
Institut für Numerische und Angewandte Mathematik 26.04.2012
FB Mathematik und Informatik der Universität Münster
Prof. Dr. Christian Engwer, Dipl. Math. Dipl. Inf. Sebastian Westerheide

Übung zur Vorlesung

Wissenschaftliches Rechnen
SS 2012 — Blatt 2

Abgabe: 08.05.2012, 10:00 Uhr, Briefkasten 89
Code zusätzlich per e-mail an sebastian.westerheide@uni-muenster.de

Aufgabe 1 (Nullstellenbestimmung mit dem Newton-Verfahren) (4 Punkte)

Sei f : R → R eine stetig differenzierbare reelle Funktion. Das Newton-Verfahren liefert
über die Fixpunktiteration

xn+1 := xn −
f(xn)
f ′(xn) (1)

zu einem geeignet gewählten Startwert x0 ∈ R eine Folge (xn)n∈N, die gegen eine Nullstelle
von f konvergiert. Genauer kann man zeigen, dass es zu jeder Nullstelle x ∈ R eine
Umgebung D gibt, so dass das Newton-Verfahren für alle Startwerte x0 ∈ D gegen x
konvergiert, falls f in einer Umgebung von x zwei mal stetig differenzierbar ist und
f ′(x)−1 existiert.

(a) Laden Sie die Dateien function.hh, testfunctions.hh, bisection_method.hh
und bisection_method.cc von der Vorlesungshomepage und schauen Sie sich die
darin enthaltene, leicht erweiterte Lösung von Blatt 1, Aufgabe 1 an. Was hat sich
an der Prozedur bisection_method (...) verändert?

(b) Implementieren Sie das Newton-Verfahren in C++ auf analoge Art und Weise.

• Benutzen Sie das Interface Function für Funktionen f : R→ R
• Schreiben Sie eine Prozedur
double newton_method (const Function& f, double x_0, double eps,

double h, unsigned int& n_count);

• Die Fixpunktiteration (1) soll so lange durchgeführt werden, bis die Ände-
rungsrate |xn+1 − xn| eine zu übergebende Fehlerschranke eps unterschreitet
• Benutzen Sie zur Approximation der Ableitung den zentralen Differenzenquo-

tienten mit einer zu übergebende Schrittweite h:

f ′(x) ≈ Dcf(x) := f(x+ h)− f(x− h)
2h

• Geben Sie im Referenzparameter n_count die benötigte Anzahl an Iterationen
zurück

(c) Testen Sie Ihre Implementierung mit eps = 10−4 und h = 10−2 an den folgenden,
in testfunctions.hh implementierten Funktionen:

• f1(x) = x2 − 1 (Startw.: x0 = 1.2) (Nullst.: x = 1)
• f2(x) = cos(x)− x (Startw.: x0 = 0.0) (Nullst.: x = 0.739085133215)
• f3(x) = sin(2x) · x (Startw.: x0 = 6.3) (Nullst.: x = 6.283185307180)
• f4(x) = x2 − 2 (Startw.: x0 = −0.1) (Nullst.: x = −1.414213562373)

Schreiben Sie ein Programm, das Instanzen der Funktionen erzeugt, jeweils das
Newton-Verfahren aufruft und die benötigte Anzahl an Iterationen, die ermittelten
Nullstellen sowie zugehörige Funktionswerte auf der Konsole ausgibt.

(d) Schreiben Sie ein Programm, welches die in Abhängigkeit von eps benötigte An-
zahl an Iterationen sowohl für den Bisektionsalgorithmus als auch für das Newton-
Verfahren ausgibt und plotten Sie das Ergebnis mit gnuplot:

• Benutzen Sie die Funktion f2, das Intervall [0, 1], den Startwert x0 = 0.0 und
h = 10−2

• Wählen Sie verschiedene Fehlerschranken eps = 2−i, i = 0, 1, 2, ...
• Geben Sie für jedes eps eine Zeile folgenden Formates auf der Konsole aus

eps ␣ n_count_bisection ␣ n_count_newton

• Leiten Sie die Ausgabe des Programms in eine Datei compare.data um
• Laden Sie sich die Datei compare.plt von der Vorlesungshomepage, starten

Sie gnuplot und führen Sie den Befehl load ’compare.plt’ aus

Erklären Sie die einzelnen Anweisungen in der Datei compare.plt. Interpretieren
Sie das Ergebnis, das durch den Plot darstellt wird.

Aufgabe 2 (Zahlendarstellung) (3 Punkte)

Sie haben in der Vorlesung die allgemeine Darstellung von Fließkommazahlen als F(β, r, s)
kennengelernt. Dabei ist β die Basis, r die Anzahl Stellen der Mantisse und s die Anzahl
Stellen des Exponenten.

(a) Bilden Sie x0 = 1
11 nach F(2, 10, 3) ab, d.h. geben Sie rd

(
1
11

)
mit rd: R→ F(2, 10, 3).

(b) Stellen Sie x1 = 1
2048 in F(10, 5, 1) dar.

Aufgabe 3 (Rundung) (4 Punkte)

Das gängige Verfahren zum Runden von Zahlen ist das Aufrunden (natürliche Run-
dung). Bei Fließkommazahlen F(β, r, s) mit geradem β wird jedoch ein anderes Verfahren
verwendet, die gerade Rundung. Wenn x eine auf r Stellen zu rundende Zahl ist und
left(x) := max{y ∈ F | y ≤ x} sowie right(x) := min{y ∈ F | y ≥ x} dann gilt beim
Aufrunden:

rd(x) =
{

left(x) falls 0 ≤ mr+1 < β/2
right(x) falls β/2 ≤ mr+1 < β

Beim geraden Runden ist dagegen:

rd(x) =


left(x) falls |x− left(x)| < |x− right(x)| oder(

|x− left(x)| = |x− right(x)| und mr gerade
)

right(x) sonst

Dabei ist mi jeweils die i-te Stelle von x.

(a) Berechnen Sie die Folge von Fließkommazahlen

x0 = x, x1 = (x0 	 y)⊕ y, . . . , xn = (xn−1 	 y)⊕ y

mit x = 1.56 und y = −0.555. Dabei seinen x, xi und y Fließkommazahlen in der
Darstellung F(10, 3, 1). Welche Ergebnisse erhalten Sie für die ersten 10 Folgenglie-
der mit Aufrunden bzw. mit gerader Rundung?

(b) Diskutieren Sie die Ergebnisse.

(c) Warum wird bei Fließkommazahlen das gerade Runden verwendet?

Aufgabe 4 (Leapfrog) (5 Punkte)

In der Vorlesung haben Sie das Leapfrog-Verfahren

yk+1 = yk + vk+1/2 ∆t, k = 0, 1, 2, ...,
vk+3/2 = vk+1/2 + a(yk+1) ∆t,

zur numerischen Lösung folgender Klasse von Anfangswertproblemen kennengelernt:

y′′ = v′ = a(y) auf [0,∞),
y(0) = y0, v(t1/2) = v1/2.

(a) Implementieren Sie das Verfahren in C++.

(b) Zeigen Sie mittels Taylorentwicklung, dass sich der “lokale Diskretisierungsfehler”

T∆t(tk+1) := 1
∆t
(
y(tk+1)− y(tk)

)
− v(tk+1/2)

verhält wie O(∆t2).

