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Aufgabe 1 (n-Koérper-Problem aus Sicht des Schwerpunktsystems) (4 Punkte)

Wir betrachten erneut das n-Korper-Problem mit den Notationen aus der Vorlesung.
Der Schwerpunkt R der n Korper ist definiert durch

1 N-1 N-1
R:=— Z m;r; mit M = Z my,
M = i=0

seine Geschwindigkeit V' ergibt sich durch

1 N-1
V = 3 U5 .
i ; m;v
Zeigen Sie, dass sich R mit konstanter Geschwindigkeit bewegt.

Aufgabe 2 (Implizites Euler-Verfahren) (7 — 10 Punkte)
Gegeben sei ein System von n autonomen Differentialgleichungen 1. Ordnung
y(l)
y = f(y) auf 0,77, y=1| : |, f:R" = R", T e RY (1)

und Anfangswerte y(0) € R". Dieses Anfangswertproblem wollen wir mit dem impliziten
Euler-Verfahren

Yo = y(0)7
Yra1 = Yr + At f(ye1), k=0,1,... (2)

16sen. Bislang haben Sie in der Ubung nur explizite Verfahren kennengelernt. Im Ge-
gensatz zu expliziten Verfahren kommt die Approximation yy41 = y(tx11) bei impliziten



Verfahren auch auf der rechten Seite der Iterationsvorschrift vor, d.h. es ist ein Glei-
chungssystem zu losen. Beim betrachteten impliziten Euler-Verfahren ergibt sich aus (2)
das aquivalente, im Allgemeinen nichtlineare Gleichungssystem

Ri(yrs1) =0 mit Ry :R" = R", Ri(z) =2z —yp — At f(2).

Wir miissen also in jedem Schritt die Nullstelle der moglicherweise nichtlinearen, mehr-
dimensionalen Funktion Ry bestimmen. Falls diese differenzierbar ist und (auf ganz R™)
eine invertierbare Jakobi-Matrix Ji(z) # 0 besitzt, kénnen wir zu diesem Zweck das
mehrdimensionale Newton-Verfahren

-1
L1 = T — (Jk(ﬂfl)) Rk(.’ﬂl), l = 0, 1, e (3)
verwenden.

(a) Implementieren Sie das implizite Euler-Verfahren fiir die Losung der obigen Klasse
von Anfangswertproblemen. Benutzen Sie zur Losung des Gleichungssystems das
Newton-Verfahren.

e Uberlegen Sie sich, wie die Jakobi-Matrix von R mit der Jakobi-Matrix von
f zusammenhangt

e Benutzen Sie folgendes Interface VectorFunction fiir differenzierbare Funk-
tionen g : R" — R"

#ifndef VECTORFUNCTION HH
#define VECTORFUNCTION_HH

#include <vector>

EE

7| * Interface zur Repraesentation von differenzierbaren Funktionen
* g: R"n —> R™n.

ol =/

class VectorFunction

public:
13 typedef std::vector<double> VectorType;
typedef std::vector<VectorType> MatrixType;

// Rein virtuelle Methoden zum Auswerten der Funktion und ihrer
17 // Jakobimatrix
virtual void evaluate (const VectorType& x, VectorType& result) const = 0;
19 virtual void evaluateJacobian (const VectorType& x,
MatrixType& jacobian) const = 0;
21| }

3| #endif

e Implementieren Sie die Iterationsvorschrift (2) als Prozedur
void implicit_euler_step (const VectorFunction::VectorType& y_k,
double dt, const VectorFunction& f
VectorFunction: :VectorType& y_next);

e Implementieren Sie das Newton-Verfahren (3) als Prozedur
void newton_method (const VectorFunction::VectorType& x_O,
const VectorFunction& R, double eps,
VectorFunction: :VectorType& solution);



e Beschrinken Sie sich bei der Implemetierung des Newton-Verfahrens auf den
Fall n € {1,2, 3}, fir den sich die Invertierung einer reguléren n x n-Matrix
explizit hinschreiben ldsst (siehe Lineare Algebra I); behandeln Sie den Fall
n > 3 mit einer Exception oder fangen Sie ihn mit einer Assertion ab

e Benutzen Sie zudem das Abbruchkriterium von Blatt 2 (Fehlerschranke eps)

e Verwenden Sie in jedem Schritt des impliziten Euler-Verfahrens den Startwert
xo = Y fir das Newton-Verfahren

(b) Testen Sie Ihre Implementierung an folgendem System, welches den diffusionslosen
Spezialfall des Gierer-Meinhardt-Modells aus der Vorlesung darstellt:

/

a :s(“—;+ba> — 70,
b = sa® — ryb — by,

e Uberlegen Sie sich, wie in diesem Fall die Funktion y und die rechte Seite f
aus (1) aussehen

e Leiten Sie vom Interface VectorFunction eine entsprechende Klasse fiir die
rechte Seite ab

e Verwenden Sie testweise die Parameter s = r, = r, = b, = b, = 1, die
Anfangswerte a(0) = 17 sowie b(0) = 42, die maximale Zeit 7" = 50 und die
Schrittweite At = 0.01.

Hinweis: Diese Konfiguration ist ungetestet, es muss sich also nicht unbedingt
ein interessantes FErgebnis einstellen

e Plotten Sie die zeitliche Entwicklung der Konzentrationen a und b

(c¢) Da die SystemgroBe n schon beim Kompilieren feststeht, ist es eigentlich nicht sinn-
voll mit einer dynamischen Datenstruktur wie std: : vector zu arbeiten. Effizienter
ist es in diesem Fall, feldartige Datenstrukturen wie std: :array zu benutzen (bzw.
std::trl::array, falls der Compiler alter ist). Sie bekommen drei Bonuspunkte,
falls Sie statt des obigen Interfaces das folgende, Template-basierte Interface und
die dafiir bendtigten Prozedur-Signaturen zur Bearbeitung der Aufgabe verwenden:

1|#ifndef VECTORFUNCTION HH
#define VECTORFUNCTION HH

#include <trl/array> // #include <array> in C++11
/%%

7| * Interface zur Repraesentation von differenzierbaren Funktionen
* g: R”’n —> R'n.

9 x/

template <int n>
11| class VectorFunction

13| public:
typedef std::trl::array<double,n> VectorType;
15 typedef std::trl::array<VectorType,n> MatrixType;

// Rein virtuelle Methoden zum Auswerten der Funktion und ihrer

// Jakobimatrix

19 virtual void evaluate (const VectorType& x, VectorType& result) const = 0;
virtual void evaluateJacobian (const VectorType& x,

21 MatrixType& jacobian) const = 0;

b
#endif




