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Aufgabe 1 (n-Körper-Problem aus Sicht des Schwerpunktsystems) (4 Punkte)

Wir betrachten erneut das n-Körper-Problem mit den Notationen aus der Vorlesung.
Der Schwerpunkt R der n Körper ist definiert durch

R := 1
M

N−1∑
i=0

miri mit M :=
N−1∑
i=0

mi,

seine Geschwindigkeit V ergibt sich durch

V := 1
M

N−1∑
i=0

mivi.

Zeigen Sie, dass sich R mit konstanter Geschwindigkeit bewegt.

Aufgabe 2 (Implizites Euler-Verfahren) (7 – 10 Punkte)

Gegeben sei ein System von n autonomen Differentialgleichungen 1. Ordnung

y′ = f(y) auf [0, T ], y =


y(1)

...
y(n)

 , f : Rn → Rn, T ∈ R+ (1)

und Anfangswerte y(0) ∈ Rn. Dieses Anfangswertproblem wollen wir mit dem impliziten
Euler-Verfahren

y0 := y(0),
yk+1 := yk + ∆t · f(yk+1), k = 0, 1, . . . (2)

lösen. Bislang haben Sie in der Übung nur explizite Verfahren kennengelernt. Im Ge-
gensatz zu expliziten Verfahren kommt die Approximation yk+1 ≈ y(tk+1) bei impliziten



Verfahren auch auf der rechten Seite der Iterationsvorschrift vor, d.h. es ist ein Glei-
chungssystem zu lösen. Beim betrachteten impliziten Euler-Verfahren ergibt sich aus (2)
das äquivalente, im Allgemeinen nichtlineare Gleichungssystem

Rk(yk+1) = 0 mit Rk : Rn → Rn, Rk(z) := z − yk −∆t · f(z).

Wir müssen also in jedem Schritt die Nullstelle der möglicherweise nichtlinearen, mehr-
dimensionalen Funktion Rk bestimmen. Falls diese differenzierbar ist und (auf ganz Rn)
eine invertierbare Jakobi-Matrix Jk(z) 6= 0 besitzt, können wir zu diesem Zweck das
mehrdimensionale Newton-Verfahren

xl+1 := xl −
(
Jk(xl)

)−1
Rk(xl), l = 0, 1, . . . (3)

verwenden.

(a) Implementieren Sie das implizite Euler-Verfahren für die Lösung der obigen Klasse
von Anfangswertproblemen. Benutzen Sie zur Lösung des Gleichungssystems das
Newton-Verfahren.

• Überlegen Sie sich, wie die Jakobi-Matrix von Rk mit der Jakobi-Matrix von
f zusammenhängt
• Benutzen Sie folgendes Interface VectorFunction für differenzierbare Funk-

tionen g : Rn → Rn

1 #i f n d e f VECTORFUNCTION_HH
#d e f i n e VECTORFUNCTION_HH

3
#i n c l u d e <vector >

5
/∗∗

7 ∗ I n t e r f a c e zur Repraesentat ion von d i f f e r e n z i e r b a r e n Funktionen
∗ g : R^n −−> R^n .

9 ∗/
c l a s s VectorFunction

11 {
p u b l i c :

13 typede f std : : vector <double> VectorType ;
typede f std : : vector <VectorType> MatrixType ;

15
// Rein v i r t u e l l e Methoden zum Auswerten der Funktion und i h r e r

17 // Jakobimatr ix
v i r t u a l void eva luate ( const VectorType& x , VectorType& r e s u l t ) const = 0 ;

19 v i r t u a l void eva luateJacob ian ( const VectorType& x ,
MatrixType& jacob ian ) const = 0 ;

21 } ;

23 #e n d i f

• Implementieren Sie die Iterationsvorschrift (2) als Prozedur
void implicit_euler_step (const VectorFunction::VectorType& y_k,

double dt, const VectorFunction& f
VectorFunction::VectorType& y_next);

• Implementieren Sie das Newton-Verfahren (3) als Prozedur
void newton_method (const VectorFunction::VectorType& x_0,

const VectorFunction& R, double eps,
VectorFunction::VectorType& solution);



• Beschränken Sie sich bei der Implemetierung des Newton-Verfahrens auf den
Fall n ∈ {1, 2, 3}, für den sich die Invertierung einer regulären n × n-Matrix
explizit hinschreiben lässt (siehe Lineare Algebra I); behandeln Sie den Fall
n > 3 mit einer Exception oder fangen Sie ihn mit einer Assertion ab
• Benutzen Sie zudem das Abbruchkriterium von Blatt 2 (Fehlerschranke eps)
• Verwenden Sie in jedem Schritt des impliziten Euler-Verfahrens den Startwert

x0 = yk für das Newton-Verfahren

(b) Testen Sie Ihre Implementierung an folgendem System, welches den diffusionslosen
Spezialfall des Gierer-Meinhardt-Modells aus der Vorlesung darstellt:

a′ = s
(

a2

b
+ ba

)
− raa,

b′ = sa2 − rbb− bb.

• Überlegen Sie sich, wie in diesem Fall die Funktion y und die rechte Seite f
aus (1) aussehen
• Leiten Sie vom Interface VectorFunction eine entsprechende Klasse für die

rechte Seite ab
• Verwenden Sie testweise die Parameter s = ra = rb = ba = bb = 1, die

Anfangswerte a(0) = 17 sowie b(0) = 42, die maximale Zeit T = 50 und die
Schrittweite ∆t = 0.01.
Hinweis: Diese Konfiguration ist ungetestet, es muss sich also nicht unbedingt

ein interessantes Ergebnis einstellen
• Plotten Sie die zeitliche Entwicklung der Konzentrationen a und b

(c) Da die Systemgröße n schon beim Kompilieren feststeht, ist es eigentlich nicht sinn-
voll mit einer dynamischen Datenstruktur wie std::vector zu arbeiten. Effizienter
ist es in diesem Fall, feldartige Datenstrukturen wie std::array zu benutzen (bzw.
std::tr1::array, falls der Compiler älter ist). Sie bekommen drei Bonuspunkte,
falls Sie statt des obigen Interfaces das folgende, Template-basierte Interface und
die dafür benötigten Prozedur-Signaturen zur Bearbeitung der Aufgabe verwenden:

1 #i f n d e f VECTORFUNCTION_HH
#d e f i n e VECTORFUNCTION_HH

3
#i n c l u d e <tr1 / array> // #i n c l u d e <array> in C++11

5
/∗∗

7 ∗ I n t e r f a c e zur Repraesentat ion von d i f f e r e n z i e r b a r e n Funktionen
∗ g : R^n −−> R^n .

9 ∗/
template <i n t n>

11 c l a s s VectorFunction
{

13 p u b l i c :
typede f std : : t r1 : : array<double , n> VectorType ;

15 typede f std : : t r1 : : array<VectorType , n> MatrixType ;

17 // Rein v i r t u e l l e Methoden zum Auswerten der Funktion und i h r e r
// Jakobimatr ix

19 v i r t u a l void eva luate ( const VectorType& x , VectorType& r e s u l t ) const = 0 ;
v i r t u a l void eva luateJacob ian ( const VectorType& x ,

21 MatrixType& jacob ian ) const = 0 ;
} ;

23
#e n d i f


