
WWU Münster Sommersemester 2011

Aufgabenblatt 4 05. 5. 2011

Wissenschaftliches Rechnen – Paralleles Höchstleistungsrechnen

Christian Engwer
http://wwwmath.uni-muenster.de/num/Vorlesungen/WissenschaftlichesRechnen_SS11/

Abgabe 16. 5. 2011. Abgabe der Programmieraufgaben bis per Email an christian.engwer@uni-muenster.de,
schriftliche Abgabe Dienstags in der Vorlesung.

• Alle Programmierübungen müssen per Email und in ausgedruckter Form abgegeben werden.

• Achten sie darauf, ihr Programm ordentlich zu formatieren und gut zu kommentieren.
In Zukunft wird die Form mit in die Bewertung eingehen.

In der Vorlesung haben Sie spezielle Hardware Befehle kennengerlernt, die dabei helfen den Eintritt in einen
kritischen Abschnitt zu koordinieren, indem sie stärkere Garantien bzgl. der Speicherkonsistenz machen, als
dies bei gewöhnlichen read/write Operationen der Fall ist.

Operationen, die Sie in der Vorlesung kennengelernt haben sind:

• test-and-set

• atomic-swap

• fetch-and-increment

• compare-and-swap

Übung 1 Queue Lock

In der Vorlesung wurde das TAS-Lock vorgestellt. Dabei fiel auf, dass durch die Kokurenz um das Lock ständig
Cache Misses erzeugt werden, die wiederum den Bus belasten und dadurch den Eintritt in den kritischen
Abschnitt unnötig verzögern.

Als Verbesserung wurde nun das TTAS-Lock konstruiert. Durch dieses lässt sich die Anzahl an Cache Misses
deutlich verringern, da erst nach Freigabe des Locks überhaupt versucht wird das Lock zu bekommen. Trotz-
dem kommt es in diesem Moment zu starken Verkehr auf dem Speicherbus, da alle Prozesse auf die gleiche
Speicherstelle zugreifen möchten.

Eine Idee den Algorithmus weiter zu verbessern ist das sogenannte Queue Lock. Hierbei stellen sich alle Prozesse
brav der Reihe nach an. Es gibt eine Liste von Speicherstellen (als Lock Variablen) und jeder Prozess testet auf
eine andere Stelle, bis das Lock verschwindet, sprich der Wert der Speicherstelle false ist. Verläßt ein Prozess
seinen kritischen Abschnitt, so setzt er das Lock des nächsten Prozesses auf false. Bei diesem Verfahren ist
darauf zu achten, dass garantiert ist, dass nur ein Prozess auf eine Speicherstelle testet, d.h. dass ein Platz in
der Queue an nur einen Prozess vergeben wird.

• Implementieren Sie das Queue Lock in der Pseudo Sprache, wie sie im Skript eingeführt wurde.

• Verwenden Sie einen der Hardware Befehle, um die Speicherkonsistenz zu garantieren.

• Begründen Sie die Wahl des Hardware Befehls.

4 Punkte

1

http://wwwmath.uni-muenster.de/num/Vorlesungen/WissenschaftlichesRechnen_SS11/


Übung 2 Effekte bei Software Locks

Betrachten Sie folgende einfache parallele Anwendung bestehend aus zwei Prozessen, welche eine gemeinsame
Variable jeweils 100000 mal hochzählen:

Programm 1 (Paralleles Hochzählen einer gemeinsamen Variable)
parallel increment
{

int sum = 0;

process Π1 process Π2

{ {
for (i = 1; i ≤ 100000; i++) for (i = 1; i ≤ 100000; i++)

sum = sum + 1; // KA sum = sum + 1; // KA
} }

}

Die sequentielle Ausführung beider Prozesse würde eine Anwendung liefern, welche die gemeinsame Variable sum
schrittweise bis zum Wert 200000 hochzählt. Die beiden Prozesse werden jedoch im Allgemeinen nicht sequentiell
nacheinenander abgearbeitet und die Anweisung sum = sum+1 bildet jeweils in beiden Prozessen einen kritischen
Abschnitt. Daher ist zu erwarten, dass sum eine Zahl enthält, die kleiner ist als 200000, nachdem beide Prozesse
ihre Arbeit getan haben.

Wie Sie in der Vorlesung gelernt haben, lässt sich dieses Verhalten dadurch korrigieren, dass die kritischen
Abschnitte durch wechselseitigen Ausschluss behandelt werden. Dafür haben Sie beispielsweise den Peterson
Algorithmus kennengelernt, welcher die folgende Modifikation der obigen Anwendung liefert:

Programm 2 (Variante mit Peterson Lock)
parallel increment peterson
{

int in1 = 0, in2 = 0, last = 1;
int sum = 0;

process Π1 process Π2

{ {
for (i = 1; i ≤ 100000; i++) for (i = 1; i ≤ 100000; i++)
{ {

in1 = 1; in2 = 1;
// (*) // (*)
last = 1; last = 2;
// (*) // (*)
while (in2 ∧ last == 1) ; while (in1 ∧ last == 2) ;
sum = sum + 1; // KA sum = sum + 1; // KA
in1 = 0; in2 = 0;

} }
} }

}

Aufgabenteil a)

• Implementieren Sie die Variante mit Peterson Lock in C++ unter Verwendung der Bibliothek Pthreads.
Ihr Programm soll

1. die beiden Prozesse als Threads erzeugen,

2. auf die Beendigung der beiden Prozesse warten

3. und schließlich den Wert der gemeinsamen Variable sum ausgeben.

• Übersetzen Sie das Programm ohne Optimierung durch den Compiler und führen Sie es mehrmalig hin-
tereinander aus (beachten Sie die Hinweise). Sie werden feststellen, dass die berechnete Summe oftmals
kleiner ist als der erwartete Wert 200000, obwohl durch den Peterson Algorithmus der wechselseitige
Ausschluss garantiert sein sollte.

2



Hinweise: Beim GNU C/C++ Compiler wird die Optimierung des Compilers durch die Option -O0 ausgeschaltet.
Die benötigen Compileroptionen zum Übersetzen des Programms sind also -lpthread -O0. Das mehrmalige
Ausführen des gesamten Codes können Sie bequem durch eine zusätzliche Schleife in der Methode main erreichen.

Aufgabenteil b)

In der Vorlesung haben Sie gelernt, dass moderne CPUs ihre Rechenleistung steigern, indem sie die Reihenfolge
der Maschinenbefehle umsortieren. Ein Maschinenbefehl kann vorgezogen werden, falls sich die zur Ausführung
des Befehls benötigten Daten bereits fertig berechnet im Speicher befinden (out-of-order execution). Sogenannte
Memory Barrier können dazu benutzt werden manuell Einfluss auf die out-of-order execution zu nehmen.
Diese sind spezielle Maschinenbefehle, welche der CPU eine Bedingung auferlegen, in welcher Reihenfolge sie
Speicheroperationen auszuführen hat. Dazu folgendes Beispiel:

OP_1;
...
OP_n;
memory_barrier;
OP_{n+1}
...

Der Befehl memory barrier sorgt dafür, dass die CPU die Operationen OP 1, . . . , OP n vollständig ausführt,
bevor die nachfolgenden Befehle ausgeführt werden.

• Binden Sie die auf der Vorlesungsseite erhältliche Header-Datei membarrier.hh in ihren Code ein. Diese
enthält einen Befehl memory barrier(), welcher das gerade beschriebene Konzept realisiert. Fügen Sie
den Befehl an den beiden durch (*) markierten Stellen in ihren Code ein und führen Sie anschließend
wieder den unoptimierten Code mehrmalig aus.

• Welche Veränderung beobachten Sie? Wie lässt sich dieser Effekt erklären? Geben Sie durch ein Beispiel
an, wie es ohne die Memory Barrier dazu kommen kann, dass der Peterson Lock versagt.

Aufgabenteil c)

• Übersetzen Sie das Programm nun mit voller Optimierung (beachten Sie den Hinweis) und testen Sie
es durch mehrmaliges Ausführen sowohl ohne die Memory Barrier als auch mit ihnen. Welchen Effekt
können Sie beobachten?

In C/C++ gibt es die Möglichkeit Speicherbereiche so zu markieren, dass die Reihenfolge von Lese- und Schrei-
boperationen auf diesen Speicherbereichen beim Compilieren des Programms nicht verändert werden kann.
Dies geschieht mit dem Schlüsselwort volatile. Lese- und Schreiboperationen auf Variablen, die mit diesem
Schlüsselwort versehen sind, gelangen in exakt der gleichen Reihenfolge in das übersetzte Programm, wie es im
Quellcode steht und dürfen auch nicht wegoptimiert werden.

• Versehen Sie die vier gemeinsamen Variablen in1, in2, last und sum mit dem zusätzlichen Schlüsselwort
volatile. Beispiel für die Syntax: volatile int in1 = 0;

• Übersetzen Sie das Programm erneut mit voller Optimierung und testen Sie es wieder durch mehrmaliges
Ausführen sowohl ohne die Memory Barrier als auch mit ihnen. Erklären Sie den von Ihnen beobachteten
Effekt.

Hinweis: Beim GNU C/C++ Compiler wird die volle Optimierung des Compilers durch die Option -O3 eingeschal-
tet.

8 Punkte

3


