Institut für Numerische und Angewandte Mathematik FB Mathematik und Informatik der Universität Münster Prof. Dr. Christopher Deninger (Mathematisches Institut) Dipl. Math. Kathrin Smetana 14.05.2010

Übung zur Vorlesung

Partielle Differentialgleichungen

SS 2010 — Übungsblatt 5

Abgabe: 21.05.2010 vor der Vorlesung

Aufgabe 1 (4 Punkte)

Sei $\Omega \subset \mathbb{R}^d$ ein Gebiet, $1 \leq p < \infty$ und $u \in H^{1,p}(\Omega)$. Es ist $u^+ := \max\{u,0\}$ und $u^- := \min\{u,0\}$. Zeigen Sie, dass auch $u^+, u^- \in H^{1,p}(\Omega)$ sind und geben Sie die schwachen Ableitungen an. Hinweis: Um die Aussage für u^+ zu zeigen, betrachten Sie z.B. die Glättung

$$f_{\epsilon}(u) := \begin{cases} \left(u^2 + \epsilon^2\right)^{\frac{1}{2}} - \epsilon & \text{für } u > 0 \\ 0 & \text{für } u \leq 0 \end{cases}.$$

Aufgabe 2 (Abschätzung der Hölder-Norm durch die $H^{1,p}$ -Norm) (4 Punkte) Es sei $1 und <math>\alpha := 1 - \frac{1}{p}$ sowie $I := [a,b] \subset \mathbb{R}$. Zeigen Sie, dass es dann eine Konstante C gibt, so dass für $f \in C^1(I)$ und $x_0 \in I$ gilt:

$$||f||_{C^{0,\alpha}(I)} \le |f(x_0)| + C ||f'||_{L^p(I)}.$$

- (a) Berechnen Sie die Distributionsableitung von $\langle u \rangle$.
- (b) Zeigen Sie, dass u keine schwache Ableitung im Sinne von Definition 4.2 im Skript besitzt.

Aufgabe 4 (4 Punkte) Sei $f(x) := \ln ||x||_2$ für $x \in \mathbb{R}^d \setminus \{0\}$, wobei $||\cdot||_2$ die euklidische Norm ist. Zeigen Sie, dass

Sei $f(x) := \ln ||x||_2$ für $x \in \mathbb{R}^d \setminus \{0\}$, wobei $||\cdot||_2$ die euklidische Norm ist. Zeigen Sie, dass $\langle f \rangle$ und $\partial_i \langle f \rangle$ Distributionen sind und bestimmen Sie die Ordnungen der Distributionen.