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Aufgabe 1 (Dynamik: Registrierung und Optischer Fluss) (5 Punkte)

Das Ziel dieser Aufgabe ist der Zusammenhang zwischen Variationsmethoden zur Registrierung
und Variationsmethoden zur Berechnung des optischen Flusses. Gegeben sei das folgende Variati-
onsproblem bestehend aus einem L2-Datenterm zwischen Referenz- und Templatebild
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∫
Ω

(fT (y(x))− fR(x))2 dx → min
y

. (1)

Wir suchen bei diesem Problem eine optimale Gittertransformation y(x). Zum Vergleich betrachten
wir das folgende Variationsproblem
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∫
Ω

(u(x, 1)− fR(x))2 dx → min
v

, (2)

wobei u ∈ Ω × [0, 1] die Lösung der Anfangswertaufgabe mit dem optical flow constraint (Bewe-
gungsgleichung)

∂tu+ v(x) · ∇u = 0

u(x, 0) = fT (x) (Anfangswert)
(3)

darstellt. Bei diesem Problem, bestehend aus (2) und (3), suchen wir ein optimales Bewegungsfeld
(optischer Fluss) v.

Zeigen Sie: Zu jedem Vektorfeld v, das (2) unter (3) löst, existiert eine Gittertransformation y als
Lösung des Registrierungsproblems in (1).

Hinweis: Charakteristikenmethode. Partielle Differentialgleichungen 1.Ordnung können mit
der Charakteristiken-Methode gelöst werden. Eine Charakteristik ist eine Lösung u einer partiellen
Differentialgleichung entlang einer Kurve t 7→ y(t) und kann durch die Lösung einer gewöhnlichen
Differentialgleichung für die Funktion t 7→ z(t) := u(y(t), t) bestimmt werden. Betrachtet man eine
Anfangswertaufgabe, so wird für jeden Punkt der Anfangskurve eine Charakteristik durch diesen
Punkt bestimmt. Fügen sich diese Charakteristiken zu einer Fläche zusammen, so wird dies eine
Lösungsfläche der partiellen Differentialgleichung.
Strategie hier : Betrachten Sie d

dty(x, t) = v(y(x, t), t)) mit Anfangswert y(x, 0) = x, sowie d
dtz(x, t)

für z(x, t) := u(y(x, t), t).

Aufgabe 2 (Statistische Modellierung von Datentermen) (5 Punkte)

In der Vorlesung wurde gezeigt, wie bei Daten mit additivem Gauss’schen Rauschen und einem
Gibbs-Modell bzgl. R für die a priori Wahrscheinlichkeit ein kontinuierliches Variationsproblem mo-
delliert werden kann, das aus einem L2-Datenterm und einem Regularisierungsterm R(u) besteht.
Führen Sie analog eine Modellierung für Poisson- und multiplikatives Gamma-Rauschen durch:



(a) Zeigen Sie, dass wenn die diskreten gegebenen Daten Fij Realisierungen von paarweise un-
abhängig und identisch Poisson-verteilten Zufallsvariablen mit Erwartungswert Uij sind, d.h.

ρP(F | U) =
∏
ij

Uij
Fij

Fij !
e−Uij ,

und wenn wir analog eine Gibbs-Verteilung als a priori Wahrscheinlichkeit annehmen, dann
führt dies zu folgendem Variationsproblem∫

Ω

(f log
f

u
− f + u) dx + α R(u) → min

u
.

(b) Im Fall von multiplikativem Gamma-Rauschen, d.h. Fij = Uij · δij , wobei δij Realisierungen
von Gamma-verteilten Zufallsvariablen mit Erwartungswert 1 für das Rauschen darstellen,
so erhält man die folgende bedingte Wahrscheinlichkeitsdichte

ρP(F | U) =
∏
ij

nn

Unij Γ(n)
Fn−1
ij e

−n
Fij
Uij ,

wobei n := nx ∗ ny die Anzahl an Pixeln der gegebenen diskreten Daten und Γ die Gam-
mafunktion bezeichnet. Wenn wir auch hier analog eine Gibbs-Verteilung als a priori Wahr-
scheinlichkeit annehmen, dann zeigen Sie, dass dies zu folgendem Variationsproblem führt∫

Ω

(log u+
f

u
) dx + β R(u) → min

u
.

Aufgabe 3 (Exakte Rekonstruktion bei Sparsity) (5 Punkte)

Betrachten Sie das diskrete Variationsproblem

aλ = arg min
a

1

2
‖Ba− f‖2`2 + λ ‖a‖`1 (4)

mit gegebenen Daten f ∈ RM und zu rekonstruierenden Koeffizienten a ∈ RN . Hierbei enthalte
die Matrix (Dictionary) B ∈ RM×N als Spalten die Basisvektoren bn.
Die Idee ist, das Signal f mit nur sehr wenigen Koeffizienten an zu repräsentieren (Sparsity).

Sei nun die exakte Lösung â := ej ein Peak und f die zugehörigen Daten, d. h. f := Bej = bj .
Zeigen Sie: Falls gilt

‖bn‖`2 = 1 und |〈bn, bm〉| ≤ 1 für n 6= m

lässt sich die Lösung von (4) exakt (bis auf Kontrastverlust) rekonstruieren lässt, d. h. aλ = cej ,
wobei c = 1− λ für λ ∈ (0, 1).

Hinweis: Betrachten Sie die Optimalitätsbedingung.

Aufgabe 4 (Entrauschung: ROF Modell, Filtermethoden) (5 Punkte)

Verwenden Sie den Matlab Code für das ROF-Modell von der Webseite und eine Filtermethode
(z.B. iterativer linearer Filter oder Faltung mit fft) von einem der früheren Übungszettel, um die
Bilder aus dem Hörsaal zu entrauschen. Verwenden Sie bei Bedarf zusätzliches additives Gauss’sches
Rauschen. Was stellen Sie bei den Texturen bei starker Regularisierung fest?


