Jahn Müller jahn.mueller@uni-muenster.de

Westfälische Wilhelms-Universität Münster

25.01.2008

Einleitung

Einleitung

- Gebietszerlegung
 - nicht überlappende Zerlegung
 - überlappende Zerlegung
 - Gebietszerlegung bei PDE's
 - Beispiel: Poisson Gleichung
 - Parallelisierung
- Anwendung für EM-TV
 - Problemstellung
 - Lösungsmethoden

Einleitung

- es gibt viele Probleme in der Bildverarbeitung deren Lösung viel Rechenaufwand benötigen
- z.B.: Entrauschen, Entzerren, usw. von hochaufgelösten Bilder in 2D oder sogar 3D
- Interesse an schnellen Lösungs-Algorithmen
- Möglichkeit:
 - Aufteilung des Problems in mehrere Teilprobleme
 - Parallele Lösung der Teilprobleme
 - Zusammensetzung zu Gesamtlösung

Gebietszerlegung nicht überlappende Zerlegung

Sei $\Omega \subset \mathbb{R}^d$:

Zerlege Ω in N Teilgebiete Ω_i , so dass

$$\bigcup_{i=1}^N \bar{\Omega}_i = \bar{\Omega}$$

$$\Omega_i \cap \Omega_j = \emptyset$$
 für $i \neq j$

Beispiel: N = 2 und d = 2

$$\Omega_1$$
 Ω_2

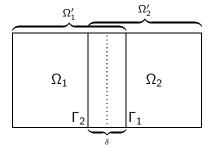
Gebietszerlegung überlappende Zerlegung

erweitere Ω_i zu Ω'_i , wobei Ω'_i am Rand von Ω abgeschnitten wird.

$$d(\partial\Omega_i'\cap\Omega_j,\partial\Omega_j'\cap\Omega_i)\geq\delta\quad\text{für }i\neq j\text{ und }\partial\Omega_i'\cap\Omega_j\neq\emptyset$$

bei einem uniformen Gitter mit Gittergröße h ist $\delta = n*h$ mit einem $n \in \mathbb{N}$

Beispiel: N = 2 und d = 2



Gebietszerlegung bei PDE's

- Zerlege Ω in N Teilgebiete Ω_i
- löse auf jedem Ω_i die gegebene PDE Randbedingungen werden benötigt:
 - auf $\partial\Omega_i\cap\partial\Omega$: gegebene Randbedingungen
 - auf $\partial\Omega_i\cap\Omega_j$: hier werden Näherungen des Nachbargebietes Ω_j benötigt.

Diese Abhängigkeit ist symmetrisch:

⇒ Gebietszerlegungsmethoden sind iterative Verfahren

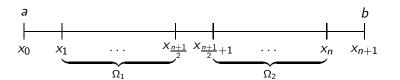
 die ursprüngliche Lösung erhält man durch zusammensetzen der Teillösungen

Gebietszerlegung Beispiel: Poisson Gleichung

Poisson Gleichung in 1D:

$$-\frac{\partial^2 u}{\partial x^2} = f(x) \quad x \in]a, b[$$
$$u(a) = u(b) = 0$$

Diskretisierung:



Mit $n = 2^k, k \in \mathbb{N}$, ist eine uniforme Unterteilung möglich (ebenso für die Erweiterung auf $2^j, j \in \mathbb{N}$, Gebiete)

Gebietszerlegung Beispiel: Poisson Gleichung

Beginnend mit Anfangswert $u^{(0)}$ (z.B.: $u^{(0)} = 0$) iteriert man

$$\begin{cases} Au_1^{(k+1)} = f, & \text{in } \Omega_1 \\ u_1^{(k+1)} = u^{(k)} & \text{für } x_{\frac{n+1}{2}+1} & \text{und} \\ u_1^{(k+1)} = 0, & \text{für } x_0 \end{cases}$$

$$\begin{cases} Au_2^{(k+1)} = f, & \text{in } \Omega_2 \\ u_2^{(k+1)} = u_1^{(k+1)} & \text{für } x_{\frac{n+1}{2}} \\ u_2^{(k+1)} = 0, & \text{für } x_{n+1} \end{cases}$$

Der nächste Schritt ergibt sich dann aus

$$u^{(k+1)}(x) = egin{cases} u_2^{(k+1)}(x), & \mathsf{falls}\ x \in \Omega_2 \ u_1^{(k+1)}(x), & \mathsf{falls}\ x \in \Omega \setminus \Omega_2 \end{cases}$$

Gebietszerlegung Beispiel: Poisson Gleichung

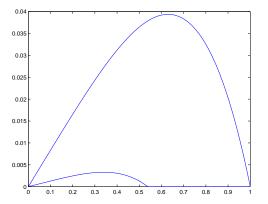


Abbildung: Lsg. der Poisson Gleichung mit $f(x) = x^2$ auf [0,1]

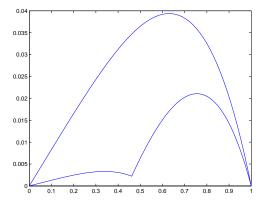


Abbildung: Lsg. der Poisson Gleichung mit $f(x) = x^2$ auf [0,1]

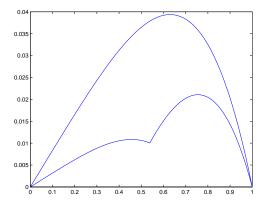


Abbildung: Lsg. der Poisson Gleichung mit $f(x) = x^2$ auf [0,1]

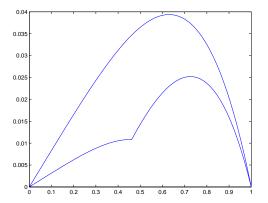


Abbildung: Lsg. der Poisson Gleichung mit $f(x) = x^2$ auf [0,1]

Multiplikative Schwarz Methode

Beginnend mit Anfangswert $u^{(0)}$ iteriert man

$$\begin{cases} Lu_1^{(k+1)} = f, & \text{in } \Omega_1 \\ u_1^{(k+1)} = u^{(k)}|_{\Gamma_1}, & \text{auf } \Gamma_1 & \text{und} \\ u_1^{(k+1)} = 0, & \text{auf } \partial\Omega_1 \setminus \Gamma_1 \end{cases}$$

$$\begin{cases} Lu_2^{(k+1)} = f, & \text{in } \Omega_2 \\ u_2^{(k+1)} = u_1^{(k+1)}|_{\Gamma_2}, & \text{auf } \Gamma_2 \\ u_2^{(k+1)} = 0, & \text{auf } \partial\Omega_2 \setminus \Gamma_2 \end{cases}$$

Der nächste Schritt ergibt sich dann aus

$$u^{(k+1)}(x) = \begin{cases} u_2^{(k+1)}(x), & \text{falls } x \in \Omega_2 \\ u_1^{(k+1)}(x), & \text{falls } x \in \Omega \setminus \Omega_2 \end{cases}$$

Parallelisierung

Ordne jedem Teilgebiet einen Prozessor zu:

⇒ gleichzeitige Berechnung möglich

Problem:

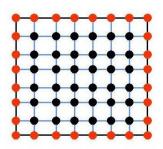
Datenaustausch zwischen Prozessoren erforderlich! (Randbedingungen werden von Nachbargebiet benötigt, s.o.) Realisierung z.B. durch MPI (Message Passing Interface)

Wichtiger Parameter: δ

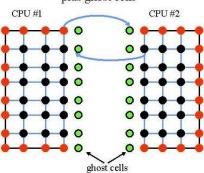
je größer δ desto:

- + weniger Iterationen
- mehr Operationen pro Iteration
- mehr Speicher

Serial version all cells on one processor



Parallel version each processor gets half the cells plus ghost cells



Anwendung für EM-TV Problemstellung

Zweiter Halbschritt im EM-TV Algorithmus:

$$u^{k+1} = \operatorname{argmin}_{u \in BV} \int_{\Omega} \frac{\left(u - u_{k+\frac{1}{2}}\right)^2}{u_k} dx + 2\alpha |u|_{TV}(\Omega)$$

mit

$$BV(\Omega) := \{ u \in L^1(\Omega) \mid |u|_{TV} < \infty \}$$
 (1)

dem Raum der Funktionen mit beschränkter Variation, und

$$|u|_{TV}(\Omega) := \sup_{\substack{\varphi \in \mathcal{C}^1_{loc}(\Omega)^d \\ ||\varphi||_{\infty} \le 1}} \int_{\Omega} u di v \varphi dx \tag{2}$$

der totalen Variation von u, für $u \in W^{1,1}(\Omega)$ ist

$$|u|_{TV}(\Omega) := \int_{\Omega} |\nabla u| dx \tag{3}$$

Anwendung für EM-TV Problemstellung

Wir wollen also folgendes Funktional minimieren:

$$\mathcal{J}(u) := \int_{\Omega} \frac{(u-f)^2}{\hat{u}} dx + 2\alpha |u|_{TV}(\Omega) \tag{4}$$

- Lösungen können unstetig sein
- Unstetigkeiten können auf den Schnittstellen der Gebietszerlegung liegen
 - ⇒ Algorithmus gesucht, der Unstetigkeiten an Schnittstellen erhält, aber auch stetige Bereiche richtig behandelt

Lösungsmethoden Primale Lösungsmethoden:

erste Optimalitätsbedingung für ein Minimum von (4) liefert:

$$\frac{u-f}{\hat{u}} - \alpha \nabla \cdot \left(\frac{\nabla u}{|\nabla u|}\right) = 0$$

um Differenzierbarkeit zu erreichen verwendet man statt (3)

$$|u|_{TV,\varepsilon}(\Omega) := \int_{\Omega} \sqrt{|\nabla u|^2 + \varepsilon^2} dx$$

- \bullet ε groß: Kanten werden verschmiert
- \bullet ε klein: PDE fast degeneriert

Lösungsmethoden Duale Lösungsmethoden:

Löse das duale Problem:

$$\int_{\Omega} (\alpha \hat{u} \nabla \cdot p - f)^2 dx \to \min_{\|p\|_{\infty} \le 1}$$

Vorteil: quadratisches Funktional (differenzierbar)

Nachteil: Nebenbedingung

 Lösung über notwendige Optimalitätsbedingungen (Karush-Kuhn-Tucker) • Finde u und g mit $||g||_{\infty} \leq 1$, so dass

$$\frac{1}{\alpha} \frac{u - f}{\hat{u}} + \nabla \cdot g = 0 \tag{5}$$

$$\int_{\Omega} u \nabla \cdot (g - \varphi) dx \geq 0 \quad \forall \varphi \text{ mit } ||\varphi||_{\infty} \leq 1 \qquad (6)$$

• wobei man (6) als Bedingung $\nabla \cdot g \in \partial |u|_{TV}$ auffassen kann, mit

$$\partial \mathcal{J}(u) = \{ w \in X^* | \langle w, u - v \rangle \le \mathcal{J}(v) - \mathcal{J}(u) \quad \forall v \in X \}$$

dem Subgradienten von $J: X \to \mathbb{R}$

Vielen Dank für Eure Aufmerksamkeit!

Ski Heil!!!