
Institut für Numerische und Angewandte Mathematik 17.04.2012
FB Mathematik und Informatik der Universität Münster
Prof. Dr. Christian Engwer, Dipl. Math. Dipl. Inf. Sebastian Westerheide

Übung zur Vorlesung

Wissenschaftliches Rechnen
SS 2012 — Blatt 1

Abgabe: 24.04.2012, 10:00 Uhr, Briefkasten 89
Code zusätzlich per e-mail an sebastian.westerheide@uni-muenster.de

Achtung: Achten Sie darauf, ihre Programme ordentlich zu formatieren und gut zu
kommentieren. Die Form wird mit in die Bewertung eingehen.

Aufgabe 1 (Nullstellenbestimmung mittels Bisektion) (4 Punkte)

Nach dem Zwischenwertsetz besitzt eine stetige Funktion f : [a, b]→ Rmit f(a) · f(b) < 0
(d.h. f(a) < 0, f(b) > 0 oder f(a) > 0, f(b) < 0) mindestens eine Nullstelle in [a, b].
Anschaulich muss der Graph von f mindestens einmal die x-Achse kreuzen, da er wegen
der Stetigkeit keine Sprünge macht. Der Beweis des Zwischenwertsatzes liefert ein ein-
faches numerisches Verfahren zur Bestimmung von Nullstellen stetiger Funktionen, das
Bisektionsverfahren. In Pseudocode lässt es sich folgendermaßen formulieren:

x1 := a; x2 := b;
while abs(x2 - x1) > eps do

m := (x1 + x2) / 2;
if f(m) * f(x1) >= 0 then

x1 := m;
else

x2 := m;
end;

end;
return (x1 + x2) / 2;

Zu einer gegebenen Fehlerschranke eps liefert es bis auf einen maximalen Fehler ±eps
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eine beliebige Nullstelle in [a, b].

(a) Implementieren Sie das Bisektionsverfahren in C++.

• Benutzen Sie folgendes Interface Function für Funktionen f : R→ R
1 c l a s s Function {

p u b l i c :
3 v i r t u a l double eva luate ( double x ) const = 0 ;

} ;



• Schreiben Sie eine Prozedur
double bisection_method (const Function& f, double a, double b,

double eps);

(b) Testen Sie Ihre Implementierung mit eps = 10−8 an folgenden Funktionen:

• f1(x) = x2 − 1 auf [0.6, 1.2] (Nullstelle: x = 1)
• f2(x) = cos(x)− x auf [0, 1] (Nullstelle: x = 0.739085133215)

Leiten Sie dazu jeweils mittels Vererbung eine Implementierung der Funktion vom
Interface Function ab. Schreiben Sie ein Hauptprogramm, das Instanzen der Funk-
tionen erzeugt, jeweils den Bisektionsalgorithmus aufruft und ermittelte Nullstellen
sowie zugehörige Funktionswerte auf der Konsole ausgibt.

(c) Bestimmen Sie mit Ihrer Implementierung ferner eine Nullstelle der Funktionen

• f3(x) = sin(2x) · x auf [−2, 7]
• f4(x) = x2 − 2 auf [−1.5, 1.5]

Aufgabe 2 (Mathematisches Pendel) (4 Punkte)

In der Vorlesung haben wir ein mathematisches Modell für ein Pendel hergeleitet, das
sogenannte mathematische Pendel (Kapitel 1.1.2). Dieses wird durch gewöhnliche, nicht-
lineare Differentialgleichung ϕ′′(t) + g

l
sin

(
ϕ(t)

)
= 0 beschrieben, die sich für kleine Aus-

lenkungswinkel ϕ� 1 durch die Näherung sin ϕ ≈ ϕ weiter vereinfachen lässt. Dadurch
ergibt sich folgendes lineare Anfangswertproblem:

ϕ′′(t) + g

l
ϕ(t) = 0 auf I := [0,∞), (1a)

ϕ(0) = ϕ0, ϕ0 ∈ R, (1b)
ϕ′(0) = v0, v0 ∈ R (1c)

(a) Bestimmen Sie die analytische Lösung des Anfangswertproblems (1).
Tipp: Bestimmung des Fundamentalsystems zu (1a), Darstellung der Lösung von

(1) als Linearkombination, Einarbeiten der Anfangsbedingungen (1b), (1c).

(b) Bestimmen Sie die mit Hilfe der analytischen Lösung die Periodendauer T , d.h. die
Dauer einer kompletten Schwingung (hin und zurück).

(c) Bestimmen Sie für Anfangswerte ϕ0 6= 0, v0 6= 0 die Winkelgeschwindigkeit ϕ′(t)
beim Durchgang der Ruheposition und den maximalen Auslenkungswinkel ϕ̂ (die
Winkelamplitude). Dabei werden Sie folgende Formeln gebrauchen können:

• sin
(
arctan(x)

)
= x√

1+x2

• cos
(
arctan(x)

)
= 1√

1+x2



Aufgabe 3 (Mathematisches Pendel, Computermodell 1) (6 Punkte)

ϕ′′(t) + g

l
sin

(
ϕ(t)

)
= 0 auf I := [0, T ], T ∈ R+, (2a)

ϕ(0) = ϕ0, ϕ0 ∈ R, (2b)
ϕ′(0) = v0, v0 ∈ R. (2c)

Wir wollen ein erstes Computermodell für das mathematische Pendel (2) herleiten und mit
diesem eine Simulation durchführen. Mit dem Ansatz ϕ′(t) = v(t) lässt sich die gewöhliche
Differentialgleichung (2a) in ein System von zwei gewöhnlichen Differentialgleichungen
1. Ordnung transformieren:

ϕ′(t) = v(t), v′(t) = − g

l
sin

(
ϕ(t)

)
auf I, (3a)

ϕ(0) = ϕ0, v(0) = v0. (3b)
(a) Diskretisieren Sie das System (3) mit dem expliziten Eulerverfahren, indem Sie das

Verfahren auf beide Gleichungen getrennt anwenden.

(b) Implementieren Sie das resultierende Computermodell in C++.

• Realisieren Sie die Konstanten g, l, T, ∆t und ϕ0, v0 im Hauptprogramm durch
const double g = 9.80665; const double l = 1.0;
const double T = ...;
const double dt = ...;
const double phi_0 = ...;
const double v_0 = ...;
• Lagern Sie die Iterationsvorschrift des expliziten Eulerverfahrens in eine Pro-

zedur aus. Mit einem Interface TimeFunction für zeitabhängige Funktionen
(analog zu Aufgabe 1) ist eine mögliche Signatur beispielsweise
double explicit_euler_step (double t_k, double y_k, double dt,

const TimeFunction& f);
• Lassen Sie sich tk und den Auslenkungswinkel ϕk ≈ ϕ(tk) in jedem Zeitschritt

auf der Konsole ausgeben. Um ϕk später plotten zu können, soll die Ausgabe
zeilenweise in folgendem Format erfolgen (wobei ␣ ein Leerzeichen darstellt):
tk ␣ ϕk

(c) Führen Sie mit Ihrem Programm eine Simulation durch und beschreiben Sie Ihre
Beobachtungen:

• Wählen Sie die Anfangswerte ϕ0 = 0.5, v0 = 0 und die maximale Zeit T = 5
• Wählen Sie verschiedene Schrittweiten ∆t = 2−i, i = 0, 1, 2, ...

• Leiten Sie jeweils die Ausgabe Ihres Programms mit
./myprogramname > datafilename.txt

in eine Textdatei datafilename.txt um und plotten Sie das Ergebnis in
gnuplot mit dem Befehl plot “./datafilename.txt” smooth csplines


