Institut fir Numerische und Angewandte Mathematik 15.05.2012
FB Mathematik und Informatik der Universitat Miinster
Prof. Dr. Christian Engwer, Dipl. Math. Dipl. Inf. Sebastian Westerheide

Ubung zur Vorlesung

Wissenschaftliches Rechnen
SS 2012 — Blatt 4

Abgabe: 22.05.2012, 10:00 Uhr, Briefkasten 89
Code zusétzlich per e-mail an sebastian.westerheide@uni-muenster.de

Aufgabe 1 (n-Koérper-Problem aus Sicht des Schwerpunktsystems) (4 Punkte)

Wir betrachten erneut das n-Korper-Problem mit den Notationen aus der Vorlesung.
Der Schwerpunkt R der n Korper ist definiert durch

1 N-1 N-1
R:=— Z m;r; mit M = Z my,
M = i=0

seine Geschwindigkeit V' ergibt sich durch

1 N-1
V = 3 U5 .
i ; m;v
Zeigen Sie, dass sich R mit konstanter Geschwindigkeit bewegt.

Aufgabe 2 (Implizites Euler-Verfahren) (7 — 10 Punkte)
Gegeben sei ein System von n autonomen Differentialgleichungen 1. Ordnung
y(l)
y = f(y) auf 0,77, y=1| : |, f:R" = R", T e RY (1)

und Anfangswerte y(0) € R". Dieses Anfangswertproblem wollen wir mit dem impliziten
Euler-Verfahren

Yo = y(0)7
Yra1 = Yr + At f(ye1), k=0,1,... (2)

16sen. Bislang haben Sie in der Ubung nur explizite Verfahren kennengelernt. Im Ge-
gensatz zu expliziten Verfahren kommt die Approximation yy41 = y(tx11) bei impliziten

Verfahren auch auf der rechten Seite der Iterationsvorschrift vor, d.h. es ist ein Glei-
chungssystem zu losen. Beim betrachteten impliziten Euler-Verfahren ergibt sich aus (2)
das aquivalente, im Allgemeinen nichtlineare Gleichungssystem

Ri(yrs1) =0 mit Ry :R" = R", Ri(z) =2z —yp — At f(2).

Wir miissen also in jedem Schritt die Nullstelle der moglicherweise nichtlinearen, mehr-
dimensionalen Funktion Ry bestimmen. Falls diese differenzierbar ist und (auf ganz R™)
eine invertierbare Jakobi-Matrix Ji(z) # 0 besitzt, kénnen wir zu diesem Zweck das
mehrdimensionale Newton-Verfahren

-1
L1 = T — (Jk(ﬂfl)) Rk(.’ﬂl), l = 0, 1, e (3)
verwenden.

(a) Implementieren Sie das implizite Euler-Verfahren fiir die Losung der obigen Klasse
von Anfangswertproblemen. Benutzen Sie zur Losung des Gleichungssystems das
Newton-Verfahren.

e Uberlegen Sie sich, wie die Jakobi-Matrix von R mit der Jakobi-Matrix von
f zusammenhangt

e Benutzen Sie folgendes Interface VectorFunction fiir differenzierbare Funk-
tionen g : R" — R"

#ifndef VECTORFUNCTION HH
#define VECTORFUNCTION_HH

#include <vector>

EE

7| * Interface zur Repraesentation von differenzierbaren Funktionen
* g: R"n —> R™n.

ol =/

class VectorFunction

public:
13 typedef std::vector<double> VectorType;
typedef std::vector<VectorType> MatrixType;

// Rein virtuelle Methoden zum Auswerten der Funktion und ihrer
17 // Jakobimatrix
virtual void evaluate (const VectorType& x, VectorType& result) const = 0;
19 virtual void evaluateJacobian (const VectorType& x,
MatrixType& jacobian) const = 0;
21| }

3| #endif

e Implementieren Sie die Iterationsvorschrift (2) als Prozedur
void implicit_euler_step (const VectorFunction::VectorType& y_k,
double dt, const VectorFunction& f
VectorFunction: :VectorType& y_next);

e Implementieren Sie das Newton-Verfahren (3) als Prozedur
void newton_method (const VectorFunction::VectorType& x_O,
const VectorFunction& R, double eps,
VectorFunction: :VectorType& solution);

e Beschrinken Sie sich bei der Implemetierung des Newton-Verfahrens auf den
Fall n € {1,2, 3}, fir den sich die Invertierung einer reguléren n x n-Matrix
explizit hinschreiben ldsst (siehe Lineare Algebra I); behandeln Sie den Fall
n > 3 mit einer Exception oder fangen Sie ihn mit einer Assertion ab

e Benutzen Sie zudem das Abbruchkriterium von Blatt 2 (Fehlerschranke eps)

e Verwenden Sie in jedem Schritt des impliziten Euler-Verfahrens den Startwert
xo = Y fir das Newton-Verfahren

(b) Testen Sie Ihre Implementierung an folgendem System, welches den diffusionslosen
Spezialfall des Gierer-Meinhardt-Modells aus der Vorlesung darstellt:

/

a :s(“—;+ba> — 70,
b = sa® — ryb — by,

e Uberlegen Sie sich, wie in diesem Fall die Funktion y und die rechte Seite f
aus (1) aussehen

e Leiten Sie vom Interface VectorFunction eine entsprechende Klasse fiir die
rechte Seite ab

e Verwenden Sie testweise die Parameter s = r, = r, = b, = b, = 1, die
Anfangswerte a(0) = 17 sowie b(0) = 42, die maximale Zeit 7" = 50 und die
Schrittweite At = 0.01.

Hinweis: Diese Konfiguration ist ungetestet, es muss sich also nicht unbedingt
ein interessantes FErgebnis einstellen

e Plotten Sie die zeitliche Entwicklung der Konzentrationen a und b

(c¢) Da die SystemgroBe n schon beim Kompilieren feststeht, ist es eigentlich nicht sinn-
voll mit einer dynamischen Datenstruktur wie std: : vector zu arbeiten. Effizienter
ist es in diesem Fall, feldartige Datenstrukturen wie std: :array zu benutzen (bzw.
std::trl::array, falls der Compiler alter ist). Sie bekommen drei Bonuspunkte,
falls Sie statt des obigen Interfaces das folgende, Template-basierte Interface und
die dafiir bendtigten Prozedur-Signaturen zur Bearbeitung der Aufgabe verwenden:

1|#ifndef VECTORFUNCTION HH
#define VECTORFUNCTION HH

#include <trl/array> // #include <array> in C++11
/%%

7| * Interface zur Repraesentation von differenzierbaren Funktionen
* g: R”’n —> R'n.

9 x/

template <int n>
11| class VectorFunction

13| public:
typedef std::trl::array<double,n> VectorType;
15 typedef std::trl::array<VectorType,n> MatrixType;

// Rein virtuelle Methoden zum Auswerten der Funktion und ihrer

// Jakobimatrix

19 virtual void evaluate (const VectorType& x, VectorType& result) const = 0;
virtual void evaluateJacobian (const VectorType& x,

21 MatrixType& jacobian) const = 0;

b
#endif

