er

WESTFÄLISCHE
WILHELMS-UNIVERSITÄT
MÜNSTER Übung zur Vorlesung Wissenschaftliches Rechnen — SS 2012 3 /21

Eingliederung C++
Klassifikation höherer Programmiersprachen nach Paradigmen:

I Deklarative Programmiersprachen (funktionale und logische P.)

I Imperative Programmiersprachen
I Grundidee: Programm bewirkt Speichertransformation
I Rein prozedurale Programmiersprachen

z.B. C, Fortran, Pascal, Basic, Cobol, Algol, . . . und Matlab

I Objektorientierte Programmiersprachen
z.B. C++, Java, C#, Eiffel, Smalltalk, . . . und neuerdings auch Matlab

C++:
I Imperative Programmiersprache
I Hybrider Ansatz:

Prozedurale und objektorientierte Programmierung möglich

,
,

Sebastian Westerheide

liv
in

g
kn

ow
le

dg
e

W
W

U
M

ün
st

er

WESTFÄLISCHE
WILHELMS-UNIVERSITÄT
MÜNSTER Übung zur Vorlesung Wissenschaftliches Rechnen — SS 2012 3 /21

Eingliederung C++
Klassifikation höherer Programmiersprachen nach Paradigmen:

I Deklarative Programmiersprachen (funktionale und logische P.)

I Imperative Programmiersprachen
I Grundidee: Programm bewirkt Speichertransformation
I Rein prozedurale Programmiersprachen

z.B. C, Fortran, Pascal, Basic, Cobol, Algol, . . . und Matlab

I Objektorientierte Programmiersprachen
z.B. C++, Java, C#, Eiffel, Smalltalk, . . . und neuerdings auch Matlab

C++:
I Imperative Programmiersprache
I Hybrider Ansatz:

Prozedurale und objektorientierte Programmierung möglich
,
,

Sebastian Westerheide

liv
in

g
kn

ow
le

dg
e

W
W

U
M

ün
st

er

WESTFÄLISCHE
WILHELMS-UNIVERSITÄT
MÜNSTER Übung zur Vorlesung Wissenschaftliches Rechnen — SS 2012 4 /21

Überblick über die ersten beiden Übungsstunden

Heute:
I Auffrischung zur prozeduralen Programmierung in C++

I Grundlegende Syntax
I Basisdatentypen
I Wichtige Operatoren
I Kontrollstrukturen
I Prozeduren
I Wertparameter vs. Referenzparameter,

Pointer und Referenzen

Nächste Woche:
I Auffrischung zur objektorientierten Programmierung in C++

,
,

Sebastian Westerheide

liv
in

g
kn

ow
le

dg
e

W
W

U
M

ün
st

er

WESTFÄLISCHE
WILHELMS-UNIVERSITÄT
MÜNSTER Übung zur Vorlesung Wissenschaftliches Rechnen — SS 2012 5 /21

Grundlegende Syntax

I Syntax für Anweisungen: <Anweisung> ;

I Blöcke durch geschweifte Klammern: { ... }

I Zeilenkommentar: // Kommentar

I Blockkommentare: /∗ Potentiell mehrzeiliger Kommentar ∗/

i n c l u d e < iost ream >
2

// H a u p t r o u t i n e
4 i n t main ()

{
6 // Ausgeben des Grusses

std : : cout < < " H a l l o Welt ! " < < s td : : endl ;
8 // Programm beenden

r e t u r n 0;
10 }

,
,

Sebastian Westerheide

liv
in

g
kn

ow
le

dg
e

W
W

U
M

ün
st

er

WESTFÄLISCHE
WILHELMS-UNIVERSITÄT
MÜNSTER Übung zur Vorlesung Wissenschaftliches Rechnen — SS 2012 5 /21

Grundlegende Syntax

I Syntax für Anweisungen: <Anweisung> ;

I Blöcke durch geschweifte Klammern: { ... }

I Zeilenkommentar: // Kommentar

I Blockkommentare: /∗ Potentiell mehrzeiliger Kommentar ∗/

i n c l u d e < iost ream >
2

// H a u p t r o u t i n e
4 i n t main ()

{
6 // Ausgeben des Grusses

std : : cout < < " H a l l o Welt ! " < < s td : : endl ;
8 // Programm beenden

r e t u r n 0;
10 }

,
,

Sebastian Westerheide

liv
in

g
kn

ow
le

dg
e

W
W

U
M

ün
st

er

WESTFÄLISCHE
WILHELMS-UNIVERSITÄT
MÜNSTER Übung zur Vorlesung Wissenschaftliches Rechnen — SS 2012 5 /21

Grundlegende Syntax

I Syntax für Anweisungen: <Anweisung> ;

I Blöcke durch geschweifte Klammern: { ... }

I Zeilenkommentar: // Kommentar

I Blockkommentare: /∗ Potentiell mehrzeiliger Kommentar ∗/

i n c l u d e < iost ream >
2

// H a u p t r o u t i n e
4 i n t main ()

{
6 // Ausgeben des Grusses

std : : cout < < " H a l l o Welt ! " < < s td : : endl ;
8 // Programm beenden

r e t u r n 0;
10 }

,
,

Sebastian Westerheide

liv
in

g
kn

ow
le

dg
e

W
W

U
M

ün
st

er

WESTFÄLISCHE
WILHELMS-UNIVERSITÄT
MÜNSTER Übung zur Vorlesung Wissenschaftliches Rechnen — SS 2012 6 /21

Basisdatentypen

Name Wertebereich Genauigkeit
bool false (0) bis true (1)

(signed) char -128 bis 127
unsigned char 0 bis 255
(signed) short int -32.768 bis 32.767

unsigned short int 0 bis 65.535
(signed) (long) int -2.147.483.648 bis 2.147.483.647

unsigned (long) int 0 bis 4.294.967.295
float 3,4E-38 bis 3,4E+38 8 Stellen
double 1,7E-308 bis 1,7E+308 16 Stellen

I Repräsentation von Booleschen Zuständen, Zeichen,
ganzen Zahlen und reellen Zahlen in Fließkommadarstellung

I unsigned short int i = 13; int j = −45000; j+= i ; float eps; eps = 1E−10;

char ch = ’A’ ; ch++; // ch wird ’B’

bool bedingung = true; bool bed2 = (j > eps); // bed2 wird false

,
,

Sebastian Westerheide

liv
in

g
kn

ow
le

dg
e

W
W

U
M

ün
st

er

WESTFÄLISCHE
WILHELMS-UNIVERSITÄT
MÜNSTER Übung zur Vorlesung Wissenschaftliches Rechnen — SS 2012 6 /21

Basisdatentypen

Name Wertebereich Genauigkeit
bool false (0) bis true (1)

(signed) char -128 bis 127
unsigned char 0 bis 255
(signed) short int -32.768 bis 32.767

unsigned short int 0 bis 65.535
(signed) (long) int -2.147.483.648 bis 2.147.483.647

unsigned (long) int 0 bis 4.294.967.295
float 3,4E-38 bis 3,4E+38 8 Stellen
double 1,7E-308 bis 1,7E+308 16 Stellen

I Repräsentation von Booleschen Zuständen, Zeichen,
ganzen Zahlen und reellen Zahlen in Fließkommadarstellung

I unsigned short int i = 13; int j = −45000; j+= i ; float eps; eps = 1E−10;

char ch = ’A’ ; ch++; // ch wird ’B’

bool bedingung = true; bool bed2 = (j > eps); // bed2 wird false

,
,

Sebastian Westerheide

liv
in

g
kn

ow
le

dg
e

W
W

U
M

ün
st

er

WESTFÄLISCHE
WILHELMS-UNIVERSITÄT
MÜNSTER Übung zur Vorlesung Wissenschaftliches Rechnen — SS 2012 6 /21

Basisdatentypen

Name Wertebereich Genauigkeit
bool false (0) bis true (1)

(signed) char -128 bis 127
unsigned char 0 bis 255
(signed) short int -32.768 bis 32.767

unsigned short int 0 bis 65.535
(signed) (long) int -2.147.483.648 bis 2.147.483.647

unsigned (long) int 0 bis 4.294.967.295
float 3,4E-38 bis 3,4E+38 8 Stellen
double 1,7E-308 bis 1,7E+308 16 Stellen

I Repräsentation von Booleschen Zuständen, Zeichen,
ganzen Zahlen und reellen Zahlen in Fließkommadarstellung

I unsigned short int i = 13; int j = −45000; j+= i ; float eps; eps = 1E−10;

char ch = ’A’ ; ch++; // ch wird ’B’

bool bedingung = true; bool bed2 = (j > eps); // bed2 wird false

,
,

Sebastian Westerheide

liv
in

g
kn

ow
le

dg
e

W
W

U
M

ün
st

er

WESTFÄLISCHE
WILHELMS-UNIVERSITÄT
MÜNSTER Übung zur Vorlesung Wissenschaftliches Rechnen — SS 2012 6 /21

Basisdatentypen

Name Wertebereich Genauigkeit
bool false (0) bis true (1)

(signed) char -128 bis 127
unsigned char 0 bis 255
(signed) short int -32.768 bis 32.767

unsigned short int 0 bis 65.535
(signed) (long) int -2.147.483.648 bis 2.147.483.647

unsigned (long) int 0 bis 4.294.967.295
float 3,4E-38 bis 3,4E+38 8 Stellen
double 1,7E-308 bis 1,7E+308 16 Stellen

I Repräsentation von Booleschen Zuständen, Zeichen,
ganzen Zahlen und reellen Zahlen in Fließkommadarstellung

I unsigned short int i = 13; int j = −45000; j+= i ; float eps; eps = 1E−10;

char ch = ’A’ ; ch++; // ch wird ’B’

bool bedingung = true; bool bed2 = (j > eps); // bed2 wird false

,
,

Sebastian Westerheide

liv
in

g
kn

ow
le

dg
e

W
W

U
M

ün
st

er

WESTFÄLISCHE
WILHELMS-UNIVERSITÄT
MÜNSTER Übung zur Vorlesung Wissenschaftliches Rechnen — SS 2012 7 /21

Wichtige Operatoren (1/2):

I Arithmetische Operatoren für zwei Zahlen a und b

I a += b Kurzform für a = a + b
I a −= b Kurzform für a = a − b
I a ∗= b Kurzform für a = a ∗ b
I a /= b Kurzform für a = a / b
I a %= b Kurzform für a = a % b (nur für ganze Zahlen)

I a++ a inkrementieren (a = a + 1)
I a−− a dekrementieren (a = a − 1)

,
,

Sebastian Westerheide

liv
in

g
kn

ow
le

dg
e

W
W

U
M

ün
st

er

WESTFÄLISCHE
WILHELMS-UNIVERSITÄT
MÜNSTER Übung zur Vorlesung Wissenschaftliches Rechnen — SS 2012 8 /21

Wichtige Operatoren (2/2):

I Vergleichsoperatoren (relationale Operatoren)
zum Vergleich von zwei Zahlen a und b

I a == b Ist a gleich b?
I a != b Ist a ungleich b?
I a < b Ist a kleiner als b?
I a > b Ist a größer als b?
I a <= b Ist a kleiner oder gleich b?
I a >= b Ist a größer oder gleich b?

I Boolesche Operatoren zur Verknüpfung von Booleschen
Variablen oder Ausdrücken a und b

I !a bzw. not a Ist a falsch?
I a && b bzw. a and b Sind a und b wahr?
I a || b bzw. a or b Ist a oder b wahr?

,
,

Sebastian Westerheide

liv
in

g
kn

ow
le

dg
e

W
W

U
M

ün
st

er

WESTFÄLISCHE
WILHELMS-UNIVERSITÄT
MÜNSTER Übung zur Vorlesung Wissenschaftliches Rechnen — SS 2012 8 /21

Wichtige Operatoren (2/2):

I Vergleichsoperatoren (relationale Operatoren)
zum Vergleich von zwei Zahlen a und b

I a == b Ist a gleich b?
I a != b Ist a ungleich b?
I a < b Ist a kleiner als b?
I a > b Ist a größer als b?
I a <= b Ist a kleiner oder gleich b?
I a >= b Ist a größer oder gleich b?

I Boolesche Operatoren zur Verknüpfung von Booleschen
Variablen oder Ausdrücken a und b

I !a bzw. not a Ist a falsch?
I a && b bzw. a and b Sind a und b wahr?
I a || b bzw. a or b Ist a oder b wahr?

,
,

Sebastian Westerheide

liv
in

g
kn

ow
le

dg
e

W
W

U
M

ün
st

er

WESTFÄLISCHE
WILHELMS-UNIVERSITÄT
MÜNSTER Übung zur Vorlesung Wissenschaftliches Rechnen — SS 2012 9 /21

Kontrollstrukturen

I Mit Kontrollstrukturen kann der Programmablauf in
Abhängigkeit vom Wert einer oder mehreren Variablen
gesteuert werden

I Es gibt folgende Möglichkeiten in C++:
I Auswahlanweisungen:

I Bedingte Anweisung: if-else - Anweisung
I Fallunterscheidung: switch - Anweisung

I Schleifen (Iterationsanweisungen):
I Kopfgesteuerte Schleife: while - Schleife
I Fußgesteuerte Schleife: do-while - Schleife
I Zählschleife: for - Schleife

,
,

Sebastian Westerheide

liv
in

g
kn

ow
le

dg
e

W
W

U
M

ün
st

er

WESTFÄLISCHE
WILHELMS-UNIVERSITÄT
MÜNSTER Übung zur Vorlesung Wissenschaftliches Rechnen — SS 2012 9 /21

Kontrollstrukturen

I Mit Kontrollstrukturen kann der Programmablauf in
Abhängigkeit vom Wert einer oder mehreren Variablen
gesteuert werden

I Es gibt folgende Möglichkeiten in C++:
I Auswahlanweisungen:

I Bedingte Anweisung: if-else - Anweisung
I Fallunterscheidung: switch - Anweisung

I Schleifen (Iterationsanweisungen):
I Kopfgesteuerte Schleife: while - Schleife
I Fußgesteuerte Schleife: do-while - Schleife
I Zählschleife: for - Schleife

,
,

Sebastian Westerheide

liv
in

g
kn

ow
le

dg
e

W
W

U
M

ün
st

er

WESTFÄLISCHE
WILHELMS-UNIVERSITÄT
MÜNSTER Übung zur Vorlesung Wissenschaftliches Rechnen — SS 2012 10 /21

Bedingte Anweisung

I if (< Bedingung>) {< Anweisung> }

I if (< Bedingung>) {< Anweisung> } else {< Anweisung> }

Bedingung

Anweisung

ja

nein

Bedingung

Anweisung

ja

Anweisung

nein

I <Anweisung> kann einen Block von Anweisungen enthalten

,
,

Sebastian Westerheide

liv
in

g
kn

ow
le

dg
e

W
W

U
M

ün
st

er

WESTFÄLISCHE
WILHELMS-UNIVERSITÄT
MÜNSTER Übung zur Vorlesung Wissenschaftliches Rechnen — SS 2012 10 /21

Bedingte Anweisung

I if (< Bedingung>) {< Anweisung> }

I if (< Bedingung>) {< Anweisung> } else {< Anweisung> }

Bedingung

Anweisung

ja

nein
Bedingung

Anweisung

ja

Anweisung

nein

I <Anweisung> kann einen Block von Anweisungen enthalten

,
,

Sebastian Westerheide

liv
in

g
kn

ow
le

dg
e

W
W

U
M

ün
st

er

WESTFÄLISCHE
WILHELMS-UNIVERSITÄT
MÜNSTER Übung zur Vorlesung Wissenschaftliches Rechnen — SS 2012 10 /21

Bedingte Anweisung

I if (< Bedingung>) {< Anweisung> }

I if (< Bedingung>) {< Anweisung> } else {< Anweisung> }

Bedingung

Anweisung

ja

nein
Bedingung

Anweisung

ja

Anweisung

nein

I <Anweisung> kann einen Block von Anweisungen enthalten
,
,

Sebastian Westerheide

liv
in

g
kn

ow
le

dg
e

W
W

U
M

ün
st

er

WESTFÄLISCHE
WILHELMS-UNIVERSITÄT
MÜNSTER Übung zur Vorlesung Wissenschaftliches Rechnen — SS 2012 11 /21

Beispiel
i n c l u d e < iost ream >

2

i n t main ()
4 {

s td : : cout < < " Geben S ie e ine Zahl zwischen 5 und 10 e i n "
6 < < s td : : endl ;

8 // e i n l e s e n e i n e r Zahl
i n t z a h l ;

10 std : : c i n > > z a h l ;

12 // pruef en
i f (z a h l >= 5 && z a h l <= 1 0)

14 {
s td : : cout < < " Die Zahl i s t super " < < s td : : endl ;

16 }
e l s e

18 {
s td : : cout < < " Zahl zu k l e i n oder zu g r o s s " < < s td : : endl ;

20 }

22 r e t u r n 0;
}

,
,

Sebastian Westerheide

liv
in

g
kn

ow
le

dg
e

W
W

U
M

ün
st

er

WESTFÄLISCHE
WILHELMS-UNIVERSITÄT
MÜNSTER Übung zur Vorlesung Wissenschaftliches Rechnen — SS 2012 12 /21

Schleifen (1/2)

I Wiederholung bestimmter Anweisungen in Abhängigkeit einer
Bedingung

I Schleifenkopf (...), Schleifenrumpf { ... }

I while - Schleife:
I while (< Bedingung>) {< Anweisung>}
I Solange <Bedingung> erfüllt ist, führe <Anweisung> aus

I do-while - Schleife:
I do {< Anweisung>} while (< Bedingung>) ;
I Führe <Anweisung> aus, bis <Bedingung> nicht mehr erfüllt
I Überprüfung von <Bedingung> erst nach jedem Durchlauf

I Jeweils Endlosschleife, falls <Bedingung> nicht irgendwann durch
<Anweisung> zu false ausgewertet wird

,
,

Sebastian Westerheide

liv
in

g
kn

ow
le

dg
e

W
W

U
M

ün
st

er

WESTFÄLISCHE
WILHELMS-UNIVERSITÄT
MÜNSTER Übung zur Vorlesung Wissenschaftliches Rechnen — SS 2012 12 /21

Schleifen (1/2)

I Wiederholung bestimmter Anweisungen in Abhängigkeit einer
Bedingung

I Schleifenkopf (...), Schleifenrumpf { ... }

I while - Schleife:
I while (< Bedingung>) {< Anweisung>}
I Solange <Bedingung> erfüllt ist, führe <Anweisung> aus

I do-while - Schleife:
I do {< Anweisung>} while (< Bedingung>) ;
I Führe <Anweisung> aus, bis <Bedingung> nicht mehr erfüllt
I Überprüfung von <Bedingung> erst nach jedem Durchlauf

I Jeweils Endlosschleife, falls <Bedingung> nicht irgendwann durch
<Anweisung> zu false ausgewertet wird

,
,

Sebastian Westerheide

liv
in

g
kn

ow
le

dg
e

W
W

U
M

ün
st

er

WESTFÄLISCHE
WILHELMS-UNIVERSITÄT
MÜNSTER Übung zur Vorlesung Wissenschaftliches Rechnen — SS 2012 12 /21

Schleifen (1/2)

I Wiederholung bestimmter Anweisungen in Abhängigkeit einer
Bedingung

I Schleifenkopf (...), Schleifenrumpf { ... }

I while - Schleife:
I while (< Bedingung>) {< Anweisung>}
I Solange <Bedingung> erfüllt ist, führe <Anweisung> aus

I do-while - Schleife:
I do {< Anweisung>} while (< Bedingung>) ;
I Führe <Anweisung> aus, bis <Bedingung> nicht mehr erfüllt
I Überprüfung von <Bedingung> erst nach jedem Durchlauf

I Jeweils Endlosschleife, falls <Bedingung> nicht irgendwann durch
<Anweisung> zu false ausgewertet wird

,
,

Sebastian Westerheide

liv
in

g
kn

ow
le

dg
e

W
W

U
M

ün
st

er

WESTFÄLISCHE
WILHELMS-UNIVERSITÄT
MÜNSTER Übung zur Vorlesung Wissenschaftliches Rechnen — SS 2012 12 /21

Schleifen (1/2)

I Wiederholung bestimmter Anweisungen in Abhängigkeit einer
Bedingung

I Schleifenkopf (...), Schleifenrumpf { ... }

I while - Schleife:
I while (< Bedingung>) {< Anweisung>}
I Solange <Bedingung> erfüllt ist, führe <Anweisung> aus

I do-while - Schleife:
I do {< Anweisung>} while (< Bedingung>) ;
I Führe <Anweisung> aus, bis <Bedingung> nicht mehr erfüllt
I Überprüfung von <Bedingung> erst nach jedem Durchlauf

I Jeweils Endlosschleife, falls <Bedingung> nicht irgendwann durch
<Anweisung> zu false ausgewertet wird

,
,

Sebastian Westerheide

liv
in

g
kn

ow
le

dg
e

W
W

U
M

ün
st

er

WESTFÄLISCHE
WILHELMS-UNIVERSITÄT
MÜNSTER Übung zur Vorlesung Wissenschaftliches Rechnen — SS 2012 13 /21

Schleifen (2/2)

I for - Schleife:
I for (< Init > ; <Bedingung> ; < Reinit >) {< Anweisung>}
I < Init >

Anweisung, die einer Variable einen Anfangswert zuweist
I <Bedingung>

Solange true, wird <Anweisung> im Schleifenrumpf abgearbeitet
I < Reinit >

Legt fest, wie die Variable aus < Init > nach jedem
Schleifendurchlauf verändert wird

I Endlosschleife, falls <Bedingung> nicht irgendwann durch < Reinit >

oder <Anweisung> zu false ausgewertet wird

,
,

Sebastian Westerheide

liv
in

g
kn

ow
le

dg
e

W
W

U
M

ün
st

er

WESTFÄLISCHE
WILHELMS-UNIVERSITÄT
MÜNSTER Übung zur Vorlesung Wissenschaftliches Rechnen — SS 2012 13 /21

Schleifen (2/2)

I for - Schleife:
I for (< Init > ; <Bedingung> ; < Reinit >) {< Anweisung>}
I < Init >

Anweisung, die einer Variable einen Anfangswert zuweist
I <Bedingung>

Solange true, wird <Anweisung> im Schleifenrumpf abgearbeitet
I < Reinit >

Legt fest, wie die Variable aus < Init > nach jedem
Schleifendurchlauf verändert wird

I Endlosschleife, falls <Bedingung> nicht irgendwann durch < Reinit >

oder <Anweisung> zu false ausgewertet wird

,
,

Sebastian Westerheide

liv
in

g
kn

ow
le

dg
e

W
W

U
M

ün
st

er

WESTFÄLISCHE
WILHELMS-UNIVERSITÄT
MÜNSTER Übung zur Vorlesung Wissenschaftliches Rechnen — SS 2012 14 /21

Beispiel — Summe von 1 bis 10

I while - Schleife

i n t summe = 0;
2 i n t i = 0;

w h i l e (i <= 1 0) { summe = summe + i ; i ++; }

I do-while - Schleife

1 i n t summe = 0;
i n t i = 0;

3 do { summe = summe + i ; i ++; } w h i l e (i <= 1 0) ;

I for - Schleife

1 i n t summe = 0;
f o r (i n t i =0; i < = 1 0 ; i ++) { summe = summe + i ; }

,
,

Sebastian Westerheide

liv
in

g
kn

ow
le

dg
e

W
W

U
M

ün
st

er

WESTFÄLISCHE
WILHELMS-UNIVERSITÄT
MÜNSTER Übung zur Vorlesung Wissenschaftliches Rechnen — SS 2012 15 /21

Prozeduren

I Prozeduren (Funktionen) sind Unterprogramme, d.h. Blöcke,
die Teilprobleme einer größeren Aufgabe lösen

I Jede Prozedur hat einen eindeutigen Namen, mit dessen Hilfe
sie aufgerufen werden kann

I Prozeduren können einen Wert an das aufrufende Programm
zurückgeben und selbst weitere Prozeduren aufgerufen

Vorteile:
I Wiederkehrende Berechnungen müssen nur einmal

programmiert werden
I Bessere Lesbarkeit durch Aufteilen des Programms

,
,

Sebastian Westerheide

liv
in

g
kn

ow
le

dg
e

W
W

U
M

ün
st

er

WESTFÄLISCHE
WILHELMS-UNIVERSITÄT
MÜNSTER Übung zur Vorlesung Wissenschaftliches Rechnen — SS 2012 15 /21

Prozeduren

I Prozeduren (Funktionen) sind Unterprogramme, d.h. Blöcke,
die Teilprobleme einer größeren Aufgabe lösen

I Jede Prozedur hat einen eindeutigen Namen, mit dessen Hilfe
sie aufgerufen werden kann

I Prozeduren können einen Wert an das aufrufende Programm
zurückgeben und selbst weitere Prozeduren aufgerufen

Vorteile:
I Wiederkehrende Berechnungen müssen nur einmal

programmiert werden
I Bessere Lesbarkeit durch Aufteilen des Programms

,
,

Sebastian Westerheide

liv
in

g
kn

ow
le

dg
e

W
W

U
M

ün
st

er

WESTFÄLISCHE
WILHELMS-UNIVERSITÄT
MÜNSTER Übung zur Vorlesung Wissenschaftliches Rechnen — SS 2012 16 /21

Beispiel

i n c l u d e < iost ream >
2

// P r o t o t y p f u e r d i e Prozedur quadrat
4 // quadrat (x) berechnet x∗x

double quadrat (double x) ;
6

// Implement ierung der Prozedur quadrat
8 double quadrat (double x)

{
10 r e t u r n x∗x ;

}
12

i n t main ()
14 {

f o r (i n t i =0; i < 1 0 ; i ++)
16 {

s td : : cout < < quadrat (i) < < s td : : endl ;
18 }

}

,
,

Sebastian Westerheide

liv
in

g
kn

ow
le

dg
e

W
W

U
M

ün
st

er

WESTFÄLISCHE
WILHELMS-UNIVERSITÄT
MÜNSTER Übung zur Vorlesung Wissenschaftliches Rechnen — SS 2012 17 /21

Syntax

I Rueckgabetyp FktName (Parameter1, Parameter2, ..., ParameterN) {< Anweisung>}

I Prozeduren ohne Rückgabewert durch Rückgabetyp void

I return <Wert>; beendet die Prozedur und gibt <Wert> an den
übergeordneten Programmteil zurück

I Parameter bestehen jeweils aus dem Datentyp und einem
Variablennamen

Prozedurprototyp:
I Mit einem Semikolon abgeschlossener Kopf der Prozedur
I Implementierung in anschließender Prozedurdefinition
I Zweck: Bevor eine Prozedur verwendet werden kann, muss sie

deklariert sein

,
,

Sebastian Westerheide

liv
in

g
kn

ow
le

dg
e

W
W

U
M

ün
st

er

WESTFÄLISCHE
WILHELMS-UNIVERSITÄT
MÜNSTER Übung zur Vorlesung Wissenschaftliches Rechnen — SS 2012 17 /21

Syntax

I Rueckgabetyp FktName (Parameter1, Parameter2, ..., ParameterN) {< Anweisung>}

I Prozeduren ohne Rückgabewert durch Rückgabetyp void

I return <Wert>; beendet die Prozedur und gibt <Wert> an den
übergeordneten Programmteil zurück

I Parameter bestehen jeweils aus dem Datentyp und einem
Variablennamen

Prozedurprototyp:
I Mit einem Semikolon abgeschlossener Kopf der Prozedur
I Implementierung in anschließender Prozedurdefinition
I Zweck: Bevor eine Prozedur verwendet werden kann, muss sie

deklariert sein
,
,

Sebastian Westerheide

liv
in

g
kn

ow
le

dg
e

W
W

U
M

ün
st

er

WESTFÄLISCHE
WILHELMS-UNIVERSITÄT
MÜNSTER Übung zur Vorlesung Wissenschaftliches Rechnen — SS 2012 18 /21

Wertparameter vs. Referenzparameter
Wertparameter (call-by-value):

I Parameter werden kopiert und sind lokale Variablen
I Variablen in der Prozedur (lokale Variablen) sind ausserhalb

der Prozedur nicht sichtbar
I Der Gültigkeitsbereich (Skope) ist auf die Prozedur beschränkt
I Die Variablen des aufrufenden Programmteils bleiben

unverändert

Referenzparameter (call-by-reference):
I Parameter sind Referenzen

I Eine Referenz zeigt auf den gleichen Speicher wie die
ursprüngliche Variable

I Wenn ich eine Referenz ändere, ändert sich auch der Wert der
Variablen im aufrufenden Programmteil

I Eine Referenz auf eine Variable vom Typ type wird mit type&

benannt, z.B. int & n

,
,

Sebastian Westerheide

liv
in

g
kn

ow
le

dg
e

W
W

U
M

ün
st

er

WESTFÄLISCHE
WILHELMS-UNIVERSITÄT
MÜNSTER Übung zur Vorlesung Wissenschaftliches Rechnen — SS 2012 18 /21

Wertparameter vs. Referenzparameter
Wertparameter (call-by-value):

I Parameter werden kopiert und sind lokale Variablen
I Variablen in der Prozedur (lokale Variablen) sind ausserhalb

der Prozedur nicht sichtbar
I Der Gültigkeitsbereich (Skope) ist auf die Prozedur beschränkt
I Die Variablen des aufrufenden Programmteils bleiben

unverändert

Referenzparameter (call-by-reference):
I Parameter sind Referenzen

I Eine Referenz zeigt auf den gleichen Speicher wie die
ursprüngliche Variable

I Wenn ich eine Referenz ändere, ändert sich auch der Wert der
Variablen im aufrufenden Programmteil

I Eine Referenz auf eine Variable vom Typ type wird mit type&

benannt, z.B. int & n ,
,

Sebastian Westerheide

liv
in

g
kn

ow
le

dg
e

W
W

U
M

ün
st

er

WESTFÄLISCHE
WILHELMS-UNIVERSITÄT
MÜNSTER Übung zur Vorlesung Wissenschaftliches Rechnen — SS 2012 19 /21

Beispiel — Wertparameter

i n c l u d e < iost ream >
2

// d e k l a r a t i o n und d e f i n i t i o n gemeinsam
4 vo i d swap (i n t x , i n t y)

{
6 i n t temp = x ;

x = y ;
8 y = temp ;

}
10

i n t main ()
12 {

i n t x = 5 , y = 1 0 ;
14 swap (x , y) ;

s td : : cout < < " Nach der Vertauschung x=" < < x < < " , y= " < < y
< < s td : : endl ;

16 r e t u r n 0;
}

I Ausgabe:

Nach der Vertauschung x=5, y=10

,
,

Sebastian Westerheide

liv
in

g
kn

ow
le

dg
e

W
W

U
M

ün
st

er

WESTFÄLISCHE
WILHELMS-UNIVERSITÄT
MÜNSTER Übung zur Vorlesung Wissenschaftliches Rechnen — SS 2012 19 /21

Beispiel — Wertparameter

i n c l u d e < iost ream >
2

// d e k l a r a t i o n und d e f i n i t i o n gemeinsam
4 vo i d swap (i n t x , i n t y)

{
6 i n t temp = x ;

x = y ;
8 y = temp ;

}
10

i n t main ()
12 {

i n t x = 5 , y = 1 0 ;
14 swap (x , y) ;

s td : : cout < < " Nach der Vertauschung x=" < < x < < " , y= " < < y
< < s td : : endl ;

16 r e t u r n 0;
}

I Ausgabe: Nach der Vertauschung x=5, y=10

,
,

Sebastian Westerheide

liv
in

g
kn

ow
le

dg
e

W
W

U
M

ün
st

er

WESTFÄLISCHE
WILHELMS-UNIVERSITÄT
MÜNSTER Übung zur Vorlesung Wissenschaftliches Rechnen — SS 2012 20 /21

Lösung 1 — Referenzparameter

i n c l u d e < iost ream >
2

// d e k l a r a t i o n und d e f i n i t i o n gemeinsam
4 vo i d swap (i n t & rx , i n t & r y)

{
6 i n t temp = r x ;

r x = r y ;
8 r y = temp ;

}
10

i n t main ()
12 {

i n t x = 5 , y = 1 0 ;
14 swap (x , y) ;

s td : : cout < < " Nach der Vertauschung x=" < < x < < " , y= " < < y
< < s td : : endl ;

16 r e t u r n 0;
}

I Ausgabe: Nach der Vertauschung x=10, y=5

,
,

Sebastian Westerheide

liv
in

g
kn

ow
le

dg
e

W
W

U
M

ün
st

er

WESTFÄLISCHE
WILHELMS-UNIVERSITÄT
MÜNSTER Übung zur Vorlesung Wissenschaftliches Rechnen — SS 2012 21 /21

Lösung 2 — Pointer

i n c l u d e < iost ream >
2

// d e k l a r a t i o n und d e f i n i t i o n gemeinsam
4 vo i d swap (i n t ∗ px , i n t ∗ py)

{
6 i n t temp = ∗px ;

∗px = ∗py ;
8 ∗py = temp ;

}
10

i n t main ()
12 {

i n t x = 5 , y = 1 0 ;
14 swap(& x ,& y) ;

s td : : cout < < " Nach der Vertauschung x=" < < x < < " , y= " < < y
< < s td : : endl ;

16 r e t u r n 0;
}

I Ausgabe: Nach der Vertauschung x=10, y=5

,
,

Sebastian Westerheide

