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Aufgabe 1 (Turing-Modell mit Operator-Splitting) (9 Punkte)

In der Vorlesung haben Sie das Turing-Modell
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mit Neumann Randbedingungen
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und Anfangsbedingungen
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kennengelernt. Das partielle Differentialgleichungssystem (1) ldsst sich mittels ¢ := (a, b)”
und durch additives Splitting des elliptischen Differentialoperators auf der rechten Seite
ausdriicken als
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mit einem Operator f fiir den diffusiven und einem Operator g fiir den reaktiven Anteil.

(a) Laden Sie sich das Programmskelett zum Turing-Modell von der Vorlesungshome-
page und machen Sie sich damit vertraut.

(b) Implementieren das Turing-Modell unter Verwendung des Programmskeletts fiir
ein rechteckiges Gebiet Q = [0,d]* C R? in C++. Verwenden Sie dabei das aus der
Vorlesung bekannte Strang-Splitting.



e Betrachten Sie die beiden Gleichungen % = f(c) und % = g(c) im Sinne des

ot
Splittings zunéchst separat

e Verwenden Sie die Linienmethode zur Entkopplung des jeweiligen Orts- und
Zeitproblems

e Diskretisieren Sie das Ortsproblem mit dem zellzentrierten Finite-Volumen-
Verfahren in 2D; gehen Sie dabei komponentenweise vor; benutzen Sie wie in
der Vorlesung ein regulares, aquidistantes Gitter auf 2, welches aus rechtecki-
gen Zellen besteht; die Datei turing_grid.hh stellt dafiir einige Infrastruktur
bereit

e Verwenden Sie beim diffusiven Anteil 2¢ = f(c) fiir die Zeitdiskretisierung das
explizite Euler-Verfahren

e Verwenden Sie beim reaktiven Anteil % = g¢g(c) fir die Zeitdiskretisierung
das implizite Euler-Verfahren mit dem Newton-Verfahren als Gleichungsloser;
bedienen Sie sich dabei der Musterlosung von Blatt 4, Aufgabe 2

e Achten Sie auf eine gute schriftliche Dokumentation, so dass Thre Ansétze
nachvollziehbar sind; dies wird Ihnen auch bei Thren eigenen Uberlegungen
weiterhelfen

(c) Testen Sie Thre Implementierung mit den im Programmskelett gewéhlten Anfangs-
werten ag und by an dem konkreten Modell

g1(a,b) == /e (wo(b) a + wi(a)b—a?),  wp(b) := (1.0 —mb)/(1.0 — mb + &),

g2(a,b) := wo(b) a — b, wy(a) == p(q —a)/(q+a),
. D, = 1.0, Dy =100, e =22, e = 0.02,
m
' ¢=00002, p=11,  m=0.000T.

Dieses Modell beschreibt chemische Experimente fiir die Belousov-Zhabotinsky Re-
aktion, die in [Bénsagi 2011] présentiert werden. Die Experimente fiihren zu einer
(eigentlich dreidimensionalen) Musterbildung, welche mit Hilfe eines Tomographen
beobachtet werden kann.

(d) Das explizite Euler-Verfahren ist nicht uneingeschrankt stabil. Es muss die CFL-Be-
dingung eingehalten werden, welche eine Beschrankung der Zeitschrittweite mit sich
bringt. Wahlen Sie diese in (c) geeignet. Optimal wére es, wenn Sie die Zeitschritt-
weite in jedem Zeitschritt basierend auf den aktuellen diffusiven Fliissen wéhlen.

Aufgabe 2 (Vorbereitendes) (3 Punkte)
Sei A € R™", Zeigen Sie die Aquivalenz folgender Aussagen:
(a) A ist invertierbar und (A™');; > 0 fir alle 4,5 € {1,...,n},

(b) Fir Vektoren v,w € R™ gilt komponentenweise Av > Aw = v > w.



