Theorem 66 (Weak maximum principle). Letu € HY () satisfy Lu = 0 in the weak
sense, then
supus<suput, infus<infu".
Q an Q 6QI
Proof. For all v = 0 with uv = 0 we have [, Vvl AVu+b-Vuvdx = - [ cuvdx 0.
If b =0, the choice v = (u—supyq u*)* yields

A,f Vol*dx=<0
[

and thus the first result (the second follows analogously). The case b # 0 has to be
done differently, see homework, . O

Theorem 67 (Uniqueness of weak solution). A weak solution to (29), if it exisfs, is
unique.

Proof. Let uy, up be two solutions, then w = u; — 1, satisfies Liw =01in , w =0 on
080, in a weak sense and thus w =0. O

The existence will be based on the following important two abstract tools.

Theorem 68 (Riesz representation theorem). Let f : H — R be a bounded linear
functional on a Hilbert space H, then there exists w€ H with ||ul g = || f|l such that
JfW)=(u,v)y forallve H.

Bemerkung 69. A bounded linear functional or operator is a linear mapping T' from
anormed vector spaceV into another one W such that | Tullw < Cllully for a constant
Candall ue V. This is equivalent to T being continuous:

= Letuy—uinV, then |Tu;— Tullw = | T (1. — 1)|lw =< Cllueg — ullyy — 0.

< Assume there exists up € V with ||uglly = 1, but | Tugllw — oo. Thus, vy :=

m — 0 in V with | Tvillw = 1, but this contradicts the continuity of T.

Proofof Thin. 68. Let u € H such that f(1) = 1 and let i € ker(f) be its orthogonal
projection onto ker(f). Define v = u — &; we will show f = (W,-) - Indeed, for

H
we H, w=w- f(w)v+ f(w)v. Thus,

w-—f(w)veker(f) and v_Lker(f)
=> (= )V e = f(w).

(o, Wh i
Wiz
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|

Theorem 70 (Lax-Milgram theorem). Let H be a Hilbert spaceand B: Hx H — R
a bounded, coercive bilinear form (i. e. B(u,v) is linear in u and v with |B(u, v)| =
allullgllvlly and B(u, w) = || ullir for two constants a, > 0 and all u,v € H). Then
there exists a bounded linear operater A : H — H with bounded inverse such that
B(u,v) = (Au,v)y forallu,ve H.
i - 3 Thn.68 i
Proof. 1. B(u,") is a bounded linear functional on H =  there exists ve H
with B(i,-) = (v,

2. define Au = v, then Ais clearly linear
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3. IfAuli% = (Au, Au)g = B(u, Au) < allullgllAullj so that ||Aullg < alluly G.e.
Ais bounded)

4. Bllull, < B(u,u) = (Au, ) < | Aullgllully so that | Aully = Bllully G.e. AL,
if it exists, is bounded)

5. Aisinjective due to ||Au— Avlly = | Al — )|l = Bllu—vig
6. range(A) is a closed subspace of H

7. range(A) = H so that A™! exists: Let 0 # u € range(A)*, then 0 = (Au, )y =
B(u,u) = fllull?, > 0, a contradiction.
O

Theorem 71 (Existence of weak solutions). Let Q be bounded with Lipschitz boun-
dary and f € I*(Q), A, b, ¢ bounded. There exists a weak solution u € H (Q) of (29).

Proof. Setting it = u — g, we seek i € Hy(Q) with B(#I,v) = F() := [o(f - b-Vg -
cg)v—VuT AVgdx forall ve H} Q).
y i y 1 - - . Thm.68
1. F is a bounded linear functional on H;(£2) by Holder's inequality =
there exists R(F) € H} (Q) with F(v) = (R(F), v) o Vve HHQ)
2. B(-) is a bounded bilinear form on H} ().

= 2 2 : dy o .
3. Ifb=0, B(v,v) = lllellLZ(m = cIIvIIHé(m by Poincaré’s inequality, i.e. B is

coercive, and we can directly apply the Lax-Milgram theorem: there exists so-
me operator A with bounded inverse s.t. B(u, v) = (Au, v) @ forall u,ve

Hy (), thus it = A™' R(F) satisfies B(it, v) = (R(F), v) HI@) forall v e H}(Q).
If b # 0 one needs a modification, see homework.

O

Having established existence and uniqueness of a weak solution, we can now
analyse its regularity.

Theorem 72 (Inner regularity). LetQ be bounded with Lipschitz boundary, f € L*(Q)),
A€ COLQ;R™M), b e L®(;R™), ¢ € L®(Q). Let u € H'(Q) be the weak solution of
(29). For any Q) cc Q there exists a constant C > 0 such that

el g2y = Cll 2l gy + £l r2¢)
and hence u € H*((Y).

Proof. 1. Fori€{0,...,n}, h € R define the finite difference operator A;' : A;'.‘u =
"(”}# It is not difficult to check Due I?(Q) < I >0: ¥ ||A? tll 20 <
% for all || small enough. Also note A"V = VAL,

2. Let 2|h| < dist(suppw, 8£2). (30) implies
f VoAt AV dx = —f VAT T Avudyx
Q Q

= f A 0b-Vu+ AT v)u- f(A7"v) dx
9]
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or equivalently, using A2 (AVu) (x) = A(x + he) A" (Vi) (x) + AP (AG) Vi),

vaTA(x+Ize,-)A';'Vl¢d.r=f Vol A AVu+ A vb-Vu+ e vu— FAT v dx
Q Q

= ConSt.{" uIImm} s pd ”f”LE(Q])”VU”LZ(Q) - (31)

3. Taking v= nzA? u for a smooth cutoff function 77 € C§°(€2;[0,1]), 7 =1 on 9L

A f VAL u?dx < f ALY A(x+ he)AlVudx
Q 0
(31)
< const.(l|ull g1y + 1 fll 12() (I]?]EVMz tllj2qy + IIZI]A?HV?]HB(Q)) .

2
Using Young’s inequality aff < —“:‘2'—2 + % for any a, ,€ > 0 as well as (a + f)*> <
2a° 1217,
o2 1 2 2 2 TAl h 2
AllpVaj Ull7zq) < 37 CONSE. (lzell ey + 1 Fll 2 )=+ 5 U VA wll g2 oy H120A7 14V || 12 ()

= const. (| ull g g + 1.l 2y + 12087 UVl 20y)® + €l VAT Ul

N I 2 . . ]
Subtracting £[[ VA ,.‘ | 12y O both sides and noting [[2nA [.’ uVillj2(q) = const. |Vl 12,
we get

I
”VA? H"LZ(QI} = Ili'JVAl‘ u"LZ (%)) = ConSt-(" u“ H() "" “f"LZ (Q]) ¥

which implies ”DZ HHLZ @) = COnSt.(” I£||H1 (9] + "f“Lz(Q))‘
O

Bemerkung 73. Ifin the above proof we use finite difference approximations of hig-
her derivatives, we obtain

AeCh @, bece @), feH Q) = ueHAQ).
Hence, if A, b, c, [ are infinitely smooth, then also u € C*(£2).
Bemerkung 74. If the boundary data is smooth, one can even show smoothness of u
on all of 1,
AeCH QD) bce V@), f e HYQ),00 € M2, g e HM*? ()

= ue H2(Q) with |lull ey < CUlul 2y + 1l gy + 181 ez ) -

(See e. g. Gilbarg & Trudinger, “Elliptic PDEs of 2nd Order’, p. 187.)

Variational approach and nonlinear equations

Solving a PDE is often equivalent to minimising an energy. In particular in physics,
PDEs are often just a consequence of an energy minimisation principle.
Setting:

o Lagrangian L:R" xR x O — R, (p, z,x) — L(p, 2, x) (assumed smooth for sim-
plicity, with derivatives Ly, L;, Ly)
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