WESTFALISCHE
WILHELMS-UNIVERSITAT
MUNSTER

Ubung zur Vorlesung Wissenschaftliches -
Rechnen — Sommersemester 2012

Auffrischung zur Programmierung in C++, 1. Teil

living.knowledge

U . April
WWU Mnster Sebastian Westerheide 11-Aprii 2012

-
— — \\/ESTFALISCHE

WILHELMS-UNIVERSITAT . . .
MOUNSTER Ubung zur Vorlesung Wissenschaftliches Rechnen — SS 2012 2

Organisatorisches

» Ausgabe der Ubungszettel jeweils Dienstags
» Erster Ubungszettel am 17.04.

Sebastian Westerheide

-
— — \\/ESTFALISCHE

WILHELMS-UNIVERSITAT . . .
MOUNSTER Ubung zur Vorlesung Wissenschaftliches Rechnen — SS 2012 2

Organisatorisches

v

Ausgabe der Ubungszettel jeweils Dienstags

v

Erster Ubungszettel am 17.04.

v

Abgabe Dienstags, piinktlich 10:00 Uhr, Briefkasten 89

v

Abgabe in festen Zweiergruppen (jetzt Partnersuche)

Sebastian Westerheide

-
— — \\/ESTFALISCHE

WILHELMS-UNIVERSITAT . . .
MOUNSTER Ubung zur Vorlesung Wissenschaftliches Rechnen — SS 2012 2

Organisatorisches

v

Ausgabe der Ubungszettel jeweils Dienstags

v

Erster Ubungszettel am 17.04.

v

Abgabe Dienstags, piinktlich 10:00 Uhr, Briefkasten 89

v

Abgabe in festen Zweiergruppen (jetzt Partnersuche)

v

Schriftliche Abgabe, Code zusatzlich per e-mail

v

Code muss kompilieren, sonst wird er nicht bewertet

Sebastian Westerheide

-
—— m— \VESTFALISCHE

WILHELMS-UNIVERSITAT . . .

MOUNSTER Ubung zur Vorlesung Wissenschaftliches Rechnen — SS 2012 2

Organisatorisches

» Ausgabe der Ubungszettel jeweils Dienstags
» Erster Ubungszettel am 17.04.

» Abgabe Dienstags, piinktlich 10:00 Uhr, Briefkasten 89
» Abgabe in festen Zweiergruppen (jetzt Partnersuche)
» Schriftliche Abgabe, Code zusatzlich per e-mail

» Code muss kompilieren, sonst wird er nicht bewertet

» e-mail an sebastian.westerheide@uni-muenster.de

Sebastian Westerheide

-
— — \\/ESTFALISCHE

WILHELMS-UNIVERSITAT . . .
MOUNSTER Ubung zur Vorlesung Wissenschaftliches Rechnen — SS 2012 3

Eingliederung C++

Klassifikation hoherer Programmiersprachen nach Paradigmen:
» Deklarative Programmiersprachen (funktionale und logische P)

Sebastian Westerheide

-
— — \\/ESTFALISCHE

WILHELMS-UNIVERSITAT . . .
MOUNSTER Ubung zur Vorlesung Wissenschaftliches Rechnen — SS 2012 3

Eingliederung C++

Klassifikation hoherer Programmiersprachen nach Paradigmen:
» Deklarative Programmiersprachen (funktionale und logische P)
» Imperative Programmiersprachen
» Grundidee: Programm bewirkt Speichertransformation
» Rein prozedurale Programmiersprachen
z.B. C, Fortran, Pascal, Basic, Cobol, Algol, . .. und Matlab

» Objektorientierte Programmiersprachen
z.B. C++, Java, C#, Eiffel, Smalltalk, . .. und neuerdings auch Matlab

Sebastian Westerheide

-
— — \\/ESTFALISCHE

WILHELMS-UNIVERSITAT . . .
MOUNSTER Ubung zur Vorlesung Wissenschaftliches Rechnen — SS 2012 3

Eingliederung C++

Klassifikation hoherer Programmiersprachen nach Paradigmen:

» Deklarative Programmiersprachen (funktionale und logische P)
» Imperative Programmiersprachen
» Grundidee: Programm bewirkt Speichertransformation

» Rein prozedurale Programmiersprachen
z.B. C, Fortran, Pascal, Basic, Cobol, Algol, . .. und Matlab

» Objektorientierte Programmiersprachen
z.B. C++, Java, C#, Eiffel, Smalltalk, . .. und neuerdings auch Matlab

C++:

» Imperative Programmiersprache

» Hybrider Ansatz:
Prozedurale und objektorientierte Programmierung moglich

Sebastian Westerheide

-
— — \\/ESTFALISCHE

WILHELMS-UNIVERSITAT . . .
MOUNSTER Ubung zur Vorlesung Wissenschaftliches Rechnen — SS 2012 4

Uberblick iiber die ersten beiden Ubungsstunden

Heute:
» Auffrischung zur prozeduralen Programmierung in C++

» Grundlegende Syntax
Basisdatentypen

Wichtige Operatoren
Kontrollstrukturen

Prozeduren

Wertparameter vs. Referenzparameter,
Pointer und Referenzen

vV vy VY VvYy

Ndchste Woche:
» Auffrischung zur objektorientierten Programmierung in C++

Sebastian Westerheide

-
— — \\/ESTFALISCHE

WILHELMS-UNIVERSITAT . . .
MOUNSTER Ubung zur Vorlesung Wissenschaftliches Rechnen — SS 2012 5

Grundlegende Syntax

» Syntax flir Anweisungen: <Anweisung ;
» Bldcke durch geschweifte Klammern: { .. }

Sebastian Westerheide

—— m— \VESTFALISCHE
WILHELMS-UNIVERSITAT . . .
MOUNSTER Ubung zur Vorlesung Wissenschaftliches Rechnen — SS 2012 5

Grundlegende Syntax

» Syntax flir Anweisungen: <Anweisung ;
» Bldcke durch geschweifte Klammern: { .. }

#include <iostream>»

// Hauptroutine

int main()

{

6 // Ausgeben des Grusses

std::cout << "Hallo Welt!" << std::endl;
8 // Programm beenden

return o;

ES

10|}

Sebastian Westerheide

-

—— m— \VESTFALISCHE

WILHELMS-UNIVERSITAT . . .

MOUNSTER Ubung zur Vorlesung Wissenschaftliches Rechnen — SS 2012

Grundlegende Syntax

» Syntax flir Anweisungen: <Anweisung ;

» Bldcke durch geschweifte Klammern: { .. }

» Zeilenkommentar: // Kommentar

» Blockkommentare: /* Potentiell mehrzeiliger Kommentar x*/

#include <iostream>»

// Hauptroutine

int main()

{

6 // Ausgeben des Grusses

std::cout << "Hallo Welt!" << std::endl;
8 // Programm beenden

return o;

ES

10|}

Sebastian Westerheide

-
— — \\/ESTFALISCHE

WILHELMS-UNIVERSITAT . . .
MOUNSTER Ubung zur Vorlesung Wissenschaftliches Rechnen — SS 2012 6

Basisdatentypen
Name Wertebereich Genauigkeit
bool false (o) bis true (1)
(signed) char -128 bis 127
unsigned char 0 bis 255
(signed) short int -32.768 bis 32.767
unsigned short int 0 bis 65.535
(signed) (long) int | -2.147.483.648 bis 2.147.483.647
unsigned (long) int 0 bis 4.294.967.295
float 3,4E-38 bis 3,4E+38 8 Stellen
double 1,7E-308 bis 1,7E+308 16 Stellen

» Reprdsentation von Booleschen Zustanden, Zeichen,
ganzen Zahlen und reellen Zahlen in FlieBkommadarstellung

Sebastian Westerheide

-
— — \\/ESTFALISCHE

WILHELMS-UNIVERSITAT . . .
MOUNSTER Ubung zur Vorlesung Wissenschaftliches Rechnen — SS 2012 6

Basisdatentypen
Name Wertebereich Genauigkeit
bool false (o) bis true (1)
(signed) char -128 bis 127
unsigned char 0 bis 255
(signed) short int -32.768 bis 32.767
unsigned short int 0 bis 65.535
(signed) (long) int | -2.147.483.648 bis 2.147.483.647
unsigned (long) int 0 bis 4.294.967.295
float 3,4E-38 bis 3,4E+38 8 Stellen
double 1,7E-308 bis 1,7E+308 16 Stellen

» Reprdsentation von Booleschen Zustanden, Zeichen,
ganzen Zahlen und reellen Zahlen in FlieBkommadarstellung

> unsigned short int i =13; int j = —45000; j+=i; float eps; eps=1E—10;

Sebastian Westerheide

-
— — \\/ESTFALISCHE
WILHELMS-UNIVERSITAT

MOUNSTER Ubung zur Vorlesung Wissenschaftliches Rechnen — SS 2012 6
Basisdatentypen
Name Wertebereich Genauigkeit
bool false (o) bis true (1)
(signed) char -128 bis 127
unsigned char 0 bis 255
(signed) short int -32.768 bis 32.767
unsigned short int 0 bis 65.535
(signed) (long) int | -2.147.483.648 bis 2.147.483.647
unsigned (long) int 0 bis 4.294.967.295
float 3,4E-38 bis 3,4E+38 8 Stellen
double 1,7E-308 bis 1,7E+308 16 Stellen

» Reprdsentation von Booleschen Zustanden, Zeichen,
ganzen Zahlen und reellen Zahlen in FlieBkommadarstellung
> unsigned short int i =13; int j = —45000; j+=i; float eps; eps=1E—10;

char ch =’A’; ch++; // ch wird 'B’

Sebastian Westerheide

-
— — \\/ESTFALISCHE
WILHELMS-UNIVERSITAT

MOUNSTER Ubung zur Vorlesung Wissenschaftliches Rechnen — SS 2012 6
Basisdatentypen
Name Wertebereich Genauigkeit
bool false (o) bis true (1)
(signed) char -128 bis 127
unsigned char 0 bis 255
(signed) short int -32.768 bis 32.767
unsigned short int 0 bis 65.535
(signed) (long) int | -2.147.483.648 bis 2.147.483.647
unsigned (long) int 0 bis 4.294.967.295
float 3,4E-38 bis 3,4E+38 8 Stellen
double 1,7E-308 bis 1,7E+308 16 Stellen

» Reprdsentation von Booleschen Zustanden, Zeichen,
ganzen Zahlen und reellen Zahlen in FlieBkommadarstellung
> unsigned short int i =13; int j = —45000; j+=i; float eps; eps=1E—10;
char ch =’A’; ch++; // ch wird 'B’
bool bedingung = true; bool bed2=(j » eps); // bed2 wird false

Sebastian Westerheide

-
— — \\/ESTFALISCHE

WILHELMS-UNIVERSITAT . . .
MOUNSTER Ubung zur Vorlesung Wissenschaftliches Rechnen — SS 2012

Wichtige Operatoren (1/2):

» Arithmetische Operatoren fiir zwei Zahlen a und b

> a+=b Kurzform fiir a=a+b

> a—=b Kurzform fiir a=a —b

> ax=b Kurzform fiir a=a b

» a/=b Kurzformfir a=a/ b

> a%=b Kurzform fiir a =a %b (nur fiir ganze Zahlen)
> ar+ a inkrementieren (@a=a+1)

> a—— a dekrementieren (@a=a —1)

Sebastian Westerheide

-
— — \\/ESTFALISCHE

WILHELMS-UNIVERSITAT . . .
MOUNSTER Ubung zur Vorlesung Wissenschaftliches Rechnen — SS 2012

Wichtige Operatoren (2/2):

» Vergleichsoperatoren (relationale Operatoren)
zum Vergleich von zwei Zahlen a und b

> a== Ist a gleich b?

> al=b Ist a ungleich b?

> ac<h Ist a kleiner als b?

> ash Ist a grofier als b?

> a<=bh Ist a kleiner oder gleich b?
> ar=bh Ist a groRer oder gleich b?

8

Sebastian Westerheide

-
— — \\/ESTFALISCHE
WILHELMS-UNIVERSITAT

Wichtige Operatoren (2/2):

» Vergleichsoperatoren (relationale Operatoren)
zum Vergleich von zwei Zahlen a und b

> a== Ist a gleich b?

> al=b Ist a ungleich b?

> ac<h Ist a kleiner als b?

> ash Ist a grofier als b?

> a<=bh Ist a kleiner oder gleich b?
> ar=bh Ist a groRer oder gleich b?

» Boolesche Operatoren zur Verkniipfung von Booleschen
Variablen oder Ausdriicken a und b

> la bzw. nota Ist a falsch?
> a&&b bzw. aandb Sind a und b wahr?
»al b bzw. aorb Ist a oder b wahr?

MOUNSTER Ubung zur Vorlesung Wissenschaftliches Rechnen — SS 2012

8

Sebastian Westerheide

-
— — \\/ESTFALISCHE

WILHELMS-UNIVERSITAT . . .
MOUNSTER Ubung zur Vorlesung Wissenschaftliches Rechnen — SS 2012 9

Kontrollstrukturen

» Mit Kontrollstrukturen kann der Programmablauf in
Abhangigkeit vom Wert einer oder mehreren Variablen
gesteuert werden

Sebastian Westerheide

-
—— m— \VESTFALISCHE
WILHELMS-UNIVERSITAT . . .
MOUNSTER Ubung zur Vorlesung Wissenschaftliches Rechnen — SS 2012

Kontrollstrukturen

» Mit Kontrollstrukturen kann der Programmablauf in
Abhangigkeit vom Wert einer oder mehreren Variablen
gesteuert werden

» Es gibt folgende Moglichkeiten in C++:
» Auswahlanweisungen:
> Bedingte Anweisung: if-else - Anweisung
> Fallunterscheidung: switch - Anweisung
» Schleifen (Iterationsanweisungen):

> Kopfgesteuerte Schleife: while - Schleife
> Fufigesteuerte Schleife: do-while - Schleife
> Zdhlschleife: for - Schleife

Sebastian Westerheide

-
— — \\/ESTFALISCHE

WILHELMS-UNIVERSITAT . . .
MOUNSTER Ubung zur Vorlesung Wissenschaftliches Rechnen — SS 2012 10

Bedingte Anweisung

» if («Bedingung>) {<Anweisung>}

nein

Bedingung

Sebastian Westerheide

-
— — \\/ESTFALISCHE

WILHELMS-UNIVERSITAT . . .
MOUNSTER Ubung zur Vorlesung Wissenschaftliches Rechnen — SS 2012

Bedingte Anweisung

» if («Bedingung>) {<Anweisung>}

> if («<Bedingung>) {<Anweisung>} else {<Anweisung>}

Bedingung nein Bedingung &

Anweisung Anweisung

DI

\

Sebastian Westerheide

-
— — \\/ESTFALISCHE

WILHELMS-UNIVERSITAT . . .
MOUNSTER Ubung zur Vorlesung Wissenschaftliches Rechnen — SS 2012

Bedingte Anweisung

» if («Bedingung>) {<Anweisung>}

> if («<Bedingung>) {<Anweisung>} else {<Anweisung>}

Bedingung nein Bedingung &

Anweisung Anweisung

DI

\

> Anweisung> kann einen Block von Anweisungen enthalten

Sebastian Westerheide

-
— — \\/ESTFALISCHE
WILHELMS-UNIVERSITAT

Beispiel

22

MOUNSTER

Ubung zur Vorlesung Wissenschaftliches Rechnen — SS 2012

#include

int main()

{

std::cout <«
<<

// einlesen
int zahl;
std::cin »»

/] pruefen
if (zahl »=
{

}

else

{
}

std :: cout

std :: cout

return o;

<iostream»

"Geben Sie eine Zahl zwischen 5 und 10 ein"
std :: endl;

einer Zahl

zahl;

5 & zahl <= 10)

<< "Die Zahl ist super" << std::endl;

<< "Zahl zu klein oder zu gross" << std::endl;

11

Sebastian Westerheide

-
— — \\/ESTFALISCHE

WILHELMS-UNIVERSITAT . . .
MOUNSTER Ubung zur Vorlesung Wissenschaftliches Rechnen — SS 2012 12

Schleifen (1/2)

» Wiederholung bestimmter Anweisungen in Abhdngigkeit einer
Bedingung
» Schleifenkopf (..), Schleifenrumpf { .. }

Sebastian Westerheide

-
— — \\/ESTFALISCHE

WILHELMS-UNIVERSITAT . . .
MOUNSTER Ubung zur Vorlesung Wissenschaftliches Rechnen — SS 2012

Schleifen (1/2)

» Wiederholung bestimmter Anweisungen in Abhdngigkeit einer
Bedingung

» Schleifenkopf (..), Schleifenrumpf { .. }

» while - Schleife:

> while (<Bedingung) {<Anweisung>}
» Solange «<Bedingung> erfiillt ist, flihre <Anweisung> aus

Sebastian Westerheide

-
— — \\/ESTFALISCHE

WILHELMS-UNIVERSITAT . . .
MOUNSTER Ubung zur Vorlesung Wissenschaftliches Rechnen — SS 2012 12

Schleifen (1/2)

» Wiederholung bestimmter Anweisungen in Abhdngigkeit einer
Bedingung
» Schleifenkopf (..), Schleifenrumpf { .. }

» while - Schleife:
> while (<Bedingung) {<Anweisung>}
» Solange «<Bedingung> erfiillt ist, flihre <Anweisung> aus
» do-while - Schleife:
> do {<Anweisung>} while (<Bedingung) ;
» Fiihre <Anweisung> aus, bis <Bedingung> nicht mehr erfillt
» Uberpriifung von <Bedingung> erst nach jedem Durchlauf

Sebastian Westerheide

-
— — \\/ESTFALISCHE

WILHELMS-UNIVERSITAT . . .
MOUNSTER Ubung zur Vorlesung Wissenschaftliches Rechnen — SS 2012

Schleifen (1/2)

>

Wiederholung bestimmter Anweisungen in Abhangigkeit einer
Bedingung

Schleifenkopf (..), Schleifenrumpf ¢ ... }

while - Schleife:

> while (<Bedingung) {<Anweisung>}

» Solange «<Bedingung> erfiillt ist, flihre <Anweisung> aus
do-while - Schleife:

> do {<Anweisung>} while (<Bedingung) ;

» Fiihre <Anweisung> aus, bis <Bedingung> nicht mehr erfillt

» Uberpriifung von <Bedingung> erst nach jedem Durchlauf

Jeweils Endlosschleife, falls <Bedingung> nicht irgendwann durch
<Anweisung> ZU false ausgewertet wird

Sebastian Westerheide

— — \\/ESTFALISCHE
WILHELMS-UNIVERSITAT
MOUNSTER

Schleifen (2/2)

Ubung zur Vorlesung Wissenschaftliches Rechnen — SS 2012 13

» for - Schleife:
> for (< Init> ; <Bedingung>; <Reinit») {<Anweisung}
> < Init>
Anweisung, die einer Variable einen Anfangswert zuweist
> <Bedingung>
Solange true, wird <Anweisung> im Schleifenrumpf abgearbeitet
> <Reinit»

Legt fest, wie die Variable aus «<mit> nach jedem
Schleifendurchlauf verandert wird

Sebastian Westerheide

— — \\/ESTFALISCHE
WILHELMS-UNIVERSITAT
MOUNSTER

Schleifen (2/2)

Ubung zur Vorlesung Wissenschaftliches Rechnen — SS 2012 13

» for - Schleife:
> for (< Init> ; <Bedingung>; <Reinit») {<Anweisung}
> < Init>
Anweisung, die einer Variable einen Anfangswert zuweist
> <Bedingung>

Solange true, wird <Anweisung> im Schleifenrumpf abgearbeitet
> <Reinit»

Legt fest, wie die Variable aus «<mit> nach jedem
Schleifendurchlauf verandert wird

» Endlosschleife, falls <Bedingung> nicht irgendwann durch «<Reinit>
oder «Anweisung> ZU false ausgewertet wird

Sebastian Westerheide

-

—— m— \VESTFALISCHE

WILHELMS-UNIVERSITAT . . .

MOUNSTER Ubung zur Vorlesung Wissenschaftliches Rechnen — SS 2012

Beispiel — Summe von 1 bis 10

» while - Schleife

int summe = o;
int i = o;
while (i <= 10) { summe = summe + i; i++; }

N

» do-while - Schleife

1| int summe = o;
int i = o;
s5|do { summe = summe + i; i++; } while (i <= 10);

» for - Schleife

-

int summe = o;
for (int i=o0; i<=10; i++) { summe = summe + i; }

Sebastian Westerheide

-
— — \\/ESTFALISCHE

WILHELMS-UNIVERSITAT . . .
MOUNSTER Ubung zur Vorlesung Wissenschaftliches Rechnen — SS 2012 15

Prozeduren

» Prozeduren (Funktionen) sind Unterprogramme, d.h. Blocke,
die Teilprobleme einer gréReren Aufgabe l6sen

» Jede Prozedur hat einen eindeutigen Namen, mit dessen Hilfe
sie aufgerufen werden kann

» Prozeduren kénnen einen Wert an das aufrufende Programm
zuriickgeben und selbst weitere Prozeduren aufgerufen

Sebastian Westerheide

-
— — \\/ESTFALISCHE

WILHELMS-UNIVERSITAT . . .
MOUNSTER Ubung zur Vorlesung Wissenschaftliches Rechnen — SS 2012 15

Prozeduren

» Prozeduren (Funktionen) sind Unterprogramme, d.h. Blocke,
die Teilprobleme einer gréReren Aufgabe l6sen

» Jede Prozedur hat einen eindeutigen Namen, mit dessen Hilfe
sie aufgerufen werden kann

» Prozeduren kénnen einen Wert an das aufrufende Programm
zuriickgeben und selbst weitere Prozeduren aufgerufen

Vorteile:
» Wiederkehrende Berechnungen miissen nur einmal
programmiert werden
» Bessere Lesbarkeit durch Aufteilen des Programms

Sebastian Westerheide

-
— — \\/ESTFALISCHE

WILHELMS-UNIVERSITAT

Beispiel

~

©

MOUNSTER Ubung zur Vorlesung Wissenschaftliches Rechnen — SS 2012

#include <iostream»

// Prototyp fuer die Prozedur quadrat

// quadrat(x) berechnet xxx
double quadrat (double x);

// Implementierung der Prozedur quadrat

double quadrat (double x)

{
return xxx;
}
int main ()
{
for (int i=0; i¢10; i++)
{
std::cout << quadrat(i) << std::endl;
}
}

16

Sebastian Westerheide

-
— — \\/ESTFALISCHE

WILHELMS-UNIVERSITAT . . .
MOUNSTER Ubung zur Vorlesung Wissenschaftliches Rechnen — SS 2012

Syntax

\4

v

v

v

Rueckgabetyp FktName (Parameter1, Parameter2, ..., ParameterN) {< Anweisung>}
Prozeduren ohne Riickgabewert durch Riickgabetyp void
retun <Wert>; beendet die Prozedur und gibt «wer> an den
ibergeordneten Programmteil zuriick

Parameter bestehen jeweils aus dem Datentyp und einem
Variablennamen

Sebastian Westerheide

-

—— m— \VESTFALISCHE

WILHELMS-UNIVERSITAT . . .

MOUNSTER Ubung zur Vorlesung Wissenschaftliches Rechnen — SS 2012

Syntax

> Rueckgabetyp FktName (Parameter1, Parameter2, ..., ParameterN) {<Anweisung»}
» Prozeduren ohne Riickgabewert durch Riickgabetyp void

> return «Wert; beendet die Prozedur und gibt «werb an den
ibergeordneten Programmteil zuriick

» Parameter bestehen jeweils aus dem Datentyp und einem
Variablennamen

Prozedurprototyp:
» Mit einem Semikolon abgeschlossener Kopf der Prozedur
» Implementierung in anschlieBender Prozedurdefinition

» Zweck: Bevor eine Prozedur verwendet werden kann, muss sie
deklariert sein

Sebastian Westerheide

— — \\/ESTFALISCHE
WILHELMS-UNIVERSITAT

MOUNSTER Ubung zur Vorlesung Wissenschaftliches Rechnen — SS 2012 18

Wertparameter vs. Referenzparameter

Wertparameter (call-by-value):

» Parameter werden kopiert und sind lokale Variablen
» Variablen in der Prozedur (lokale Variablen) sind ausserhalb
der Prozedur nicht sichtbar
» Der Giiltigkeitsbereich (Skope) ist auf die Prozedur beschrankt
» Die Variablen des aufrufenden Programmteils bleiben
unverandert

Sebastian Westerheide

-
—— m— \VESTFALISCHE
WILHELMS-UNIVERSITAT . . .
MOUNSTER Ubung zur Vorlesung Wissenschaftliches Rechnen — SS 2012

Wertparameter vs. Referenzparameter

Wertparameter (call-by-value):
» Parameter werden kopiert und sind lokale Variablen
» Variablen in der Prozedur (lokale Variablen) sind ausserhalb
der Prozedur nicht sichtbar
» Der Giiltigkeitsbereich (Skope) ist auf die Prozedur beschrankt
» Die Variablen des aufrufenden Programmteils bleiben
unverandert

Referenzparameter (call-by-reference):
» Parameter sind Referenzen

» Eine Referenz zeigt auf den gleichen Speicher wie die
urspriingliche Variable

» Wenn ich eine Referenz dandere, dndert sich auch der Wert der
Variablen im aufrufenden Programmteil

» Eine Referenz auf eine Variable vom Typ type wird mit type&
benannt, z.B. int&n

18

Sebastian Westerheide

-
— — \\/ESTFALISCHE

WILHELMS-UNIVERSITAT

Beispiel — Wertparameter

MOUNSTER Ubung zur Vorlesung Wissenschaftliches Rechnen — SS 2012

#include <iostream >

// deklaration und definition gemeinsam
void swap (int x, int y)
{

int temp = x;

X =Y;

y = temp;

}

int main()
{
int x =5, y = 10;
swap (x,y);
std::cout << "Nach der Vertauschung x=" << x <«
<¢ std::endl;
return o;

}

» Ausgabe:

19

Sebastian Westerheide

-
— — \\/ESTFALISCHE

WILHELMS-UNIVERSITAT

Beispiel — Wertparameter

MOUNSTER Ubung zur Vorlesung Wissenschaftliches Rechnen — SS 2012

#include <iostream >

// deklaration und definition gemeinsam
void swap (int x, int y)
{

int temp = x;

X =Y;

y = temp;

}

int main()
{
int x =5, y = 10;
swap (x,y);
std::cout << "Nach der Vertauschung x=" << x <«
<¢ std::endl;
return o;

}

» Ausgabe: Nach der Vertauschung x=5, y=10

19

Sebastian Westerheide

-
— — \\/ESTFALISCHE
WILHELMS-UNIVERSITAT

Losung 1 — Referenzparameter

MOUNSTER Ubung zur Vorlesung Wissenschaftliches Rechnen — SS 2012

#include <iostream >

// deklaration und definition gemeinsam
4 void swap (int& rx, int& ry)

{
6 int temp = rx;
rx = ry;

8 ry = temp;

}

int main ()

12| {

int x =5, y = 10;

| swap(x,y);

std::cout << "Nach der Vertauschung x=" <¢ x
<« std::endl;

16 return o;

}

» Ausgabe: Nach der Vertauschung x=10, y=5

20

Sebastian Westerheide

-
— — \\/ESTFALISCHE

WILHELMS-UNIVERSITAT

MOUNSTER

Ubung zur Vorlesung Wissenschaftliches Rechnen — SS 2012

Losung 2 — Pointer

#include <iostream>

4| void swap (intx px,

{
6 int temp = *px;
*PX = *py;
8 *py = temp;
}
10
int main ()
12| {
int x =5, y = 10;

14 swap (&x,&y) ;
std :: cout <«

<< std::endl;
6 return o;

}

// deklaration und definition gemeinsam

"Nach der Vertauschung x="

intx py)

CCx ot y= "oy

> Ausgabe: Nach der Vertauschung x=10, y=5

21

Sebastian Westerheide

