WWU Miinster Sommersemester 2011
Aufgabenblatt 6 23.5.2011
Ubungen zur Vorlesung
Wissenschaftliches Rechnen — Paralleles Hochstleistungsrechnen
Prof. Dr. C. Engwer, S. Westerheide

http://wwwmath.uni-muenster.de/num/Vorlesungen/WissenschaftlichesRechnen_SS11/

Abgabe 30.5.2011. Abg. der Programmieraufgaben per Email an sebastian.westerheide@uni-muenster.de,
schriftliche Abgabe Dienstags in der Vorlesung.

e Alle Programmieriibungen miissen per Email und in ausgedruckter Form abgegeben werden.

e Achten sie darauf, ihr Programm ordentlich zu formatieren und gut zu kommentieren.
In Zukunft wird die Form mit in die Bewertung eingehen.

Auf der Vorlesungsseite haben wir IThnen ”Hinweise zur Verwendung von MPI im Computerpool” zusam-
mengestellt. Lesen Sie diese vor der Bearbeitung der néchsten Aufgabe und fithren Sie den Punkt ”System
einrichten” durch. Wie im Punkt ”Erste Schritte mit MPI” beschrieben, konnen Sie anschlielend testen, ob
alles ordnungsgemaf funktioniert.

UBuUNG 1 MPI PUNKT-ZU-PUNKT KOMMUNIKATION

Laden Sie sich das Programmskelett ” MPI Ring Kommunikation” von der Vorlesungsseite und ergénzen Sie es
um den fehlenden Code an den durch ”...” markierten Stellen. Das fertige Programm soll eine Nachricht fiir
eine vom Benutzer festzulegende Anzahl von Durchlédufen durch einen Ring von Prozessen schicken, wobei die
Nachricht jeweils den noch durchzufiihrenden Durchléaufen entspricht.

e Erweitern Sie das Programm derart, dass der Prozess mit dem Rang 0 die mittlere Zeit fiir das ver-
schicken einer Nachricht von Prozess zu Prozess berechnet und ausgibt. Benutzen Sie dafiir die Methode
MPI Wtime (), die in der MPI Kurzeinfithrung aus der Vorlesung beschrieben wird.

e Fiihren Sie das Programm mehrmals fiir eine steigende Anzahl an Prozessen auf einem einzelnen Computer
aus. Plotten Sie die ermittelten Zeiten gegen die Anzahl der Prozesse.

e Starten Sie das Programm nun wiederholt fiir eine steigende Anzahl an Prozessen, die auf verschiedenen
Computern laufen. Lassen Sie sich dafiir zuvor iiber das bereitgestellte Skript gen-machines eine Liste
von Computern generieren. Plotten Sie wieder die ermittelten Zeiten gegen die Anzahl der Prozesse.

e Diskutieren Sie die beiden Plots sowohl im Einzelnen als auch im Vergleich. Wie lassen sich ihre Beobach-
tungen erkléren?

Hinweis: Die beiden Plots gehoren zum schriftlichen Teil der Abgabe dazu.
6 Punkte

In der néchsten Aufgabe betrachten wir das Problem, dass jeder Prozess ein individuelles Datum an alle an-
deren Prozesse senden muss, so dass am Ende jeder Prozess alle Daten kennt. Genauer betrachten wir zwei
verschiedene Algorithmen, mit denen sich dieses Problem 16sen lésst.

ALGORITHMUS 1 (ALLE AN ALLE AUSTEILEN IM RING)

Alle Prozesse schieben das Datum, das sie zuletzt erhalten haben, zyklisch im Ring weiter (Fig. [). Es wird
asynchrone Kommunikation verwendet, um das Schieben parallel durchzufiihren.

http://wwwmath.uni-muenster.de/num/Vorlesungen/WissenschaftlichesRechnen_SS11/

parallel all-to-all-ring

{

const int P;
process Ilfint p € {0,..., P — 1}]

{

void all_to_all_broadcast(msg m[P])

{

int 7,

item = p; // M|item] wird geschickt/empfangen
msgid ids, idr;
for (i1=0;i<P;i++) // P — 1 mal schieben

{

ids =asend(Il(,,1)%p,m[item]); // an néchsten
item = (item + P — 1)%P; // zéhle riickwirts
idr =arecv(Il(p4 p_1yyp,m[item]);
while(!success(ids));

while(!success(idr));

}

m[p] =" ‘Das ist von p!”’;
all_to_all _broadcast(m);

ALGORITHMUS 2 (ALLE AN ALLE AUSTEILEN IM HYPERCUBE)

Die Prozesse senden sich die Daten liber den sogenannten Dimensionsaustausch im Hypercube: Fir d = 1
tauschen die beiden Prozesse ihre Daten trivial aus (Fig. B). Fiir d = 2, also vier Prozesse, tauschen erst 00
und 01 bzw 10 und 11 ihre Daten aus, dann tauschen 00 und 10 bzw 01 und 11 jeweils zwei Informationen aus
(Fig. B). Allgemein kennt nach dem i-ten Schritt ein Prozess p die Daten aller Prozesse ¢, die sich genau in den
letzten ¢ Bitstellen von ihm unterscheiden.

parallel all-to-all-hypercube
{
const int d, P = 2%;
process Ilfint p € {0,...,P — 1}]
{
void all_to_all_broadcast(msg m[P]) {
int i, mask = 2% — 1, ¢;
for (i=0;i<d;i++){
q=pAN2%
if (p<q) { // wer zuerst?
send(Il,,m[p&mask],.. . ,m[p&mask + 2° — 1]);
recv(Il,,m[g&mask],. .. ,m[g&mask + 2" — 1]);
}
else {
recv(Il,,m[g&mask],. .. m[qg&mask + 2* — 1]);
send(I1,,m[p&mask),. .. ,m[p&mask + 2° — 1]);
}

mask = mask A 2%

}

m[p] =”‘Das ist von p!”’;
all_to_all _broadcast(m);

0 1 2 3
Anfang: M
M
M
M
Nach 1. Schritt{_M M
M M
M M

M
usw. L

Figure 1: Alle an alle austeilen im Ring

Figure 2: Alle an alle austeilen im Hypercube (d = 1)

00 01
* *
* 1 *
9
10 11 2
* *
* 1 *

Figure 3: Alle an alle austeilen im Hypercube (d = 2)

UBUNG 2 GLOBALE KOMMUNIKATION - ALLE AN ALLE AUSTEILEN

Betrachten Sie folgende Kombinationen aus Algorithmus, Routing-Strategie und der physikalischen Netzwerk-
topologie, die den Prozessen zugrundeliegt:

a) Algorithmus 1 auf einem Ring mit store-and-forward routing
b) Algorithmus 2 auf einem Hypercube mit store-and-forward routing

c¢) Algorithmus 2 auf einem Ring mit cut-through routing

e Bestimmen Sie fiir jede dieser Kombinationen die Laufzeit des Algorithmus’ und begriinden Sie detailliert,
wie Sie zu diesem Ergebnis gekommen sind. Gehen Sie dabei wie in der Vorlesung davon aus, dass das
Versenden jeder einzelnen Nachricht in einem Paket der Lénge n Byte geschieht und benutzen Sie die
entsprechenden Notationen tg, tp, tp.

Bedenken Sie bitte, dass eine physikalische Kommunikationsleitung auch beim cut-through routing zu
jedem Zeitpunkt hoéchstens einmal belegt sein kann. Bei der Berechnung der Laufzeit von Kombination
c¢) miissen sie daher die Gréfle von n beriicksichtigen.

e Erlautern Sie, welche der beiden Kombinationen a) und c¢) bei einem sehr grofien n zu bevorzugen ist und
welche bei einem sehr kleinen n (z.B. ein Byte).

6 Punkte

