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Motivation

Cardiovascular diseases are the most common cause of death
in industrialized countries

Every year up to 12 million people die due to cardiovascular
diseases. More than 50 % of these cases of death could have
been prevented by early diagnosis
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Motivation

Many cardiovascular diseases originate in atherosclerosis
(especially in the cardiovascular vessels)

Typical way of diagnosis: catheterization.

Disadvantage: invasive and therefore cumbersome for
patients; possible risk of thrombosis, embolism, infections or
cardiac arrythmia

Furthermore, detected constrictions must not be the result of
plaque, but can have different reasons (potential of false
diagnosis)
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Dynamic H2
15O PET

Dynamic PET allows noninvasive investigation of physiological
processes within the body

In particular, H2
15O as a tracer allows investigation of

perfusible tissue

With the use of simple kinetic models, conclusions on
perfusion in myocardium and on blood flow in adjacent vessels
can be drawn

Furthermore H2
15O offers a half-life of about 2 min. and

therefore adds a small radiation exposure to the patient



Introduction Mathematical Modelling Computational Results

Dynamic H2
15O PET

Dynamic PET allows noninvasive investigation of physiological
processes within the body

In particular, H2
15O as a tracer allows investigation of

perfusible tissue

With the use of simple kinetic models, conclusions on
perfusion in myocardium and on blood flow in adjacent vessels
can be drawn

Furthermore H2
15O offers a half-life of about 2 min. and

therefore adds a small radiation exposure to the patient



Introduction Mathematical Modelling Computational Results

Dynamic H2
15O PET

Dynamic PET allows noninvasive investigation of physiological
processes within the body

In particular, H2
15O as a tracer allows investigation of

perfusible tissue

With the use of simple kinetic models, conclusions on
perfusion in myocardium and on blood flow in adjacent vessels
can be drawn

Furthermore H2
15O offers a half-life of about 2 min. and

therefore adds a small radiation exposure to the patient



Introduction Mathematical Modelling Computational Results

Dynamic H2
15O PET

Dynamic PET allows noninvasive investigation of physiological
processes within the body

In particular, H2
15O as a tracer allows investigation of

perfusible tissue

With the use of simple kinetic models, conclusions on
perfusion in myocardium and on blood flow in adjacent vessels
can be drawn

Furthermore H2
15O offers a half-life of about 2 min. and

therefore adds a small radiation exposure to the patient



Introduction Mathematical Modelling Computational Results

Dynamic H2
15O PET

Disadvantage: due to the short half-life of H2
15O the quality

of reconstructed images is very poor

Figure: A 2D H2
15O EM reconstruction of a transaxial slice

intersecting the cardiovascular region, with added Gaußian
smoothing
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Dynamic H2
15O PET

A couple of low quality reconstructions provide the basis for
postprocessing via a kinetic model to obtain physiological
parameters that describe e.g. perfusion

Main drawback is that computation of low quality
reconstructions and subsequent postprocessing via a kinetic
model is done independently of each other

New approach: integrate the process of kinetic modelling into
the reconstruction process to compute more accurate
parameters (parameters are computed from the PET data and
not from low resolution images)

Inversion of 

nonlinear operator

nonlinear linear
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The Inverse Problem of PET

The basic inverse problem of PET is to obtain an image
u : Ω ⊂ Rn → R from the operator equation

℘(Bu) = f , (1)

where f : Σ→ R is the measured PET data, ℘ is an operator
guaranteeing Poisson statistics and B is the X-ray transform,
defined as

(Bu)(θ, x) =

∫
R

u(x + tθ)dt , (2)

with θ ∈ Sn−1 and x ∈ θ⊥.

In two dimensions, the X-ray transform is equivalent to the
Radon transform



Introduction Mathematical Modelling Computational Results

The Inverse Problem of PET

The basic inverse problem of PET is to obtain an image
u : Ω ⊂ Rn → R from the operator equation

℘(Bu) = f , (1)

where f : Σ→ R is the measured PET data, ℘ is an operator
guaranteeing Poisson statistics and B is the X-ray transform,
defined as

(Bu)(θ, x) =

∫
R

u(x + tθ)dt , (2)

with θ ∈ Sn−1 and x ∈ θ⊥.

In two dimensions, the X-ray transform is equivalent to the
Radon transform



Introduction Mathematical Modelling Computational Results

EM

Since positrons are Poisson distributed, the standard approach
to solve (1) is to compute the unique and global minimizer

Minimization of Kullback-Leibler functional

u ∈ arg min
u∈U

KL(f ,Bu) , (3)

with

KL(f ,Bu) =

∫
Σ

f log

(
f

Bu

)
+ Bu − f dx , (4)

in an appropriate function space U (e.g. U = L2(Ω))
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The minimum of (3) can be computed via

Optimality condition

B∗1− B∗
(

f

Ru

)
= 0 . (5)

In discrete terms equation (5) can be computed via the
standard EM algorithm

Standard EM algorithm

uk+1 =
uk

B∗1
B∗
(

f

Buk

)
, (6)

with 1 being the constant 1-function and an initial value u0 > 0.
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State-of-the-art MBF Quantification

To obtain physiological parameters, a sequence of images
(frames) has to be computed via (6)

⇒ u(x , t), for t ∈ [0,T ]

Sequence u(x , t) provides the basis for computation of
physiological values, as e.g. MBF, via a kinetic model

... ...

Subsequent parameter computation
via nonlinear fitting
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To apply a kinetic model, segmentation of the cardiovascular
region is needed, e.g. via factor images

The cardiovascular region has to be segmented into
myocardial tissue, left and right ventricle to extract
information on the radioactive distribution in the chambers
and to apply a kinetic model to the myocardial tissue region

In this talk we do not want to adress the problem of
segmentation but the challenge of computing parameters with
given segmentation from the data instead of the images
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Since we use a rough segmentation in image space we want to
introduce some basic notations to differ between the different
spatial regions

Notation

Ω denotes the whole image

T denotes the region of myocardial tissue

A represents the left ventricular region

V stands for the right ventricular region

H with H = T ∪ A ∪ V represents the whole cardiovascular region

With given segmentation a physiological model has to be
applied to the myocardial region
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Physiological Models for MBF-Quantification

The standard model for MBF quantification is the
one-tissue-compartmental model

One-tissue-compartmental model

∂ CT (x , t)

∂t
= F (x)

(
CA(t)− CT (x , t)

λ

)
, (7)

respectively its associated integral equation

CT (x , t) = F (x)

t∫
0

CA(τ) e−
F (x)

λ
(t−τ) dτ , (8)

where F denotes the MBF, CA represents the left ventricular blood
over time and λ is a fixed partition coefficient (e.g. λ = 0.96).
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Interesting properties of CT

Equation (8) represents a nonlinear operator CT (F ,CA) with
solution CT

The operator CT represented by (8) offers the following
interesting properties

Properties of CT

CT : Dp(CT )→ Lp(Ω× [0,T ]) is non-negative,

CT : Dp(CT )→ Lp(Ω× [0,T ]) is well-defined and Lp-continuous
on Dp(CT ),

CT : Dp(CT ) ∩ (L2p(Ω)× L2p([0,T ]))→ Lp(Ω× [0,T ]) is Fréchet
differentiable, with

Dp(CT ) := {F ∈ Lp(Ω), CA ∈ Lp([0,T ]) | F ≥ 0, CA ≥ 0} (9)

and for p ≥ 1
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Quantification as a Nonlinear Inverse Problem

Recall the basic principle of novel MBF quantification

Inversion of 

nonlinear operator

nonlinear linear

Based on (8) we introduce a new operator G that produces an
image sequence u from physiological parameters p, i.e.
G (p) = u, e.g.

Exemplary Operator G

G (F ,CA,CV) = CT |T + CA |A + CV |V (10)
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Since we are interested in the parameters p we now need to
consider the inverse problem

Modified Minimization Problem

p ∈ arg min
p∈P

{KLT (f ,BG (p)) +R(p)} , (11)

KLT (f ,Bu) =

T∫
0

∫
Σ

f log

(
f

Bu

)
+ Bu − f dx dt , (12)

with P denoting the domain of parameters and R guaranteeing
regularization to the parameters p.
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This minimization problem can be rewritten to the
constrained problem

Constrained problem

KLT (f ,Bu) +R(p)→ min
p∈P

subject to u = G (p)|H ,
(13)

Rewritten in terms of a Lagrange multiplier with L2 dual
product we obtain

Lagrange multiplier

L(u, p; q) = KLT (f ,Bu) +R(p) + 〈G (p)− u, q〉L2([0,T ]×H) (14)
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The optimality conditions of (14) are

Optimality conditions

q = B∗1− B∗
(

f

Bu

)
, (15)

(G
′
)∗(p) q = −R′(p) , (16)

u = G (p) . (17)

If we multiply (15) with u this yields

Analytical equation for Lagrange multiplier

0 = uB∗1− uB∗
(

f

Bu

)
− uq . (18)
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Reminder

0 = uB∗1− uB∗
(

f

Bu

)
− uq

= B∗1

u− u

B∗1

(
f

Bu

)
︸ ︷︷ ︸

∗

− uq

Adding u to * and setting this equation to zero satisfies the
optimality condtion of the Kullback-Leibler functional (5) for
each timestep t

Idea: Replace * with the discrete solution of (5) and solve
equation (18) with the iterative scheme
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Semidiscrete equation for Lagrange multiplier

ukq = B∗1
(
uk+1 − uk+ 1

2

)
(19)

⇔ uk+1 = uk+ 1
2

+
ukq

B∗1
, (20)

to uk+1, with uk+ 1
2

being the EM update (6) of uk .

We set κ(x , t) := B∗1
uk
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Solving (20) to uk+1 can be seen as solving the minimization
problem

Semidiscrete Minimization Problem 1

uk+1 ∈ arg min
u∈L2([0,T ]×Ω)

1

2

T∫
0

∫
Ω

(
u − uk+ 1

2

)2
κ dxdt

− 〈u, q〉L2([0,T ]×Ω)

 .

(21)



Introduction Mathematical Modelling Computational Results

Applying (17) results in

Semidiscrete Minimization Problem 2

p ∈ arg min
p∈P

1

2

T∫
0

∫
H

(
G (p)− uk+ 1

2

)2
κ dxdt

− 〈G (p), q〉L2([0,T ]×H)

 ,

(22)

subject to uk+1 = G (p)|H.
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It is easy to see that the Fréchet derivative of 〈G (p), q〉 in p
simply equals G

′
(p)∗q

Together with (16) we obtain the reduced problem

Semidiscrete Minimization Problem 3

p ∈ arg min
p∈P

1

2

T∫
0

∫
H

(
G (p)− uk+ 1

2

)2
κ dxdt +R(p)

 . (23)
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A solution of (23) can be obtained by computing the
optimality conditions of the Lagrange multiplier

Parameter Identification Problem

Lk(u, p;µ) =
1

2

T∫
0

∫
Ω

κ
(
u − uk+ 1

2

)2
dxdt +R(p)

+

T∫
0

∫
H

(G (p)− u)µdxdt

(24)

The optimality conditions ∂uLk(u, p;µ) = 0 and
∂µLk(u, p;µ) = 0 can be computed analytically
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The optimality conditions for p can be computed iteratively,
e.g. via a Landweber iteration of the gradient descent of ∂pLk

Computational Parameter Identification

Given a set of n parameters p =
(
pi
)
i={1,...,n}, each parameter can

be computed via

pi
j+1 = pi

j − τ ∂piLk(u, pj ;µ) , (25)

with τ > 0 being small, such that ∂uLk(u, pj ;µ) = 0 and
∂µLk(u, pj ;µ) = 0.

Iteration is stopped after m iterations (e.g. if
‖pm − pm−1‖ < ε, ε small) ⇒ uk+1 = G (pm)

EM PI
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Ill-posedness and Regularization

As most inverse problems, the inverse problem of MBF
quantification is ill-posed

Hence, appropriate regularization is needed:

Tikhonov Regularization

RT (pi ) =
α

2

∫
Ψi

(
pi (s)− pi

∗(s)
)2

ds (26)

with α > 0

With given a-priori knowledge pi
∗, Tikhonov regularization

secures that computed parameters pi are bounded (e.g. pi
∗

can be a typical average value for the parameter pi )



Introduction Mathematical Modelling Computational Results

Ill-posedness and Regularization

As most inverse problems, the inverse problem of MBF
quantification is ill-posed

Hence, appropriate regularization is needed:

Tikhonov Regularization

RT (pi ) =
α

2

∫
Ψi

(
pi (s)− pi

∗(s)
)2

ds (26)

with α > 0

With given a-priori knowledge pi
∗, Tikhonov regularization

secures that computed parameters pi are bounded (e.g. pi
∗

can be a typical average value for the parameter pi )



Introduction Mathematical Modelling Computational Results

Ill-posedness and Regularization

As most inverse problems, the inverse problem of MBF
quantification is ill-posed

Hence, appropriate regularization is needed:

Tikhonov Regularization

RT (pi ) =
α

2

∫
Ψi

(
pi (s)− pi

∗(s)
)2

ds (26)

with α > 0

With given a-priori knowledge pi
∗, Tikhonov regularization

secures that computed parameters pi are bounded (e.g. pi
∗

can be a typical average value for the parameter pi )



Introduction Mathematical Modelling Computational Results

Ill-posedness and Regularization

As most inverse problems, the inverse problem of MBF
quantification is ill-posed

Hence, appropriate regularization is needed:

Tikhonov Regularization

RT (pi ) =
α

2

∫
Ψi

(
pi (s)− pi

∗(s)
)2

ds (26)

with α > 0

With given a-priori knowledge pi
∗, Tikhonov regularization

secures that computed parameters pi are bounded (e.g. pi
∗

can be a typical average value for the parameter pi )



Introduction Mathematical Modelling Computational Results

Disadvantage of Tikhonov regularization: reconstructed
parameters are bounded but can still contain oscillating
patterns

To obtain smooth, non-oscillating parameter reconstructions,
the H1-norm can be applied as a regularizer:

H1-Regularization

RH1(pi ) =
∥∥pi − pi

∗
∥∥2

H1
= RT (pi ) +

α

2

n∑
j=1

∫
Ψi

(
∂

∂sj
pi (s)

)2

ds

(27)

with α > 0

Discontinuities are not preserved; this might not be a
disadvantage for this type of application, due to cardiac
motion



Introduction Mathematical Modelling Computational Results

Disadvantage of Tikhonov regularization: reconstructed
parameters are bounded but can still contain oscillating
patterns

To obtain smooth, non-oscillating parameter reconstructions,
the H1-norm can be applied as a regularizer:

H1-Regularization

RH1(pi ) =
∥∥pi − pi

∗
∥∥2

H1
= RT (pi ) +

α

2

n∑
j=1

∫
Ψi

(
∂

∂sj
pi (s)

)2

ds

(27)

with α > 0

Discontinuities are not preserved; this might not be a
disadvantage for this type of application, due to cardiac
motion



Introduction Mathematical Modelling Computational Results

Disadvantage of Tikhonov regularization: reconstructed
parameters are bounded but can still contain oscillating
patterns

To obtain smooth, non-oscillating parameter reconstructions,
the H1-norm can be applied as a regularizer:

H1-Regularization

RH1(pi ) =
∥∥pi − pi

∗
∥∥2

H1
= RT (pi ) +

α

2

n∑
j=1

∫
Ψi

(
∂

∂sj
pi (s)

)2

ds

(27)

with α > 0

Discontinuities are not preserved; this might not be a
disadvantage for this type of application, due to cardiac
motion



Introduction Mathematical Modelling Computational Results

With added H1-Regularization we are able to prove existence
of a solution and continuous dependency on the input data

Uniqueness would be desireable, to obtain a completely
well-posed problem

Unfortunately, CT is not a (strictly) convex operator
⇒ No guarantee of global minima
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Synthetic Data

We generated a very simple synthetic dataset with the
following simple segmentation

Segmentation

(a) A (b) V (c) T

Figure: Simple Segmentation
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We generated a synthetic dataset with the following
parameters

Parameters

(a) MBF F in ml/min/mg (b) CA and CV in kBq/ml over
time

Figure: Exact parameters

Partition coefficient λ = 0.96 has been set to a fixed value
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We set u(x , t) = G (F ,CA,CV)|H + 0|Ω\H

We generate ℘(Bu) = f via a simple Monte-Carlo algorithm
with a maximum number of counts of 61415

The following image shows the 9-th frame of a standard
EM-reconstruction (without any regularization) of the
synthetic PET data
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Reconstructions

Comparison: Exact vs Reconstruction

(a) Exact MBF (b) Reconstructed MBF

Figure: Reconstructions
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Figure: Reconstructions
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Reconstructions

Comparison: Complete Image Sequences

Synthetic Data

Video animated with the help of Jahn ,
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Real H2
15O PET Data

To conclude this talk we want to present some computational
results for real H2

15O PET data

The data is obtained from a two-dimensional transaxial slice
containing the cardiovascular region

The (rough) segmentation has been done manually with the
help of EM-TV reconstructions



Introduction Mathematical Modelling Computational Results

Real H2
15O PET Data

To conclude this talk we want to present some computational
results for real H2

15O PET data

The data is obtained from a two-dimensional transaxial slice
containing the cardiovascular region

The (rough) segmentation has been done manually with the
help of EM-TV reconstructions



Introduction Mathematical Modelling Computational Results

Real H2
15O PET Data

To conclude this talk we want to present some computational
results for real H2

15O PET data

The data is obtained from a two-dimensional transaxial slice
containing the cardiovascular region

The (rough) segmentation has been done manually with the
help of EM-TV reconstructions



Introduction Mathematical Modelling Computational Results

Real H2
15O PET Data

To conclude this talk we want to present some computational
results for real H2

15O PET data

The data is obtained from a two-dimensional transaxial slice
containing the cardiovascular region

The (rough) segmentation has been done manually with the
help of EM-TV reconstructions



Introduction Mathematical Modelling Computational Results

Segmentation

Segmentation

(a) A (b) V (c) T

Figure: Simple Segmentation obtained from EM-TV Reconstructions
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Reconstructions

Reconstructions - Rest

(a) MBF F (b) Arterial Input CA & Venous In-
put CV

Figure: Reconstructions obtained from real H2
15O PET data
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Reconstructions

Reconstruction of Complete Image Sequence

Real Data

Again, the video was animated with the help of Jahn ,
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Thank you for your attention!
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