Nichtlineare Diffusion

Maren Sundermeier

20. Oktober 2008

• Verfahren zur Lösung der PME

- Verfahren zur Lösung der PME
 - einige einfache Beispiele

- Verfahren zur Lösung der PME
 - einige einfache Beispiele
 - Separation der Variablen

- Verfahren zur Lösung der PME
 - einige einfache Beispiele
 - Separation der Variablen
 - ebene Wanderwellen

• Verfahren zur Lösung der PME

- einige einfache Beispiele
- Separation der Variablen
- ebene Wanderwellen
- Source-type-Lösungen, Selbstähnlichkeit

• Verfahren zur Lösung der PME

- einige einfache Beispiele
- Separation der Variablen
- ebene Wanderwellen
- Source-type-Lösungen, Selbstähnlichkeit

• Verfahren zur Lösung der PME

- einige einfache Beispiele
- Separation der Variablen
- ebene Wanderwellen
- Source-type-Lösungen, Selbstähnlichkeit

• Anwendungen

• Gasfluss durch ein poröses Medium

• Verfahren zur Lösung der PME

- einige einfache Beispiele
- Separation der Variablen
- ebene Wanderwellen
- Source-type-Lösungen, Selbstähnlichkeit

- Gasfluss durch ein poröses Medium
- nichtlinearer Wärmetransfer

• Verfahren zur Lösung der PME

- einige einfache Beispiele
- Separation der Variablen
- ebene Wanderwellen
- Source-type-Lösungen, Selbstähnlichkeit

- Gasfluss durch ein poröses Medium
- nichtlinearer Wärmetransfer
- Grundwasserfiltration

• Verfahren zur Lösung der PME

- einige einfache Beispiele
- Separation der Variablen
- ebene Wanderwellen
- Source-type-Lösungen, Selbstähnlichkeit

- Gasfluss durch ein poröses Medium
- nichtlinearer Wärmetransfer
- Grundwasserfiltration
- Populationsdynamik

• Verfahren zur Lösung der PME

- einige einfache Beispiele
- Separation der Variablen
- ebene Wanderwellen
- Source-type-Lösungen, Selbstähnlichkeit

- Gasfluss durch ein poröses Medium
- nichtlinearer Wärmetransfer
- Grundwasserfiltration
- Populationsdynamik

Thematik

Darstellung von verschiedenen Verfahren zur Lösung der poröse-Medien-Gleichung (PME)

$$\frac{\partial u}{\partial t} = \Delta_x u^m, \quad m > 1, \quad u = u(x, t)$$

Thematik

Darstellung von verschiedenen Verfahren zur Lösung der poröse-Medien-Gleichung (PME)

$$\frac{\partial u}{\partial t} = \Delta_x u^m, \quad m > 1, \quad u = u(x, t)$$

Dabei gilt:

- u = u(x, t) nichtnegative, skalare Funktion
- $x \in \mathbb{R}^d$ und $t \in \mathbb{R}$
- *d* ≥ 1
- $m \in \mathbb{R}$, m > 1

allgemeine Eigenschaften

• kann aufgestellt werden für alle $x \in \mathbb{R}^d$ und $0 < t < \infty$ \rightarrow Anfangsbedingungen zur Lösungsermittlung nötig

allgemeine Eigenschaften

- kann aufgestellt werden für alle $x \in \mathbb{R}^d$ und $0 < t < \infty$ \rightarrow Anfangsbedingungen zur Lösungsermittlung nötig
- praktische Probleme: begrenzter Unterraum $\Omega \subset \mathbb{R}^d$ für $0 < t < \mathcal{T}$ gegeben

 \rightarrow zusätzlich zu Anfangs- auch Grenzbedingungen zur Lösung des Problems nötig

• physikalische Fragestellungen: oft vorgegebene Beschränkung $u \ge 0$

- physikalische Fragestellungen: oft vorgegebene Beschränkung $u \ge 0$
- ohne diese Bedingung schreibt man die PME auch oft in der Form:

$$\frac{\partial u}{\partial t} = \Delta_{x}(|u|^{m-1} u)$$

- physikalische Fragestellungen: oft vorgegebene Beschränkung $u \ge 0$
- ohne diese Bedingung schreibt man die PME auch oft in der Form:

$$\frac{\partial u}{\partial t} = \Delta_{\mathsf{x}}(|u|^{m-1} u)$$

• zusätzlich kann man einen Zwangsterm auf der rechten Seite hinzuaddieren:

$$\frac{\partial u}{\partial t} = \Delta_x(|u|^{m-1}u) + f \quad \text{mit} \quad f = f(x, t)$$

- physikalische Fragestellungen: oft vorgegebene Beschränkung $u \ge 0$
- ohne diese Bedingung schreibt man die PME auch oft in der Form:

$$\frac{\partial u}{\partial t} = \Delta_{\mathsf{x}}(|u|^{m-1} u)$$

• zusätzlich kann man einen Zwangsterm auf der rechten Seite hinzuaddieren:

$$\frac{\partial u}{\partial t} = \Delta_x(|u|^{m-1}u) + f \quad \text{mit} \quad f = f(x, t)$$

• f kann alternativ auch von u (Reaktion und Absorption) oder ∇u (Konvektion) abhängen

Sonderfälle

m = 1: Wärmeleitungsgleichung (HE)

$$\frac{\partial u}{\partial t} = \Delta_x u$$

Sonderfälle

m = 1: Wärmeleitungsgleichung (HE)

$$\frac{\partial u}{\partial t} = \Delta_x u$$

m < 1: schnelle Diffusionsgleichung (FDE)

$$\frac{\partial u}{\partial t} = \Delta_{\times} \frac{u^m}{m} = div(u^{m-1}\nabla u)$$

Sonderfälle

m = 1: Wärmeleitungsgleichung (HE)

$$\frac{\partial u}{\partial t} = \Delta_x u$$

m < 1: schnelle Diffusionsgleichung (FDE)

$$\frac{\partial u}{\partial t} = \Delta_{\mathsf{x}} \frac{u^m}{m} = \operatorname{div}(u^{m-1} \nabla u)$$

• m = 0: logarithmische Diffusion

$$\frac{\partial u}{\partial t} = div(u^{-1}\nabla u) = \Delta log(u)$$

einige einfache Beispiele Separation der Variablen ebene Wanderwellen Source-type-Lösungen, Selbstähnlichkeit

• Einführung

• Verfahren zur Lösung der PME

- einige einfache Beispiele
- Separation der Variablen
- ebene Wanderwellen
- Source-type-Lösungen, Selbstähnlichkeit

- Gasfluss durch ein poröses Medium
- nichtlinearer Wärmetransfer
- Grundwasserfiltration
- Populationsdynamik

einige einfache Beispiele Separation der Variablen ebene Wanderwellen Source-type-Lösungen, Selbstähnlichkeit

- 3 Lösungstypen:
 - Separate-Variablen-Lösungen
 - Wanderwellen
 - Source-type-Lösungen
- Konzepte zur Lösung:
 - Skalierung
 - Grenzlösungen
 - begrenzte Ausbreitung
 - freie Grenzen

einige einfache Beispiele Separation der Variablen ebene Wanderwellen Source-type-Lösungen, Selbstähnlichkeit

- 3 Lösungstypen:
 - Separate-Variablen-Lösungen
 - Wanderwellen
 - Source-type-Lösungen

Konzepte zur Lösung:

- Skalierung
- Grenzlösungen
- begrenzte Ausbreitung
- freie Grenzen

Da auch Lösungen mit wechselndem Vorzeichen betrachtet werden, beziehen sich die folgenden Abschnitte auf die PME der Form:

$$\frac{\partial u}{\partial t} = \Delta_x(|u|^{m-1} u)$$

• Verfahren zur Lösung der PME

• einige einfache Beispiele

- Separation der Variablen
- ebene Wanderwellen
- Source-type-Lösungen, Selbstähnlichkeit

- Gasfluss durch ein poröses Medium
- nichtlinearer Wärmetransfer
- Grundwasserfiltration
- Populationsdynamik

einige einfache Beispiele Separation der Variablen ebene Wanderwellen Source-type-Lösungen, Selbstähnlichkeit

stationäre Lösungen

u_t = 0, d.h. u ist nur von x abhängig, u = u(x)
 ⇒ w = u^m muss Δw = 0 erfüllen
 ⇒ jede harmonische Funktion w(x) ist eine stationäre Lösung, wenn man

$$u(x,t) = w(x)^{1/m}$$
 für $w(x) \ge 0$,
 $u(x,t) = |w(x)|^{1/m} \cdot sign(w)$
für Lösungen mit wechselndem Vorzeichen,

setzt

einige einfache Beispiele Separation der Variablen ebene Wanderwellen Source-type-Lösungen, Selbstähnlichkeit

stationäre Lösungen

u_t = 0, d.h. u ist nur von x abhängig, u = u(x)
 ⇒ w = u^m muss Δw = 0 erfüllen
 ⇒ jede harmonische Funktion w(x) ist eine stationäre Lösung, wenn man

$$u(x,t) = w(x)^{1/m}$$
 für $w(x) \ge 0$,
 $u(x,t) = |w(x)|^{1/m} \cdot sign(w)$ für Lösungen mit wechselndem Vorzeichen,

setzt

- zusätzliche Forderung: Lösungen im ganzen Raum definiert und nichtnegativ
 - \Rightarrow Lösungen konstant (triviale Lösungen)

einige einfache Beispiele Separation der Variablen ebene Wanderwellen Source-type-Lösungen, Selbstähnlichkeit

stationäre Lösungen

 1D: Rest der stationären Lösungen sind genau die linearen Funktionen u^m = Ax + b mit A ≠ 0

einige einfache Beispiele Separation der Variablen ebene Wanderwellen Source-type-Lösungen, Selbstähnlichkeit

stationäre Lösungen

- 1D: Rest der stationären Lösungen sind genau die linearen Funktionen u^m = Ax + b mit A ≠ 0
- Forderung der Nichtnegativität: Beschränkung auf Bereich u > 0
 ⇒ Lösungen für x > 0 mit u(0) = 0:

$$u = C x^{1/m}$$
 mit $C \in \mathbb{R}$

 \rightarrow an der Grenze keine C^1 -Funktionen

• Verfahren zur Lösung der PME

• einige einfache Beispiele

• Separation der Variablen

- ebene Wanderwellen
- Source-type-Lösungen, Selbstähnlichkeit

- Gasfluss durch ein poröses Medium
- nichtlinearer Wärmetransfer
- Grundwasserfiltration
- Populationsdynamik

einige einfache Beispiele Separation der Variablen ebene Wanderwellen Source-type-Lösungen, Selbstähnlichkeit

Betrachtung der HE:

$$u_t = \Delta u$$

einige einfache Beispiele Separation der Variablen ebene Wanderwellen Source-type-Lösungen, Selbstähnlichkeit

Betrachtung der HE:

$$u_t = \Delta u$$

Fourier-Ansatz:

$$u(x,t)=T(t)\cdot F(x)$$

 \Rightarrow separate Gleichungen für T(t) (Zeitfaktor) und F(x) (Raumprofil):

$$\dot{T}(t) = -\lambda T(t)^m, \quad \Delta F^m(x) + \lambda F(x) = 0$$
 (1)

einige einfache Beispiele Separation der Variablen ebene Wanderwellen Source-type-Lösungen, Selbstähnlichkeit

Betrachtung der HE:

$$u_t = \Delta u$$

Fourier-Ansatz:

$$u(x,t)=T(t)\cdot F(x)$$

 \Rightarrow separate Gleichungen für T(t) (Zeitfaktor) und F(x) (Raumprofil):

$$\dot{T}(t) = -\lambda T(t)^m, \quad \Delta F^m(x) + \lambda F(x) = 0$$
 (1)

- $\lambda \in \mathbb{R}$ beliebig (Kopplung beider Gleichungen)
- $\lambda = 0 \Rightarrow$ stationären Lösungen \Rightarrow im Folgenden: $\lambda \neq 0$
- Lösung der ersten Gleichung:

$$T(t) = (C + (m-1)\lambda t)^{-1/(m-1)}$$

- Reduktion des Problems auf Lösen der nichtlinearen, elliptischen Gleichung für *F*
 - \rightarrow abhängig vom Vorzeichen von λ
einige einfache Beispiele Separation der Variablen ebene Wanderwellen Source-type-Lösungen, Selbstähnlichkeit

 λ positiv (nichtlineares EW-Problem)

• Reduktion auf Fall $\lambda = 1$ durch Änderung des Wertes von F:

$$F_1(x) \quad \text{Lösung von (1) mit} \quad \lambda = 1$$

$$\Leftrightarrow \quad F(x) = \mu F_1(x) \quad \text{Lösung von (1)}$$

mit $\quad \mu = \lambda^{1/(m-1)}, \quad \lambda > 0, \quad \lambda \neq 1$

einige einfache Beispiele Separation der Variablen ebene Wanderwellen Source-type-Lösungen, Selbstähnlichkeit

 λ positiv (nichtlineares EW-Problem)

• Reduktion auf Fall $\lambda = 1$ durch Änderung des Wertes von F:

$$F_1(x) \quad \text{Lösung von (1) mit} \quad \lambda = 1$$

$$\Leftrightarrow \quad F(x) = \mu F_1(x) \quad \text{Lösung von (1)}$$

mit $\quad \mu = \lambda^{1/(m-1)}, \quad \lambda > 0, \quad \lambda \neq 1$

• Änderung von F zu $G = |F|^{m-1} F$

$$\Rightarrow \Delta G(x) + \lambda |G(x)|^{p-1} G(x) = 0 \quad \text{mit} \quad p = \frac{1}{m} \in (0, 1)$$

einige einfache Beispiele Separation der Variablen ebene Wanderwellen Source-type-Lösungen, Selbstähnlichkeit

λ positiv (nichtlineares EW-Problem)

- Gleichung in begrenztem Gebiet mit regulärer Grenze gegeben und Grenzbedingungen gleich Null
 - \Rightarrow Existenz genau einer positiven Lösung

Separate-Variablen-Lösung

$$u(x,t) = (C + (m-1)(t-t_0))^{-1/(m-1)}F(x)$$
 mit t_0 beliebig

einige einfache Beispiele Separation der Variablen ebene Wanderwellen Source-type-Lösungen, Selbstähnlichkeit

λ positiv (nichtlineares EW-Problem)

- Gleichung in begrenztem Gebiet mit regulärer Grenze gegeben und Grenzbedingungen gleich Null
 - \Rightarrow Existenz genau einer positiven Lösung

Separate-Variablen-Lösung

$$u(x,t) = (C + (m-1)(t-t_0))^{-1/(m-1)}F(x)$$
 mit t_0 beliebig

- klassische Lösung der PME im Raum $\Omega \times (t_0, \infty)$ mit Grenzbedingungen gleich Null
- Anfangsbedingung bei $t = t_0$: $u(x, t_0) = \infty$
- Bemerkung: Methode ergibt keine klassische Lösung im ganzen Raum \mathbb{R}^d für die PME!

einige einfache Beispiele Separation der Variablen ebene Wanderwellen Source-type-Lösungen, Selbstähnlichkeit

$$\lambda = -I < 0$$
 (Blow-up)

• Lösungen mit Zeitfaktor

$$T(t) = (C - (m-1)lt)^{-1/(m-1)} = ((m-1)l(t-t_0))^{-1/(m-1)}$$

- Reduktion auf Fall l = 1: Lösen der elliptischen Gleichung $\Delta F^m(x) = F(x)$ nach einer Skalierung
- radialsymmetrische Lösungen (definiert im ganzen Raum)

einige einfache Beispiele Separation der Variablen ebene Wanderwellen Source-type-Lösungen, Selbstähnlichkeit

• Einführung

• Verfahren zur Lösung der PME

- einige einfache Beispiele
- Separation der Variablen

ebene Wanderwellen

• Source-type-Lösungen, Selbstähnlichkeit

• Anwendungen

- Gasfluss durch ein poröses Medium
- nichtlinearer Wärmetransfer
- Grundwasserfiltration
- Populationsdynamik

einige einfache Beispiele Separation der Variablen ebene Wanderwellen Source-type-Lösungen, Selbstähnlichkeit

Lösungen von der Form

$$u = f(\eta) \quad \text{mit} \quad \eta = x_1 - ct \in \mathbb{R}$$
 (2)

Einführung Verfahren zur Lösung der PME Anwendungen Source-type-Lösungen, Selbstähnlichkeit

Lösungen von der Form

$$u = f(\eta) \quad \text{mit} \quad \eta = x_1 - ct \in \mathbb{R}$$
 (2)

- Wellenbewegung entlang der x₁-Achse mit der Zeit ohne Änderung der Gestalt
- eben: Form nicht von x₂,..., x_d abhängig
- Wellengeschwindigkeit $c \neq 0$
 - c = 0: stationäre Lösungen
 - c < 0: Reduktion zu c > 0 durch Reflektion
 - c > 0: Bewegung in positiver Richtung auf Achse (Wellenrichtung)
- Invarianz unter Rotation \Rightarrow Welle in geradliniger Richtung $\vec{\eta}$ im Raum \mathbb{R}^d durch $\eta = \vec{x}\vec{\eta} ct$

einige einfache Beispiele Separation der Variablen ebene Wanderwellen Source-type-Lösungen, Selbstähnlichkeit

Herleitung der Lösungen

• Einsetzen von (2) in die PME

 $\Rightarrow (f^m)'' + cf' = 0$ mit Ableitungen bzgl. η

Integration

 $\Rightarrow (f^m)' + cf = K$ mit $K \in \mathbb{R}$ beliebig

einige einfache Beispiele Separation der Variablen ebene Wanderwellen Source-type-Lösungen, Selbstähnlichkeit

Herleitung der Lösungen

• Einsetzen von (2) in die PME

$$\Rightarrow (f^m)'' + cf' = 0$$
 mit Ableitungen bzgl. η

Integration

$$\Rightarrow (f^m)' + cf = K$$
 mit $K \in \mathbb{R}$ beliebig

• Wahl der Integrationskonstante: Näherung der Welle an 'leere Region', d.h. $f(\eta) = f'(\eta) = 0$ für alle $\eta >> 0$

$$\Rightarrow K = 0 \quad \Rightarrow mf^{m-2}f' + c = 0$$

Integration

$$\Rightarrow \frac{m}{m-1}f^{m-1} = -c\eta + K_1 = c(\eta_0 - \eta)$$

einige einfache Beispiele Separation der Variablen ebene Wanderwellen Source-type-Lösungen, Selbstähnlichkeit

Herleitung der Lösungen

mathematischer Druck

$$v = \frac{m}{m-1}u^{m-1}$$

einige einfache Beispiele Separation der Variablen ebene Wanderwellen Source-type-Lösungen, Selbstähnlichkeit

Herleitung der Lösungen

mathematischer Druck

$$v = \frac{m}{m-1}u^{m-1}$$

 \Rightarrow Druck ist lineare Funktion:

klassische Lösung der PME in $\{(x, t) : x < x_0 + ct\}$

$$v(x,t) = K_1 - c(x - ct) = c(x_0 + ct - x)$$
(3)

einige einfache Beispiele Separation der Variablen ebene Wanderwellen Source-type-Lösungen, Selbstähnlichkeit

analytische Probleme und Lösungswege

- (3) liefert keine Lösung der PME im ganzen Raum $\rightarrow v$ negativ für $x > x_0 + ct$
- Lösungsweg: Strategie des Grenzproblems
 - Lösen eines angenäherten Problems, bei dem die Schwierigkeiten nicht auftreten
 - Übergang zum Grenzwert
 - Begutachtung des erhaltenen Ergebnisses

einige einfache Beispiele Separation der Variablen ebene Wanderwellen Source-type-Lösungen, Selbstähnlichkeit

Wärmeleitungsgleichung (HE)

Wanderwellen für HE

 $u(x,t) = Ce^{c(ct-x)}$

einige einfache Beispiele Separation der Variablen ebene Wanderwellen Source-type-Lösungen, Selbstähnlichkeit

Wärmeleitungsgleichung (HE)

Wanderwellen für HE

 $u(x,t) = Ce^{c(ct-x)}$

- klassische Lösungen
- immer positiv
- erreichen u = 0 bei $x = \infty$
- Eigenschaft der HE: nichtnegative Lösungen immer positiv

• Einführung

• Verfahren zur Lösung der PME

- einige einfache Beispiele
- Separation der Variablen
- ebene Wanderwellen

• Source-type-Lösungen, Selbstähnlichkeit

• Anwendungen

- Gasfluss durch ein poröses Medium
- nichtlinearer Wärmetransfer
- Grundwasserfiltration
- Populationsdynamik

einige einfache Beispiele Separation der Variablen ebene Wanderwellen Source-type-Lösungen, Selbstähnlichkeit

Ausgangspunkt

- Lösung der PME bei begrenzter Masse, die an einem einzelnen Punkt (z.B. x = 0) konzentriert ist
- klassisches Problem: Beschreibung der Entwicklung der Wärmeverteilung ausgelöst durch eine Punktquelle
 → mathematisch: Lösung der HE unter der Anfangsbedingung u(x, 0) = Mδ(x) mit M > 0 (Punktquelle)

einige einfache Beispiele Separation der Variablen ebene Wanderwellen Source-type-Lösungen, Selbstähnlichkeit

Ausgangspunkt

- Lösung der PME bei begrenzter Masse, die an einem einzelnen Punkt (z.B. x = 0) konzentriert ist
- klassisches Problem: Beschreibung der Entwicklung der Wärmeverteilung ausgelöst durch eine Punktquelle
 → mathematisch: Lösung der HE unter der Anfangsbedingung u(x, 0) = Mδ(x) mit M > 0 (Punktquelle)

Fundamentallösung für HE (Gauß ´scher Kern)

$$E(x,t) = M(4\pi t)^{-d/2} exp(\frac{-x^2}{4t})$$

 \Rightarrow Existiert eine Quellenlösung für die nichtlineare Diffusionsgleichung (PME mit m > 1)?

einige einfache Beispiele Separation der Variablen ebene Wanderwellen Source-type-Lösungen, Selbstähnlichkeit

Graphische Darstellung der Fundamentallösung für HE

Abbildung: Fundamentallösung der HE

einige einfache Beispiele Separation der Variablen ebene Wanderwellen Source-type-Lösungen, Selbstähnlichkeit

ZKB-Lösung

Quellenlösung für PME (ZKB-Lösung)

$$U(x, t; M) = t^{-\alpha} F(xt^{-\alpha/d}) \quad \text{mit} \quad F(\xi) = (C - \kappa \xi^2)_+^{1/(m-1)}$$

mit $\alpha = \frac{d}{d(m-1)+2}, \quad \kappa = \frac{(m-1)\alpha}{2md}$

einige einfache Beispiele Separation der Variablen ebene Wanderwellen Source-type-Lösungen, Selbstähnlichkeit

ZKB-Lösung

Quellenlösung für PME (ZKB-Lösung)

$$U(x, t; M) = t^{-\alpha} F(xt^{-\alpha/d}) \quad \text{mit} \quad F(\xi) = (C - \kappa \xi^2)_+^{1/(m-1)}$$

mit $\alpha = \frac{d}{d(m-1)+2}, \quad \kappa = \frac{(m-1)\alpha}{2md}$

Abhängigkeiten:

- C > 0 prinzipiell beliebig
- kann eindeutig festgelegt werden durch die Bedingung für die totale Masse $\int Udx = M$ $\Rightarrow M = a(m, d)C^{\gamma}, \quad \gamma = \frac{d}{2(m-1)\alpha} \quad \text{mit} \quad \gamma = \gamma(m, d)$

einige einfache Beispiele Separation der Variablen ebene Wanderwellen Source-type-Lösungen, Selbstähnlichkeit

Graphische Darstellung der ZKB-Lösung

Abbildung: ZKB-Lösung der PME

einige einfache Beispiele Separation der Variablen ebene Wanderwellen Source-type-Lösungen, Selbstähnlichkeit

alternative Formen der ZKB-Lösung

Man setzt:

$$C = \kappa \xi_0^2 M^{2(m-1)\alpha/d}$$

ZKB-Lösung

$$U_m(x,t;M) = \frac{M^{2\alpha/d}}{t^{\alpha}} F_{m,1}(\frac{x}{(M^{m-1}t)^{\alpha/d}})$$

mit $F_{m,1} = (\kappa(\xi_0^2 - \xi^2))_+^{1/(m-1)}$

einige einfache Beispiele Separation der Variablen ebene Wanderwellen Source-type-Lösungen, Selbstähnlichkeit

alternative Formen der ZKB-Lösung

mathematischer Druck:

$$v = \frac{m}{m-1}u^{m-1}$$

ZKB-Lösung in Termen des mathematischen Drucks

$$V_m(x, t; M) = \frac{(Ct^{\alpha/d} - bx^2)_+}{t}$$

mit $b = \frac{\alpha}{2d}, \quad C > 0$

einige einfache Beispiele Separation der Variablen ebene Wanderwellen Source-type-Lösungen, Selbstähnlichkeit

alternative Formen der ZKB-Lösung

mathematischer Druck:

$$v = \frac{m}{m-1}u^{m-1}$$

ZKB-Lösung in Termen des mathematischen Drucks

$$V_m(x, t; M) = \frac{(Ct^{\alpha/d} - bx^2)_+}{t}$$

mit $b = \frac{\alpha}{2d}, \quad C > 0$

Grenzwert $m \rightarrow 1$ (Masse *M* fest gewählt):

$$\lim_{m\to 1} U_m(x,t;M) = ME(x,t)$$

einige einfache Beispiele Separation der Variablen ebene Wanderwellen Source-type-Lösungen, Selbstähnlichkeit

Herleitung der ZKB-Lösung

Selbstähnlichkeitsform

$$U(x,t) = t^{-\alpha} f(\eta) \quad \text{mit} \quad \eta = x t^{-\beta} \tag{4}$$

einige einfache Beispiele Separation der Variablen ebene Wanderwellen Source-type-Lösungen, Selbstähnlichkeit

Herleitung der ZKB-Lösung

Selbstähnlichkeitsform

$$U(x,t) = t^{-\alpha} f(\eta) \quad \text{mit} \quad \eta = x t^{-\beta} \tag{4}$$

- α, β : Ähnlichkeitsexponenten
 - α : Dichtekonzentrationsrate
 - β : Raumexpansionrate
- f: Selbstähnlichkeitsprofil

einige einfache Beispiele Separation der Variablen ebene Wanderwellen Source-type-Lösungen, Selbstähnlichkeit

Herleitung der ZKB-Lösung

Selbstähnlichkeitsform

$$U(x,t) = t^{-\alpha} f(\eta) \quad \text{mit} \quad \eta = x t^{-\beta} \tag{4}$$

- α, β : Ähnlichkeitsexponenten
 - α : Dichtekonzentrationsrate
 - β: Raumexpansionrate
- f: Selbstähnlichkeitsprofil

<u>Ziel:</u> Bestimmung von α, β, f , sodass U Lösung ist (mit passenden zusätzlichen Daten)

Anmerkung: Die Fundamentallösung der HE ist selbstähnlich mit den Exponenten $\alpha = d/2, \beta = 1/2$ und einer Gauß'schen Funktion als Profil!

einige einfache Beispiele Separation der Variablen ebene Wanderwellen Source-type-Lösungen, Selbstähnlichkeit

1. Schritt

Einsetzen des Selbstähnlichkeitsansatzes (4) in PME $U_t = \Delta U^m$:

einige einfache Beispiele Separation der Variablen ebene Wanderwellen Source-type-Lösungen, Selbstähnlichkeit

1. Schritt

Einsetzen des Selbstähnlichkeitsansatzes (4) in PME $U_t = \Delta U^m$:

• Zeitableitung:

$$U_t = -\alpha t^{-\alpha-1} f(\eta) + t^{-\alpha} \nabla f(\eta) \cdot x t^{-\beta-1} (-\beta)$$

= $-t^{-\alpha-1} (\alpha f(\eta) + \beta \nabla f(\eta) \cdot \eta)$

einige einfache Beispiele Separation der Variablen ebene Wanderwellen Source-type-Lösungen, Selbstähnlichkeit

1. Schritt

Einsetzen des Selbstähnlichkeitsansatzes (4) in PME $U_t = \Delta U^m$:

• Zeitableitung:

$$U_t = -\alpha t^{-\alpha-1} f(\eta) + t^{-\alpha} \nabla f(\eta) \cdot x t^{-\beta-1} (-\beta)$$

= $-t^{-\alpha-1} (\alpha f(\eta) + \beta \nabla f(\eta) \cdot \eta)$

• Anwendung des Laplace-Operators:

$$\Delta(U^m) = t^{-\alpha m} \Delta_x(f^m(xt^{-\beta})) = t^{-\alpha m - 2\beta} \Delta_\eta(f^m)(\eta)$$

einige einfache Beispiele Separation der Variablen ebene Wanderwellen Source-type-Lösungen, Selbstähnlichkeit

1. Schritt

Einsetzen des Selbstähnlichkeitsansatzes (4) in PME $U_t = \Delta U^m$:

• Zeitableitung:

$$U_t = -\alpha t^{-\alpha-1} f(\eta) + t^{-\alpha} \nabla f(\eta) \cdot x t^{-\beta-1} (-\beta)$$

= $-t^{-\alpha-1} (\alpha f(\eta) + \beta \nabla f(\eta) \cdot \eta)$

• Anwendung des Laplace-Operators:

$$\Delta(U^m) = t^{-\alpha m} \Delta_x(f^m(xt^{-\beta})) = t^{-\alpha m - 2\beta} \Delta_\eta(f^m)(\eta)$$
$$\Rightarrow t^{-\alpha - 1}(-\alpha f(\eta) - \beta \eta \cdot \nabla f(\eta)) = t^{-\alpha m - 2\beta} \Delta f^m(\eta)$$

einige einfache Beispiele Separation der Variablen ebene Wanderwellen Source-type-Lösungen, Selbstähnlichkeit

2. Schritt

Beseitigung der Zeitabhängigkeit:

$$\Rightarrow \alpha(m-1) + 2\beta = 1$$

$$\Rightarrow \text{Profilgleichung:} \quad \Delta f^m + \beta \eta \cdot \nabla f + \alpha f = 0$$

einige einfache Beispiele Separation der Variablen ebene Wanderwellen Source-type-Lösungen, Selbstähnlichkeit

2. Schritt

Beseitigung der Zeitabhängigkeit:

$$\Rightarrow \alpha(m-1) + 2\beta = 1$$

$$\Rightarrow \text{Profilgleichung:} \quad \Delta f^m + \beta \eta \cdot \nabla f + \alpha f = 0$$

- nichtlineare, elliptische Gleichung mit freiem Parameter (z.B. β)
- Grenzbedingungen oder andere nötig für wohldefiniertes nichtlineares EW-Problem

einige einfache Beispiele Separation der Variablen ebene Wanderwellen Source-type-Lösungen, Selbstähnlichkeit

3. Schritt

Festlegung von β durch Massenerhaltung $\int U(x, t) dx = const.$:

$$\int U(x,t)dx = \int t^{-\alpha}f(xt^{-\beta})dx = t^{-\alpha}t^{\beta d}\int f(\eta)d\eta = const.(t)$$

$$\Rightarrow \alpha = d\beta$$

Schritt 2: $\alpha(m-1) + 2\beta = 1$

einige einfache Beispiele Separation der Variablen ebene Wanderwellen Source-type-Lösungen, Selbstähnlichkeit

3. Schritt

Festlegung von β durch Massenerhaltung $\int U(x, t) dx = const.$:

$$\int U(x,t)dx = \int t^{-\alpha}f(xt^{-\beta})dx = t^{-\alpha}t^{\beta d}\int f(\eta)d\eta = const.(t)$$

$$\Rightarrow \alpha = d\beta$$

Schritt 2: $\alpha(m-1) + 2\beta = 1$

Ähnlichkeitsexponenten

$$\beta = \frac{1}{d(m-1)+2}, \quad \alpha = \frac{d}{d(m-1)+2}$$
einige einfache Beispiele Separation der Variablen ebene Wanderwellen Source-type-Lösungen, Selbstähnlichkeit

4. Schritt

Lösung von $\Delta f^m + \beta \eta \cdot \nabla f + \alpha f = 0$ in \mathbb{R}^d

- Ziel: nichtnegative Lösungen
- Problem rotations invariant: radial symmetrische Lösung f = f(r) mit r = |x|

$$\frac{1}{r^{d-1}} (r^{d-1}(f^m)')' + \beta r f' + d\beta f = 0$$

$$\Rightarrow (r^{d-1}(f^m)' + \beta r^d f)' = 0$$

einige einfache Beispiele Separation der Variablen ebene Wanderwellen Source-type-Lösungen, Selbstähnlichkeit

4. Schritt

Lösung von $\Delta f^m + \beta \eta \cdot \nabla f + \alpha f = 0$ in \mathbb{R}^d

- Ziel: nichtnegative Lösungen
- Problem rotations invariant: radial symmetrische Lösung f = f(r) mit r = |x|

$$\frac{1}{r^{d-1}}(r^{d-1}(f^m)')' + \beta r f' + d\beta f = 0$$

$$\Rightarrow (r^{d-1}(f^m)' + \beta r^d f)' = 0$$

- Integration: $r^{d-1}(f^m)' + \beta r^d f = C$
- Grenzbedingungen $f \to 0$ für $r \to \infty$ ($\Rightarrow C = 0$):

$$(f^{m})' + \beta r f = 0 \Rightarrow m f^{m-2} f' = -\beta r$$

$$\Rightarrow \frac{m}{m-1} f^{m-1} = -\frac{\beta}{2} r^{2} + C \Rightarrow f^{m-1} = A - \frac{\beta(m-1)}{2m} r^{2}$$

einige einfache Beispiele Separation der Variablen ebene Wanderwellen Source-type-Lösungen, Selbstähnlichkeit

Erweiterung zu m < 1

- Quellenlösung existiert mit ähnlichen Eigenschaften solange $\alpha > 0$
- Erweiterung im Bereich $m_c < m < 1$ möglich für $m_c = 0$ für d = 1, 2 bzw. $m_c = \frac{d-2}{d}$ für $d \ge 3$
- ZKB-Lösung bleibt bestehen, jedoch mit m-1 < 0 und $\kappa < 0$ $\Rightarrow U_m$ überall positiv

einige einfache Beispiele Separation der Variablen ebene Wanderwellen Source-type-Lösungen, Selbstähnlichkeit

Erweiterung zu m < 1

- Quellenlösung existiert mit ähnlichen Eigenschaften solange $\alpha > 0$
- Erweiterung im Bereich $m_c < m < 1$ möglich für $m_c = 0$ für d = 1, 2 bzw. $m_c = \frac{d-2}{d}$ für $d \ge 3$
- ZKB-Lösung bleibt bestehen, jedoch mit m-1 < 0 und $\kappa < 0$ $\Rightarrow U_m$ überall positiv

ZKB-Lösung für $m_c < m < 1$

$$U_m(x,t;M) = t^{-\alpha} F(\frac{x}{t^{\alpha/\beta}}) \quad \text{mit} \quad F(\xi) = (C + \kappa_1 \xi^2)_+^{-1/(1-m)}$$

mit $\alpha = \frac{d}{d(m-1)+2}$ und $\kappa_1 = -\kappa = \frac{(1-m)\alpha}{2md}$

einige einfache Beispiele Separation der Variablen ebene Wanderwellen Source-type-Lösungen, Selbstähnlichkeit

Graphische Darstellung der Quellenlösung für FDE

Abbildung: Quellenlösung für FDE mit d = 3, m = 1/2

Einführung Verfahren zur Lösung der PME Anwendungen Anwendungen

• Einführung

• Verfahren zur Lösung der PME

- einige einfache Beispiele
- Separation der Variablen
- ebene Wanderwellen
- Source-type-Lösungen, Selbstähnlichkeit

• Anwendungen

- Gasfluss durch ein poröses Medium
- nichtlinearer Wärmetransfer
- Grundwasserfiltration
- Populationsdynamik

• Einführung

• Verfahren zur Lösung der PME

- einige einfache Beispiele
- Separation der Variablen
- ebene Wanderwellen
- Source-type-Lösungen, Selbstähnlichkeit

• Anwendungen

• Gasfluss durch ein poröses Medium

- nichtlinearer Wärmetransfer
- Grundwasserfiltration
- Populationsdynamik

Gasfluss durch ein poröses Medium nichtlinearer Wärmetransfer Grundwasserfiltration Populationsdynamik

Einführung

- PME $(m \ge 2)$ beschreibt den Fluss eines idealen Gases durch ein homogenes poröses Medium
- makroskopische Sicht: Formulierung in den Variablen Dichte ρ , Druck p und Geschwindigkeit \vec{V} als Funktionen von Raum \vec{x} und Zeit t

Gasfluss durch ein poröses Medium nichtlinearer Wärmetransfer Grundwasserfiltration Populationsdynamik

Zusammenhänge der einzelnen Größen

• Massengleichgewicht (Kontinuitätsgleichung):

 $\epsilon \rho_t + \nabla \cdot (\rho \vec{V}) = 0$ mit $\epsilon \in (0,1)$ (Porosität)

Gasfluss durch ein poröses Medium nichtlinearer Wärmetransfer Grundwasserfiltration Populationsdynamik

Zusammenhänge der einzelnen Größen

• Massengleichgewicht (Kontinuitätsgleichung):

$$\epsilon
ho_t +
abla \cdot (
ho ec{\mathcal{V}}) = 0$$
 mit $\epsilon \in (0,1)$ (Porosität)

• Darcy's Gesetz:

$$\mu \vec{V} = -k\nabla p$$

Gasfluss durch ein poröses Medium nichtlinearer Wärmetransfer Grundwasserfiltration Populationsdynamik

Zusammenhänge der einzelnen Größen

• Massengleichgewicht (Kontinuitätsgleichung):

$$\epsilon
ho_t +
abla \cdot (
ho ec{\mathcal{V}}) = 0$$
 mit $\epsilon \in (0,1)$ (Porosität)

• Darcy's Gesetz:

$$\mu \vec{V} = -k\nabla p$$

• Zustandsgleichung (für ideales Gas):

 $p = p_0
ho^\gamma$ (γ - Polytropenexponent)

• $\gamma = 1$: isotherm (Temperatur konstant) • $\gamma > 1$: adiabatisch (kein Austausch thermischer Energie)

Gasfluss durch ein poröses Medium nichtlinearer Wärmetransfer Grundwasserfiltration Populationsdynamik

Vereinfachung

Annahmen:

- Viskosität (Zähflüssigkeit) $\mu > 0$ und konstant
- Porosität (Maß für Dichte) $\epsilon > 0$ und konstant
- Permeabilität (Durchlässigkeit) k > 0 und konstant
- Referenzdruck $p_0 > 0$ und konstant

Gasfluss durch ein poröses Medium nichtlinearer Wärmetransfer Grundwasserfiltration Populationsdynamik

Vereinfachung

Annahmen:

- Viskosität (Zähflüssigkeit) $\mu > 0$ und konstant
- Porosität (Maß für Dichte) $\epsilon > 0$ und konstant
- Permeabilität (Durchlässigkeit) k > 0 und konstant
- Referenzdruck $p_0 > 0$ und konstant

$$\Rightarrow \rho_t = c\Delta(\rho^m) \quad \text{mit} \quad m = 1 + \gamma, \quad c = \frac{\gamma k p_0}{(\gamma + 1)\epsilon \mu}$$

Gasfluss durch ein poröses Medium nichtlinearer Wärmetransfer Grundwasserfiltration Populationsdynamik

Abgleich der Notation

- u anstelle von ρ für die Dichte
- v anstelle von p für den Druck

Gasfluss durch ein poröses Medium nichtlinearer Wärmetransfer Grundwasserfiltration Populationsdynamik

Abgleich der Notation

- u anstelle von ρ für die Dichte
- v anstelle von p für den Druck

Ausblenden physikalischer Konstanten: $\epsilon, k, \mu = 1$

- Darcy's Gesetz: $\vec{V} = -\nabla v = -mu^{m-2}\nabla u$
- Massengleichgewicht: $\partial_t u + \nabla \cdot \vec{j} = 0$ mit $\vec{j} = u \vec{V}$ (Massenfluss)

Gasfluss durch ein poröses Medium nichtlinearer Wärmetransfer Grundwasserfiltration Populationsdynamik

Erweiterung auf nichthomogene Medien

Betrachtung von Fluss mit ϵ, μ, k nicht-konstant (Funktionen von Raum und Zeit)

\Rightarrow Verallgemeinerung der PME

NHPME

$$\epsilon(x, t)\partial_t u = \nabla \cdot (c(x, t)\nabla u^m)$$

mit ϵ, c nichtnegativ

Gasfluss durch ein poröses Medium nichtlinearer Wärmetransfer Grundwasserfiltration Populationsdynamik

Erweiterung zur Filtrationsgleichung

<u>Ansatz</u>: Zustandsgleichung keine Potenzfunktion, aber $p = p(\rho), \quad k = k(\rho), \quad \mu = \mu(\rho)$

\Rightarrow Gleichung für Dichte

GPME (Filtrationsgleichung)

$$ho_t = \Delta \Phi(
ho) + f$$
 mit $\Phi = \Phi(
ho)$ monoton steigend und $ho \geq 0$

hier:
$$\Phi'(\rho) = \frac{\rho k(\rho) p'(\rho)}{\mu(\rho) \epsilon}$$

• Einführung

• Verfahren zur Lösung der PME

- einige einfache Beispiele
- Separation der Variablen
- ebene Wanderwellen
- Source-type-Lösungen, Selbstähnlichkeit

• Anwendungen

- Gasfluss durch ein poröses Medium
- nichtlinearer Wärmetransfer
- Grundwasserfiltration
- Populationsdynamik

Gasfluss durch ein poröses Medium nichtlinearer Wärmetransfer Grundwasserfiltration Populationsdynamik

Einführung

Wärmeausbreitung mit temperaturabhängiger Wärmeleitfähigkeit

allgemeine Form (ohne Quellen und Senken)

$$c\rho\frac{\partial T}{\partial t} = div(\kappa\nabla T)$$

Gasfluss durch ein poröses Medium nichtlinearer Wärmetransfer Grundwasserfiltration Populationsdynamik

Einführung

Wärmeausbreitung mit temperaturabhängiger Wärmeleitfähigkeit

allgemeine Form (ohne Quellen und Senken)

$$c\rho\frac{\partial T}{\partial t} = div(\kappa\nabla T)$$

- Temperatur T = T(x, t)
- spezifische Wärme c = c(x, t) (bei konstantem Druck)
- Dichte des Mediums $\rho = \rho(x, t)$
- Wärmeleitfähigkeit $\kappa = \kappa(x, t)$

Gasfluss durch ein poröses Medium nichtlinearer Wärmetransfer Grundwasserfiltration Populationsdynamik

$$m{c},
ho$$
 konstant, $\kappa=\phi(m{T})$

allgemeine Form

$$\partial_t T = \Delta \Phi(T)$$

 \rightarrow Filtrationsgleichung in völlig anderem Kontext gefunden Zustandsfunktion Φ (Kirchhoff-Transformation): $\Phi(T) = \frac{1}{cq} \int_0^T \kappa(s) ds$

Gasfluss durch ein poröses Medium nichtlinearer Wärmetransfer Grundwasserfiltration Populationsdynamik

$$m{c},
ho$$
 konstant, $\kappa=\phi(m{T})$

allgemeine Form

$$\partial_t T = \Delta \Phi(T)$$

 \rightarrow Filtrationsgleichung in völlig anderem Kontext gefunden Zustandsfunktion Φ (Kirchhoff-Transformation): $\Phi(T) = \frac{1}{c_{\theta}} \int_{0}^{T} \kappa(s) ds$

Abhängigkeit durch Potenzfunktion gegeben: $\kappa(T) = aT^n$ mit a, n > 0und konstant

PME für Konstante b

$$T_t = b\Delta(T^m)$$
 mit $m = n + 1$, $b = \frac{a}{c\rho m}$

Gasfluss durch ein poröses Medium nichtlinearer Wärmetransfer Grundwasserfiltration Populationsdynamik

$$c\rho = \psi(T), \kappa = \phi(T)$$

Einführung einer neuen Variablen:

$$T' = \Psi(T) \equiv \int_0^T \psi(s) ds$$

$$\Rightarrow \partial_t \Psi(T) = \Delta \Phi(T)$$

Gasfluss durch ein poröses Medium nichtlinearer Wärmetransfer Grundwasserfiltration Populationsdynamik

$$c\rho = \psi(T), \kappa = \phi(T)$$

Einführung einer neuen Variablen:

$$T' = \Psi(T) \equiv \int_0^T \psi(s) ds$$

$$\Rightarrow \partial_t \Psi(T) = \Delta \Phi(T)$$

GPME

$$\partial_t T' = \Delta F(T')$$
 mit $F = \Phi \circ \Psi^{-1}$

Abhängigkeit durch Potzenfunktion gegeben \Rightarrow PME mit entsprechendem Exponenten

physikalischer Hintergrund

- Wärmeleitfähigkeit bei Strahlung: $\kappa = \frac{lc}{3}c_{rad}, c_{rad} = aT^3$
 - Lichtgeschwindigkeit $c = 3 \cdot 10^8 m/s$
 - Rosseland's mittlere freie Weglänge I
 - spezifische Wärme crad
- $l = const. \Rightarrow \mathsf{PME} \text{ mit } m = 4$
- *I* i.A. temperaturabhängig: $I \approx aT^n$
 - mehrfach ionisierte Gase: $n \in (1.5, 2.5)$

• Einführung

• Verfahren zur Lösung der PME

- einige einfache Beispiele
- Separation der Variablen
- ebene Wanderwellen
- Source-type-Lösungen, Selbstähnlichkeit

• Anwendungen

- Gasfluss durch ein poröses Medium
- nichtlinearer Wärmetransfer
- Grundwasserfiltration
- Populationsdynamik

Modellierung

Filtration einer inkompressiblen Flüssigkeit (z.B. Wasser) durch eine poröse Schicht <u>Annahmen:</u>

- Schicht der Höhe H auf horizontalem, undurchlässigen Fundament (z = 0)
- Ignorieren der transversalen Variable y
- Wassermasse füllt Region $\Omega = \{(x, z) : z \le h(x, t)\}$
 - \rightarrow es gibt keine Region unvollständiger Sättigung

Abbildung: Grundwasserfiltration

Gasfluss durch ein poröses Medium nichtlinearer Wärmetransfer Grundwasserfiltration Populationsdynamik

Modellierung

- $0 \le h(x, t) \le H$ mit h unbekannt
 - \Rightarrow System von 3 Gleichungen mit Unbekannten:
 - *u*, *w* Geschwindigkeitskomponenten
 - p Druck
 - \rightarrow Gleichung für Massenerhaltung der inkompressiblen Flüssigkeit,
 - 2 Gleichungen für Erhaltung der Bewegungsgröße (Navier-Stokes)
- Zufügen von Anfangs- und Grenzbedingungen

Gasfluss durch ein poröses Medium nichtlinearer Wärmetransfer Grundwasserfiltration Populationsdynamik

Herleitung der Boussinesq's Gleichung

Bewegungsgleichungen

$$\rho(rac{du_z}{dt} + ec{u} \cdot
abla u_z) = -rac{\partial p}{\partial z} -
ho g$$

Gasfluss durch ein poröses Medium nichtlinearer Wärmetransfer Grundwasserfiltration Populationsdynamik

Herleitung der Boussinesq's Gleichung

Bewegungsgleichungen

$$\rho(\frac{du_z}{dt} + \vec{u} \cdot \nabla u_z) = -\frac{\partial p}{\partial z} - \rho g$$

- Annahme: Fluss mit nahezu horizontaler Geschwindigkeit $\vec{u} \approx (u, o)$ \Rightarrow Weglassen des Terms auf der linken Seite
- Integration nach z: $p + \rho gz = const$.
- Berechnung der Konstante auf der freien Fläche z = h(x, t): Stetigkeit des Drucks $\Rightarrow p = 0 \Rightarrow p = \rho g(h - z)$

Herleitung der Boussinesq's Gleichung

Ausnutzen der Massenerhaltung:

• Wahl eines Teilgebiets $S = (x, x + a) \times (0, C)$

$$\Rightarrow \epsilon \frac{\partial}{\partial t} \int_{x}^{x+a} \int_{0}^{h} dy dx = -\int_{\partial S} \vec{u} \cdot \vec{n} dl$$

mit Porosität ϵ und Geschwindigkeit \vec{u}

- Darcy's Gesetz mit Gravitation: $\vec{u} = -\frac{k}{\mu} \nabla(p + \rho g z)$
- rechte seitliche Grenzfläche: $ec{u}ec{n}pprox(u,0)\cdot(1,0)=u$
- linke seitliche Grenzfläche: $\vec{u}\vec{n} = -u$

Gasfluss durch ein poröses Medium nichtlinearer Wärmetransfer Grundwasserfiltration Populationsdynamik

Herleitung der Boussinesq's Gleichung

• Ausnutzen der Formel für p und Differentiation nach x:

$$\Rightarrow \epsilon \frac{\partial h}{\partial t} = \frac{\rho g k}{\mu} \frac{\partial}{\partial x} \int_0^h \frac{\partial}{\partial x} h dz$$

Gasfluss durch ein poröses Medium nichtlinearer Wärmetransfer Grundwasserfiltration Populationsdynamik

Herleitung der Boussinesq's Gleichung

• Ausnutzen der Formel für p und Differentiation nach x:

$$\Rightarrow \epsilon \frac{\partial h}{\partial t} = \frac{\rho g k}{\mu} \frac{\partial}{\partial x} \int_0^h \frac{\partial}{\partial x} h dz$$

Boussinesq's Gleichung (PME mit m = 2)

$$h_t = \kappa (h^2)_{ imes imes}$$
 mit $\kappa = rac{
ho g k}{2 m \mu}$

Gasfluss durch ein poröses Medium nichtlinearer Wärmetransfer Grundwasserfiltration Populationsdynamik

Herleitung der Boussinesq's Gleichung

• Ausnutzen der Formel für p und Differentiation nach x:

$$\Rightarrow \epsilon \frac{\partial h}{\partial t} = \frac{\rho g k}{\mu} \frac{\partial}{\partial x} \int_0^h \frac{\partial}{\partial x} h dz$$

Boussinesq's Gleichung (PME mit m = 2)

$$h_t = \kappa (h^2)_{ imes imes}$$
 mit $\kappa = rac{
ho g k}{2 m \mu}$

Gasfluss durch ein poröses Medium nichtlinearer Wärmetransfer Grundwasserfiltration Populationsdynamik

Erweiterungen

- Verallgemeinerung auf mehrere Dimensionen: $h_t = \kappa \Delta(h^2)$
- Wassereinfluss oder -ausfluss: $h_t = \kappa \Delta(h^2) + f$

Einführung Verfahren zur Lösung der PME Anwendungen Anwendungen

• Einführung

• Verfahren zur Lösung der PME

- einige einfache Beispiele
- Separation der Variablen
- ebene Wanderwellen
- Source-type-Lösungen, Selbstähnlichkeit

• Anwendungen

- Gasfluss durch ein poröses Medium
- nichtlinearer Wärmetransfer
- Grundwasserfiltration
- Populationsdynamik
Gasfluss durch ein poröses Medium nichtlinearer Wärmetransfer Grundwasserfiltration Populationsdynamik

Ausbreitung von biologischen Populationen

homogenes Medium

Population einer Spezies

 $\partial_t u = div(\kappa \nabla u) + f(u)$

Gasfluss durch ein poröses Medium nichtlinearer Wärmetransfer Grundwasserfiltration Populationsdynamik

Ausbreitung von biologischen Populationen

homogenes Medium

Population einer Spezies

$$\partial_t u = \operatorname{div}(\kappa \nabla u) + f(u)$$

- Dichte u: Konzentration der Spezies
- Reaktionsterm f(u): symbiotische Interaktion in der Spezies
- Diffusionkoeffizient κ

Gasfluss durch ein poröses Medium nichtlinearer Wärmetransfer Grundwasserfiltration Populationsdynamik

Ausbreitung von biologischen Populationen

Vermeidung von Überbevölkerung

• <u>Annahme</u>: Diffusionkoeffizient κ anwachsende Funktion der Populationsdichte

 $ightarrow \kappa = \phi(u), \hspace{1em} \phi$ anwachsend

realistische Annahme für bestimmte Fälle: $\phi(u) = au$

Gasfluss durch ein poröses Medium nichtlinearer Wärmetransfer Grundwasserfiltration Populationsdynamik

Ausbreitung von biologischen Populationen

Vermeidung von Überbevölkerung

• <u>Annahme</u>: Diffusionkoeffizient κ anwachsende Funktion der Populationsdichte

 $ightarrow \kappa = \phi(u), \hspace{0.2cm} \phi$ anwachsend

realistische Annahme für bestimmte Fälle: $\phi(u) = au$

grundlegende Gleichungen für Reaktionsterm:

- Malthusian-Gesetz: $f(u) = \mu u$ $\rightarrow \mu$ Summe zweier Koeffizienten mit entgegengesetztem Vorzeichen ("Geburt" und "Sterben")
- Verhulst-Gesetz: $f(u) = \mu u \lambda u^2$

Gasfluss durch ein poröses Medium nichtlinearer Wärmetransfer Grundwasserfiltration Populationsdynamik

Ausbreitung von biologischen Populationen

- Ignorieren des Reaktionsterms: PME mit m = 2
- Beachtung des Reaktionsterms bzw. Präsenz von mehreren Spezies: nichtlineares Reaktions-Diffusions-System von Gleichungen parabolischen Typs

Gasfluss durch ein poröses Medium nichtlinearer Wärmetransfer Grundwasserfiltration Populationsdynamik

ENDE

Vielen Dank für die

Aufmerksamkeit!