WWU Miinster Sommersemester 2011
Aufgabenblatt 7 30.5.2011
Ubungen zur Vorlesung
Wissenschaftliches Rechnen — Paralleles Hochstleistungsrechnen
Prof. Dr. C. Engwer, S. Westerheide

http://wwwmath.uni-muenster.de/num/Vorlesungen/WissenschaftlichesRechnen_SS11/

Abgabe 20.6.2011. Abg. der Programmieraufgaben per Email an sebastian.westerheide@uni-muenster.de,
schriftliche Abgabe in Zimmer 120.019.

o Alle Programmieriibungen miissen per Email und in ausgedruckter Form abgegeben werden.

e Achten sie darauf, ihr Programm ordentlich zu formatieren und gut zu kommentieren.

UBUNG 1 SKALIERTER SPEEDUP

Das Skalarprodukt s = z-y = Zf\;l x;y; zweier Vektoren .,y € RY soll auf einem Hypercube mit P Prozessoren
parallel berechnet werden. Zur Vereinfachung sei P = 2¢,d € Ny und N durch P teilbar.

Wir gehen folgendermaflen vor:

o Jeder Prozessor p hat N/P Komponenten von x und y mit den Indizes I, C {0,..., N — 1} im lokalen
Speicher und berechnet im ersten Schritt die Teilsumme s, =), 1, Tili-

e Die P Zwischenergebnisse werden dann im Baum addiert (vgl. Figure [I).

parallel message-passing-scalar-product

{

const int d, P= 27 N;

process II [int p € {0,..., P —1}]

{
double z[N/P], y[N/P); // Lokaler Ausschnitt der Vektoren

int 7, r, m;
double s = 0, ss;

for (i =0; ¢ < N/P; i++) s = s + z[i] * y[i];

for (i =0; i< d; i++) // Summation im Baum (d Schritte)

{
r=p& {N(Z Qkﬂ; // Bit 0 bis Bit ¢ auf 0 setzen
k=0

m=r|2% // Bit 0 bis Bit ¢ — 1 auf 0 setzen, Bit ¢ auf 1
if (p ==m)

send(IL,,s);
if (p==r)

receive(Il,,,ss);
S =8+ 8S;


http://wwwmath.uni-muenster.de/num/Vorlesungen/WissenschaftlichesRechnen_SS11/

00 |

So + S1+ S2 + S3 S4 + S5+ Sg + St
010 100 110
So + S1 So + 83 S4 + S5 S¢ + S7
looo | oot | [ot0]| [om] [100] [101]| [110] [111]
So S1 S92 S3 Sa S5 Se S7

Figure 1: Parallele Summation im Baum

AUFGABENTEIL A)

Untersuchen Sie die Leistungsféahigkeit dieses parallelen Systems. Berechnen Sie dazu in Abhéangigkeit der Zeit
ty fiir eine arithmetische Operation und der Zeit ¢, fiir den Nachrichtenaustausch

e die Laufzeit Thest(N) des besten sequentiellen Algorithmus’ auf einem Knoten des Parallelrechners,
e die Laufzeit Tp (N, P) des parallelen Algorithmus’,
e den Speedup S(N, P).

AUFGABENTEIL B)

Untersuchen Sie nun, wie sich der Speedup S(N, P) in Abhéngigkeit von P verhélt. Skalieren Sie ihn dazu
durch die Berechnung geeigneter Problemgréfien

o N =Ny,

e N = Ng(P),
e N = Ny(P),
o N = N;(P)

so, dass sich eine feste sequentielle Ausfiihrungszeit (Tbcst(N ) = Tﬁx), eine feste parallele Ausfilhrungszeit
(Tp(N,P) = Tsyx), ein fester Speicherbedarf pro Prozessor (M(N) = MyP), oder eine konstante Effizienz
(E(N ,P) = EO) ergibt. Ermitteln Sie jeweils den resultierenden Speedup

o Su(P)=S(Na,P),
e Sq(P) = S(Na(P),P),
e Su(P)=S(Nu(P),P),
e S;(P) = S(N{(P),P).
Machen Sie sich jeweils Gedanken zur GroSenordnung des Speedups (beziiglich P) und vergleichen Sie die

Groflenordnungen fiir die verschiedenen Skalierungen.
8 Punkte



UBUNG 2 N-KORPER-PROBLEM MIT PTHREADS

a) Parallelisieren Sie das N-Korper-Problem mit PThreads. Laden Sie dazu die Datei nbody_seq.cc von
der Vorlesungsseite, kopieren Sie es nach nbody_pthread.cc und parallelisieren Sie (nur) die Funktion
acceleration(), welche die Hauptlast der Berechnungen trigt (sie hat die Komplexitit O(N?), alles
andere hingegen O(N)). Das seq. Programm implementiert die Berechnung der Beschleunigung mit Hilfe
von Tiling und Ausnutzung der Symmetrie.

e Implementieren Sie acceleration() als daten-paralleles Programm.
e Welche parallelen Datenaufteilung wéhlen Sie und warum?

e Welche Bereichen miissen abgesichert werden?

e Sollte eventuell der Algorithmus irgendwo modifiziert werden?

b) Vergleichen Sie die Zeiten des parallelen Programms mit der sequentiellen Variante und stellen Sie die
Messungen grafisch dar. Denken Sie daran, dass immer mit dem besten sequentiellen Programm verglichen
werden soll.

e Messen Sie den Speedup bei fester sequentieller Ausfiihrungszeit, d.h. fiir eine feste Partikelanzahl.
e Messen Sie den Speedup bei festem Speicherbedarf pro Prozessor, indem Sie die Partikelanzahl

geeignet in Abhéngigkeit von der Anzahl der verwendeten Prozessoren wéahlen.

c¢) Verifizieren Sie ferner experimentell die Komplexitidt des Algorithmus’, indem Sie fiir eine feste Anzahl
von Prozessoren die Partikelanzahl variieren.

Auf der Vorlesungs-Homepage finden Sie die bendtigten Programmteile sowie ein Beispiel Video der Rechnung
(collision.avi), dieses wurde mit folgenden Programm-Parametern berechnet:

./nbody_pthread 5000 3000000 15 200 4

Das ist eine Rechnung mit 5000 Partikeln, iiber einen Zeitraum von 3000000 Jahren. Das Programm rechnet
mit 4 Threads, jeder zeitschritt ist 200 Jahre lang und jeder 15. Zeitschritt wird herausgeschrieben.

Die Anfangskonfiguration beschreibt in diesem Beispiel zwei Galaxien, welche im Laufe der Simulation kolli-
dieren.

Hinweis 1: Thread-Funktionen kénnen immer nur einen Pointer als Parameter bekommen. Verwenden Sie
einen zusammengesetzte Datentyp struct acceleration_data um alle Parameter und benétigten Daten an
acceleration zu iibergeben.

Hinweis 2: Denken Sie daran beim Kompilieren die Parameter zur Optimierung mit anzugeben. Im Comput-
erpool konnen Sie beispielweise die folgenden Parameter verwenden:

-03 -ffast-math -funroll-loops -fexpensive-optimizations -march=core2
Zusatzlich bendtigen Sie noch die Parameter fiir die Bibliotheken
-lpthread -lgomp

Eine Ubersicht iiber die moglichen Compilerparameter erhalten Sie mit dem Kommando man gcc.

Hinweis 3: Um die parallele Variante auf Richtigkeit zu priifen, kénnen Sie die generierten VTK-Dateien
vergleichen. Die Simulations-Ergebnisse kénnen sich aber in einigen Nachkommastellen unterscheiden. Das
auf der Vorlesungsseite bereitgestellte Skript fuzzy diff kann zwei VTK-Dateien vergleichen beziiglich einer
vorgegebenen Toleranz:

./fuzzy_diff sequential.vtk parallel.vtk le-10

12 Punkte



