Definition 44 (Fundamental solution). The function

~3 x| (n=1)
D(x) =1 —5log|x] m=2
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solves Laplace’s equation on R™ \ {0} and is called the fundamental solution of La-
place’s equation.

Definition 45 (Delta-distribution). The linear operator § : COR") — R, 6(1) = u(0),
is called the §-distribution. One also uses the notation
5w :f S(x)ulx)dx,
Rﬂ

thinking of § like a function which is zero everywhere except at 0, where it is infinite,
and such that fpn 6(x)dx = 1.

Multiplying A® with a smooth function v with i = 0 on 6Q) and integrating by
parts twice, we obtain

[w(x)Aq)(x)dx:f D(x)Ay(x)dx.
Q o

The following is to be understood in this sense.
Theorem 46 (Fundamental solution). We have
~ AD(x) =6(x)

for the 6-distribution, i.e. A®(x) =0 on R" \ {0} and fﬁn D(x) Ay (x)dx = w(0) for all
smooth functions y with compact support.
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Now assume 92 is Lipschitz. In the same sense as before, consider the solution
of the following problem,

B,
Motivation: If we manage to find GY for all y € Q, then
w0 = [ GFofody (26)
satisfies (informally)
—~Au(x) :L-AGx(y]f(y) dy=f(
Bemerkung 47. Obviously, G¥(x) = ®(x — y) — ¢¥ (x) with ¢* a solution to
(27)

A@Y =0 inQ
¢ =0(x-y) ondQ.

Theorem 48 (Green’s formula). If u € C*(Q) solves the Dirichlet problem (22) with
(23), then

0G*
u(x):—f gy £ dy+f fnNG*ydy.
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Beispiel 49 (Green's function for a half-space). Green’s function G forye Q ={x€
R™ | xp, > 0} is found by the method of images: Note that ¥ (x) = ®(x — (4}) satisfies
(27) so that .

GY(x) =D(x—y) - D(xw ).

\xfyIZJ
lx+y12 )

As a specific example, in 2D, G¥ (x) = 1= log(

Beispiel 50 (Green's function for a disk). Green’s function G* for y € Q = B.(0) is
found similarly: Note that for § = ‘% y the ratio Ii:ﬂ is constant on x € 0Q and given
by |yl r. Thus,

G x)=D(x—y)—Ox—Plyl/r).

An analogous approach can be taken for the Neumann problem.
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Excursion: Hilder and Sobolev spaces C Ve J

To understand the existence and regularity of solutions to Poisson’s or more general
elliptic equations, we need to introduce some function spaces.

For a continuous function # € C°(Q) on some open bounded Q < R” and for
v €[0,1], define
|u(x) — u(y)l

A A

05 yeﬁ,x# ¥y

Definition 51 (Hoélder space). ForueC k@) define the Holder norm

- a _ «
H MH cky) — Z ”D [ HICD(Q) o2 Z [D u]'r .
lal<k lal=k

The function space b ol
CRY (@) = {fue C* @D Ul gy g, < 00}

is called the Holder space with exponenty.

Theorem 52 (Holder space). The Hdlder space with the Hilder norm is a Banach
space, i.e. | - || ckr @) is a norm, and any Cauchy sequence in the Hdlder space conver-

ges.

Proof. Homework! . O

Notice €50 = ¢* and €% is the space of Lipschitz-continuous functions,
Next we introduce a weaker notion of differentiability.

Definition 53. Leru,ve LIIOC(Q) and a be a multiindex. v is called the o™ weak de-
rivative of u, ‘
D%u=v,

if
qu“wdxz(—l)‘a:If vy dx (28)
Q o)

for all test functions w € C2°(Q)) (infinitely srnooth functions with compact support in
Q).

Bemerkung 54. Ifu is smooth, (28) is exactly the result of k times integrating by parts,
and v is the classical derivative.

Beispiel 55. SetQ = (0,2) and
* u(x) = {ch g?:;z y v{x) = {(]) g:?iffé , then v = Du, since for anyy € C3°(Q)

2 1 2 1 2
f uw’dx:f xw’dx+f yf’dx:—f wdx+y)—wd) :7.[ vy dx,
0 0 1 0 0

_ [xifO<x=1 y . )
e 1(x)= {2 Flex<2 ’ then u does not have a weak derivative, since

2 2 1 2 1
—f vy/dx:f m;/'dx:[ xw’dx+2f w’dx:—f wdx—y(l)
0 0 Jo 1 0

cannot be fulfilled for allw € C°(Q) byanyve L (Q).

loc
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_ Jx ifo<xsl . , 3
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2 2 1 2 1
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Definition 56 (Sobolev space). Let p € [1,00], k € Ny. Recall the Lebesgue space
LP(Q) = {u:Q — R | u measurable with || ul ) < oo}

(folw?dx)"'? (p<oo)

. The space
esssupg|u| (p=00)

with the norm || ullrriq) = {

whkP(Q) = fue Llloc(ﬂ) | the weak derivative D u exists for all || < k with D u € LP (Q)}
with the norm

(Tjai=k o ID ulP dx)Y'? 1=p<oo
Ljaj<ke8ssupg|Dul  p=o0

lulh? ) —{

is called a Sobolev space.
Wok'p (Q2) denotes the closure of C°(Q) in WP (). Note WOP(Q) = LP(Q).
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Theorem 57 (Sobolev space). The Sobolev space space with the Sobolev norm is a
Banach space.

Progf. See e.g. Evans, “PDEs”, p. 262. O

Bemerkung 58. The spaces
H* Q) = wh2 ()

are Hilbert spaces, i. e. their norm is induced by an inner product,

(¥ b= 2. fD“uD“vdx.
o

lal=k
Theorem 59 (Holder's inequality). Let f € LF, ge LP, p, p* € [1,00] with
Lo 1
srw=T
Then
L|fgidXS I/ ler@ gl e oy -
Proof. See e.g. Alt, “Lineare Funktionalanalysis”, p. 52. |

Theorem 60 (Trace theorem). Let€) be hounded and have Lipschitz boundary. There
exists a continuous linear operator T : WVP (Q) — LP (8Q)), the trace, with

(i) Tu=ulso if ue WHP(Q)nC°(Q),
@) | Tulzr ooy = Clulyieq),
(i) Tu=0 < ueW, @,

where the constant C > 0 only depends on p and Q). For simplicity, we will simply refer
to u on 0Q) when we mean its trace.

Proaf. See e.g. Evans, “PDEs", p. 272. O

Theorem 61 (Poincaré’s inequality). Let Q) < R” be bounded, open, connected with
Lipschitz boundary. There exists a constant C = C(n, p,Q) with

llee— fq udxlzry = ClVulry
forallue WYP(Q) and
leellze ) = CliVullr oy
Jorallue WOI’Fi (€2).
Progf. Seee. g. Alt, “Lineare Funktionalanalysis”, p. 171. |

Theorem 62 (Sobolev embedding). LetQ < R” open, bounded with Lipschitz boun-
dary, mi,my €1{0,1,2,...}, pr,p2 €[1,00). If

mlamzandmlgﬁzmg—a"z—

then W"PL(Q) c W2:P2(Q)) and thereis a constant C > 0 s. &. for all u

Nellwme @y < Cllallwmzrz i - .
LVt ,Zz,n/b&t'(/) Cé’hq,"j"‘b% 2o

If the inequalities are strict, W™V P1(Q) is-even-a-conpactsubset-of W2P2(Q).
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Proof. See e.g. Alt, “Lineare Funktionalanalysis”, p. 328. O

Theorem 63 (Holder embedding). Let Q = R" open, bounded with Lipschitz boun-
dary, m,k€{0,1,2,...}, pe [1,00), a € [0,1]. If

m——>k+aanda;£0 1

then W™P(Q) < C*®(Q) and there is a constant C >0 s. L. forall u

lwlwme ) < Clltll gragg, -
’ & vl MM o e Al b
Ifm- <k+a: W™P(Q) Mmmeeﬁwae&mbset—ef/ck“(ﬂ)

Proof. See e.g. Alt, “Lineare Funktionalanalysis”, p. 333. O

Weak solutions
For O < R” open and bounded, consider the elliptic Dirichlet problem

{Lu*f inQ

(29)
u=g onoQl

with f: Q — R, g€ H'(Q), and
Lu(x) = —div(A(x)Vu(x)) + b(x) - Vi(x) + c(x) u(x)

for A:Q—RM B:Q—-R"c:Q—R.

symm’?

Definition 64 (Ellipticity). The operator L is called (uniformly) elliptic, if there exists
a constant® >0 s. L.
&7 A)E = AP

for almost every x € Q and all§ e R".

To define a weak solution, we again multiply the PDE by a smooth function and
integrate by parts, which motivates the following.

Definition 65 (Weak solution), ©#€ g+ H& (Q) is called aweak solution to (29) if

B(u, v) ﬁf Vv(x) T A V() +bx)-Vu(x) v(x)+e(x) ux) vix)dx = ff(x)v(x)dx VUEHD(Q}

(30)

In the following assume there exist constants A, A,v > 0 such that for all x € Q,

§CeR?

o &1 A(R)E = AIEP,

o [ETAC] = AIEIIE,

o A2 bR+ A e =2,
e c(x)=0.

We will next prove existence and uniqueness of weak solutions. As before, uniquen-

ess is based on a maximum principle. Let us abbreviate u* = max{u, 0}, ™ = min{u, 0}.
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