
Institut für Numerische und Angewandte Mathematik 15.05.2012
FB Mathematik und Informatik der Universität Münster
Prof. Dr. Christian Engwer, Dipl. Math. Dipl. Inf. Sebastian Westerheide

Übung zur Vorlesung

Wissenschaftliches Rechnen
SS 2012 — Blatt 4

Abgabe: 22.05.2012, 10:00 Uhr, Briefkasten 89
Code zusätzlich per e-mail an sebastian.westerheide@uni-muenster.de

Aufgabe 1 (n-Körper-Problem aus Sicht des Schwerpunktsystems) (4 Punkte)

Wir betrachten erneut das n-Körper-Problem mit den Notationen aus der Vorlesung.
Der Schwerpunkt R der n Körper ist definiert durch

R := 1
M

N−1∑
i=0

miri mit M :=
N−1∑
i=0

mi,

seine Geschwindigkeit V ergibt sich durch

V := 1
M

N−1∑
i=0

mivi.

Zeigen Sie, dass sich R mit konstanter Geschwindigkeit bewegt.

Aufgabe 2 (Implizites Euler-Verfahren) (7 – 10 Punkte)

Gegeben sei ein System von n autonomen Differentialgleichungen 1. Ordnung

y′ = f(y) auf [0, T], y =


y(1)

...
y(n)

 , f : Rn → Rn, T ∈ R+ (1)

und Anfangswerte y(0) ∈ Rn. Dieses Anfangswertproblem wollen wir mit dem impliziten
Euler-Verfahren

y0 := y(0),
yk+1 := yk + ∆t · f(yk+1), k = 0, 1, . . . (2)

lösen. Bislang haben Sie in der Übung nur explizite Verfahren kennengelernt. Im Ge-
gensatz zu expliziten Verfahren kommt die Approximation yk+1 ≈ y(tk+1) bei impliziten

Verfahren auch auf der rechten Seite der Iterationsvorschrift vor, d.h. es ist ein Glei-
chungssystem zu lösen. Beim betrachteten impliziten Euler-Verfahren ergibt sich aus (2)
das äquivalente, im Allgemeinen nichtlineare Gleichungssystem

Rk(yk+1) = 0 mit Rk : Rn → Rn, Rk(z) := z − yk −∆t · f(z).

Wir müssen also in jedem Schritt die Nullstelle der möglicherweise nichtlinearen, mehr-
dimensionalen Funktion Rk bestimmen. Falls diese differenzierbar ist und (auf ganz Rn)
eine invertierbare Jakobi-Matrix Jk(z) 6= 0 besitzt, können wir zu diesem Zweck das
mehrdimensionale Newton-Verfahren

xl+1 := xl −
(
Jk(xl)

)−1
Rk(xl), l = 0, 1, . . . (3)

verwenden.

(a) Implementieren Sie das implizite Euler-Verfahren für die Lösung der obigen Klasse
von Anfangswertproblemen. Benutzen Sie zur Lösung des Gleichungssystems das
Newton-Verfahren.

• Überlegen Sie sich, wie die Jakobi-Matrix von Rk mit der Jakobi-Matrix von
f zusammenhängt
• Benutzen Sie folgendes Interface VectorFunction für differenzierbare Funk-

tionen g : Rn → Rn

1 #i f n d e f VECTORFUNCTION_HH
#d e f i n e VECTORFUNCTION_HH

3
#i n c l u d e <vector >

5
/∗∗

7 ∗ I n t e r f a c e zur Repraesentat ion von d i f f e r e n z i e r b a r e n Funktionen
∗ g : R^n −−> R^n .

9 ∗/
c l a s s VectorFunction

11 {
p u b l i c :

13 typede f std : : vector <double> VectorType ;
typede f std : : vector <VectorType> MatrixType ;

15
// Rein v i r t u e l l e Methoden zum Auswerten der Funktion und i h r e r

17 // Jakobimatr ix
v i r t u a l void eva luate (const VectorType& x , VectorType& r e s u l t) const = 0 ;

19 v i r t u a l void eva luateJacob ian (const VectorType& x ,
MatrixType& jacob ian) const = 0 ;

21 } ;

23 #e n d i f

• Implementieren Sie die Iterationsvorschrift (2) als Prozedur
void implicit_euler_step (const VectorFunction::VectorType& y_k,

double dt, const VectorFunction& f
VectorFunction::VectorType& y_next);

• Implementieren Sie das Newton-Verfahren (3) als Prozedur
void newton_method (const VectorFunction::VectorType& x_0,

const VectorFunction& R, double eps,
VectorFunction::VectorType& solution);

• Beschränken Sie sich bei der Implemetierung des Newton-Verfahrens auf den
Fall n ∈ {1, 2, 3}, für den sich die Invertierung einer regulären n × n-Matrix
explizit hinschreiben lässt (siehe Lineare Algebra I); behandeln Sie den Fall
n > 3 mit einer Exception oder fangen Sie ihn mit einer Assertion ab
• Benutzen Sie zudem das Abbruchkriterium von Blatt 2 (Fehlerschranke eps)
• Verwenden Sie in jedem Schritt des impliziten Euler-Verfahrens den Startwert

x0 = yk für das Newton-Verfahren

(b) Testen Sie Ihre Implementierung an folgendem System, welches den diffusionslosen
Spezialfall des Gierer-Meinhardt-Modells aus der Vorlesung darstellt:

a′ = s
(

a2

b
+ ba

)
− raa,

b′ = sa2 − rbb− bb.

• Überlegen Sie sich, wie in diesem Fall die Funktion y und die rechte Seite f
aus (1) aussehen
• Leiten Sie vom Interface VectorFunction eine entsprechende Klasse für die

rechte Seite ab
• Verwenden Sie testweise die Parameter s = ra = rb = ba = bb = 1, die

Anfangswerte a(0) = 17 sowie b(0) = 42, die maximale Zeit T = 50 und die
Schrittweite ∆t = 0.01.
Hinweis: Diese Konfiguration ist ungetestet, es muss sich also nicht unbedingt

ein interessantes Ergebnis einstellen
• Plotten Sie die zeitliche Entwicklung der Konzentrationen a und b

(c) Da die Systemgröße n schon beim Kompilieren feststeht, ist es eigentlich nicht sinn-
voll mit einer dynamischen Datenstruktur wie std::vector zu arbeiten. Effizienter
ist es in diesem Fall, feldartige Datenstrukturen wie std::array zu benutzen (bzw.
std::tr1::array, falls der Compiler älter ist). Sie bekommen drei Bonuspunkte,
falls Sie statt des obigen Interfaces das folgende, Template-basierte Interface und
die dafür benötigten Prozedur-Signaturen zur Bearbeitung der Aufgabe verwenden:

1 #i f n d e f VECTORFUNCTION_HH
#d e f i n e VECTORFUNCTION_HH

3
#i n c l u d e <tr1 / array> // #i n c l u d e <array> in C++11

5
/∗∗

7 ∗ I n t e r f a c e zur Repraesentat ion von d i f f e r e n z i e r b a r e n Funktionen
∗ g : R^n −−> R^n .

9 ∗/
template <i n t n>

11 c l a s s VectorFunction
{

13 p u b l i c :
typede f std : : t r1 : : array<double , n> VectorType ;

15 typede f std : : t r1 : : array<VectorType , n> MatrixType ;

17 // Rein v i r t u e l l e Methoden zum Auswerten der Funktion und i h r e r
// Jakobimatr ix

19 v i r t u a l void eva luate (const VectorType& x , VectorType& r e s u l t) const = 0 ;
v i r t u a l void eva luateJacob ian (const VectorType& x ,

21 MatrixType& jacob ian) const = 0 ;
} ;

23
#e n d i f

