Definition 44 (Fundamental solution). The function

$$\Phi(x) = \begin{cases} -\frac{1}{2}|x| & (n=1) \\ -\frac{1}{2\pi}\log|x| & (n=2) \\ -\frac{1}{N(n-2)|\partial B_1(0)|} \frac{1}{|x|^{n-2}} & (n \ge 3) \end{cases}$$

solves Laplace's equation on $\mathbb{R}^n \setminus \{0\}$ and is called the fundamental solution of Laplace's equation.

Definition 45 (Delta-distribution). The linear operator $\hat{\delta}: C^0(\mathbb{R}^n) \to \mathbb{R}$, $\hat{\delta}(u) = u(0)$, is called the δ -distribution. One also uses the notation

$$\hat{\delta}(u) = \int_{\mathbb{R}^n} \delta(x) u(x) \, \mathrm{d}x,$$

thinking of δ like a function which is zero everywhere except at 0, where it is infinite, and such that $\int_{\mathbb{R}^n} \delta(x) dx = 1$.

Multiplying $\Delta\Phi$ with a smooth function ψ with $\psi=0$ on $\partial\Omega$ and integrating by parts twice, we obtain

$$\int_{\Omega} \psi(x) \Delta \Phi(x) \, \mathrm{d}x = \int_{\Omega} \Phi(x) \Delta \psi(x) \, \mathrm{d}x.$$

The following is to be understood in this sense.

Theorem 46 (Fundamental solution). We have

$$\Delta\Phi(x) = \delta(x)$$

for the δ -distribution, i. e. $\Delta\Phi(x)=0$ on $\mathbb{R}^n\setminus\{0\}$ and $\int_{\mathbb{R}^n}\Phi(x)\Delta\psi(x)\,\mathrm{d}x=\psi(0)$ for all smooth functions ψ with compact support.

Proof. We already know
$$\Delta \phi(x) = 0$$
 for $x \in \mathbb{R}^n \setminus 0$.

Fix $\varepsilon > 0$. $\int \phi(x) \Delta \Psi(x) dx = \int \phi(x) \Delta \Psi(x) dx + \int \phi(x) \Delta \Psi(x) dx$
 $\mathbb{R}^n \setminus \mathbb{R}_{\varepsilon}(0)$
 $\mathbb{R}^n \setminus \mathbb{R}_{\varepsilon}($

Now assume $\partial\Omega$ is Lipschitz. In the same sense as before, consider the solution of the following problem,

$$\begin{cases} -\Delta G^{y}(x) = \delta(x - y) & \text{in } \Omega \\ G^{y} = 0 & \text{on } \partial\Omega. \end{cases}$$
 (25)

Motivation: If we manage to find G^y for all $y \in \Omega$, then

$$u(x) = \int_{\Omega} G^{x}(y) f(y) dy$$
 (26)

satisfies (informally)

$$-\Delta u(x) = \int_{\Omega} -\Delta G^{x}(y) f(y) dy = f(y)$$

Bemerkung 47. Obviously, $G^{y}(x) = \Phi(x - y) - \phi^{y}(x)$ with ϕ^{x} a solution to

$$\begin{cases} \Delta \phi^{y} = 0 & in \Omega \\ \phi^{y} = \Phi(x - y) & on \partial \Omega . \end{cases}$$
 (27)

Theorem 48 (Green's formula). If $u \in C^2(\overline{\Omega})$ solves the Dirichlet problem (22) with (23), then

 $u(x) = -\int_{\partial\Omega} g(y) \frac{\partial G^{x}(y)}{\partial v} dy + \int_{\Omega} f(y) G^{x}(y) dy.$

Proof. By Thun 46, for x & St,

$$u(x) = \int u(y) \Delta \overline{\phi}(y-x) dy$$

$$= \int u(y) \Delta G^{*}(y) dy$$

$$= \int u(y) \nabla G^{*}(y) \cdot v dy - \int \nabla u(y) \cdot \nabla G^{*}(y) dy$$

$$= \int g(y) \frac{\partial G^{*}(y)}{\partial v} dy - \int \nabla u(y) \cdot \nabla G^{*}(y) dy + \int \Delta u(y) G^{*}(y) dy,$$

$$= \int g(y) \frac{\partial G^{*}(y)}{\partial v} dy - \int \nabla u(y) \cdot \nabla G^{*}(y) dy + \int \Delta u(y) G^{*}(y) dy,$$

Beispiel 49 (Green's function for a half-space). *Green's function* G^y *for* $y \in \Omega = \{x \in \mathbb{R}^n \mid x_n > 0\}$ *is found by the* method of images: *Note that* $\phi^y(x) = \Phi(x - \{x\})$ *satisfies* (27) *so that*

$$G^{y}(x) = \Phi(x - y) - \Phi(x - y).$$

As a specific example, in 2D, $G^{y}(x) = \frac{1}{4\pi} \log \left(\frac{|x-y|^2}{|x+y|^2} \right)$.

Beispiel 50 (Green's function for a disk). *Green's function* G^y *for* $y \in \Omega = B_r(0)$ *is found similarly: Note that for* $\tilde{y} = \frac{r^2}{|y|^2} y$ *the ratio* $\frac{|x-y|}{|x-\tilde{y}|}$ *is constant on* $x \in \partial \Omega$ *and given by* |y|/r. Thus,

$$G^{y}(x) = \Phi(x - y) - \Phi((x - \tilde{y})|y|/r).$$

An analogous approach can be taken for the Neumann problem.

Excursion: Hölder and Sobolev spaces (We just state the result & refer to likerature for proofs)

To understand the existence and regularity of solutions to Poisson's or more general

elliptic equations, we need to introduce some function spaces.

For a continuous function $u \in C^0(\overline{\Omega})$ on some open bounded $\Omega \subset \mathbb{R}^n$ and for $\gamma \in [0,1]$, define

$$[u]_{\gamma} = \sup_{x,y \in \overline{\Omega}, x \neq y} \frac{|u(x) - u(y)|}{|x - y|^{\gamma}}.$$

Definition 51 (Hölder space). For $u \in C^k(\overline{\Omega})$ define the Hölder norm

$$\|u\|_{C^{k,\gamma}(\overline{\Omega})} = \sum_{|\alpha| \leq k} \|D^\alpha u\|_{C^0(\overline{\Omega})} + \sum_{|\alpha| = k} [D^\alpha u]_\gamma$$

The function space

$$C^{k,\gamma}(\overline{\Omega}) = \{u \in C^k(\overline{\Omega}) \mid \|u\|_{C^{k,\gamma}(\overline{\Omega})} < \infty\}$$

is called the Hölder space with exponent γ .

Theorem 52 (Hölder space). The Hölder space with the Hölder norm is a Banach space, i. e. $\|\cdot\|_{C^{k,\gamma}(\overline{\Omega})}$ is a norm, and any Cauchy sequence in the Hölder space converges.

Proof. Homework!

Notice $C^{k,0} = C^k$ and $C^{0,1}$ is the space of Lipschitz-continuous functions. Next we introduce a weaker notion of differentiability.

Definition 53. Let $u, v \in L^1_{loc}(\Omega)$ and α be a multiindex. v is called the α^{th} weak derivative of u,

$$D^{\alpha}u=v$$
,

if

$$\int_{\Omega} u D^{\alpha} \psi \, \mathrm{d}x = (-1)^{|\alpha|} \int_{\Omega} v \psi \, \mathrm{d}x \tag{28}$$

for all test functions $\psi \in C_c^{\infty}(\Omega)$ (infinitely smooth functions with compact support in Ω).

Bemerkung 54. If u is smooth, (28) is exactly the result of k times integrating by parts, and v is the classical derivative.

Beispiel 55. Set $\Omega = (0,2)$ and

•
$$u(x) = \begin{cases} x & \text{if } 0 < x \le 1 \\ 1 & \text{if } 1 < x < 2 \end{cases}$$
, $v(x) = \begin{cases} 1 & \text{if } 0 < x \le 1 \\ 0 & \text{if } 1 < x < 2 \end{cases}$, then $v = Du$, since for any $\psi \in C_c^{\infty}(\Omega)$

$$\int_0^2 u \psi' \, \mathrm{d}x = \int_0^1 x \psi' \, \mathrm{d}x + \int_1^2 \psi' \, \mathrm{d}x = -\int_0^1 \psi \, \mathrm{d}x + \psi(1) - \psi(1) = -\int_0^2 v \psi \, \mathrm{d}x,$$

• $u(x) = \begin{cases} x & \text{if } 0 < x \le 1 \\ 2 & \text{if } 1 < x < 2 \end{cases}$, then u does not have a weak derivative, since

$$-\int_0^2 v\psi \, dx = \int_0^2 u\psi' \, dx = \int_0^1 x\psi' \, dx + 2\int_1^2 \psi' \, dx = -\int_0^1 \psi \, dx - \psi(1)$$

cannot be fulfilled for all $\psi \in C_c^{\infty}(\Omega)$ by any $v \in L_{loc}^1(\Omega)$.

Theorem 52 (Hölder space). The Hölder space with the Hölder norm is a Banach space, i. e. $\|\cdot\|_{C^{k,\gamma}(\overline{\Omega})}$ is a norm, and any Cauchy sequence in the Hölder space converges.

Proof. Homework!

Notice $C^{k,0}=C^k$ and $C^{0,1}$ is the space of Lipschitz-continuous functions. Next we introduce a weaker notion of differentiability.

Definition 53. Let $u, v \in L^1_{loc}(\Omega)$ and α be a multiindex. v is called the α^{th} weak derivative of u,

$$D^{\alpha}u=v$$

if

$$\int_{\Omega} u D^{\alpha} \psi \, \mathrm{d}x = (-1)^{|\alpha|} \int_{\Omega} v \psi \, \mathrm{d}x \tag{28}$$

for all test functions $\psi \in C_c^{\infty}(\Omega)$ (infinitely smooth functions with compact support in Ω).

Bemerkung 54. If u is smooth, (28) is exactly the result of k times integrating by parts, and v is the classical derivative.

Beispiel 55. Set $\Omega = (0,2)$ and

•
$$u(x) = \begin{cases} x & \text{if } 0 < x \le 1 \\ 1 & \text{if } 1 < x < 2 \end{cases}$$
, $v(x) = \begin{cases} 1 & \text{if } 0 < x \le 1 \\ 0 & \text{if } 1 < x < 2 \end{cases}$, then $v = Du$, since for any $\psi \in C_c^{\infty}(\Omega)$

$$\int_0^2 u \psi' \, \mathrm{d}x = \int_0^1 x \psi' \, \mathrm{d}x + \int_1^2 \psi' \, \mathrm{d}x = -\int_0^1 \psi \, \mathrm{d}x + \psi(1) - \psi(1) = -\int_0^2 v \psi \, \mathrm{d}x,$$

• $u(x) = \begin{cases} x & \text{if } 0 < x \le 1 \\ 2 & \text{if } 1 < x < 2 \end{cases}$, then u does not have a weak derivative, since

$$-\int_0^2 v\psi \, dx = \int_0^2 u\psi' \, dx = \int_0^1 x\psi' \, dx + 2\int_1^2 \psi' \, dx = -\int_0^1 \psi \, dx - \psi(1)$$

cannot be fulfilled for all $\psi \in C_c^{\infty}(\Omega)$ by any $v \in L_{loc}^1(\Omega)$.

Definition 56 (Sobolev space). Let $p \in [1,\infty]$, $k \in \mathbb{N}_0$. Recall the Lebesgue space

$$L^{p}(\Omega) = \{ u : \Omega \to \mathbb{R} \mid u \text{ measurable with } \|u\|_{L^{p}(\Omega)} < \infty \}$$

with the norm
$$\|u\|_{L^p(\Omega)} = \begin{cases} \left(\int_{\Omega} |u|^p \, \mathrm{d}x\right)^{1/p} & (p < \infty) \\ \mathrm{esssup}_{\Omega} |u| & (p = \infty) \end{cases}$$
. The space

 $W^{k,p}(\Omega) = \left\{ u \in L^1_{loc}(\Omega) \mid \text{the weak derivative } D^\alpha u \text{ exists for all } |\alpha| \leq k \text{ with } D^\alpha u \in L^p(\Omega) \right\}$ with the norm

$$\|u\|_W^{k,p}(\Omega) = \begin{cases} \left(\sum_{|\alpha| \le k} \int_{\Omega} |D^{\alpha} u|^p \, \mathrm{d}x\right)^{1/p} & 1 \le p < \infty \\ \sum_{|\alpha| \le k} \mathrm{esssup}_{\Omega} |D^{\alpha} u| & p = \infty \end{cases}$$

is called a Sobolev space.

 $W_0^{k,p}(\Omega)$ denotes the closure of $C_c^{\infty}(\Omega)$ in $W^{k,p}(\Omega)$. Note $W^{0,p}(\Omega) \equiv L^p(\Omega)$.

Theorem 57 (Sobolev space). *The Sobolev space space with the Sobolev norm is a Banach space.*

Proof. See e.g. Evans, "PDEs", p. 262.

Bemerkung 58. The spaces

$$H^k(\Omega)\equiv W^{k,2}(\Omega)$$

are Hilbert spaces, i. e. their norm is induced by an inner product,

$$(u, v)_{H^k(\Omega)} = \sum_{|\alpha| \le k} \int_{\Omega} D^{\alpha} u D^{\alpha} v \, \mathrm{d}x.$$

Theorem 59 (Hölder's inequality). Let $f \in L^p$, $g \in L^{p^*}$, $p, p^* \in [1, \infty]$ with

$$\frac{1}{p} + \frac{1}{p^*} = 1$$
.

Then

$$\int_{\Omega} |fg| \, \mathrm{d}x \le \|f\|_{L^{p}(\Omega)} \|g\|_{L^{p^{*}}(\Omega)}.$$

Proof. See e.g. Alt, "Lineare Funktionalanalysis", p. 52.

Theorem 60 (Trace theorem). Let Ω be bounded and have Lipschitz boundary. There exists a continuous linear operator $T: W^{1,p}(\Omega) \to L^p(\partial\Omega)$, the trace, with

- (i) $Tu = u|_{\partial\Omega}$ if $u \in W^{1,p}(\Omega) \cap C^0(\overline{\Omega})$,
- $(ii) \ \|Tu\|_{L^p(\partial\Omega)} \leq C \|u\|_{W^{1,p}(\Omega)},$
- (iii) $Tu = 0 \Leftrightarrow u \in W_0^{1,p}(\Omega),$

where the constant C > 0 only depends on p and Ω . For simplicity, we will simply refer to u on $\partial\Omega$ when we mean its trace.

Proof. See e. g. Evans, "PDEs", p. 272.

Theorem 61 (Poincaré's inequality). Let $\Omega \subset \mathbb{R}^n$ be bounded, open, connected with Lipschitz boundary. There exists a constant $C = C(n, p, \Omega)$ with

$$\|u-f_\Omega\,u\,\mathrm{d} x\|_{L^p(\Omega)}\leq C\|\nabla u\|_{L^p(\Omega)}$$

for all $u \in W^{1,p}(\Omega)$ and

$$||u||_{L^p(\Omega)} \le C||\nabla u||_{L^p(\Omega)}$$

for all $u \in W_0^{1,p}(\Omega)$.

Proof. See e.g. Alt, "Lineare Funktionalanalysis", p. 171.

Theorem 62 (Sobolev embedding). Let $\Omega \subset \mathbb{R}^n$ open, bounded with Lipschitz boundary, $m_1, m_2 \in \{0, 1, 2, ...\}$, $p_1, p_2 \in [1, \infty)$. If

$$m_1 \ge m_2$$
 and $m_1 - \frac{n}{p_1} \ge m_2 - \frac{n}{p_2}$

then $W^{m_1,p_1}(\Omega) \subset W^{m_2,p_2}(\Omega)$ and there is a constant C > 0 s. t. for all u

 $||u||_{W^{m_1,p_1}(\Omega)} \le C||u||_{W^{m_2,p_2}(\Omega)}.$

If the inequalities are strict, $W^{m_1,p_1}(\Omega)$ is even a compact subset of $W^{m_2,p_2}(\Omega)$.

Proof. See e. g. Alt, "Lineare Funktionalanalysis", p. 328.

Theorem 63 (Hölder embedding). Let $\Omega \subset \mathbb{R}^n$ open, bounded with Lipschitz boundary, $m, k \in \{0, 1, 2, ...\}, p \in [1, \infty), \alpha \in [0, 1]$. If

$$m - \frac{n}{p} \ge k + \alpha$$
 and $\alpha \ne 0, 1$

then $W^{m,p}(\Omega) \subset C^{k,\alpha}(\overline{\Omega})$ and there is a constant C > 0 s. t. for all u

$$||u||_{W^{m,p}(\Omega)} \leq C||u||_{C^{k,\alpha}(\overline{\Omega})}.$$

If $m-\frac{n}{p}< k+\alpha$, $W^{m,p}(\Omega)$ is even a compact subset of $C^{k,\alpha}(\overline{\Omega})$.

Proof. See e.g. Alt, "Lineare Funktionalanalysis", p. 333.

Weak solutions

For $\Omega \subset \mathbb{R}^n$ open and bounded, consider the elliptic Dirichlet problem

$$\begin{cases} Lu = f & \text{in } \Omega \\ u = g & \text{on } \partial\Omega \end{cases}$$
 (29)

with $f: \Omega \to \mathbb{R}$, $g \in H^1(\Omega)$, and

$$Lu(x) = -\text{div}(A(x)\nabla u(x)) + b(x) \cdot \nabla u(x) + c(x)u(x)$$

for
$$A: \Omega \to \mathbb{R}_{symm}^{n \times n}$$
, $b: \Omega \to \mathbb{R}^n$, $c: \Omega \to \mathbb{R}$.

Definition 64 (Ellipticity). The operator L is called (uniformly) elliptic, if there exists a constant $\theta > 0$ s. t.

$$\xi^T A(x)\xi \ge \lambda |\xi|^2$$

for almost every $x \in \Omega$ and all $\xi \in \mathbb{R}^n$.

To define a weak solution, we again multiply the PDE by a smooth function and integrate by parts, which motivates the following.

Definition 65 (Weak solution), $u \in g + H_0^1(\Omega)$ is called a weak solution to (29) if

$$B(u,v) := \int_{\Omega} \nabla v(x)^T A(x) \nabla u(x) + b(x) \cdot \nabla u(x) v(x) + c(x) u(x) v(x) dx = \int_{\Omega} f(x) v(x) dx \quad \forall v \in H_0^1(\Omega).$$
(30)

In the following assume there exist constants λ , Λ , $\nu > 0$ such that for all $x \in \Omega$, $\xi, \zeta \in \mathbb{R}^n$

- $\xi^T A(x)\xi \ge \lambda |\xi|^2$,
- $\bullet |\xi^T A(x)\zeta| \le \Lambda |\xi||\zeta|,$ $\bullet \lambda^{-2} |b(x)|^2 + \lambda^{-1} |c(x)| \le v^2,$
- $c(x) \ge 0$.

We will next prove existence and uniqueness of weak solutions. As before, uniqueness is based on a maximum principle. Let us abbreviate $u^+ = \max\{u, 0\}, u^- = \min\{u, 0\}.$