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Aufgabe 1 (Turing-Modell mit Operator-Splitting) (9 Punkte)

In der Vorlesung haben Sie das Turing-Modell

∂a

∂t
= Da∆a+ g1(a, b)

∂b

∂t
= Db∆b+ g2(a, b)

 in Ω× (0, T ] (1)

mit Neumann Randbedingungen

∇a · n = 0
∇b · n = 0

}
auf ∂Ω× [0, T ] (2)

und Anfangsbedingungen

a(0, ·) = a0

b(0, ·) = b0

}
in Ω (3)

kennengelernt. Das partielle Differentialgleichungssystem (1) lässt sich mittels c := (a, b)T

und durch additives Splitting des elliptischen Differentialoperators auf der rechten Seite
ausdrücken als

∂c

∂t
= f(c) + g(c)

mit einem Operator f für den diffusiven und einem Operator g für den reaktiven Anteil.

(a) Laden Sie sich das Programmskelett zum Turing-Modell von der Vorlesungshome-
page und machen Sie sich damit vertraut.

(b) Implementieren das Turing-Modell unter Verwendung des Programmskeletts für
ein rechteckiges Gebiet Ω = [0, d]2 ⊂ R2 in C++. Verwenden Sie dabei das aus der
Vorlesung bekannte Strang-Splitting.



• Betrachten Sie die beiden Gleichungen ∂c
∂t

= f(c) und ∂c
∂t

= g(c) im Sinne des
Splittings zunächst separat
• Verwenden Sie die Linienmethode zur Entkopplung des jeweiligen Orts- und

Zeitproblems
• Diskretisieren Sie das Ortsproblem mit dem zellzentrierten Finite-Volumen-

Verfahren in 2D; gehen Sie dabei komponentenweise vor; benutzen Sie wie in
der Vorlesung ein reguläres, äquidistantes Gitter auf Ω, welches aus rechtecki-
gen Zellen besteht; die Datei turing_grid.hh stellt dafür einige Infrastruktur
bereit
• Verwenden Sie beim diffusiven Anteil ∂c

∂t
= f(c) für die Zeitdiskretisierung das

explizite Euler-Verfahren
• Verwenden Sie beim reaktiven Anteil ∂c

∂t
= g(c) für die Zeitdiskretisierung

das implizite Euler-Verfahren mit dem Newton-Verfahren als Gleichungslöser;
bedienen Sie sich dabei der Musterlösung von Blatt 4, Aufgabe 2
• Achten Sie auf eine gute schriftliche Dokumentation, so dass Ihre Ansätze

nachvollziehbar sind; dies wird Ihnen auch bei Ihren eigenen Überlegungen
weiterhelfen

(c) Testen Sie Ihre Implementierung mit den im Programmskelett gewählten Anfangs-
werten a0 und b0 an dem konkreten Modell

g1(a, b) := 1/ε0
(
w0(b) a+ w1(a) b− a2

)
, w0(b) := (1.0−mb)/(1.0−mb+ ε1),

g2(a, b) := w0(b) a− b, w1(a) := p(q − a)/(q + a),

mit
Da = 1.0, Db = 10.0, ε0 = 2.2, ε1 = 0.02,
q = 0.0002, p = 1.1, m = 0.0007.

Dieses Modell beschreibt chemische Experimente für die Belousov-Zhabotinsky Re-
aktion, die in [Bánsági 2011] präsentiert werden. Die Experimente führen zu einer
(eigentlich dreidimensionalen) Musterbildung, welche mit Hilfe eines Tomographen
beobachtet werden kann.

(d) Das explizite Euler-Verfahren ist nicht uneingeschränkt stabil. Es muss die CFL-Be-
dingung eingehalten werden, welche eine Beschränkung der Zeitschrittweite mit sich
bringt. Wählen Sie diese in (c) geeignet. Optimal wäre es, wenn Sie die Zeitschritt-
weite in jedem Zeitschritt basierend auf den aktuellen diffusiven Flüssen wählen.

Aufgabe 2 (Vorbereitendes) (3 Punkte)

Sei A ∈ Rn×n. Zeigen Sie die Äquivalenz folgender Aussagen:

(a) A ist invertierbar und (A−1)i,j ≥ 0 für alle i, j ∈ {1, . . . , n},

(b) Für Vektoren v, w ∈ Rn gilt komponentenweise Av ≥ Aw ⇒ v ≥ w.


