Theorem 29 (Hopf-Lax formula). Let Q2 < R" be open and bounded and g : 92 — R,
glx)—g(y) =60y, ¥) Yx,y € 6Q. Then

u(x) = ylerggz{g{y) +6{y, %)}

is a Lipschitz-continuous viscosity solution of H(x, Vu(x)) = 0 in Q with u= g on 9.
Bemerkung 30. * The theorem implies existence of a viscosity solution.

e For H(x,p) = |p|l - ﬁ and g =0, u(x) is the arrival time of a seismic wave
starting from Q).

* g(x)—g(y) =6(¥ x) means that the wavefront cannot arrive at x later than the
time it needs from y to x.

Lemma31. (i) L, isconvex
(ii) Ly(w) = Clw| for a constant C independent of w
ot
(i) Ly = AL (w)VA >0

Proof. (1) Ly(tg+ (1 -0Dw) = SUP e p=oltd + (L —Dwl-p = SUPjy(x,py<0 14" P+
(A-Bw-p<tsupyrypm=oq P+ 1= OSUP g p<o W P = tLx(g) + (1 — O Ly (w)
Yie[0,1]

(i) Ly (w) = sUp gy, py<o W P < SUP px py=o | W] - [P] = (SUP e py <o | PN 0]

(iii) Ly(Aw) = supmx’mso/lw p= }LsupH(x,p)SQ w-p
£l

Bemerkung 32. The previous lemma implies that, if H(x, p) = H(x,—p), § is a pseu-
dometric.

Proof of Thm. 29 for the case H(x, p) = H(p) and H(p) = H(—p). Notethatin this ca-
se we have d(x, y) = L{y — x) since L is independent of x.

a) uis Lipschitz continuous and u(x) < u(y) +8(x, y) Vx,y€ O
w(x) —u{y) = inf (g(z1)+8(x,2z1)) — inf (g(z)+0{y 2))
z1€00) z2€d()

= sup glzz) +6(x, z) — g(z2) - 6(y, 2)
22€080)

=6(x, ) =L(y—x) (2) Cly—x|
b) Subsolution:
Let u—¢ have alocal maximum in x, i. e. u(x)—¢p(x") < u(x) —¢p(x) or equivalently
| G = plx) = ulx) - u(x) = —6(x,x).
Taking x" = x + s, { arbitrary,

Lindep.
¢(A+S(s)—zp(xl > 75(x,sx+sc') of x 7L§SG (zél) ~LQ) = Vo-l=-LO).

Analogously, V¢ - = L) = supp<ol - p, 1€ [V -{| = L) V{ € R, Now ass-
ume H(V¢) > 0. Since H is convex and continuous, there is a hyperplane {who-
se normal shall be v) separating {p| H(p) < 0} from V¢. We thus have |V¢ - v| >
SUPH(pm<o 'V = L(v), a contradiction, i.e. H(V¢) < 0.
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c) Supersolution:
Let u(x) = g(7) +8(x, 7) = g(7) + L{x — 7) for some y € 80 and define ¢(1) = 7+
t(x—y). We have

g +Lx—7) =ulx) < ulc(®)+8(c(@),x) =ulc())+(1-)Lx—7
SgP+8(F cN+1-DLx—P =g+ Lx—-73)

so that u(c()) = g(3) + tL(x—7) = g(7) + L{c(#) — 7). Now let u — ¢ have a local
minimum in x, i. e. ¢(x) — ¢(x') = u(x) — u(x"), and set x = ¢(1), ¥’ = ¢(1 - 5). We
obtain

P —pled—s)) _ u(x)—u(c(l-s))
§ = s

= Vex) -7 =Vox)-c(l)=zVu-c(l)=Lx—-§) = sup (x—7)-p.
H(p)=0

Hence, (Vp(x) + alx—y)) - (x = §) > supyp<o(x — §) - p for all @ > 0 and thus
H(V¢p(x) +a(x— 7)) > 0and H(V¢) = 0 by continuity.

d) Boundary data:
Letx €80, then g(x)-g(y) = 6@',)@ implies g(x) < g(y) +5gy, ¥) forall y € 80 and
thus g(x) < u(x). Furthermore, u(x) < g(x)+68(x, x) = g(x) and hence u(x) = g(x).

d

For uniqueness we require additional conditions on H, as the following example
shows. Below we will state two possible uniqueness results,

Beispiel 33. LetW € C1(Q), ¥ = 0 0nd<Y, and consider H(x, p) = |p|*>—|V¥(x)|2. Then
u="Y and u= -\ are both (classical and viscosity) solutions of 0 = H(x, Vu(x)).

Theorem 34 (Uniqueness via comparison). Let Q < R" be bounded and open and
H:Q xR xR" continuous with

o Hix,u,p)-H(x,v,p) >yu—v) foray >0,
e |H(x,u,p) —H(y,u,p)| =Cly—x|(1 +|pl) fora C > 0.

If u is a viscosity subsolution and v a viscosity supersolution of 0 = H(x, u(x), Vu(x))
with u < v on €}, then u < v in Q). Hence, the viscosity solution is unigue.

Proofidea. Suppose u and v are smooth and 1 — v has a maximum at xp € Q with
u{xp) — v(xg) > 0. By the definition of viscosity super- and subsolutions, we have

H{(xp, u(xp), Vv(xp)) =0,
H{(xq, v(xp), Vulxg)) = 0.

Since V(u — v)(xg) =0, we have Vi(xg) = Vv(xp) and thus
0= H(xo, ulxp), Vv{xo)) = H(xp, 1(x0), Vie(xg)) > H(xp, v(x0), Vie(xg)) = 0,

a contradiction. Non-smooth u, v require more work., ]

&
-

Theorem 35 (Uniqueness for Hamilton-Jacobi-Bellman equation). Let H: (Rx R 1) x
R™ —R, H((t,x), (p", p¥)) = p' + H(x, p*) for H continuous with
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» [P:I(X,P]—I:J(x,q)lSCIp—qlforaC>0,
° |H(x,p)— H(y,pll = Cly - x|(1+|pl).

Then there is at most one viscosity solution of 0 = H((t, x), (1 (¢, x), Vu(t, %)) = us +
H(x,Vu) with given boundary data at t = 0.

Proof. See e. g. Evans, “PDEs”, p. 587 a

(Semilinear) partial differential equations of second or-
der

In this section we consider semilinear equations of the form
1
Z a;j{x) Us;x; (x)+c(Vulx), u(x),x) =0 19
ij=1

with the matrix A = (a;;);; symmetric (if # is twice continuously differentiable, the
matrix can be symmetrised due to Schwarz’ theorem).

Definition 36 (Classification). The second order partial differential equation (19) is
called

e elliptic, if A has n strictly positive eigenvalues,
» parabolic, if A has a zero eigenvalue,
e hyperbolic, if A has one positive and n— 1 negative eigenvalues.

Since multiplication with —1 does not change the equation, positive and negative may
be exchanged in the above. Nonlinear PDEs can be classified locally by their linearisa-
tion with respect to the second order derivatives. Since A may vary spatially, the PDE
may change its type.

Elliptic PDEs
Laplace’s equation
Au=0 (20

physically describes the equilibrium of a diffusing quantity such as heat.
temperature: u:Q — R (in a piece of material {2)

conductivity: >0 (material parameter)

heat flux: F=—aVu (in direction of negative temperature gradient)

equilibrium:  net flux [5;, F-vdxinto V < Q is zero, hence

O:f F-vdx:f didexz—af Audzx,
av v v

and (22) follows since V' is arbitrary.

Definition 37 (Harmonic function). A fwice continuously differentiable function u
satisfying (22) is called aharmonic function.
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