WWU Miinster Sommersemester 2011
Aufgabenblatt 4 05.5.2011

Wissenschaftliches Rechnen — Paralleles Hochstleistungsrechnen

Christian Engwer

http: //wwwmath.uni-muenster. de/num/Vorlesungen/WissenschaftlichesRechnen_SS11/

Abgabe 16.5.2011. Abgabe der Programmieraufgaben bis per Email an christian.engwer@uni-muenster.de,
schriftliche Abgabe Dienstags in der Vorlesung.

e Alle Programmieriibungen miissen per Email und in ausgedruckter Form abgegeben werden.

e Achten sie darauf, ihr Programm ordentlich zu formatieren und gut zu kommentieren.
In Zukunft wird die Form mit in die Bewertung eingehen.

In der Vorlesung haben Sie spezielle Hardware Befehle kennengerlernt, die dabei helfen den Eintritt in einen
kritischen Abschnitt zu koordinieren, indem sie stirkere Garantien bzgl. der Speicherkonsistenz machen, als
dies bei gewohnlichen read/write Operationen der Fall ist.

Operationen, die Sie in der Vorlesung kennengelernt haben sind:

e test-and-set
e atomic-swap
e fetch-and-increment

e compare-and-swap

UBuNG 1 QUEUE Lock

In der Vorlesung wurde das TAS-Lock vorgestellt. Dabei fiel auf, dass durch die Kokurenz um das Lock standig
Cache Misses erzeugt werden, die wiederum den Bus belasten und dadurch den Eintritt in den kritischen
Abschnitt unnotig verzogern.

Als Verbesserung wurde nun das TTAS-Lock konstruiert. Durch dieses lésst sich die Anzahl an Cache Misses
deutlich verringern, da erst nach Freigabe des Locks iiberhaupt versucht wird das Lock zu bekommen. Trotz-
dem kommt es in diesem Moment zu starken Verkehr auf dem Speicherbus, da alle Prozesse auf die gleiche
Speicherstelle zugreifen mochten.

Eine Idee den Algorithmus weiter zu verbessern ist das sogenannte Queue Lock. Hierbei stellen sich alle Prozesse
brav der Reihe nach an. Es gibt eine Liste von Speicherstellen (als Lock Variablen) und jeder Prozess testet auf
eine andere Stelle, bis das Lock verschwindet, sprich der Wert der Speicherstelle false ist. Verlafit ein Prozess
seinen kritischen Abschnitt, so setzt er das Lock des nachsten Prozesses auf false. Bei diesem Verfahren ist
darauf zu achten, dass garantiert ist, dass nur ein Prozess auf eine Speicherstelle testet, d.h. dass ein Platz in
der Queue an nur einen Prozess vergeben wird.

e Implementieren Sie das Queue Lock in der Pseudo Sprache, wie sie im Skript eingefiihrt wurde.
e Verwenden Sie einen der Hardware Befehle, um die Speicherkonsistenz zu garantieren.

e Begrinden Sie die Wahl des Hardware Befehls.

4 Punkte

http://wwwmath.uni-muenster.de/num/Vorlesungen/WissenschaftlichesRechnen_SS11/

UBUNG 2 EFFEKTE BEI SOFTWARE LOCKS

Betrachten Sie folgende einfache parallele Anwendung bestehend aus zwei Prozessen, welche eine gemeinsame
Variable jeweils 100000 mal hochzahlen:

PROGRAMM 1 (PARALLELES HOCHZAHLEN EINER GEMEINSAMEN VARIABLE)
parallel increment

{

int sum = 0;

process 11 process Il
{ {
for (i = 1; 1 < 100000; i4++) for (i = 1; i < 100000; i++)
sum = sum + 1; // KA sum = sum + 1; // KA

}

Die sequentielle Ausfithrung beider Prozesse wiirde eine Anwendung liefern, welche die gemeinsame Variable sum
schrittweise bis zum Wert 200000 hochzahlt. Die beiden Prozesse werden jedoch im Allgemeinen nicht sequentiell
nacheinenander abgearbeitet und die Anweisung sum = sum+1 bildet jeweils in beiden Prozessen einen kritischen
Abschnitt. Daher ist zu erwarten, dass sum eine Zahl enthélt, die kleiner ist als 200000, nachdem beide Prozesse
ihre Arbeit getan haben.

Wie Sie in der Vorlesung gelernt haben, lasst sich dieses Verhalten dadurch korrigieren, dass die kritischen
Abschnitte durch wechselseitigen Ausschluss behandelt werden. Dafiir haben Sie beispielsweise den Peterson
Algorithmus kennengelernt, welcher die folgende Modifikation der obigen Anwendung liefert:

PROGRAMM 2 (VARIANTE MIT PETERSON LOCK)
parallel increment_peterson

{
int inl =0, in2 =0, last = 1;
int sum = 0;

process 11 process Il
{ {
for (i = 1; 1 < 100000; i++) for (i = 1; i < 100000; i++)
{ {
inl = 1; in2 = 1;
/] (%) /] ()
last = 1, last = 2;
/] (%) /] (%)
while (in2 A last == 1) ; while (inl A last == 2) ;
sum = sum + 1; // KA sum = sum + 1; // KA
inl = 0; in2 = 0;

AUFGABENTEIL A)

e Implementieren Sie die Variante mit Peterson Lock in C++ unter Verwendung der Bibliothek Pthreads.
Thr Programm soll
1. die beiden Prozesse als Threads erzeugen,
2. auf die Beendigung der beiden Prozesse warten
3. und schlieflich den Wert der gemeinsamen Variable sum ausgeben.
e Ubersetzen Sie das Programm ohne Optimierung durch den Compiler und fithren Sie es mehrmalig hin-
tereinander aus (beachten Sie die Hinweise). Sie werden feststellen, dass die berechnete Summe oftmals

kleiner ist als der erwartete Wert 200000, obwohl durch den Peterson Algorithmus der wechselseitige
Ausschluss garantiert sein sollte.

Hinweise: Beim GNU C/C++ Compiler wird die Optimierung des Compilers durch die Option -00 ausgeschaltet.
Die bendtigen Compileroptionen zum Ubersetzen des Programms sind also -1pthread -00. Das mehrmalige
Ausfiihren des gesamten Codes kénnen Sie bequem durch eine zusétzliche Schleife in der Methode main erreichen.

AUFGABENTEIL B)

In der Vorlesung haben Sie gelernt, dass moderne CPUs ihre Rechenleistung steigern, indem sie die Reihenfolge
der Maschinenbefehle umsortieren. Ein Maschinenbefehl kann vorgezogen werden, falls sich die zur Ausfithrung
des Befehls bendtigten Daten bereits fertig berechnet im Speicher befinden (out-of-order execution). Sogenannte
Memory Barrier konnen dazu benutzt werden manuell Einfluss auf die out-of-order execution zu nehmen.
Diese sind spezielle Maschinenbefehle, welche der CPU eine Bedingung auferlegen, in welcher Reihenfolge sie
Speicheroperationen auszufithren hat. Dazu folgendes Beispiel:

0P_1;

OP_n;
memory_barrier;
0P_{n+1}

Der Befehl memory_ barrier sorgt dafiir, dass die CPU die Operationen OP_1, ..., OP_n vollstandig ausfiihrt,
bevor die nachfolgenden Befehle ausgefiihrt werden.

e Binden Sie die auf der Vorlesungsseite erhiltliche Header-Datei membarrier.hh in ihren Code ein. Diese
enthilt einen Befehl memory barrier (), welcher das gerade beschriebene Konzept realisiert. Fiigen Sie
den Befehl an den beiden durch (*) markierten Stellen in ihren Code ein und fithren Sie anschliefend
wieder den unoptimierten Code mehrmalig aus.

e Welche Verdnderung beobachten Sie? Wie lisst sich dieser Effekt erkliren? Geben Sie durch ein Beispiel
an, wie es ohne die Memory Barrier dazu kommen kann, dass der Peterson Lock versagt.

AUFGABENTEIL C)

e Ubersetzen Sie das Programm nun mit voller Optimierung (beachten Sie den Hinweis) und testen Sie
es durch mehrmaliges Ausfiihren sowohl ohne die Memory Barrier als auch mit ihnen. Welchen Effekt
konnen Sie beobachten?

In C/C++ gibt es die Moglichkeit Speicherbereiche so zu markieren, dass die Reihenfolge von Lese- und Schrei-
boperationen auf diesen Speicherbereichen beim Compilieren des Programms nicht verédndert werden kann.
Dies geschieht mit dem Schliisselwort volatile. Lese- und Schreiboperationen auf Variablen, die mit diesem
Schliisselwort versehen sind, gelangen in exakt der gleichen Reihenfolge in das iibersetzte Programm, wie es im
Quellcode steht und diirfen auch nicht wegoptimiert werden.

e Versehen Sie die vier gemeinsamen Variablen inl, in2, last und sum mit dem zusétzlichen Schliisselwort
volatile. Beispiel fiir die Syntax: volatile int inl = 0;

e Ubersetzen Sie das Programm erneut mit voller Optimierung und testen Sie es wieder durch mehrmaliges
Ausfiihren sowohl ohne die Memory Barrier als auch mit ihnen. Erklaren Sie den von Ihnen beobachteten
Effekt.

Hinweis: Beim GNU C/C++ Compiler wird die volle Optimierung des Compilers durch die Option -03 eingeschal-
tet.

8 Punkte

