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1 Convex non-smooth optimization with proximal operators

Remark 1.1 (Motivation). Convex optimization:
e casier to solve, global optimality,

e convexity is strong regularity property, even if functions are not differentiable, even in
infinite dimensions,

e usually strong duality,

e special class of algorithms for non-smooth, convex problems; easy to implement and to
parallelize. Objective function may assume value +o0o, i.e. well suited for implementing
constraints.

So if possible: formulate convex optimization problems.
Of course: some phenomena can only be described by non-convex problems, e.g. formation of
transport networks.

Definition 1.2. Throughout this section H is Hilbert space, possibly infinite dimensional.

1.1 Convex sets

Definition 1.3 (Convex set). A set A C H is convex if for any a,b € A, A € [0,1] one has
Aa+(1—X)-be A

Comment: Line segment between any two points in A is contained in A

Sketch: Positive example with ellipsoid, counterexample with ‘kidney’

Comment: Study of geometry of convex sets is whole branch of mathematical research. See
lecture by Prof. Wirth in previous semester for more details. In this lecture: no focus on convex
sets, will repeat all relevant properties where required.

Proposition 1.4 (Intersection of convex sets). If {C;}ier is family of convex sets, then C'

Nics Ci is convex.

Proof. e Let z,y € C then for all i € I have x,y € Cj, thus A -z + (1 — \) -y € C; for all
A € [0,1] and consequently A -z + (1 —)\) -y € C.
0



Definition 1.5 (Convex hull). The convez hull conv C of a set C'is the intersection of all convex
sets that contain C.

Proposition 1.6. Let C' C H, let T be the set of all convex combinations of elements of C| i.e.,

def {Z)\ T

=1

k
keN, zy,...,z € C, )\1,...,Ak>0,2)\i=1}.

Then T' = conv C.

Proof. convC C T. T is convex: any z,y € T are (finite) convex combinations of points in C'.
Thus, so is any convex combination of x and y. Also, C CT. So convC C T.

convC D T. Let S be convex and S O C. We will show that S D T and thus conv C D T, which
with the previous step implies equality of the two sets.

We show S D T by recursion. For some k € N, z1,...,2 € C, A,..., A\p > 0, Zle A =1 let

k
=1

When k =1 clearly s € S.
Otherwise, set A\; = A\;/(1 — Ag) fori=1,...,k— 1. Then

k—
= A\p Tk + 1_/\k Z .
i=1

def.
= Sk—1

We find that s € S if s;_1 € S. Applying this argument recursively to s;p_1 until we reach sq,
we have shown that s € S. O

Proposition 1.7 (Carathéodory). Let H = R™. Every x € convC can be written as convex
combination of at most n 4 1 elements of C.

Proof. Consider arbitrary convex combination x = Zle Az for k> n+ 1.
Claim: without changing x can change (\;); such that one \; becomes 0.

e The vectors {zg — x1,...,x; — x1} are linearly dependent, since k — 1 > n.

e = There are (Bs,..., ) € RF"1\ {0} such that

k
OZZ _xl Zﬂzxz Zﬁle
1=2

.“
op
e Define \; = \; — t* 3; for t* = B 1. k2 Bi£0 |g?|-
H,_/
[[I<1
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1.2 Convex functions

Definition 1.8 (Convex function). A function f: H — R U {oo} is convex if for all z,y € H,
A€[0,1] onehas f(A-z+(1—X)-y) <X f(z)+(1—A)- f(y). Set of convex functions over H
is denoted by Conv(H).

e [ is strictly convex if for x #yand A € (0,1): f(A-z+(1—=X)-y) <A f(z)+(1=N)-f(y).
e fis concave if —f is convex.

e The domain of f, denoted by dom f is the set {z € H: f(x) < +oo}. f is called proper if
dom f # 0.

e The graph of f is the set {(z, f(z))|z € dom f}.
e The epigraph of f is the set ‘above the graph’, epi f = {(z,7) € H x R: r > f(z)}.

e The sublevel set of f with respect tor € Ris S,.(f) ={z € H: f(x) <r}.

Sketch: Strictly convex, graph, secant, epigraph, sublevel set

Proposition 1.9. (i) f convex = dom f convex.
(ii) [f convex| < [epi f convex].

(ii) [(x,r) € epi f|] & |z € S, (f)].

Example 1.10. (i) characteristic or indicator function of convex set C C H:

Do not confuse with xo(x) =

0 else.

0 fzeC 1 fzeC
wo(r) =

+oo else.
(ii) any norm on H is convex: For all x,y € H, A € [0,1]:
A2+ (1 =A) -yl < A2 +[[(1=A)-yll = A-[lzfl + (1 =) - [ly]
(iii) for H = R™ the maximum function
R" 35z +— max{z;[i=1,...,n}

1S convex.



(iv) linear and affine functions are convex.

Example 1.11 (Optimization with constraints). Assume we want to solve an optimization
problem with linear constraints, e.g.,

min{ f(z)|z € R", Az =y}

where f: R" - RU{o0}, A € R™*" y € R™. This can be formally rewritten as unconstrained
problem:

min{f(z) + g(Ax)|z € R"} where g=ty}-

We will later discuss algorithms that are particularly suited for problems of this form where one
only has to ‘interact’ with f and g separately, but not their combination.

As mentioned in the motivation: convexity is a strong regularity property. Here we give some
examples of consequences of convexity.

Definition 1.12. A function f : H — R U {oo} is (sequentially) continuous in x if for every
convergent sequence (xy)r with limit = one has limg_, f(zr) = f(z). The set of points = where
f(z) € R and f is continuous in z is denoted by cont f.

Remark 1.13 (Continuity in infinite dimensions). If H is infinite dimensional, it is a priori not
clear, whether closedness and sequential closedness coincide. But since H is a Hilbert space,
it has an inner product, which induces a norm, which induces a metric. On metric spaces the
notions of closedness and sequential closedness coincide and thus so do the corresponding notions
of continuity.

Proposition 1.14 (On convexity and continuity I). Let f € Conv(H) be proper and let xg €
dom f. Then the following are equivalent:

(i) f is locally Lipschitz continuous near xg.
(ii) f is bounded on a neighbourhood of xy.
(iii) f is bounded from above on a neighbourhood of .
Proof. The implications (i) = (ii) = (iii) are clear. We show (iii) = (i).

e If f is bounded from above in an environment of zy then there is some p € R4 such that
sup f(B(zo,p)) =n < +o00.

o Let z € H, x # x¢, such that o = ||z — 2| /p € (0,1]

Sketch: Draw position of Z.

e Let & = o+ 1(z—x0) € B(zg, p). Then z = (1 —a)-z9+a-F and therefore by convexity

of f

fl@)<(1—a)- f(zo) +a- f(F)
F@) — flao) < @ (0 f(z0)) = |l — o] - 1120

Sketch: Draw position of new Z.




e Now let & = g + % (20 — 2) € B(wo, p). Then$0:ﬁ-j+ﬁ-x. So:

fl@o) < 15 - fl@) + 155 - F(@)
v) < 155 - (f(@) = f(wo) + flzo) — f(2))

z) < a-(n— f(xo)) = |z — xo - =L

We combine to get:

|£(2) = f(z0)] < [l — wo| - L0

e Now need to extend to other ‘base points’ near xg. For every z; € B(zg,p/4) have
sup f(Bler, p/2) < nand f(z) > flwo) — & 2109 > 2 f(zg) — . With arguments
above get for every z € B(x1, p/2) that

£(@) = F(an)] < o= |- L5 < fla — ay | - 2=L0D)

e For every z1, 29 € B(xo, p/4) have ||z1 — x2| < p/2 and thus

|f(@1) = f(w2)] < [y — g - 2=Llzod)

O

Proposition 1.15 (On convexity and continuity II). If any of the conditions of Proposition 1.14
hold, then f is locally Lipschitz continuous on int dom f.

Proof. Sketch: Positions of xg, z, y and balls B(zg, p), B(z,a - p)

e By assumption there is some z¢ € dom f, p € Ry, and n < oo such that sup f(B(xo, p))
<.

e For any x € intdom f there is some y € dom f such that x = v -2z¢ + (1 — ) - y for some
v € (0,1).
e Further, there is some a € (0,~) such that B(z,a - p) C dom f and y ¢ B(z,« - p).

e Then, B(x,a - p) C conv(B(zo, p) U{y}).

e So for any z € B(x,«-p) there is some w € B(xg,p) and some 5 € [0,1] such that
z=pF-w+ (1—7)-y. Therefore,

f(2) <B-f(w)+ (1 —=8)- fly) <max{n, f(y)}.

e So fis bounded from above on B(z, « - p) and thus by Proposition 1.14 f is locally Lipschitz
near .

O

Remark 1.16. One can show: If f: H — RU{co} is proper, convex and lower semicontinuous,
then cont f = int dom f.



Proposition 1.17 (On convexity and continuity in finite dimensions). If f € Conv(H = R")
then f is locally Lipschitz continuous at every point in int dom f.

Proof. e Let xg € intdom f.

e If H is finite-dimensional then there is a finite set {z;};c; C dom f such that zy €
int conv({x; };er) C dom f.

e For example: along every axis ¢ = 1,...,n pick 9,1 = x +¢€-¢;, x9; = x — € - ¢; for
sufficiently small £ where e; denotes the canonical i-th Euclidean basis vector.

e Since every point in conv({z;}icsr) can be written as convex combination of {xz;};er we find
sup f(conv({z; }icr)) < max;er f(z;) < +o0.

e So f is bounded from above on an environment of xg and thus Lipschitz continuous in xg
by the previous Proposition.
O

Comment: Why is interior necessary in Proposition above?

Example 1.18. The above result does not extend to infinite dimensions.

e For instance, the H'-norm is not continuous with respect to the topology induced by the
L?-norm.

e An unbounded linear functional is convex but not continuous.

Definition 1.19 (Lower semi-continuity). A function f: H — R U {oo} is called (sequentially,
see Remark 1.13) lower semicontinuous in x € H if for every sequence (), that converges to
x one has

liminf f(xy,) > f(z).

n—o0

f is called lower semicontinuous if it is lower semicontinuous on H.

0 if z <0,
1 fxz>0

) ) . 0 ifz<O, .
is lower semicontinuous, f(z) = is not.

Example 1.20. f(z) = { 1 ife>0
if x>

Sketch: Plot the two graphs.

Comment: Assuming continuity is sometimes impractically strong. Lower semi-continuity is a
weaker assumption and also sufficient for well-posedness of minimization problems: If (z), is
a convergent minimizing sequence of a lower semicontinuous function f with limit x then z is a
minimizer.

Proposition 1.21. Let f: H — RU {oc}. The following are equivalent:
(i) f is lower semicontinuous.
(i) epi f is closed in H x R.

(iii) The sublevel sets S, (f) are closed for all r € R.



Proof. (i) = (ii). Let (yk,7k)r be a converging sequence in epi f with limit (y,r). Then

r= lim ry, > liminf f(y,) > f(y) = (y,r) €epif.
—00

k—o0

(ii) = (iii). Forr e Rlet A, : H - H xR, z — (z,7) and Q, = epi f N (H x {r}). Q, is
closed, A, is continuous.

S (f)y={zecH: flz)<rt={zxcH: (z,9) €Q} = A7(Q,) is closed.

(iii) = (i). Assume (i) is false. Then there is a sequence (yg )i in H converging to y € H such that

p = limpsoo f(yr) < f(x). Let v € (p, f(y)). For k > ko sufficiently large, f(yx) < r < f(y),
ie. yp € Sp(f) but y ¢ S,(f). Contradiction. O



1.3 Subdifferential
Definition 1.22. The power set of H is the set of all subsets of H and denoted by 2.

Comment: Meaning of notation.

Definition 1.23 (Subdifferential). Let f : H — R U {oo} be proper. The subdifferential of f is
the set-valued operator

of :H =28z {ucH: f(y) > f(x)+ (y —z,u) forall y € H}

For x € H, f is subdifferentiable at = if Of(x) # (). Elements of df(z) are called subgradients of
f at x.

Sketch: Subgradients are slopes of affine functions that touch graph of function in z from below.

Definition 1.24. The domain dom A of a set-valued operator A are the points where A(z) # (.

Definition 1.25. Let f : H — R U {oco} be proper. x is a minimizer of f if f(z) = inf f(H).
The set of minimizers of f is denoted by argmin f.

The following is an adaption of first order optimality condition for differentiable functions to
convex non-smooth functions.

Proposition 1.26 (Fermat’s rule). Let f: H — R U {oco} be proper. Then
argmin f = {x € H: 0 € 0f(z)}.
Proof. Let x € H. Then

[z € argmin f] < [f(y) > f(z) = f(z) + (y — z,0) forally € H] < [0 € 9f(x)].

Proposition 1.27 (Basic properties of subdifferential). Let f: H — RU {oco}.
(i) Of(x) is closed and convex.

(ii) If z € domdf then f is lower semicontinuous at .

Proof. (i):

of(w)= [ {ueH: f(y)>f@)+y—zu)}

yEdom f

So Of(x) is the intersection of closed and convex sets. Therefore it is closed and convex.
(ii): Let uw € 9f(x). Then for all y € H: f(y) > f(z) + (y — z,u). So, for any sequence (xy)
converging to x one finds

li]ginff(xk) > f(x) + likrginf (y —z,u) = f(x).



Definition 1.28 (Monotonicity). A set-valued function A : H — 2 is monotone if
<:E —Yyu—- U> >0
for every tuple (x,y,u,v) € H* such that u € A(x) and v € A(y).

Proposition 1.29. The subdifferential of a proper function is monotone.

Proof. Let u € 0f(x), v € df(y). We get:

and by combining:
0> (y—,u—1v)
O

Proposition 1.30. Let I be a finite index set, let H = &),.; H; a product of several Hilbert

spaces. Let f; : H; = R U {oo} be proper and let f: H — RU {oo}, x = (z3)ier — > _;cp fili).
Then 0f(x) = Q;¢; 0fi(i).-

Proof. 0f(z) D @,c; 0fi(xi): For x € H let p; € 0f;(x;). Then

$+y Zfz xz""yz >Zf7, l‘z y7,7pi>:f(x)+<y7p>'

el i€l

Therefore p = (p;)icr € 0f ().

0f(x) C Qier 0fi(xs): Let p= (pi)ier € 0f(x). For j € I let y; € H; and let y = (7;)icr Where
7; = 01if i # j and y; = y;. We get

x+y Zfz $z+yz = Z fz Xg +f](‘rj+y])>f Zfz 551 yjapj>
i€l i€I\{j} el
This holds for all y; € H;. Therefore, p; € 0f;(x;). O]

Example 1.31. o f(z) = 3|lz||*: fis Gateaux differentiable (see below) with V f(z) = z.
We will show that this implies 0f(z) = {V f(z)} = {z}.

o f(x) =[]
— For z # 0 f is again Gateaux differentiable with V f(z) = |w||
— For z = 0 we get f(y) > (y,p) = f(0)+ (y — 0,p) for ||p|| <1 via the Cauchy-Schwarz

inequality. So B(0,1) C 9f(0).
— Assume some p € 9f(0) has ||p|| > 1. Then ”%” € 0f(p). We test: <p 0, & ol p> =
Ipll = |lpl> < 0 which contradicts monotonicity of the subdifferential. Therefore

9f(0) = B(0,1).

Sketch: Draw ‘graph’ of subdifferential.




e H=R, f(x) = |z| is a special case of the above.

{-1} ifz<0,
of(x) =14 [-1,1] ifz=0,
{+1} ifz>0

e H=R" f(z) =|«|i. The L; norm is not induced by an inner product. Therefore the
above does not apply. We can use Proposition 1.30:

of(x) = ® Oabs(xy)
k=1

Sketch: Draw subdifferential ‘graph’ for 2D.

Proposition 1.32. Let f,g: H — RU{oo}. For z € H one finds f () + dg(z) C O(f + g)(x).
Proof. Let u € 0f(x), v € dg(z). Then

fl@t+y)+9@+y) = f@)+ (uy) +9(@) + (v,y) = f(@) + g9(z) + (ut0v,y) .
Therefore, u +v € d(f + g)(x). O

Remark 1.33. The converse inclusion is not true in general and much harder to proof. A simple
counter-example is f(z) = ||z||? and g(x) = —||z||?/2. The subdifferential of g is empty but the
subdifferential of f + ¢ is not.

An application of the sub-differential is a simple proof of Jensen’s inequality.

Proposition 1.34 (Jensen’s inequality). Let f : H = R — R U {oo} be convex. Let u be a
probability measure on H such that

T = d H
T /Hx p(zx) €
and T € domdf. Then
[ 1@ duta) = 5(@).
H
Proof. Let u € 0f().

/ f(@) dp(z) > / F@) + (& — 7u) dulz) = f(z)
H H

Let us examine the subdifferential of differentiable functions.

Definition 1.35 (Géateaux differentiability). A function f: H — RU {oo} is Gdteaux differen-
tiable in x € dom f if there is a unique Gdteaux gradient V f(x) € H such that for any y € H
the directional derivative is given by

lim £l = (), 9 f(2)

10



Proposition 1.36. Let f : H — RU{oc} be proper and convex, let = € dom f. If f is Gateaux
differentiable in z then df(z) = {Vf(z)}.

Proof. Vf(z) € 0f(x):
e For fixed y € H consider the function ¢ : Ry4+ — RU {0}, a — W

e ¢ is increasing: let § € (0,a). Thenz+p-y=(1—-5/a)-z+ S/a-(z+a-y). So

fla+B-y) <1 =B/a) f(x)+B/a- flz+a-y),
(1—B/a) f(x)+B/a- flx+a-y) - f(x)

¢(B) < 5
e Therefore,
V7)) =t TEEC DI ap ) < o) - ).

(We set v = 1 to get the last inequality.)

Of(x) C{V[f(x)}:
e For u € 0f(x) we find for any y € H

o @) = F@) @)+ ) — f(@)
(v, V(@) = lim . > Iim .

= <y7u> .

e This inequality holds for any y and —y simultaneously. Therefore u = V f(x).
O

Remark 1.37. For differentiable functions in one dimension this implies monotonicity of the
derivative: Let f € C1(R). With Propositions 1.36 and 1.29 we get: if z > y then f'(z) > f'(y).

11



1.4 Cones and support functions

Cones are a special class of sets with many applications in convex analysis.

Definition 1.38. A set C C H is a cone if for any x € C, A € R4 one has A -z € C. In short
notation: C' =R,y - C.

Remark 1.39. A cone need not contain 0, but for any « € C' it must contain the open line
segment (0, x].

Proposition 1.40. The intersection of a family {C;}icr of cones is cone. The conical hull of a
set C' C H, denoted by cone C is the smallest cone that contains C'. It is given by Ry, - C.

Proof. o Let C = (;c;Ci. If x € C then x € C; for all i € I and for any A € Ry | one has
ANxeC;forallieI. Hence M-z € C and C is also a cone.

e Let D =R, -C. Then D is a cone, C' C D and therefore coneC' C D. Conversely, let
y € D. Then there are x € C and A € Ry such that y = XA - x. So & € cone C, therefore

y € cone C' and thus D C coneC.
O

Proposition 1.41. A cone C' is convex if and only if C + C C C.

Proof. C convex = C+C CC: Leta,beC. = - a+3-beC=a+beC=C+CCC.
C+CcCC = Cconvex: Let a,be C. = a+beCand A-a,(1—X)-be C forall A€ (0,1).
=Xa+(1-XN)-beC. = a,b € C = C convex. O

Definition 1.42. Let C' C H. The polar cone of C is

C®°={ye H: sup(C,y) <0} .

Sketch: Draw a cone in 2D with angle < 7/2 and its polar cone.

Proposition 1.43. Let C be a linear subspace of H. Then C© = C*.
Proof. e Since C'is a linear subspace, if (x,y) # 0 for somey € H, z € C then sup (C,y) = oc.

e Therefore, C° ={y € H: (x,y) =0 for all z € C}.
O

Definition 1.44. Let C' C H convex, non-empty and x € H. The tangent cone to C at x is

Tow — cone(C —z) ifzeC,
1) else.
The normal cone to C at x is
(C—2)°={ueH: sup(C —z,u) <0} ifxeC,
Nox =
0 else.

12



Example 1.45. Let C' = B(0,1). Then for z € C:

T {ye H: (y,x) <0} if|z] =1,
o =
H if ||lz|| < 1.

Note: the < in the ||z|| = 1 case comes from the closure in the definition of Toz. Without closure
it would merely be <.

ver= oy " o
Example 1.46. What are tangent and normal cone for the Li-norm ball in R??
We start to see connections between different concepts introduced so far.
Proposition 1.47. Let C C H be a convex set. Then dvc(x) = Nox.
Proof. e £ ¢ C: Ouc(x) =0 = Neu.
e zc(:
[wedc(x)] < [ely)Zw@) +{y—zu) VyeCle 0=y —zu) Vye ]
& [sup (C —z,u) < 0] < [u € Nez]

O

Comment: This will become relevant, when doing constrained optimization, where parts of the
objective are given by indicator functions.

Now we introduce the projection onto convex sets. It will play an important role in analysis and
numerical methods for constrained optimization.

Proposition 1.48 (Projection). Let C' C H be non-empty, closed convex. For z € H the
problem

inf{[lz —pll[p € C}

has a unique minimizer. This minimizer is called the projection of x onto C and is denoted by
Pox.

Proof. e We will need the following inequality for any z,y,z € H, which can be shown by
careful expansion:

lz = yl* =2 [lx = 2l + 2[ly — 2|* = 4]|(z +)/2 - z||*

e (' is non-empty, y — ||z —y|| is bounded from below, so the infimal value is a real number,
denoted by d.

e Let (pr)ren be a minimizing sequence. For k,l € N one has %(pk + p;) € C by convexity
and therefore ||z — 3 (px + p1)|| > d.

e With the above inequality we find:

ok — ol = 2k — 2* + 2lpy — 2l|* — 41252 — 2|* < 2llpx — 2l + 2llp — 2[|* — 44

13



e So by sending k,! — oo we find that (pg)g is a Cauchy sequence which converges to a limit
p. Since C' is closed, p € C. And since y — ||z — y|| is continuous, p is a minimizer.

e Uniqueness of p, quick answer: the optimization problem is equivalent to minimizing y —
|z — y||?, which is strictly convex. Therefore p must be unique.

e Uniqueness of p, detailed answer: assume there is another minimizer ¢ # p. Then %(p—&—q) €
C and we find:

lz—pl*+llz—ql* =2z — i+ )II> = 3lp—qll* > 0

So the sum of the objectives at p and ¢ is strictly larger than twice the objective at the

midpoint. Therefore, neither p nor ¢ can be optimal.
O

Proposition 1.49 (Characterization of projection). Let C' C H be non-empty, convex, closed.
Then p = Pox if and only if

[peCIA[{y—p,x—p)<0foralyeC].

Sketch: Illustrate inequality.

Proof. e It is clear that [p = Pox] = [p € C], and that [p ¢ C] = [p # Pcz].
e So, need to show that for p € C one has [p = Pez] < [(y — p,x — p) <0 for all y € (.
e For some y € C and some € € R4 consider:
lz—(+e-(y—p)I* =l —pI*=lp+c- (y = p)II* — IplI* — 2¢ (z,y — p)
=y —pl* —2¢ @ —py—p)

If (x —p,y — p) > 0 then this is negative for sufficiently small £ and thus p cannot be the
projection. Conversely, if (x —p,y —p) < 0 for all y € C, then for e = 1 we see that p is

indeed the minimizer of y +— ||z — y||? over C and thus the projection.
Ul

Corollary 1.50 (Projection and normal cone). Let C' C H be non-empty, closed, convex. Then
[p = Poz] & [z € p+ Nopl.

Proof. [p=Pex] < [pe C Asup(C —p,z —p) > 0] < [x —p € Nepl. O]

Comment: This condition is actually useful for computing projections.

Example 1.51 (Projection onto L;-ball in R?). Let C = {(z,y) € R? : |z| + |y| < 1}. We find:

( .
0 if |x| + |y| > 1,

{0} if [z + [y <1,
cone{(1,1),(-1,1)} if (xz,y) =(0,1),
cone{(1,1),(1,-1)} if (z,y) = (1,0),
cone{(1,1)} ife+y=12z¢€(0,1),

Nc(.%',y) =

14



Sketch: Draw normal cones attached to points in C.

Now compute projection of (a,b) € R2. W.l.o.g. assume (a,b) € R?&-' Then
(0,1) ifla+b>1]A[b—a>1],

Pc(a,b) =< (1,0) if[a+b>1]Afa—0b>1],
(1+a—-0)/2,(1—a+0b)/2) else.

Comment: Do computation in detail.

Comment: Result is very intuitive, but not so trivial to prove rigorously due to non-smoothness
of problem. Comment: Eistiite.

We now establish a sequence of results that will later allow us to analyze the subdifferential via
cones and prepare results for the study of the Fenchel-Legendre conjugate.

Proposition 1.52. Let K C H be a non-empty, closed, convex cone. Let x,p € H. Then
[p=Pxr] & [peK,xz—plpaxz—pcK®].

Proof. e By virtue of Corollary 1.50 (Characterization of projection with normal cone inclu-
sion) we need to show

[t—peNkp] < peK,z—plpxz—pcK®|.

e =: Let x —p € Ngp. Then p € K. By definition have sup (K — p,x —p) < 0. Since
2p,0 € K (K is closed) this implies (p,x —p) = 0. Further, since K is convex, we have
(Prop. 1.41) K+ K C K, and in particular K +p C K. Therefore sup (K +p — p,x — p) <
sup (K — p,z —p) <0 and thus z — p € K°©.

Sketch: Recall that K + p C K. Counter-example for non-convex K.

e «: Since p L x — p have sup (K — p,x — p) = sup (K, z — p) < 0 since z —p € K°. Then,
since p € K have x — p € Nkp.
0

Proposition 1.53. Let K C H be a non-empty, closed, convex cone. Then K°° = K.
Proof. e K C K®%: Recall: K°® ={u€ H: sup (K,u) <0}

o Let z € K. Then (z,u) <0 for all uw € K©. Therefore sup (z, K®) < 0 and so z € K°°.
Therefore: K C K©©.

o K9 C K: Let x € K°°, set p € Pxx. Then by Proposition 1.52 (Projection onto closed,
convex cone): x —p L p, v —pe K°.

o 1€ K®|AN[z—pe K® = (z,2—p) <0.

o |lz—pl|?=(z,2—p)— (p,xr —p) <0=2=p= x€ K. Therefore K°° C K.
]

For subsequent results we need the following Lemma that once more illustrates that convexity
implies strong regularity.
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Proposition 1.54. Let C' C H be convex. Then the following hold:

(

(i)
ii)
)

For all z € int C, y € C, [z,y) C int C.

C' is convex.

(iii) int C is convex.

(iv) If int C # () then int C = int C and C = int C.

Proof. e (i): Assume z # y (otherwise the result is trivial). Then for z € [z, y) there is some

a € (0,1] such that z =a -z + (1 — ) - y.

Since z € int C' there is some € € Ry such that B(z,e- (2 —a)/a) C C.
Since y € C, one has y € C + B(0,¢).

By convexity of C:

B(z,e)=a-z+ (1 —a)-y+ B(0,¢)
Ca-z+(1—a) (C+ B(0,¢)) + B(0,¢)
=a-Bz,e-E2)+(1-a)-C
Ca-C+(l-a)-C=C

Therefore z € int C.

(ii): Let 2,y € C. By definition there are sequences (z)g, (yx)x in C that converge to x
and y. For A € [0, 1] the sequence (A-z + (1 — ) - yg )i converges to A-x+ (1 —A)-y C C.

(iii): Let 2,y € int C. Then y € C. By (i) therefore (z,y) € int C.

(iv): By definition int C' C int C. Show converse inclusion. Let y € int C. Then there is
e € R4 such that B(y,e) C C. Let x € int C, x # y. Then there is some a € Ry such
that y+a - (y —x) € B(y,e) C C.

Since y € (z,y + a - (y — x)) it follows from (i) that y € int C.

Similirly, it is clear that int C c C. We show the converse inclusion. Let = € intC,
y € C. Fora € (0,1] let yo = (1 — @) -y + a-x. Then y, € intC by (i) and thus
y = limg_0yo € int C.

O

Example 1.55. Let H =R, C = QU [0,1]. intC = (0,1) # 0 but C is not convex. We find
intC' = (0,1) #int C =intR=R and C =R # int C = [0, 1].

We can characterize the tangent and normal cones of a convex set, depending on the base point
position.

Proposition 1.56. Let C C H be convex with int C' # () and x € C. Then

[z € intC] & [Tex = H| < [Nex = {0}].

Proof. e [x€eintC) < [Tcx = H|: Let D=C —x. Then 0 € D, [[z € int C] < [0 € int D]]

and Tox = cone D.
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e One can show: if D C H is convex with int D # () and 0 € D, then [0 € int D] &

[cone D = H].

e Sketch: assume 0 € int D. Then cone D = cone D = H since there is some € > 0 such that
for any uw € H \ {0} one has sﬁ € D. The converse conclusion is more tedious. It relies

on Proposition 1.54. See [Bauschke, Combettes; Prop. 6.17| for details.

o [Tcx = H| < [Ncox = {0}]: Recall Nox = {u € H : sup (C —z,u) < 0}. We can extend
the supremum to cone(C' —x) and we can then extend it to the closure cone(C' — x) without
changing whether it will be < 0 (why?). So Nex = {u € H : sup (Tez,u) < 0} = (Tex)®.

e Now, if Tcx = H then Nox = {0}.

e Conversely, since for x € C, Tz is a non-empty, closed, convex cone, one has (Toz)®® =

Tox (Prop. 1.53) and therefore Tox = (Nex)©. So if Nox = {0} then Tox = H.
O

Comment: Observation: subdifferential describes affine functions that touch graph in one point
and always lie below graph. Similarly: for convex sets there are hyperplanes, that touch set in
one point and separate the set from the opposite half-space. These are called ‘supporting hyper-
planes’. The study of the subdifferential is thus related to the study of supporting hyperplanes.
Supporting hyperplanes, in turn, are again closely related to normal cones, as we will learn.

Definition 1.57. Let C C H, z € C and let u € H \ {0}. If
sup (C, u) < (z, u)

then the set {y € H : (y,u) = (x,u)} is a supporting hyperplane of C' at x and x is a support
point at C with normal vector u. The set of support points of C' is denoted by spts C'.

Proposition 1.58. Let C ¢ H, C # () and convex. Then:
sptsC = {z € C: Nox # {0}}
Proof. Let x € C'. Then:

[t esptsC] < [Fue H\{0}:sup(C —=z,u) <0] < [0+#uéec Neox]

Proposition 1.59. Let C C H convex, int C # (). Then
bdry C' C spts C and CNbdryC C sptsC'.
Proof. o If C' = H the result is clear. (Why?) So assume C' # H.
e Let z€bdryC CC. SoxeC\intC =C\intC (Prop. 1.54).
e Consequence of Prop. 1.56: Ju € Ngz \ {0}.
e Consequence of Prop. 1.58: x € spts C. Therefore bdry C' C spts C.

e Show spts C' = C N spts C: For this use sup <6, u> = sup (C,u) (why?).
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o Letz€sptsC: =€ C CC,Iu#0st. sup(C,u) < (z,u). =2 CnNsptsC.
o Let x csptsCNC: =xcC,Iu#0st. sup<5,u> < (z,u). = x € sptsC.

e So: CNbdryC C CNsptsC = sptsC.
O]

Example 1.60. Let H =R, C =[-1,1). Then intC = (-1,1), C = [-1,1], bdry C = {—1,1},
spts C = {—1}, spts C = {—1,1}.

An application of the previous results is to show that the subdifferential of a convex function is
non-empty in a point of its domain where the function is continuous.

Proposition 1.61. Let f : H — RU{co} be proper and convex and let = € dom f. If x € cont f
then df(x) # 0.

Proof. e Since f is proper and convex, epi f is non-empty and convex.

e Since x € cont f, f is bounded in an environment of z. Let ¢ > 0, n < +oo such
that f(y) < f(x) +n for ||z — y|| < e. Therefore, intepi f # () because it contains
B(z,2/2) % (f(x) + 21,00).

e Further: consider sequence (y, = (z, f(x) — 1/k))32,. Clearly yi, ¢ epi f but limy_oc yx, =
(z, f(z) € epi f. Therefore (z, f(x)) € bdryepi f.

e So by Proposition 1.59 there is some (u,r) € Nepi f(, f(x)) \ {(0,0)}.

e By definition of normal cone: For every (v, s) € epi f have:

v x u
() -(i) () =0
e So in particular for y € dom f have (y, f(y)) € epi f and therefore:
(y—z,u)+ (f(y) — flx) r<0

e If » < 0 we could divide by r and get that u/|r| € df(x). So need to show r < 0.

e Show that r < 0: For any § > 0 have:

esosnconso ((17.) () ()< »srsumis

e Assume 7 = 0: Then must have u # 0. Then there is some p > 0 such that ||p-u| < € and
therefore (x + p - u, f(x) +n) € epi f. Then:

K <;(l-)p+-z> N (fé)) ! (3» s 0} < lp- (u,u) < 0]

This is a contradiction, therefore r # 0.
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Corollary 1.62. Let f: H — R U {oo} convex, proper, lower semicontinuous. Then
int dom f = cont f C domdf C dom f

Proof. e The first inclusion was cited in Remark 1.16 (see e.g. [Bauschke, Combettes; Corol-
lary 8.30]).

e The second inclusion is shown in Prop. 1.61.

e The third inclusion follows from contraposition of [z ¢ dom f] = [0f(x) = 0].
O

Finally, we show that closed, convex sets can be expressed solely in terms of their supporting
hyperplanes.
For notational convenience introduce ‘support function’.

Definition 1.63. Let C' C H. The support function of C' is

oc: Hw— [—00, 0], u > sup (C,u) .

Sketch: Definition.
We will later learn that each convex, lower semicontinuous and 1-homogeneous function is the

support function of a suitable auxiliary set.

Sketch: Following remark.

Remark 1.64. If C # 0, u € H \ {0} and o¢(u) < +oo, then {x € H : (z,u) < oc(u)} is
smallest closed half-space with outer normal w that contains C. If x € C and o¢(u) = (x,u)
then z € sptsC and {y € H : (y,u) = oc(u) = (x,u)} is a supporting hyperplane of C at z.

Proposition 1.65. Let C' C H and set for u € H
Ay, ={z e H:(z,u) <oc(u)}.
Then convC = (e Au.
Proof. e If C' = then o¢(u) = —o0 and A, = 0 for all w € H. Hence, the result is trivial.
e Otherwise, oc(u) > —oo0. Let D = (), cp Au-

e Each A, is closed, convex and contains C. Therefore D is closed, convex and convC C D.
Since D is closed, also convC C D.

e Now, let x € D, set p = P .

e Then (z — p,y —p) <0 for all y € convC and thus o5m(x —p) = sup (convC,z — p) =
<p,a:—p>.

e Moreover, z € D C Ay—p. So (z,z —p) < oc(z —p).

e Since C C conv C we get o¢ < 05—

e Now: [z —p|* = (z,2—p) — (p,x —p) < oc(z — p) — 0grm(z — p) < 0. Therefore
x =p C convC and thus D C conv C.

O

Corollary 1.66. Any closed convex subset of H is the intersection of all closed half-spaces of
which it is a subset.
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1.5 The Fenchel-Legendre conjugate

Remark 1.67 (Motivation). Previous result (Cor. 1.66): closed, convex set is intersection of all
half-spaces that contain set.

Analogous idea: is convex, lower semicontinuous function f pointwise supremum over all affine
lower bounds x — (z,u) — a,,? How to get minimal offset a,, for given slope u?

ay, =inf{r e R: f(x) > (x,u) —rforal x € H}

=inf{r e R: r > sup (z,u) — f(z)}
zeH

= sup (z,u) — f()
zeH

For given slopes and offsets (u, a,,), how do we reconstruct f? Pointwise-supremum (= intersec-
tion of all half-spaces containing epi f):

f(z) = sup (x,u) — a,
ueH

Note: same formula for obtaining a, and reconstructing f. Write a, = f*(u) and call this
Fenchel-Legendre conjugate. Reconstruction of f is then bi-conjugate f**. When is f** = f and
what happens if f** #£ f7

The Fenchel-Legendre conjugate and the bi-conjugate are fundamental in convex analysis and
optimization. We start by a formal definition of f*, by studying some examples and showing
some basic properties of f*. We return to a systematic study of f** in second half of this
subsection.

Definition 1.68 (Fenchel-Legendre conjugate). Let f : H +— [—o0,00]. The Fenchel-Legendre
conjugate of f is

f* H — [—o0,00], u > sup (z,u) — f(x).
zeH

The biconjugate of f is (f*)* = f**.

Example 1.69. (i) f(z) = 1||z|*:

P ) = sup (e = 3el? = = (fuf ol = (o)) = = inf Fo

zeH

Convex optimization problem. Fermat’s rule (Prop. 1.26): y is optimizer if 0 € 8f(y)
Minkowski sum of subdifferentials (Prop. 1.32): y —u € 9f(y). = sufficient optimality
condition: y = u, so u is minimizer. = f*(u) = %|u||?, f is self-conjugate.

(i) f(z) = ||

f7(u) = sup (z,u) — ||z|
xeH

If ||u|| > 1 consider sequence xj = u - k. Then

I @) fug>1) = lilznsup (1l = flull) - k = o0
—00
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If ||u]] <1 then by Cauchy-Schwarz:
S @<y < sup(fluf - [zl = llzl]) <0
xeH

And by setting = = 0 get f*(u)l[jju)<1) = 0. We summarize

£ () = {—i—oo if ||u| > 1, _, ()

0 ifful<1 BOD

(iii) special case: H =R, f(z) = [z|: f* =11y

(iv) H=R", f(x) = |lzl1 = X ji_ [zxl:

F*(u) = sup {u,z) — f(&) = sup > uy g — ] = D supug -5 [s] = 3 abs” (uy)
kleE

zeH $€Hk:1 k=1
(v) flz)=0:

0 ifu=0,
£ (w) = sup (u,z) = {

z€H +oo else.

From Examples 1.69 we learn a result on conjugation.

Proposition 1.70. Let (Hj)}_, be a tuple of Hilbert spaces, fi : Hi — [—00,00], let H =
k=1 Hi, [+ H = [~00,00], ((wk)k) = k= fe(wr). Then f*((ug)r) = D p—y fi (ur)-

Proof. The proof is completely analogous to Example 1.69, (iv). O
A few simple ‘transformation rules’:
Proposition 1.71. Let f: H — [—00,00], v € Ry .

(i) Let h:x +— f(v-z). Then h*(u) = f*(u/v).

)
(ii)) Let h: x> - f(x). Then h*(u) =~ - f*(u/7).
(iii) Let h: x> f(—x). Then h*(u) = f*(—u).

)

(iv) Let h: x — f(x) —a for a € R. Then h*(u) = f*(u) + a. (Adding offset to function adds
same offset to all affine lower bounds.)

(v) Let h: 2z — f(x —y) for y € H. Then h*(u) = f*(u) + (u,y). (Shifting the effective origin
of a function requires adjustment of all offsets = axis intercept at origin.)

Proof. All points follow from direct computation. O

Proposition 1.72 (Fenchel-Young inequality). Let f : H — R U {oc} be proper. Then for all
x,u € H:

f(@) + () = (z,u)
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Proof. o Let x,uec H.
e Since f is proper, have f* > —oo (why?).
e So if f(z) = oo, the inequality holds trivially.

e Otherwise: f*(u) = sup,epy (u,y) — f(y) = (u,z) — f(x).

Now we establish some basic properties of the conjugate. We need an auxiliary Lemma.

Proposition 1.73. Let (f;);c; be an arbitrary set of functions H — [—o00,0]. Set f : H —
[—00, 00|,  — sup,cr fi(x). Then:

(i) epif = Nicrepif;
(ii) If all f; are lower semicontinuous, so is f.
(iii) If all f; are convex, so is f.

Proof. o (i): [(z,r) eepif] @ Ror> f(x)] & [R>r > fi(x) foralli € I] & [(z,7) €
epi f; for all i € I] & [(x,r) € ;<7 epi fi].

e (ii): If all f; are lower semicontinuous, all epi f; are closed (Prop. 1.21). Then epi f =
(Nicrepi fi is closed, i.e. f is lower semicontinuous.

e (iii): If all f; are convex, all epi f; are convex (Prop. 1.9). Then epi f = (,c;epi f; is
convex (Prop. 1.4), i.e. f is convex.
OJ

Proposition 1.74 (Basic properties of conjugate). Let f : H — [—00,00]. Then f* is convex
and lower semicontinuous.

Proof. e The result is trivial if f(z) = —oo for some x € H. So assume f > —oo from now
on.

e Can write conjugate as: f*(u) = SUP,edom 1 (4, ) — f(2).

e So conjugate is pointwise supremum over family of convex, lower semicontinuous functions:
(y = <y7 ZE> - f(x))xedomﬂ

e By Proposition 1.73 have: f* is convex and lower semicontinuous.

O

Now, we return to the initial motivation and start to study the bi-conjugate f**. We first give
some related background.

Definition 1.75. Let f: H — [—o00, o0].
e The lower semicontinuous envelope or closure of f is given by
fiaxsup{g(x)|lg: H— [~o0,00], g is Isc,g < f}.
e The conver lower semicontinuous envelope of f is given by

conv f : x — sup{g(z)|g : H — [—00, 0], g is convex, lsc,g < f}.
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Proposition 1.76. f is lower semicontinuous and conv f is convex, lower continuous.

Proof. This follows directly from Prop. 1.73. O

Proposition 1.77. Let f: H — [—00,00]. Then epiconv f = convepi f.

Proof. e Set FF=conv f and D = convepi f.

Since F' < f = epi f C epi F. Since epi F' is convex, have convepi f C epi F. Since epi F’
is also closed (why?), have D = convepi f C epi F.

Show converse inclusion. Let (z,() € epi F'\ D. Since D is closed and convex, the projection
onto D is well defined. Let (p,7) = Pp(x,(). Characterization of projection:

<<§:£)v<z:£)>§0 for all (y,7) € D

For some (y,n) € D, send n — oo (which is still in D, why?). We deduce: ( — 7 < 0.

Note that (y,n) € D = y € convdom f. (Details: any (y,n) € D = convepi f can be
written as limit of sequence (yx,nr)r in convepi f. Any (yx,nr) can be written as finite
convex combination of some (y i, k)i in epi f. So all yx; € dom f and thus the convex
combination y; € convdom f and therefore the limit y € convdom f.)

Also note: dom F' C convdom f = E: Define function
F(x) ifxekFE,
o) = { )
400 else.

Since F is closed and convex, and F' is Isc and convex, g is Isc and convex. Since F' < f and
g(x) = F(z) for x € dom f C E, have g < f. Since F' is the convex lower semicontinuous
envelope of f we must therefore have ¢ < F' and therefore dom F' C E.

Assume ¢ = w. Then projection characterization yields: (z —p,y —p) < 0 for all y €
convdom f. Since [(z,() € epi F| = [z € dom F C convdom f] we may set y = = and
obtain ||z — p||? < 0. Therefore z = p which contradicts (x, () ¢ D.

Now assume ¢ < 7. Set u = fr—:g and let n = f(y). Then from characterization pf
projection get:

(u,y —p) +7 < f(y)
Once more, set y = x and use ¢ > f(z) to get
((zr+(a-p i) « [-r -2z -7 .

This is a contradiction and therefore there cannot be any (z,() € epi F' \ D.

Now some basic properties of the biconjugate.

Proposition 1.78. Let f: H — [—00,00]. Then f** < f and f** is the pointwise supremum
over all continuous affine lower bounds on f.
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Proof. e We find:

f*(u) = sup (u,y) — f(y)

yeH
[ (x) = sup (u, x) — <sup (u,y) — f(y)> = sup inf (u,z) — (u,y) + f(y)
u€H yeH uweH YEH

<sup (u,z —x) + f(z) = f(x) (set y =2z in infimum)
veH

e By Prop. 1.72 (Fenchel-Young): f(xz) > (u,z) — f*(u) for all x,u € H. So f**(x) =
Sup,ep (u, ) — f*(u) is the pointwise supremum over a family of continuous affine lower
bounds on f.

e So f** is pointwise supremum over family of convex, lsc functions = f** is convex lsc
(Prop. 1.73).

e On the other hand, let g(z) = (v,z) —r < f(z) for some (v,7) € H x R be a continuous
affine lower bound. Then:

f*(v) = sup (v,z) — f(z) < sup (v,x) — (v,2) +1r ="

zeH ;(’) z€H
Zg\T
(@) = sup (u, ) — f*(u) 2 (v,2) = f7(v) = (v,2) =7 = g(x)
ueH ——

<r

So f** is larger (or equal) than any continuous affine lower bound on f.

We now prove the main result of this subsection.

Proposition 1.79. Assume f : H — R U {oco} has a continuous affine lower bound. Then
[ = conv f.

Proof. e Let F' = conv f. By Prop. 1.77 have epi F' = convepi F' and by Prop. 1.65 epi F is
the intersection of all closed halfspaces that contain epi f.

e Let (v,7) € H x R be the outward normal of a closed halfspace that contains epi F'. If
r > 0 then epi F = () and then f = +o00 = f** and we are done.

e So assume that epi F' # () and therefore r < 0 for all closed halfspaces that contain epi F.

e Similarly, f** is the pointwise supremum over all continuous affine lower bounds on f.
Therefore, epi f** is the intersection of all closed halfspaces that contain epi f** and for
which the outward normal (v,r) has r < 0.

e Therefore, epi F' C epi f** which implies f** < F. (Also follows from f** convex, lsc and
[ < f, why?)

o Let (u,a) € H x R such that x — (u, ) — a is a continuous affine lower bound of f. Then
it is also a lower bound on f** and finally F.

e Assume (z,() € epi f** \ epi F.
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e Then there must be a closed halfspace in H x R with horizontal outward normal (i.e. r = 0)
that contains epi F', but not (z,¢). That is, there is some (v,y) € H? such that (x —y,v) <
0 for all z € dom F but (z —y,v) > 0.

Sketch: epi F, (z,(), (y,v) € H x H, (u,a) € H xR

e For s >0 let gs(x) = (u,x) —a+ s- (x — y,v). Recall that gy is a continuous affine lower
bound on f.

e For z € dom f C dom F (follows from F' < f) have gs(z) = go(x) + s (x —y,v) < f(z).
So for s > 0, gs is a continuous affine lower bound on f, and thus on f**.

e But for s — oo have g5(z) = go(2) + s (z —y,v) = 00 > ( > f**(2).

e This is a contradiction, thus points like (z, () cannot exist and epi f** = epi F.

O
We obtain the famous Fenchel-Moreau Theorem as a corollary.
Corollary 1.80 (Fenchel-Moreau). Let f: H — RU {oo} be proper. Then
[f is convex, lsc] & [f™ = f] = [f* is proper] .
Proof. e < of equivalence: If f = f** then f is the conjugate of f*. Therefore, it is convex

and lsc.

e = of equivalence: f is convex, Isc. = epi f is convex, closed. =- it is intersection of
all closed halfspaces that contain epi f. If f has no continuous affine lower bound then
all these halfspaces must have ‘horizontal’ normals (r = 0) = f(H) C {—o0, +o0}, which
contradicts assumptions. So f must have continuous affine lower bound.

e By previous result f** = conv f which equals f since f convex, Isc.

e f* is proper: we have just shown that f has continuous affine lower bound, say f(z) >
(x,v) —a for some (v,a) € H x R. Recall: this implies f*(v) < a. Conversely, f is proper,
ie. f(zg) < oo for some xy and then f*(u) > (xg,u) — f(xzo).

Ul

Comment: We showed in proof: A convex lsc function must have a continuous affine lower bound.
This is not true for general convex (but not lsc) functions. Recall: unbounded linear functions
are convex.

A few applications: The following result is helpful to translate knowledge from 9f or f* onto
the other. It gives the ‘extreme cases’ of the Fenchel-Young inequality.

Proposition 1.81. Let f: H — RU{oc} be convex, Isc. Let x,u € H. Then:

wedf(@)] < [fle)+f ()= {@w < [recdf(u]

Comment: Intuitive interpretation: conjugate f*(u) computes minimal offset a such that y
(u,y) — a is lower bound on f. If uw € df(z) then y — (u,y — x) + f(z) is affine lower bound for
f that touches graph in x. So offset (u,z) — f(x) is minimal for slope u.

Proof. e Consider first equivalence.
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=: By Prop. 1.72 (Fenchel-Young): f*(u) > (u,z) — f(z).

Have f(y) > f(z) + (u,y — z) for all y € H. Get:

f*(u) = sup (u,y) — f(y) < sup (u,y) — (u,y — x) — f(x) = (u,z) — f(x)
yeH yeH

So f*(u) + f(z) = (u,z).

o =

f(u) = (z,u) — f(z) = sup (y,u) = f(y) = (y,u) — f(y) for ally € H

So f(y) > (u,y —x)+ f(x) forally € H. = u € df(x).

For second equivalence, apply first equivalence to f* and use that f** = f.

Now we can relate one-homogeneous functions and indicator functions:

Definition 1.82. A function f: H — RU {00} is positively 1-homogeneous if f(A-x) = X- f(z)
forallx € H, A e Ry ..

Proposition 1.83. Let f: H - RU{oco}. Then f is a convex, lsc, positively 1-homogeneous
function if and only if f = (1¢)* = o¢ for some closed, convex, non-empty C C H.

Comment: Relation between indicator functions and support functions: ¢, = o¢.

Proof. e <=: 1 is Isc and convex. Moreover, for x € H, A € Ry |

(0 2) = 0e(h - 2) = sup g, A ) = Asup (9. 2) = A - o0 (a).
yeC yeC

So g, is positively 1-homogeneous.

=: Observe: f(0) =0 (why?). So

f*(u) = sup (u,x) — f(z) >0 (set z =0 in sup).
zeH

If, for fixed u € H there is some x € H such that (u,z) — f(z) > 0, then

f*(uw) > limsup (u, k- x) — f(k-z) =limsupk - ((u,z) — f(z)) = c0.

k—o0 k—o0

So f*(H) C {0,400} and therefore f* = (o for some C' C H. Since f* is convex, lsc = C
is convex, closed (why?).

Since f is convex, Isc have f = f** = .

This allows us to describe subdifferential of 1-homogeneous functions.

Corollary 1.84. If f : H — R U {00} is convex, lsc, positively 1-homogeneous, then f = o¢
where C'= 9f(0).
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Proof. e By assumption, f = o¢ for some closed, convex C C H, f* = 1¢.

e Then [u € 0f(0)] & [0 € Of*(u) = Ovc(u)] < [ue C].
O

Example 1.85. Go through Examples 1.69 and study biconjugates. Note the relation between
positively 1-homogeneous functions and indicator functions.
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1.6 Convex variational problems

Remark 1.86 (Motivation). We want to find minimizers of functionals. Standard argument:
minimizing sequence + compactness: Weierstrass provides cluster point. Lower semicontinuity:
cluster point is minimizer.

Problem: compactness in infinite dimensions is far from trivial. Example: orthonormal sequences
(zk)ken, (i, xj) = 8 ; (e.g. ‘traveling bumps’ in L?(R) or canonical ‘basis vectors’ in £2(N)). =
closed unit ball in infinite-dimensional Hilbert spaces is not compact.

Recall: avoided this problem for proof of existence of projection via Cauchy sequence, but this
argument will not work in general. = we need a different tool.

Definition 1.87 (Weak convergence on Hilbert space). A sequence (), in H is said to converge
weakly to some x € H, we write x, — x, if for all u € H

lim (u,zy) = (u,x) .
k—ro00

Comment: For now only use weak convergence for Hilbert spaces. More general and detailed
discussion will follow later.

Remark 1.88. Weak convergence corresponds to weak topology. Weak topology is coarsest
topology in which all maps = — (u,z) for all w € H are continuous (this implies precisely that
(u, ) — (u,x) for weakly converging sequences xp — x). So, subbasis is given by all open
halfspaces. Weak topology still yields Hausdorff space (e.g. for any two distinct points x, y € H
can find open halfspace A such that =z € A, y ¢ A). Need Hausdorff property for uniqueness of
limits.

In general it is easier to obtain compactness with respect to the weak topology due to the
following theorem.

Theorem 1.89 (Banach—Alaoglu). The closed unit ball of H is weakly compact.
Corollary 1.90. Weakly closed, bounded subsets of H are weakly compact.

Proof. Let C' C H be weakly closed and bounded. Then there is some p € R, such that

C C B(0,p), which is weakly compact by Banach—Alaoglu. C' is a weakly closed subset of a
weakly compact set, therefore it is weakly compact. O

Example 1.91 (Orthonormal sequence and Bessel’s inequality). Let (zx)gen be an orthonormal
sequence in H, i.e. (z;,x;) = d;j for all i,j € N, and let w € H. Then for all N € N

N 2 N N 2
0<|lu— Z:ck (xp,u)|| = |lul|® -2 <u, Zxk <xk,u>> + Z:ck. (g, u)
k=1 k=1 k=1
N N N
P =23 G + S ) =l — S ).
k=1 k=1 k=1

So [|ul|? > Yo, (u, z)? for all N (which then also holds in the limit N — oo) and (u, zj) — 0
as k — oo. Therefore z, — 0. (But clearly not zj — 0.)

The previous example shows that weak convergence does in general not imply strong convergence.
We require an additional condition.
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Proposition 1.92. Let (xx)ren be a sequence in H and let z € H. Then the following are
equivalent:

[z — 2] = [z — x and ||lxg| — ||z||]

Proof. e =-: For every u € H have y — (u,y) is continuous. Therefore, if z; — x one finds
(u, ) — (u,z) for all u € H, therefore xp — x. The norm function is also (strongly)
continuous, therefore it also implies ||zg| — |||

o
lzx — 2)? = [lar)? =2 (zx, ) +]|=]|* = 0
—— ——
—|z||2 —{z,z)
O

Remark 1.93. In the previous example we find indeed limy_, ||z%|| = 1 # ||0]|. Therefore, the
sequence cannot converge strongly.

Theorem 1.94 (Characterization of infinite-dimensional Hilbert spaces). The following are
equivalent:

(i) H is finite-dimensional.

(ii

(iii) The weak topology of H coincides with its strong topology.
)

i
(iv

) The closed unit ball B(0,1) is compact.

The weak topology of H is metrizable.

Remark 1.95. Note that item (iv) implies that for the weak topology we can in general not
equate sequential closedness and closedness, as for the strong topology (cf. Remark 1.13). We
will now show that it remains at least equivalent for convex sets (and functions).

Proposition 1.96. Let C' C H be convex. Then the following are equivalent:
(i) C is weakly sequentially closed.

(ii) C is sequentially closed.

(iii) C' is closed.

(iv) C is weakly closed.

Proof. e (i) = (ii): Let (zx)r be a sequence in C' that converges strongly to some x € H.
Prop. 1.92: [z — 2| = [z — z]. Therefore, z € C since C' is weakly sequentially closed.
Therefore, C' is (strongly) sequentially closed.

e (ii) < (iii): The two are equivalent because the strong topology is metrizable (cf. Remark
1.13).

e (iii) = (iv): For this need convexity. C is closed and convex. Therefore, C' is the
intersection of all closed halfspaces that contain C.
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e A subbasis for the open sets of the weak topology are open halfspaces. So subbasis for
weakly closed sets are closed halfspaces. C' can be written as intersection of weakly closed
sets. = (' is weakly closed.

e (iv) = (i): Sequential closedness is implied by ‘full’ closedness. (Proof: Let C' be weakly
closed. Let (zp)r be a sequence in C' with xp — x for some z € H. Assume x # C. Then
there is some weakly open U such that x € U, UNC = (). But since x — z, for sufficiently

large k one must have x; € U which is a contradiction.)
O

Corollary 1.97. For a convex function f : H — RU{co} the notions of weak, strong, sequential
and ‘full’ lower semicontinuity coincide.

Proof. When f is convex, all its sublevel sets are convex and for these all corresponding notions
of closedness coincide. O

Corollary 1.98. The norm z +— ||z|| is (sequentially) weakly lower semicontinuous.

Remark 1.99. Note: the norm is not (sequentially) weakly continuous in infinite dimensions.
Recall an orthonormal sequence (x)ren. Then zp — 0 but [|zk|| — 1.

Corollary 1.100. The closed unit ball B(0,1) is weakly closed. But in infinite dimensions the
(strongly) open unit ball B(0, 1) is not weakly open.

Proof. e B(0,1) is a convex set. Therefore the notion of strong and weak closure coincide.

e Consider once more an orthonormal sequence (zj)ken. Then z ¢ B(0,1) for all k, but
zp —0€ B(O, 1).
0

So in the following we resort to weak topology to obtain minimizers via compactness. We do not
have to worry too much about the new notion of lower semicontinuity. But since (strongly) open
balls are no longer weakly open, we will face some subtleties when we try to extract converging
subsequences from minimizing sequences: we do not know whether weak compactness implies
weak sequential compactness. This is provided by the following theorem:

Theorem 1.101 (Eberlein-Smulian). For subsets of H weak compactness and weak sequential
compactness are equivalent.

Now we give a prototypical theorem for the existence of minimizers.

Proposition 1.102. Let f : H — R U {oo} be convex, lower semicontinuous. Let C' C H be
closed, convex such that for some r € R the set C' N S,(f) is non-empty and bounded. Then f
has a minimizer over C'.

Proof. e The sets C and S, (f) are closed and convex. So D = C'NS,(f) is closed and convex
and by assumption bonded.

e D closed, convex = D is weakly closed (Prop. 1.96).
e D bounded, weakly closed = weakly compact (Cor. 1.90 of Banach—Alaoglu).

e D weakly compact = weakly sequentially compact (Thm. 1.101, Eberlein—émulian).
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e Since D = CNS,(f) is non-empty, we can confine minimization of f over C' to minimization

of f over D.

e Let (zx)ken be minimizing sequence of f over D. Since D is weakly sequentially compact,
there is a subsequence of (z)x that converges to some = € D in the weak topology.

e Since f is convex and lower semicontinuous, it is weakly sequentially lower semicontinuous
(Cor. 1.97). Therefore, x is a minimizer.

O

A useful criterion to check whether the sublevel sets of a function are bounded is coerciveness.

Definition 1.103 (Coerciveness). A function f: H — [~o0,00] is coercive if lim|, o0 f(7) =
0.

Proposition 1.104. Let f : H — [—o00,00]. Then f is coercive if and only if its sublevel sets
Sy(f) are bounded for all r € R.

Proof. o Assume S,(f) is unbounded for some r € R. Then we can find a sequence (zy) in
Sy(f) with ||zk|| = oo but limsup f(xg) < r.

e Assume S,(f) is bounded for every r € R. Let (zj); be an unbounded sequence with
lim ||zg|| — oco. Then for any s € R there is some N € N such that xy ¢ Ss(f) for K > N.
Hence, liminf f(z)) > s. Since this holds for any s € R, have lim f(zy) = oc.

O

Once existence of minimizers is ensured, uniqueness is simpler to handle. ‘Mere’ convexity is not
sufficient for uniqueness. We require additional assumptions. Strict convexity is sufficient.

Proposition 1.105. Consider the setting of Prop. 1.102. If f is strictly convex then there is a
unique minimizer.

Proof. Assume z and y € C are two distinct minimizers. Then f(z) = f(y). Then z = (x +
y)/2) € C and f(2) < 3f(z) + 3 f(y) = f(z) = f(y). So neither z nor y can be minimizers. [
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1.7 Proximal operators

Definition 1.106. Let f : H — RU{oo} convex, Isc and proper. Then the map Proxy : H — H
is given by

z +— argmin (3]lz — y|I> + f(y)) -
yeH

The minimizer exists and is unique, so the map is well-defined.

Remark 1.107 (Motivation). Interpretation: near point x try to minimize f, but penalize if
we move too far from z. Intuitively: do small step in direction where f decreases, similarly to
gradient descent, but Proxy is also defined for non-smooth f.

The proximal operator will be our basic tool for optimization. Later we will show that we can
optimize f + g by only knowing the proximal operators of f and g separately. This is the basis
for the proximal splitting strategy. One tries to decompose the objective into components such
that the proximal operator for each component is easy to compute.

Proof that Proxy is well-defined. e Since f is convex and lsc = f* is proper. Therefore f
has a continuous affine lower bound, which we denote by f : y +— (u,y) — r.

For fixed « € H let g : y — ||z — y||%. By ‘completing the square’ we get

FW) +9(y) = 3llz = ylI* + (w,9) —r = 3y — o[>+ C
for some v € H, C' € R. So sublevel sets of f + g are bounded.

Since f < f have Sy (f+g) C Sr(f+ g), so sublevel sets of f + g are bounded.

Since f is proper and g is finite, there is some r € R such that S,(f + g) is non-empty.

Using Prop. 1.102 with C' = H and f = f 4 g we find that f + ¢ has a minimizer over H.

Since f is convex and g is strictly convex, f —+ g is strictly convex. Prop. 1.105 = this
minimizer is unique.

O

Characterization of proximal operator.
Proposition 1.108. Let f be convex, lsc, proper, let x € H. Then

[p="Proxs(z)] < [y—paz—p)+flp)<f(yforallye H] << [z—p€eIf(p)]
Proof. e The second equivalence is trivial. We prove the first.

e =: Assume p = Proxs(x), let y € H. For a € [0,1] let po =a-y+ (1 —a) - p.

e Then f(pa) + gllz —pall® = f(p) + 3]l — p[*.

e By convexity of f: f(pa) < a- f(y)+ (1 —a)- f(p).

o We get:

a- fy)+ 1 —a)- f(p)+ 3llz —pal® > f(p) + 3l — pl”
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e Setting g(a) = o~ f(y) + (1 — a) - f(p) + 3/lz — pal/® this translates to g(a) > g(0) for
a € [0,1].

e Note that g is differentiable, so we must have d,g(a)|a=0 > 0. This implies:
fy)=f)+ (& —py—p)20.

e <: For fixed z let g : y — ||z — y||*. Then dg(y) = {y — «}. Then

[z—pedfp)] < [0ep—z+0f(p)=209(p)+0f(p)]
= (0f +9g C O(f + g),Prop. 1.32) [0 € d(g+ f)(p)]
&  [peargmin(g+ f)] & [p=Proxs(z)]

O

Comment: Since we did not prove any results of the form 9(f+g) = df+0g we had to ‘manually’
do the =-argument.

Example 1.109 (Projections). Projections are special cases of proximal operators. Let C C H
be non-empty, closed, convex. We find

Pox = argmin £ ||z — p||? = argmin L —p|? 4 o(p) = Prox,c(z).
peC peH

Then the characterization for projections (Prop. 1.49) is a special case of Prop. 1.108:
[p="Proxc(z)] < [(y—p,x—p) +icp) <we(y) forally € H
& [peCA{y—pax—p)<0forallyeC] < [p= Poa]

Similarly, the characterization of projections via the normal cone (Cor. 1.50) is a special case
of the characterization of the proximal operator via the subdifferential: Recall duc(y) = Ney
(Prop. 1.47). Then:

[t €p+dic(p)] & [x€p+ Nep)

So, conversely we may think of the proximal operator as a generalization of projections with ‘soft
walls’: instead of paying an infinite penalty when we leave C, the penalty is now controlled by
a more general function f.

A few more examples, that are not projections:

Example 1.110. Let A > 0.

©) f(y) = 3llyl*: [p = Proxs(z)] & [z —p € f(p) = {A p} & [p = /(L +X)]. So
Proxs(xz) = x/(1+ A).

(ii) f(y) =X-||ly|: Recall:

, .
_ . m 1fy7£07
0fw) =2 {3(0,1) ify=0.
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If x € A- B(0,1) we find that p = 0 is a solution to x € p + df(p). Otherwise, we need to
solve x = p + ﬁ‘ﬁ for some p # 0. We deduce that p = p - x for some p € R\ {0} (since p
and = must be linearly dependent) and get:

w=p- 2+l el=p+leb=1-12ep=2- 7]

T

We summarize:

0 if x € B(0,\)

r— 2% else.
fl]]

Proxy(z) = {

Interpretation: if ||z|| > X we move towards the origin with stepsize A, otherwise, go directly
to origin.

Example 1.111 (Comparison with explicit gradient descent). Assume f is Gateaux differen-
tiable. Then 0f(z) = {Vf(x)}. Consider a naive discrete gradient descent with stepsize A > 0
for some initial (¥ € H:

2D 4 0 Ay ()

For comparison consider repeated application of the proximal operator on some initial y(o) € H:

y D < Prog, (y®)

We find y© € U + X0 f (yH) = {y™D £ AV f(y D)}, so
y(€+1) _ y(f) . )\vf(y(f+l)) )

This is called an ¢mplicit gradient descent, since the new iterate depends on the gradient at the
position of the new iterate, and it is thus only implicitly defined. For comparison, the above rule
for z(*+1) is called explicit.

Usually, the explicit gradient scheme is much easier to implement, but the proximal operator has
several important advantages:

e The proximal scheme also works, when f is not differentiable. (But it must be convex.)
e The proximal scheme can be started from any point in H, even from outside of dom f.
e The proximal scheme tends to converge more robustly.
As an illustration of the latter point return to two previous examples:
(i) f(z) = %[|z[/®>. Then Vf(z) = z and we get
2D = 20 Xz = 2O (1 = \)°.

This converges geometrically to () — 0 for |1 —A| < 1 & X € (0,2). For A > 1 the
solution oscillates around the minimizer, for A > 2 the sequence diverges.

For comparison we get
y T =y 1+ X)) =y D+ N

This converges geometrically for all A > 0. For very small positive A we have (1+\)"! ~ 1—
A and the implicit and explicit scheme act similarly (for the first few iterations). Intuitively,
this stems from the fact that if f is continuously differentiable and the stepsize is small,

then Vf(z) = Vf(z(t+D),
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(ii) f(xz)=|z||. Then Vf(x) = x/||z|| for z # 0 and we obtain

(+1) _ () _ xz®
T T o]

For ||z|| > A this is the same effect as the proximal operator, but for ||z|| < A it does not
jump to the origin and terminate, but oscillates around the minimizer.

The examples indicate that Proxs(x) moves from x towards a minimum of f. We also observe
that a prefactor A acts like a stepsize. We establish a few corresponding results.

Proposition 1.112. Let f: H — R U {oco} be convex, lsc, proper. Let A € R, ;.
(i) [z € argmin f] & [r = Proxs(z)].
(i) [ ¢ argmin f] = [f(Proxs(2)) < f(2)].
(iii) Let p = Proxy(z), C = Sy@)(f). Then p = Pcw.
(iv) The function A — ||z — Proxy¢(z)|| is increasing.
(v) The function A — f(Proxy(x)) is decreasing.
Proof. e (i): Assume z € argmin f. Then for all p € H
f@) = 5llz — z]* + f(z) < 5lle — pl* + ()
Therefore, x = Proxy(z).

e Conversely, assume x = Prox¢(z). = [z €  + 0f(x)] = [0 € 0f(z)] = (Fermat’s rule,
Prop. 1.26) [z € argmin f].

e (ii): By assumption x ¢ argmin f. Let p = Proxs(x). By (i) p # « and then
sz =pll* + £(p) < 3lle —2|® + f(2) = f(2)
which implies f(z) — f(p) > 3|lz — p|*> > 0.

e (iii): By construction p € C. Let p' = Pcx. So p' € C = Sy = f(p') < f(p). Assume
p' # p. Then ||z —p|| > ||z — || (p’ is point that minimizes distance to x among all points
in C). Then

sl =pI1P+ f) < 5lle —pl* + f(p)
and therefore p’ is a better candidate for Prox¢(z) than p. Therefore we must have p’ = p.

e (iv): We use the monotonicity of the subdifferential for this (Prop. 1.29). Let 0 < A1 < Aa.
Let p; = Prox), f(«) and set u; = x — p; for i = 1,2.

o Let Au=uy —u1, Ap=pz — p1. From @ = p; + u; we get Au= —Ap.

e By characterization of the proximal operator we find: w; € A\; 9f (p;).

Sketch: z, pi, ui, then transition from p; to ps ‘towards’ x and change of u; to uo as
dictated by A2 > A1 and monotonicity of subdifferential.
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e By monotonicity of the subdifferential:
0 < <% - %JPQ _p1>
0< (uz — 32ur, Ap) = (Au = 22200y, Ap) = —[| AplJ* — 25224 {uy, Ap)
We deduce (ui, Ap) < 0. Then

lz = pal* = llz = p1 = (2 = p)|I* = |z — p1 — Ap|?
= llo = pull* = 2 (ur, Ap) + [|Ap|* 2 ||z — po*.

e (v): Use notation from previous point. Assume f(p2) > f(p1), let C = Sy, (f). Then
p1 # p2 and p1 € C. By (iii) have py = Pox, therefore ||z — p2|| < ||z — p1||, which
contradicts (iv). Therefore we must have f(p2) < f(p1).

0

It turns out that there is a surprisingly simple relation between the proximal operators for f and
f*. This can be used to compute one via the other, in case one seems easier to implement.

Proposition 1.113 (Moreau decomposition). Let f : H — R U {oo} be convex, lsc and proper,
x € H. Then Prox¢(x) + Prox«(z) = .

Proof. Let p € H. Then:

[p = Prox¢(z)] & [v —p € 0f(p)] & (Prop. 1.81) [p € 0f*(x — p)]
& [z — (v —p) €9f*(x —p)] & [z — p = Proxs ()]

O
Example 1.114 (Moreau decomposition for projections). Let C' be a closed subspace of H.
Then ¢ is convex, Isc. Consider the conjugate

1&(x) = sup (z,y) — to(y) = sup (z,y) = =101 (z)

0 ifx L yforallyeC,
yeH yeC

+o0 else

So ¢ is the indicator of the orthogonal complement of C'. Then Prox,, = Pc and Prox,;, = Pou
and the Moreau decomposition yields:

x=Pox+ Pourx

which is the orthogonal decomposition of x. So we may interpret the Moreau decomposition as
a generalization in the same sense that the proximal operator generalizes the projection.

Example 1.115. In an implicit descent scheme z(**1) = Prox;(()) we now find that =(“+1) +
Prox«(z(")) = 200, = 2+ = 20 — Prox;. (¢(9)), so Prox« gives the ‘implicit gradient steps’
Agp+1)

Let f(z) = ||z|. Then f* = B and

0=z—2z ifxze B(0,1),

z ifz e B(0,1),

Proxy(z) = { Prox«(z) = { -

T — e else. = else.
[l ]
Interpretation: if (¥ € B(0,1) then Az(+*D) = —2() (ie. we jump directly to the origin).
Otherwise we move by —%.
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1.8 Proximal algorithm

Now we discuss the simplest possible algorithm built from the proximal iterator: simple iteration
of the proximal operator of the objective. We have already discussed this in the context of
simple examples (Example 1.111) and shown some preliminary results that support our intuition
(Prop. 1.112).

Proposition 1.116 (Proximal algorithm). Let f : H — R U {occ} be proper, convex, lsc with
argmin f # 0. For some v € R, and 29 € H set

) = Proxﬁff(x(é)) .
Then

(i) (z9); is a minimizing sequence of f.

(ii) (), converges weakly to some point in argmin f.

For the proof we need to gather some auxiliary definitions and results.

Definition 1.117. Let C C H be non-empty. Let (zx); be a sequence in H. (xy) is Fejér
monotone with respect to C' if for all y € C' and k € N

[2k1 = yll < llzx =yl -

Proposition 1.118 (Basic consequences of Fejér monotonicity). If (x) is Fejér monotone with
respect to some C' then:

(i) (xg)g is bounded.
(ii) For all y € C the sequence (||zx — y||)r converges.
(iii) Let do(z) = infyec ||y — 2||. The sequence (dc(z))x is decreasing and converges.
Proof. e (i): Let y € C. Then by definition [|zx—y|| < [|zo—yl|, so (zx)x is in B(y, [[xo — yl[).

e (ii): By definition, the sequence (||zx —y||)x is decreasing and bounded from below. There-
fore limyo0 [lz1; — yl| = infy lzx — y.

e (iii): We find: do(zg11) = infyec ||zp11 — y|| < infyee ||zx — y|| = do(xk). Therefore, the
sequence is decreasing. Also clearly d¢(zy) > 0 for all k. Therefore the sequence (de(zk))k
is converging.

O

Lemma 1.119. Let (zx); be a bounded sequence in H. Then (xj); converges weakly if and
only if it has at most one weak sequential cluster point.

Proof. e Assume (xy)r converges weakly. Since the weak topology is Hausdorff, it has a
unique limit which is its only cluster point.

e Assume (z)r has at most one weak sequential cluster point. Since (xy)x is bounded, by
Banach-Alaoglu and Eberlein-Smulian (Theorems 1.89 and 1.101) it has at least one weak
sequential cluster point. So it has precisely one. Let this cluster point be x.
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e Assume xj does not converge weakly to . Then there is a weakly open environment U of
x such that H \ U contains an infinite number of elements of the sequence.

U is weakly open = H \ U is weakly closed = weakly sequentially closed.

Apply Banach-Alaoglu and Eberlein-Smulian to the sequence in H \ U to get a cluster
point in H \ U.

e This cluster point cannot be x which contradicts the assumption of a unique cluster point.
Hence, x; must converge weakly to x.

O

Remark 1.120. One can in fact show a slightly stronger result: [(zj)r converges weakly| <
[(zk)r is bounded and has at most one cluster point|. See [Bauschke, Combettes; Lemma 2.38|.

Lemma 1.121. Let (xg); be a sequence in H, let C' C H nonempty. Suppose that for every
y € C the sequence (||zx — y||)r converges (to a finite value) and that every weak sequential
cluster point of (xy)x lies in C. Then (xy) converges weakly to a point in C.

Proof. e By assumption (z)g is bounded. Therefore by Lemma 1.119 it suffices to show
that (xg)x can have at most one weak sequential cluster point.

e Let z and y be two weak sequential cluster points of (z)g, i.e. ;, — = and x;, — y.
e By assumption z,y € C. Therefore (||xx — z||)x and (||zx — y||)r converge.
e Therefore, by
ok = yll* = llee = 21> = [l + ll2]* = 2 {24, 2 — y)
we find that ((zx, 2 — y))i converges, call the limit r € R.

e Further, by weak convergence of the two extracted subsequences we find

I?mex—w=%%w—y% 1%M%mx—w=%%x—y%

e Both sequences are subsequences of the converging sequence ((zp,x —y))r. Therefore,
their limits must therefore coincide and equal r. Then

lz =yl =(@—yz—y) =r—r=0

and therefore the two cluster points must coincide.
O

Corollary 1.122. Let (x); be Fejér monotone with respect to C' and every weak sequential
cluster point of (zy)x is in C. Then (zy)x converges weakly to some = € C.

Proof. e From Prop. 1.118 (ii) the sequence (||xx — y||)x converges for all y € C' (to a finite
value).

e Then the result follows from Lemma 1.121.
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Finally, we can give the proof for the convergence of the proximal minimization scheme.

Proof of Prop. 1.116. e Let z € argmin f. From z(+) = Proch(q:(é)) we deduce z¥) —
) e 49 f (D). Therefore:

F®) > faD) 4 <x(€) _ D) (0 e+ >/%
f(z) > f(x(ﬂ—i-l)) + <z _ () (0 et >/’7

e The first inequality implies that (f(z(9)), is decreasing.
e The second inequality implies:

2D = 2] = | @D — 50) — (2 = o)

= |z — 2O)2 4 ||z — 2O )2 — 2 <x<e+1> — O (gD ey x<z>>
_ ||x(Z) o ZHQ o H$(€+1) - x(é)”Z 49 <Z - x(€+1)7x(€) B $(€+1)>

< [l2© = 27+ 29(f () - f@ )

e Therefore, (a:(z)) ¢ is Fejér monotone with respect to argmin f.

e Summing the above inequality over £ =0, ..., N we obtain:
N N
Zf (E-i—l) S %Z _ ZH2 _ Hx(f-i—l) _ ZH2
£=0 £=0

= & (12 = 2I? — ¥+ - 2]?) < o0

e (i): So (f(z9)—f(2))e) is monotone decreasing, nonnegative (since z is minimizer) and the
sum over its elements is bounded. Therefore limy f(z(¥)) = f(2) and (2(9)), is a minimizing
sequence.

e (ii): Let z be a weak sequential cluster point of (z(9)),. Since f is convex and lsc, it is
weakly sequentially Isc (Cor. 1.97). Therefore, x € argmin f.

e Now apply Cor. 1.122.
O

Remark 1.123. Observe that the proximal algorithm converges for all step sizes v > 0, unlike
the explicit gradient step scheme.
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1.9 The Douglas—Rachford algorithm

Now we introduce the first true proximal splitting method that minimizes the sum f + g of
two convex lsc proper functions by only applying the proximal operators of f and g separately.
The algorithm will therefore be much more practical and easier to implement than the simple
proximal algorithm. But its convergence analysis is more involved.

Proposition 1.124 (Douglas—Rachford algorithm). Let f and g be convex, lsc, proper such
that 3 z € H with 0 € 8f(z) + dg(z). Further, let A € (0,2) and v € Ry,. For some z(®) ¢ H
set by iteration for £ =0,1,.. .

YO = Prox,yg(l‘(g)),
20 = Proch(Qy(e) — 2,
ﬂun:xw+k.ew_ym>
Then there exists some x € H such that
(i) Proxyy(z) € argmin(f + g).
(i) ¥ — 2 — 0 strongly.
(iii) =) — z weakly.
Remark 1.125. One can in addition show that y() — Prox.,(z) € argmin f.
We start by going through an explicit example.

Example 1.126. Let H = R% f(z) = J|z||>, C = {z € H: 21 = 1}, g(z) = tc(z). Then

Prox,f(x) = ﬁx Further Prox,4(z) = Pox. Recall [y = Pcx] < [y € C Az € y+ Ney]. For
the normal cone we get:
if C
New = 0 ifzd¢C,
R-(1,0) else.

This implies

()= () (o)

We obtain A =z — 1, y1 = 1, yo = z2. So Po(x1,22) = (1,22). For the iterations we get:

y® = (Lxge)), 0@ = 24O _ 40 — (2 — xge)wge))
14 14 {4 A(1-= 4
0= he—aflal) a0 = (o) (1= )+ 20200 (- 2))

Iterations for xgg) and xy) separate. Both are affine maps. For the slopes we find:

1—ﬁ<1, 1—ﬁ>—1,
A A
(1-2%) <1, (1-345) > -1,

40



So by the Banach fixed-point theorem both coordinates converge to a unique limit. Determine

the fixed point of x&z):

A(1—
r=r-(l-29)+2420 o r=1-4

For the fixed-point of my) we immediately find 7 = 0. So we deduce () — = (1 — ~,0). Note
in particular that this is not optimal (in fact g(z) = +00). Then y) = Poz® — y = (1,0)
which is indeed the minimizer. Further, v = 2y — 2() — 2y — 2 = (1 + ~,0) such that
2() = Prox., s (v¥)) = ﬁv(@ — (1,0) = y.

Remark 1.127 (Interpretation of Douglas—Rachford algorithm). The goal is to find a minimizer
y = z and an offset vector Az such that x = y + Az ‘lies on the f side of the minimizer’ and
v =y — Az ‘lies on the g side’, i.e. y = Prox,4(y + Az) = Prox,;(y — Az). Unless argmin f N
argmin g # () there can be no such point for Az = 0, which is why mere alternating application of
Prox,; and Prox, is in general too simplistic and a more sophisticated combination of proximal
operators is required.

()

Sketch: Compare interpretation with example: x5’ iteration simply approaches 0. For x
iterations the sign of the xgg)—update depends on whether l‘gé) was too close to 0 or too close to
1.

Now we start proving Prop. 1.124. We need considerable auxiliary definitions and results.

First note, that if argmin f contains more than one element, then Prox; has more than one
fixed-point (Prop. 1.112 (i)). So Prox; cannot be a contraction and therefore convergence proofs

cannot rely e.g. on the Banach fixed-point theorem. We need a refined notion of contraction.

(o)
1

Definition 1.128. A map T : H — H is called

(i) nonexpansive if it is Lipschitz continuous with constant 1. That is

IT(z) = T(y)ll <z -yl forall =z,yeH;

(ii) firmly nonexpansive if

IT(2) = TW)II* + [(T(z) — 2) = (T(y) = y)|” < llz —y||* forall z,yeH.

Proposition 1.129. Let f: H — R U {oo} be proper, convex lsc. Then
(i) Proxy is firmly nonexpansive.
(ii) id — Proxy is firmly nonexpansive.

(ili) 2 Proxy —1id is nonexpansive.

Proof. e (i) Use monotonicity of subdifferential. Let z,y € H, set p = Proxs(z), ¢ =
Prox¢(y). Denote Ax =2 —y and Ap=p—q.

e From x —p € df(p), y — q € 0f(q) and monotonicity of the subdifferential we get:

[{(z—p) = (y —a)sp—q) 2 0] & [(Az — Ap, Ap) > 0] & [2]|Ap||* — 2 (Ap, Az) < 0]
& [1apl* + [Apl* =2 (Ap, Az) + | Az|* < [|Az]*] & [[|Ap]° + | Ap — Az|* < [|Az]?]
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e (ii) By the Moreau decomposition (Prop. 1.113), id — Proxy = Proxg«. Since f* is convex,
Isc, proper, Proxy is firmly nonexpansive by (i).

e (iii) Use the above notation. Then we need to bound:

120 — 2) = (2q = y)|I* = [24p — A||* = 4| Ap||* — 4 (Ap, Az) +]| Az < [|Az]?

<0, see (i)

O
We need a result to identify fixed-points of nonexpansive maps in the context of weak convergence.

Proposition 1.130. Let 7': H — H be nonexpansive. Let (x)r be a bounded sequence in H
and let x € H. If ;, = z and z, — T'(zx) — 0 then z = T'(x).

Proof.

lz = T(2) [ = | (x — 2x) — (T(2) — ) ||?

=l — a1l + | T(x) — x> — 2 (& — 24, T(2) — . + = — 23)

= | T(2) — axl® — llz — 2x|® = 2 (2 — 25, T(2) — )

= (T(x) = T(xx)) — (2 — T(x)|I* = |z — 2x|* = 2 (& — ap, T(2) — )
(use nonexpansiveness of 7" to bound ||T(xz) — T'(xg)|| < ||z — zx||)

< lex = T(xp)? = 2(T(x) = T(ax), xp, — T(ap)) — 2 {x — a3, T(x) — )
Now, recall x, — x, 2, —T(x) — 0 and (2 ) bounded, i.e. ||zg]| < C for some C; < +00.
Further, since T is nonexpansive: ||T(xzg)|| = ||T(xr) — T(0) + T(0)|] < || T(xx) — T(0)]] +

def.

IT(0)]| < C + ||T(0)]| = Cy. Then
|z — T(2k)||* = 0,

limksup (T'(x) = T'(xx), o — T(zg)) | < limksup(HT(x)H +C2) - lze = T(xe)| =0

(here have used Cauchy-Schwarz and || T(x) — T (xg)|| < |T(2)||+ | T(zx)|| < [|T(z)]] + C2)

(x =z, T(x) —x) > (x —2,T(x) —xz) =0.

Therefore, by going to the limit in the above upper bound on ||z — T'(z)||* we get ||z —

T(x)|| <0,ie T(x)=x.
O
Definition 1.131. In the following, for an operator T': H — H denote by

FixT = {z € H: T'(z) = x} the set of fixed-points of 7.
zerT = {x € H: T(x) = 0} the set of ‘roots’ of T

Analogously, for T : H — 2H let

zerT ={z e H:0eT(x)}.
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We will shortly show that the Douglas—Rachford iteration can be compactly rewritten as an
iteration as analyzed in the following Proposition.

Proposition 1.132. Let T : H — H be nonexpansive, let FixT # (), A € (0,1) and (¥ € H.
Set

2D = 2O L X (T (29 — 29y,
Then:
(i) (z(9); is Fejér monotone with respect to Fix T
(ii) (T(z®) — (D), converges strongly to 0.
(iii) (), converges weakly to a point in Fix T

Proof. e For the proof we use the following equality which can be verified by expansion: For
Ae0,1)], z,y € H:

IAa+ (1= Nyl = Alll* + (1= Dyll* = A1 =Nz -y

(i) Let y € FixT. Then

2D =y = (1 = (@ — ) + AT (@) —y))?
= (1= N[z =yl + AT () = TR = A1 = V)] = 7))
< [ =yl =A@ = N = T(@9))?

So (z), is Fejér monotone with respect to FixT.

(ii) From the above bound we find:
N
YA =N = T )P < 2@ = y|* — 2NV —y|* < oo
=0

Therefore |29 — T(z@)|| = 0 = 2 — T (2¥) = 0. (Here use that A(1 — \) > 0.)

(iii) (z(®), is bounded due to Fejér monotonicity (Prop. 1.118). From (ii) we have T'(z(¥))—
z® = 0. So by the previous result, Prop. 1.130, we obtain that any weak sequential cluster
point of (z(9), is in Fix T

It follows then from Cor. 1.122 that (z())), converges weakly to a point in Fix T

Proposition 1.133. Let f,g: H — R U {oc0} be proper, convex, Isc. Let
Ry = 2Proxy —id, R, = 2Prox, —id.

Then zer(0f + 0g) = Prox,(Fix Rf Ry).

Comment: We will shortly show that fixed-points of (#(9)), in the Douglas-Rachford iterations
are precisely the fixed-points of Ry R,.
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Proof. We find:

[0€df(x)+0g(z)] < [Fue H:[uecdf(x)] Al-u € dg(z)]]
& yeH: [x—yedf(@)Aly—xedg(z)]
& [Jy € H : [z = Proxy(2z — y)] A [z = Prox,(y)]]
& [Jy € H : [z = Proxs(Ry(y))] A [z = Prox,(y)]]

(=1 Ry(y) = 2Proxy(y) —y = 20—y = y = 22— Ry(y) = 2Prox(R,(y)) — Ry(y) = Rp(Ry(y)),
(< y=Ry(Ry(y)) = 2Proxs(Ry(y)) — 2Proxy(y) +y = = = Proxy(y) = Prox;(Ry(y)))

& [Jy e H: [y = Rp(Ry(y))] Al = Proxy(y)]]

Now we are ready to assemble the proof of Prop. 1.124.

Proof of Prop. 1.124. o Let
Ry = 2Prox,; —id, Ry = 2Prox,4 —id, T=R;R,.
e Conversely Prox,, = %(Rg +1id). Then we can rewrite the Douglas-Rachford iterations as
follows:

2D — (0 4y

Note that z() — y( = L(T(2(9) — 2).
e Apply Prop. 1.133 to vf and ~g to obtain
zer(Of + 0g) = zer(9vf + 0vg) = Prox,(FixT).
Since by assumption zer(9f + dg) # () this implies also Fix T # ().
e In view of (i) we note that for every « € FixT have therefore Prox,q(x) € argmin(f + g).

e Due to Prop. 1.129(iii) the operators Ry and R, are nonexpansive. Then so is their com-
position T'= Ry R,.

e (ii) From Prop. 1.132(ii) we find 2() — y(® = L(T(2(9)) — 2(0) — 0 strongly.

1
2

e From Prop. 1.132 (iii) we get: there is some x € Fix T such that z® — g weakly. Since
Prox,4(z) € argmin(f + g) (see above) this establishes (i) and (iii).
O
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1.10 Primal-Dual Methods

In this subsection we study an alternative approach to optimizing objectives of the form f + g
that is intimately linked to conjugation.

Definition 1.134. e For convex functions f,g: H — RU {oo} let
Pz) = f(z) +9(x), D) =—f"(-y)—g"(¥), Llzy)=[f(z)—g W)+ (z,y).

e The problem inf,ey P() is called primal problem, the problem sup,cy D(y) is called dual
problem and L is called Lagrangian.

e Note that since D is concave, the dual problem is also a convex optimization problem.
e For all (z,y) € H? one has
P(z) 2 L(z,y) = D(y).
This follows quickly from the Fenchel-Young inequality (Prop. 1.72).
e In particular:

P(x) > inf P(z') > sup D(y') > D(y)
z'eH y'€eH

e So for every feasible pair (x,y) € H? of primal and dual problem the value A(z,y) =
P(z) — D(y) is an upper bound on the combined suboptimality of z and y with respect to
primal and dual problem. Therefore A(x,y) is called the duality gap.

e If A(x,y) =0 then z and y must be optimizers of primal and dual problem respectively.
We give a simple variant of the famous Fenchel-Rockafellar duality.

Proposition 1.135 (Duality). Assume there exists some xoy € H such that f(zg) < oo, g(xo) <
oo and f is continuous in xy. Then

inf {f(z) +g(x)} = rynea;;{—f*(—y) -9 (y)}-

In particular, a maximizer for the dual problem exists.

Comment: Sometimes one tries to show that a given optimization problem is the dual problem
of some auxiliary problem to use the above Proposition for showing that a solution exists.

For the proof we need an auxiliary result on separating points from convex sets via hyperplanes.

Proposition 1.136. Let C C H be convex, 0 ¢ int C, int C' # (). Then there is some z € H\ {0}
such that (z,z) > 0 for all z € C.

Comment: This means, the hyperplane with normal z through the origin separates C' from 0.

Proof. e Let D = C. By Prop. 1.54 we have int D = int C' # () and in particular 0 ¢ C' D
int D.

e Since D is closed and convex, it is the intersection of all closed halfspaces that contain D

(Cor. 1.66).
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If 0 ¢ D there must be a closed halfspace A, = {x € H : (u,x) —r > 0}, u # 0, such that
DcA,and 0¢ A,.

0¢A, = (0,z) —r<0=r>0.

xeDCA,=0< (u,x) —r < (u,x). So setting z = u we have found an appropriate z.

Alternatively, must have 0 € D, but 0 ¢ int D. Then by Prop. 1.56 there is some u € Np0
with u # 0. By definition sup (u, D) < 0. Then set z = —u above:

(—u,z) > inf (—u, D) = —sup (u, D) >0
O

Proof of Prop. 1.135. e The inequality infyey P(z) > sup,ey D(y) is clear by Def. 1.134.
We need to show the converse inequality.

e Denote by m = inf ey P(z). We have m < f(xo) + g(xo) < oo. If m = —oo the converse
inequality is trivial. Hence, assume m € R.

e Assume we had some z € H such that for all a,b € H one has
fla)+g(b) +(z,a—b) >m.

e Then we find:

sup —f"(—y) —¢*(y) = sup inf [f(a) —{a,~y) +g(b) — (b, )]
yeH yEH a,0€

> inf [f(a) +g(b)+ (z,a—0b)] >m

a,be H

e Since also sup ey —f*(—y) — 9" (y) < m, z must therefore be a dual maximizer and primal
and dual problem have the same optimal value.

e Now we show existence of a suitable z.

o Let

A={(a,\) e HxR: X> f(a)},
B={(bu) € HxR: p<m—gD)}.

e A and B are convex. Since f is continuous in xg and f(zg) < oo, we have int A # ().
e Assume there were some (a,\) € AN B. Then we would find
F(@)+g(a) < A (m— ) = m
which is a contradiction. Therefore AN B = ().

e This implies 0 ¢ A — B and in particular 0 ¢ int(A — B). A — B is convex. Also,
() #int A— B C int(A — B). So by Prop. 1.136 there is some (u,r) € H x R\ {(0,0)} such
that ((u,r), (a, X)) >0 for all (a,\) € A— B. This implies

((u,r), (@, A) = ((w,7), (b)) = (w,a) +7- A= (u,b) +7-po
for all(a, A\) € A, (b,u) € B.
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e Since we can send A — oo and p — —oo (and remain in A, B respectively) we find that
r>0.

e If r = 0, we can violate the inequality by setting b = ¢ (where g is finite) and a = zg—¢-u
for sufficiently small € > 0 (which works since f is continuous in zg). So must have r > 0.

e Set now z = u/r. The above inequality yields
(z,a—=b)+A—p>0

for all A > f(a), p < m — g(b), i.e. for A — p > f(a) + g(b) — m. Therefore, the given z is
as needed above and the proof is complete.
O

Remark 1.137. There are considerably more general variants of Prop. 1.135 on Banach spaces
and their dual spaces. Then the auxiliary separation result, Prop. 1.136, must usually be provided
by the Hahn—Banach theorem.

Finally, we give another proximal splitting algorithm, specialized for primal-dual problem pairs
as above.

Proposition 1.138. Assume that f and g are proper, convex, Isc and that primal and dual
problem have solutions. For 7 € (0,1) and (0, 4®) € H set

) = PI"OXTf(x(Z) — 7y,

y ) — PI‘OXTg*(y(Z) + 7 (25D — 2Oy,

Then (2(9), and (y©)), converge weakly to solutions of the primal and dual problem, respectively.

Remark 1.139. For more details on such algorithms and generalizations, see for instance [Cham-
bolle, Pock: A First-Order Primal-Dual Algorithm for Convex Problems with Applications to
Imaging, 2011].

Proposition 1.140. A pair (x,y) € H? are solutions to the primal and dual problem if and
only if x € g*(y) and —y € 9f(x).

Proof.

[(z,y) are solutions| < [P(z) = D(y)] & [f(z) + g(z) = —f*(—y) — 9" (y)]
< [(f(@) + [ (—y) = (z,—y) + (9(z) + g"(y) — (z,y)) = O]

(By Fenchel-Young (Prop. 1.72) this is 0 if and only if both parantheses are 0, which, by
Prop. 1.81, is equivalent to:)

& [~y € af(x)] A [z € dg*(v)]]
[

Remark 1.141. The strategy for the convergence proof of Prop. 1.138 is as follows: we show
that the optimality condition of Prop. 1.140 can be written as zeros of a monotone operator
acting on the pair (z,y). These zeros can be identified with fixed-points of carefully constructed
firmly nonexpansive operators and corresponding metrics. If we choose the right metric, this
operator can be identified with the iterations of Prop. 1.138. We then generalize the original
proximal optimization algorithm (Prop. 1.116) to firmly nonexpansive operators.
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Proposition 1.142. Let A : H — 2% be monotone. Let M : H — H be linear, continuous,
self-adjoint and positive definite, i.e. (z, Ma) > C|/z||?> for some C € Ry,. Let the operator
T : K — H be given by

[y =T(x)] < [Mz € My + A(y)]
where K C H is the set such that the above inclusion has a solution y for fixed z € K.
(i) This inclusion has at most one solution, i.e. T" is well-defined on K.
(ii) FixT = zer A.

(iii) T is firmly nonexpansive with respect to the inner product induced by M, (z,y),, =
(z, My).

Proof. e (i) For fixed x € H and y1,y2 € H assume:
[Mz € Myy + A(y)] A [Mz € Mys + A(yz)]
By monotonicity of A we get:
0 < (M(z—y1) = M(z = y2), 1 — y2) = — (M(y1 — 92), (11 — 92)) < =Clly1 — w2?
Therefore y; = y2 and thus, T" is well-defined on K.
o (ii)
[z €zer(A)] & [0 € A(x)] & [Mx € Mz + A(z)] & [T(x) = x] & [z € FixT]
o (iii) Let p=T(x),¢q=T(y), Az =x —y, Ap=p—q. Then
M(z —p) € A(p), M(y —q) € A(q).
By monotonicity:
[(M(x—p) = M(y—q),p—q) = 0] & [(Az — Ap, Ap),, > 0]
< [1Apl3, — (Ap, Az, < 0]
& lllp—alfs + 11— 2) = (@ = 9l < llw = yl}]
O
Now we generalize Prop. 1.116 to arbitrary firmly nonexpansive operators.

Proposition 1.143. Assume T : H — H is firmly nonexpansive and FixT # (). For (0 ¢ H
set

x(€+1) _ T(SL‘(Z))
Then (D), converges weakly to some point = € Fix T

Proof. e Let z € FixT'. Then by firm nonexpansiveness:
240 — 2] = |T(@) = TE? < 2 — 2] - |(TE®) - 29) ~ (T(z) - )|
= o0 2| ~ | T() 2O
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So (2(9)), is Fejér monotone with respect to Fix T

Further Zé\]:o |T(x®) — 2O < ||z — 2||2. Therefore T(z(®)) — 2(® — 0 strongly.

By Prop. 1.130 every weak sequential cluster point of (:1:(@) ¢ is a fixed-point of T.

e By Cor. 1.122 2 — 2 for some z € Fix T
O

Proof of Proposition 1.138. e Define set valued operator A : H x H — 28 x 2 as follows:

x Of(x) +y )
H *
(y> <39 (y) —=
By Prop. 1.140 the primal and dual optimizers are given precisely by zer A, and therefore
by assumption zer A # ().

Note that 277 x 2H can be identified with a subset of 2(7*H)  So formally A can be
interpreted as H x H — 280>

Sketch: 27 x 28 yg 2(HxH) for [ — R: product of two intervals vs general 2d sets.

e A is monotonous: let [a; € Of(z;) Ab; € 09™(yi)] & (ai +yi, bi —x;) € A(zmi,y;) for i =1,2.
Denote by Az, Ay, Aa, Ab all pairwise differences. Then by monotonicity of df and dg*:

((a2 +y2,b2 — x2) — (a1 + y1,01 — 1), (T2 — 21, Y2 — Y1) =
((Aa+ Ay, Ab — Ax), (Az, Ay)) = (Aa, Az) + (Ay, Az) + (Ab, Ay) — (Az,Ay) >0

Now set M : H? — H? as

Lid —id
M= (—id 1id>

M is continuous, linear and symmetric. Furthermore, it is positive definite, since for
T,y € H:

((@,9), M(z,y) = Zllz* + Zlly1* = 24z, 9) = (7 = 1) - (2l + Iyl*) + llz — y]®

e Now analyze operator T constructed from A and M via Prop. 1.142: From (a,b) = T'(x,y)
we obtain the following inclusion condition:

r—a a
v (5=) <)
lr—La—y+0 Of(a)+b
< (iy— %b— x—i—a) < <8g*(b) — a)
T —TyY a+ 07f(a)
< <y+7(2a—x)> © (b—l—@Tg*(b))
& a=Prox;¢(r — 1y) ANb = Prox.¢(y + 7(2a — x))

So the iterations of the algorithm, Prop. 1.138, correspond to the induced operator T,
ie. (2D D) = 720 4®). This also implies that the domain of T is H?.
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e By Prop. 1.142 (ii) have Fix T = zer A # ().

e Now consider the Hilbert space H x H, equipped with the inner product induced by M.
Note that the topology induced by M is the same as the product topology on H x H.
Therefore, both topologies induce the same weak topology.

e On this space T is firmly nonexpansive by Prop. 1.142 (iii). So by Prop. 1.143 the sequence
(0, ), converges weakly to some (z,y) € FixT = zer A, which is therefore a pair of
solutions to primal and dual problem.

e Note: the iteration would converge to a fixed-point for every positive definite M. We
chose M carefully such that computing z*1) does not depend on y**1) and thus the two

updates can be computed subsequently and separately.
O

Remark 1.144. e Prop. 1.143 studies convergence to fixed-points of general firmly non-
expansive operators, it is a generalization of Prop. 1.116, which only treated the special
case of the proximal operator.

e Prop. 1.142 defines a firmly nonexpansive operator from a monotone operator. 7' is usually
called resolvent of A. This is a generalization of the relation between the subdifferential
and the proximal operator, Prop. 1.108.

e Generalize minimization problems to finding zeros of monotone operators via their resol-
vents. Douglas—Rachford algorithm can also be generalized to finding zero of sum of two
monotone operators. In fact, this was application of the algorithm in first publication.
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2 Optimization in Banach spaces

Remark 2.1 (Motivation). e We go through some fundamental aspects of analysis in Ba-
nach spaces. Goal: ensure that minimization problems are well-defined (e.g. minimizers
exist, sufficient and necessary criteria for optimality).

e For numerical solution we need to discretize, i.e. approximate by finite-dimensional prob-
lem. Must ensure ‘quality’ of approximations. Will introduce I'-convergence, essentially
notion of convergence for minimization problems.

e Discrete problems always finite dimensional. Still: must analyze infinite dimensional prob-
lems, to ensure that limit of solutions as we choose finer and finer discretizations is reason-
able.

Definition 2.2. Throughout this subsection V is a real vector space.

2.1 Foundations

Definition 2.3 (Norm and inner product). e Amap || -] : V — Ry on V is a norm if for
all z,y € V, A € R have

(i) (positive definite) ||z|| =0 = = =0,
(i) (subadditive) [lz +y|| < ||z[| + [lyll;
(iii) (homogeneity) ||A- x| = |A| - [|z||.

A norm induces a metric on V' via d(z,y) = ||z — y||.

e Amap (-,-) : VxV — Ris an inner product on V if for all z,y,z € V., X\ € R it satisfies
(i) (symmetry) (z,y) = (y,z),
(ii) (linearity in first argument) (A - z,y) = - (z,y), (x + y, 2) = (x, 2) + (y, 2),
(iii) (positive definite) (x,z) > 0, [(z,z) = 0] = [z = 0].

From the axioms for the inner product we quickly obtain the Cauchy-Schwarz inequality,
(x,y) < |lz| - |ly||, and that an inner product induces a norm via ||z|| = \/(z, x).

e A vector space V' with a norm || - || is called a normed space. A vector space with an inner
product (-,-) is called pre-Hilbert space.

Definition 2.4 (Convergence in metric). We say a sequence (zj)r on a metric space (X,d)
converges to some z € X if d(xg,x) — 0. x is called the limit of (z1); and is unique.

Definition 2.5 (Cauchy sequence and complete metric spaces). A sequence (zj); on a metric
space (X,d) is a Cauchy sequence if for all € > 0 there is some N € N such that d(z;, z;) < e
whenever 7,7 > N. A metric space is called complete if all Cauchy sequences converge.

Definition 2.6 (Banach and Hilbert spaces). A complete normed space is called Banach space.
A complete pre-Hilbert space is called Hilbert space.

Definition 2.7. e Afiniteset {x1,...,2,} C V is linearly independent if for all (o;)}"_ ; € R"
one has Y " o -2; =0 = o =0.
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The span of a finite set {z1,...,z,} is span{z1,..., 2.} = {d 1 ;- 2 | (), € R"}

A basis of V is a linearly independent finite set X C V such that span X = V.

The dimension of V' is the cardinality of any basis. If no basis exists, the dimension is oc.

On an oo-dimensional normed vector space a Schauder basis is a sequence (zy)x in V such
that for any « € V there is a unique sequence () such that

k=1

Remark 2.8 (Convexity in Banach spaces). The notions of of convex sets, convex hull, convex
functions, lower semicontinuity and cones can be defined on Banach spaces just as in the previous
part, since these do not rely on the inner product. For definitions such as subdifferential, normal
cone, conjugation we need to be more careful, but generalizations exist. Some more details later.

2.2 Reminders on topology

We recall a few basic facts about topologies.

Definition 2.9. Let X be a set. A set T C 2% of subsets of X is called a topology for X if
(i) X,0eT,

(ii) For arbitrary subsets S C T their union is also in T, i.e.

ﬂ sel.
(iii) For finite subsets S = {s1,...,sp} C T their intersection is also in T, i.e.
n
rﬁ s;eT.
i=1

Sets in T are called open. A set is closed, if its complement in X is open. The set X with a
corresponding topology T is called topological space. If not required, we may drop the explicit
reference to T'.

Remark 2.10. The restriction that only finite intersections of open sets are open is necessary.
Recall basic example from X = R: for every € > 0 the set (—¢,¢) is open. But

o0

m —1/n,1/n) = {0}

n=1
which is not open.

Proposition 2.11 (de Morgan’s law). Let (A;)ier be a set of subsets of X where [ is an arbitrary
index set. Then

M Ai=x\ (Jx\ ).

iel el
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ze(NAlezecAViell ez ¢ X\ AViell

s ¢ | JX\ )] e e X\ ([Jo\4))]

el el
O

Corollary 2.12. With this we quickly find that arbitrary intersections of closed sets are closed
and finite unions of closed sets are closed.

Definition 2.13. Let (X,T) be a topological space. The interior int A of a set A C X is the
union of all open sets contained in A:

intA=| J{UeT:UCA}

Since this set is by construction open and contains all open sets contained in A it is also referred
to as ‘largest open set contained in A’. Similarly, the closure cl A of A is the intersection of all
closed sets that contain A.

Definition 2.14 (Convergence of sequences). A sequence (z)x in a topological space (X, T) is
said to converge to a point x € X if for any any t € T with x € ¢ there is some N € N such that
xp €tfor k> N.

Definition 2.15 (Continuous maps). Let (X,T), (Y,S) be two topological spaces and let f :
X — Y. fis called continuous if f=1(s) € T for all s € S. (‘Preimages of open sets are open.’)

Proposition 2.16. Let {T;};c; be a set of topologies over a set X, where I is an arbitrary index
set. Then their intersection T, where t € T iff t € T; for all ¢ € I, is a topology.

Definition 2.17 (Induced topology). Let (f; : X — Y;)ier be a family of maps from X to
topological spaces Y;. Then the intersection 7" of all topologies (T});e.s such that all maps (f;)icr
are continuous is the induced topology. Since T' only contains sets that are contained in all other
T;, T also referred to as coarsest topology in which the family (f;)ier is continuous.

Comment: Transition from metric to metric topology often simply ‘stated as fact’. Take some
time to re-check.

Proposition 2.18 (Metric topology). e Let (X, d) be a metric space. The metric topology
on X is the topology induced by the family of maps (y — d(z,y))zex from X to R where
R is equipped with the standard topology.

e For z € X, € > 0 the set B(x,e) = {y € X: d(x,y) < ¢) is called the open ball of radius ¢
around z. B(x,e) is open in the metric topology.

e Any open set in the metric topology can be written as union of open balls.

Proof. e Note that B(x,e) = d(x,-)"!((—¢,¢)). Since (—¢,¢) is open in R, B(x, €) is therefore
open in the metric topology by construction.
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e The intersection of two open balls can be written as union of open balls: For x1,22 € X,
ri,ro > 0 and x € B(x1,7r1) N B(xa,72) set ¢, = r; — d(z;,x). Let ¢ = min{ey,e2}/2. Then
for z € B(x,e) have d(z,z;) < d(z,z) +d(z,z;) <e+ri—e; <&i/24+ri—e; =1 —&i/2.
So z € B(z;,r;) and B(z,e) C B(xi,r;).

e More generally, for any y € B(z1,71) N B(x2,72) denote by €, > 0 a positive radius such
that B(y,e,) C B(x1,r1) N B(x2,7r2). Then

B(z1,7m1) N B(x2,72) = U B(y,ey)
yEB(acl,m)ﬂB(:ch,rg)

e Finite intersections of arbitrary unions of open balls can be written as unions of open balls.
We start with the intersection of two unions. The rest follows by induction. Let

S = (UAi> n| B

il jeJ

where I and J are some index sets and (4;)icr, (Bj)jes are families of open balls. Then
reS & diyel, j, € Jsuchthat v € A4, N B;, CS. So

s=J A nBy).

z€eS

By the previous point we can rewrite the intersection A;, N B;, of two open balls as union
of open balls, therefore we can rewrite S as union of open balls.

e Now set T' = {{J;c; Bi| index sets I, open balls (B;);er} be the set of unions of open balls.
We set by convention that X, () € T. Then T is a topology (see previous point for the
intersection property) and it contains all open balls. Therefore, the metric topology is a
subset, of T'.

e The metric topology must contain at least all open balls, and therefore all arbitrary unions
thereof. So T is contained in the metric topology. Therefore, the two coincide.
O

Corollary 2.19. The metric topology is Hausdorff. That is, for every distinct pair x1,x2 € X
there are open sets Aj, Ay C X with z; € A;, A1 N Ay = 0.

Proof. Since 1 # x2 have d(x1,x2) > 0. Set A; = B(x;, d(z1,22)/3). O

Corollary 2.20. Let A C X be open. Then for every x € A there is some € > 0 such that
B(z,e) C A.

Proof. By Prop. 2.18 A can be written as union of open balls. Therefore, we must have some
y € A, § > 0 such that = € B(y,d) C A. Set ¢ = (0 — d(x,y))/2. By triangle inequality
B(z,e) C B(y,0) C A. O

Corollary 2.21 (Convergence in metric topology). Convergence in the metric (Def. 2.4) is
equivalent to convergence in the metric topology (Prop. 2.18).
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Proof. e Assume d(xg,z) — 0. For any open set U containing x, by Cor. 2.20, there is some
e > 0 such that B(z,e) C U and consequentially some N € N such that d(zy,z) < ¢ for
k> N,ie. xp € U. This implies convergence in metric topology.

e Assume convergence in metric topology. Then for any € > 0 there is some N € N such
that z € B(z,¢) for k > N, i.e. d(x,x) < e. This implies d(z, z) — 0.
O

2.3 Examples
Let  C R™ be open, bounded, non-empty. For a ‘multiindez’ a € {0,1,2,...}" let |a| =

a1+ ...+ a, and D“fdi—f' ole] f.

aj a
Oy Oz

Definition 2.22. The space of k times continuously differentiable functions on € is denoted by
C*(Q). It is a Banach space when equipped with the norm

def.
= max max |D*f(z)].
a:lal<k zeQ D% f (=)l

1Fllcw @

Remark 2.23. The maximizer in the definition of the norm exists since D®f is continuous for
la| < k and 2 is compact (since € is bounded).

Proof. e Start with C9(Q). ||f||00(§) = max, g | f(2)|

o ||fllco (@) 1s @ norm: finiteness, positive definiteness and homogeneity are immediate. Check
subadditivity: [[f+9gogy = max,eq L (2)+9(2)] < max,  cq |F()|+lg®)] = | flloo +
||g||(10(§)-

e Now assume (fg)y is Cauchy sequence in C%(Q). Then for any ¢ > 0 there is some N such
that for 7,7 > N one finds for all x € Q

fi(z) = fi(@)| <\ fi = fill oy < &

So (fx(z)))x is a Cauchy sequence in R and thus, for every x € € there is a limit. We
denote the limits by f(z).

o Ifi = flloog — 0: For e > 0 there is some N such that |fi(z) — f;(z)| < &/3 for all
ii> N, zeq.

e For all z € Q there is some j, > N such that |f;, (z) — f(x)| < /3. Therefore
\fi(z) = f(@)] < [filz) = fi. (@)| + [ f5. (2) = f(2)] < 2¢/3
for all i > N and x € Q.

e f€C%0N): For z € Q and ¢ > 0 choose i € N such that ||f; — flleo@)y < €/3. Then there
exists some ¢ > 0 such that |f;j(x) — fi(y)| < e/3 for y € B(x,6). Finally, for y € B(z,J)
get

[f(x) = fW)I < |f(z) = file)| + [fi(z) = fi(w)] + [fi(y) — f(y)]
<2l fi — fHCO(ﬁ) + [fi(w) = fi(y)] <e.
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« Now CU@). [fllor@y = max {1 £l ooy IV Fllow ey b where the nom |- s gry i
the maximum of the [| - [| co(q) norm of each component. We show analogously that this is
indeed a norm.

e Now let (f;); be a Cauchy sequence in C(Q). Then (f;); is a Cauchy sequence in C°(Q)
and (Vf;); is a Cauchy sequence in C%(Q2, R™). Therefore, they have limits in C°(Q) and
CY(©2,R™), which we denote by f and g.

e Now show: Vf =g: For z,y € Q, i € N we get:
1
15:0) = i) = o= 2.V = | [ (Vi) = i)y~ o)t
(Where 2y = x + (y — ) - t. Note also: ||V fi(z) —g(2)|| < /n||Vfi — Il cogrny-)

< ‘

1
[ 1ot = ata)y - 2y + 20195 = glengzn -l o

By sending i — oo for x # y we obtain

|[f=tt) _ omsten) o
p—

IIy—xII ly — ]

o) >w4

e General C*¥T1(Q), k > 1, follow by recursion. Assume we have dealt with C*(Q). Then for
a Cauchy sequence (f;); in C*+1(Q) each component of (Vf;); converges in C*(Q). With
the above argument we show that the gradient of the limit f is the limit of the gradients
(Vfi)i-

O

We give a prototypical result for the relation between different function spaces.

Proposition 2.24 (Relation between C*([0,1])). For some integers k& > 0 the space C°([0,1])
is the completion of C*([0,1]) with respect to the norm | - ||cojo,17)- More precisely,

(i) any sequence (f;); in C*([0,1]) that is Cauchy with respect to the norm || - ||co ([0,1]) has a
limit in C°([0, 1]),

(ii) and any f € C°([0,1]) can be reached as limit of such a sequence.

Comment: Result sometimes allows to ‘temporarily’ restrict an optimization problem to a space
with higher regularity, since the regularity is only lost ‘in the limit’.

Comment: Approximating sequences are in general not Cauchy in C*([0, 1]).

Proof. e (i) follows directly from C*([0,1]) c C°([0,1]). We turn to (ii).

e By the famous Weierstrass approximation theorem any f € C°([0,1]) can be approximated
to any given precision € > 0 in the norm || - [[co(o,1) by a polynomial, see e.g. [Narici,
Beckenstein: Topological Vector Spaces; Section 16.5].
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e So any f can be written as limit of a convergent (in [| - [|co(jo,17)) sequence (f;); of polyno-
mials; therefore (f;); is Cauchy with respect to this norm. And clearly f; € C*([0,1]).
O

Definition 2.25. For an exponent 3 € (0,1] a function f : Q — R is Hélder continuous with
exponent [ if there is a constant C' < oo such that for all x,y € Q

(@) = fWI < C - —yl

The space of k times Holder continuously differentiable functions on Q with exponent /3 is denoted
by C*#(Q). It is a Banach space when equipped with the norm

[D*f(z) — D*f(y)]

||f||ck,ﬁ(§) = ||f||Ck(§) + max sup

a:lal=k o . |z —y|?
T#Y
Proof. e When all derivatives of f up to k-th order are Holder continuous, || f|| . 5@) is finite.
Moreover, || - || or.5(g) is positive definite, homogeneous and subadditive and thus is a norm

on C*A(Q).

e Completeness for k = 0: Let (f;); be a Cauchy sequence in C%?(Q). Then it is a Cauchy
sequence in C°(Q) and thus its pointwise limit f exists and is in C°(Q2). Then for any

r,yeQ, z#y

(= @) = (= B _ W= £)@) = (= H))
== y]? e == y)?

S“fz_fj “CO,B(§>

The right-hand-side is bounded, therefore || f|[co.s@) < If = fill co.s @y + | fill o @y < o0
and thus f € C%*(Q). Moreover, as i — oo the right-hand-side goes to zero, therefore
I1f = fill coxy = O-

e Extension to C*#, k> 0 as above.

The following family of spaces will often serve as useful examples.
Definition 2.26. For p € [1,00] let 7 = {z = (z1,72,...) € RY|||z||sr < 0o} where
ol = J S i) i p < oo,
P — .
sup; |x;| if p = o0.

The following inequalities are often useful when one must derive upper bounds. They will also
allow to prove that ¢P is a Banach space.

Proposition 2.27 (Hoélder inequality for ¢7). For p,q € [1,00] with % + % =1l xel yect

1\
we have > 77 |z yi| < ||z|ler - [|y|lea. For p,q € (1,00) there is equality if and only if (ll‘wx\llzp> =

( |yl ) a
lyllea ) -
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Comment: Generalization of Cauchy-Schwarz inequality

Proof. e For p =1 or ¢ =1 the inequality is immediate. So assume p,q € (1, c0).

e Fora,b>0, A € (0,1) one has a* o'~ < X\-a+ (1 —\)-b (‘geometric average < arithmetic
average’), with equality only if @ = b.

e The statement is trivial if @ = 0 or b = 0 since then the left-hand-side is zero.

e So assume a,b > 0. Then both expressions are well defined for A € [0,1]. We find equality
for A\=0and A = 1.

e Let g(\) = a*b'™* = exp(Alog(a) + (1 — A)log(b)). We find a)\kg(/\) = g(\) - (log(a) —
log(b))*. So aa—;g(/\) > 0 and therefore g is convex and so g(A\) < ¢g(0) - (1 —A) +g(1) - .

e If a # b then 8‘9—;9()\) > 0 and thus the function is strictly convex. So equality can only
happen if a = b.

:<|xi| )p b:<yi )q N1 11
lzller ) 1yllea ) P I
i |yl <1< |i] )p+1< il >q
[zller lylles = P \l|z[ler T\ yllea
e Now sum both sides over i to get:
( 4] >p+1< |yl >q] _
22| ¢» T\ yllea

|z il lzil vl S [1

S ES

Z [llev [l ea Z [z]lev [[yllea Z P
Proposition 2.28 (Minkowski inequality for /7). For p € [1,00] find z,y € /P = z+y € (P with
|z +yller < [|z|ler + ||yllea. For p € (1,00) there is equality if and only if 2 = ¢ -y for some g > 0.

e Now set

e Then

_l’_

=
Q=

O

Proof. e For p =1, p = oo the inequality follows directly (for p = 1 from subadditivity of
the function s + |s|; for p = oo as for the C°(2) space).

e Inequality is also trivial if z = 0 or y = 0. So assume p € (1,00), z,y # 0. In the following
let g € (1,00) such that %D + % = 1. In particular (p — 1) - ¢ = p and % = Z%(p —1). Then:

o0 o0
e +yllf = D o +yil” < D e+ wil~ (il + lyil)

i=1 i=1
[o¢] o0

< Z |2 + yilP | + Z |2 + yilP il
i=1 i=1

(using Holder inequality)

[e%s} 1/q
— —1
< (Z i + | P 1)q> (Izller +1yller) = llz + yllp ™ (lzller + Nyller)

i=1
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e This implies the inequality. If z = ¢ - y for some ¢ > 0 we have equality. Conversely, for
Holders inequality to yield equality it is necessary that

< |24 )p: ( |z + yi P! >q: ( |lz; + il )p
]| er 2 + y[P=] ¢ |2 4 yller

which requires existence of some gq.

Proposition 2.29. For p € [1, 0] the space P equipped with || - ||s» is a Banach space.

Proof. e Finiteness, positive definiteness and homogeneity of || - ||» are immediate. Subad-
ditivity follows from the Minkowski inequality. So #P is normed space.

e For p = oo the proof for completeness is analogous to C°(£2). So let p < oco.

o Let (x1); be a Cauchy sequence in P, where for each k (xy;); is a sequence in R. Then
|z — 54| < ||zk — x|, so for each i (z,)x is a Cauchy sequence in R. Denote the
sequence of limits by (z;);.

e Since (xp)k is Cauchy, ||zg|lee < M for some M < oco. So for all n € N

n

n
Szl <MP = ) |l < MP
i=1 =1

and consequently as n — oo find ||z]|p < M, i.e. z € (P.

e For any € > 0 3 N such that V.m,n > N, k € N get

k

D [zmi = 2nl’ < llam —anllp <e
i=1

Now let m — oo, then k — oo to get ||z — z,||P < e.
Ul

Remark 2.30. Other prominent examples that are also very common in applications are LP
spaces and Sobolev spaces.

2.4 Compactness and separability

We introduce the topological dual of a Banach space, which can be interpreted as an ‘approxi-
mation’ for an inner product on Banach spaces. We study related questions on compactness and
see how far we can adapt notions of convex duality to this setting.

In Hilbert spaces we have shown that projections onto closed convex sets, i.e. points of minimal
distance, exist (and are unique). This is in general no longer true in Banach spaces, due to a
lack of a notion of orthogonality.

To gain some intuition, we first give an example where projections exist and then give a coun-
terexample.

Example 2.31. e Let X = C%[0,1]), equipped with the norm | - || = || - [|co(po,1)-

e letY ={feX: fol f(z)dz = 0}. Y is a closed subspace of X.
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Now

Consider now the projection problem from X onto Y. For f € X study infgey || f — g]|.

Intuition: for given f # Y, how do we change ‘mean’ of f with minimal perturbation in
the norm? =- change each point of f by same value.

Let g € Y and set h = f — g. From fol gdx = 0 we find that we need to find h € X with
fol fdx = fol hdx that has minimal norm.

This implies that ||A] > | fol fdz| (otherwise | [ hdz| < [i |[h]|dz < | [y fda|).

Try constant function h(x fo y)dy. This satlsﬁes 1ntegral constraint and we find
|\h| = ‘fo y)dyl|. So h is optlmal and g(z) fo

Note: h is unique. Assume, h were not constant. Then ||h|| > |f0 hdzx|.

by giving a counterexample, we show that projections onto closed convex sets do not always

exist in Banach spaces.

Proposition 2.32. For a Banach space (X, || -||) and a closed subspace Y C X and some fixed
x € X, there is not always a minimizer of infycy ||z — y||.

Proof.

e The proof is a slight modification of the example above.

Let X = {f € C°([0,1]) = f(0) = 0} with norm || - || = || - lco(jo,1))- X is a closed subspace
of C°([0,1]) (why? check Cauchy sequences) and therefore X is a Banach space.

Let Y ={g€ X : fo z)dz = 0}.

Analogous to above: fix f € X \ Y, rewrite problem. Let g € Y, set h = f — g. Solve s =
inf{||h|||h € X: fol hdz = fol fdz}. Almost as above, but now have additional constraint
h(0) = 0, since we may not change f(0) = 0.

So constant shift no longer works, infimal norm of h cannot be smaller than above, i.e. s >
|f01 fdz|. Since feasible h cannot be constant, must have ||| > |f01 fdx| for all feasible h.

Now show that infimum s = | fol fdz| which then implies that no minimizer exists. Do
this by ‘approximating’ constant shift as good as possible, while obeying the h(0) = 0
constraint.

Set hi( fo 1+1/3) -2 h =0, fo x)dr = fo y)dy and ||h;|| =

| = \fo dy| 1 + 1/1) So (h;)i is a minimizing sequence.

Sketch: h;, approximation of constant shift.

Comment: (h;); is not Cauchy. Its pointwise limit is hoo(z) = 1 for z € (0, 1], h(0) = 0,
which is not in X C C?([0, 1]).

O

So the projection does not exist, but we can find a sequence (h;); that is approximately orthogonal
to the subspace. Such a sequence exists in general.

Proposition 2.33 (Almost orthogonal element). For a Banach space X let Y be a subspace,
Y # X. For any x € X and 6 > 1 there are some zg € X, yyp € Y such that x = zy + yp and
dist(z,Y) = dist(zg, V) < |Jzg|| < 0 - dist(z,Y).
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Proof. e dist(z,Y) = infyey |z — yl| is finite and non-negative.

e Let yg € Y such that ||z — yp|| < 0 - dist(z,Y) (take from a minimizing sequence) and set
Tg =T — Yy

o dist(zg,Y) = infyey o — yo — yll = infyey ||z — y|| = dist(z, V).
O

Remark 2.34. If Y is not closed, then may have dist(z,Y) = 0 even when = ¢ Y and ||xg|| — 0
as 0\, 1.

Corollary 2.35. If Y is closed and Y # X then for any 6 > 1 there is some zy with ||zg| = 1
and dist(zg,Y) > 3.

We have learned that an important ingredient for existence of minimizers is compactness. Now
study (strong) compactness on Banach spaces.

Proposition 2.36. On a metric space (X,d) the notions of compactness and sequential com-
pactness are equivalent.

Proof. e compactness = sequential compactness: Let A C X be compact, let (x); be
a sequence in A. Assume (xj), has no cluster point. Then Yy € A 3§, > 0 such that
Ny, ={k e N:zy € B(y,6,)} is finite.

e The sets B(y, dy) for y € A form an open cover of A. Since A is compact, there is a finite
subcover for some (y1,...,Yn):

Ac|JB(y.6) = Ac|JBw.s,) = N=JN
yeA i=1 i=1

e This implies that N is finite. So (xj); must have at least one cluster point and thus A is
sequentially compact.

e sequential compactness = compactness: For any € > 0 can cover A with finitely
many e-balls (otherwise, we could define sequence in A without cluster points via xj €

AU B(zie).

e For an open cover A C | J;¢;
Prove this by contradiction.

Ui, 3eo > Osuch that Va € A3i, € I such that B(z,g9) C I;,.

e Assume V k € N 3 3, € A such that V i € I B(xg,1/k) ¢ U;. Since A is sequentially
compact, () has cluster point x € A. Let (zy,); be subsequence converging to z. 30 > 0
such that B(z,d) € U; for some i € I.

e 15 € N such that % < % and d(zy;, ) < g = B(x,;,1/k;) C U;, which is a contradiction.

e So for this g9 chose x1,...,x, € A such that

AC LnJ B(xk,E()) C U Uixk
k=1 k=1
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Corollary 2.37. Projections onto compact sets exist in Banach spaces.

Proof. Can extract cluster point from any minimizing sequence of dist(x,Y"). Is minimizer (and
therefore, projection) since y +— d(z,y) is continuous (by construction of metric topology). [

Proposition 2.38. For a Banach space X we find: [B(0, 1) compact]| < [X is finite-dimensional]

Proof. e =: B(0,1) € Uyepo1) B, 1) = (finite subcover from compactness) B(0,1) C
U:ril:l B(:Uh %)
e Y =span{yi,...,yn} is closed subspace. Assume Y # X.

e By Corollary 2.35 for 6 > 1 there is some xg with ||zg|| = 1 and dist(xg, {y1,...,Yn}) >
dist(zg,Y) > 1.

e But since ||2g|| = 1 = zp € B(0,1) € U, B(yi,3) = dist(zg, {1,...,yn}) < 3. For
0 < 2 this is a contradiction.

e «: If X is finite dimensional, identify it with R™. All norms are equivalent on R™. There-
fore compactness of B(0,1) follows from Heine-Borel.
O

So B(0,1) in C°([0,1]) is not compact. However, one can show that B(0,1) of C*([0,1]) is
compact with respect to the C°([0,1]) topology.

Definition 2.39 (Equicontinuity). A family of functions f; : V' — R, i € I is equicontinuous
if for any « € V and € > 0 there is some 6 > 0 such that |f;(y) — fi(z)| < ¢ for all y with
ly — x| <6,i€l.

Proposition 2.40 (Arzelai-Ascoli). A set A C C9([0,1]) is (sequentially, equivalent, why?)
pre-compact (the closure of A is compact) if and only if it is bounded and equicontinuous.

Corollary 2.41. The set A = B(0,1) of C'([0,1]) is pre-compact with respect to the C°([0, 1])
topology.

Proof. e Forevery f € A, x € [0,1] have |f(z)] <1 and |f'(z)] < 1. Therefore A is bounded
in C°([0,1]) and A is equicontinuous: |f(z) — f(y)| < |z — y|.
OJ

Definition 2.42 (Separable metric space). A topological space X is separable if it contains a
countable, dense subset A.

Remark 2.43. A dense in X means that any point in X can be reached as the limit of a sequence
in A, or equivalently that any non-empty open set in X has non-empty intersection with A.
Intuitively, separability is a bound on the cardinality of the space. Even if X is uncountable, it
can be ‘reasonably approximated’ by countable elements. On separable spaces many proofs are
constructive and one can avoid the axiom of choice.

Example 2.44. (i) The set R with the usual topology is separable, as Q is dense in R.

(ii) The set R with the discrete topology (all sets are open) is not separable, since the only set
that is dense in this space is R itself, which is not countable.
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More examples:
Proposition 2.45. A compact metric space (X, d) is separable.

Proof. e For n € N have X C [J,.x B(z,2) as an open cover. Therefore, there is a finite
subcover X C Ufgl B(n, 1).

e The countable set A = (Jo2 {Zn1,...,Znk,} is dense in X: For x € X and € > 0, set
n > 1/e, then x € B(zp;, ) C B(xn,,e) for some i € {1,...,n4}.

e So we can generate a sequence in A that converges to x.
O

Proposition 2.46. An infinite-dimensional Banach space with a Schauder basis is separable.

Remark 2.47. The converse implication is not true in general, see e.g. |Narici, Beckenstein:
Topological Vector Spaces; Section 11.1] (which is primarily a very interesting brief historical
summary of the mathematical life of Stefan Banach).

Proof. e Let (x;); be a Schauder basis of X. In particular it is countable. W.l.o.g. we can
assume that {||z;||}; is bounded by some C < oo.

o Let Ay, = {> "7 sixil(si)i € Q"}. Since Q is countable and A, is a finite union of countable
sets {Q - z;}, A, is countable.

o Let A=|J,2, A,. Since A is a countable union of countable sets, A is countable.
e Fix now z € X and some € > 0.

e By definition there is a (unique) sequence («;); in R such that limy, o0 [|2—> 1 1 a; 24| — 0,
in particular there is some n such that ||z — > | a5 24 < e/2.

e Let now 3; € Q such that |a; — 3] < 5775 Let 2z, = Yo T, Y = > iy Bixi € A.

n n
lz = yull < llz = zull + lzn +yall < 5+ D lai = Bil - llza < 5+ 277" <e
i=1 i=1

Proposition 2.48. C°([0,1]) is separable.

We use a small auxiliary Lemma for the proof that is often helpful when working on compact
spaces.

Lemma 2.49. Let (X,d) be a compact metric space. A continuous function f : X — R is
uniformly continuous, i.e. V¢ >0 3 § > 0 such that |f(z) — f(y)| < € when d(z,y) < é.

Proof. e For every e > 0, z € X 3 6, > 0 such that |f(z) — f(y)| <e/2if y € B(z,d,).

e The sets (B(z,0;/2))zex form an open cover of X and X is compact = there is a finite
subcover with midpoints {x1,...,z,}. Let 6 = min{d,,,...,d,,} > 0.

o Now let z,y € X, d(z,y) < 0/2. Then = € B(z;,0,,/2) for some i and therefore y €
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o So[f(x) = f(y)| < [f(x) = flzi)| + |f(y) = flzi)] <e. .

Proof of Proposition 2.48. e By Lemma 2.49 any f € CY([0,1]) is uniformly continuous. So
for any € > 0 can find n € N such that |f(z) — f(y)| < € for |z —y| < 27". So we can
uniformly approximate f by piecewise affine interpolation between values at points i - 27"
for i € {0,...,2".

e Define set of ‘tent functions’ of scale n for i € {0,...,2"}:
0 if |z —i-27" >27",
() =
fni(@) {1 — 2"z —i| else

Sketch: Tent functions.

e So piecewise affine interpolation with resolution n can be written as superposition of func-
tions f,;. The functions (f,;}n;) are an ‘overcomplete’ Schauder basis of C°([0,1]). The
decomposition may not be unique, since the f,; are not all linearly independent.

e Could re-establish uniqueness, by iteratively removing linearly dependent elements. But
reasoning of Prop. 2.46 does not depend on uniqueness of the decomposition. So separability
of C([0,1]) follows.

O

Remark 2.50. (i) Since C*([0,1]) can be parametrized by C°(]0,1]) and a finite number of
integration constants, this argument extends to C*([0,1]).

(ii) For spaces X that can be written as subsets of C*([0,1]) with respect to coarser norms by
construction C*([0,1]) is dense in X and thus X is then also separable. This covers many
spaces of integrable functions and Sobolev spaces.

Comment: Many ‘practical’ spaces remain separable, even if they ‘look’ very high dimensional.
For this need ‘sufficiently coarse’ topology. (Recall R with discrete topology is not separable.)

Proposition 2.51. The spaces ¢ for p € [1,00) have a Schauder basis and are separable.
Proof. o Let e; € (P with e; ; = 0; ;. Claim: (e;);cn is a Schauder basis of 7.

o Let x € /P. Set z; = Z;‘:l €; X5, Zij = Tj 5j§i- Find:

oo
= zillf =l — 2
j=1

00 00 7
D= lwg— sl = Y el =zl =Y laP =0
j=1 j=1

j=it1
as i — 00. S0 z; — T.

e This decomposition is unique. Let (y;); be another sequence such that lim; ,. v; — z for
v; = Z;‘:l i - €; with |y;, — x4,| > ¢ for some ig. Then |lv; — x| > 6 for all i > iy and thus
this sequence cannot converge to x.

O

Proposition 2.52. The space £°° is not separable.
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Proof. e Let A C ¢ be countable, i.e. A = (ag)gen where for each k£ € N have ap =
(ag,1,ak2,...) € L,

e Define sequence (by)r by
b apr+1 if ape] <1,
k = .
0 if |ak7k| > 1.
o sup,cy bk <2, ie. ||bllpe <2 and thus b € £,

o ||b— agl|lpe > |br — agi| > 1 for all k& € N. Therefore, b cannot be approximated by a
sequence in A and thus no countable set can be dense in £°°.
O

Proposition 2.53. An infinite-dimensional Hilbert space H is separable if and only if it has a
orthonormal Schauder basis.

Proof. e «<: If H has a orthonormal Schauder basis, separability follows from Prop. 2.46.

e =: Let {ar}r be a countable set that is dense in H. Apply Gram-Schmidt orthonormal-
ization to (ag)r to generate orthonormal sequence (z;);. (Start with smallest k such that
ap # 0, set ©1 = ag/||ag||, ? = 1. Then increase k until ay, ¢ span{xj}é-:l. Add orthonormal
component of aj as new basis vector to (z;);, increase i. Since H is infinite-dimensional
and {ay}r is dense, ¢ will tend to co. Note that ¢ < k throughout the process and that
ay € span{xj};?zl at all steps.)

e (x;); is orthonormal by construction. Show that it is Schauder basis.

e By construction ay = Zle x; (x;,ar). For any z € H by density there is a subsequence
(ak,); that converges to z. So

k; k;
Z—Z.TZ‘ (zi,2)|| < |lz — ag; || + Zx, (xi,ap, — 2)
i=1 i=1

1/2

k; k;
<z —a |l + <Z i (i, ap, — z) sz (@i, ap; — Z>>
i=1

i=1
(Bessel inequality, cf. Example 1.91)
<2[|z —agl| =0 asj— oo

e By orthonormality of (x;); the coefficients (z;, z) are unique.

O

Corollary 2.54. Every separable Hilbert space H is isomorphic to £2, i.e. there is a bijection
¢+ H — (* such that (z,y)y = (6(2), $(y)) .
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2.5 Linear transformations and topological dual

Definition 2.55 (Linear transformations and functionals). e For two normed spaces X, Y,
DcCc XamapT:D —Y is called transformation from X to Y with domain D.

e A transformation T': D — R is called functional.
o T: X =Y islinear it T(ax +by) =aT(x)+bT(y) for all x,y € X, a,b € R.

e The operator norm of a transformation T : X — Y is defined as

T(x
HTH = sup H ( )HY
zex\{o} llzllx

T is called bounded if | T|| < oc.
e The set of bounded linear transformations from X to Y is denoted by L(X,Y).
Proposition 2.56. Let T be a linear transformation from X to Y.
(i) |T continuous in 0] < |T' continuous on X|
(ii) [T bounded] < [T continuous|
Proof. e X and Y normed spaces = “e-d-notion” of continuity is sufficient.

e () Letx€X,e>0.[35>0: TRy <cif|z|lx <o [F5>0: [|T(x) =Ty =
[T(z = y)lly <eify € Bx(z,0)]

(ii): =: [T bounded] = [Vz € X: | T(z)|ly < |T| - ||z||x = [T continuous in 0] < [T’
continuous.

<: let € > 0. [T continuous in 0] = [ > 0: | T(z)|ly <eif |z]|x <]

for any y € X \ {0} find:

2yl 5
17(y)lly %X ||T(my)||Y 2e
= < =<
lyllx [yl x 5

. . . 2%
This bound is uniform for all y € Y\ {0}, therefore |T|| < 5. -

Proposition 2.57. L(X,Y) is a vector space and the operator norm is indeed a norm on

L(X,Y).

Proof. e For S,T € L(X,Y), a,b € R clearly (a S+ bT) : x — aS(z) + bT(z) is a linear
transformation.

e ||T']| > 0 by definition. [|T']| =0] < [T'(z) =0 for all z € X| < [T = 0].
o lla-T| = la] - 7] by homogencity of | -y

[S@)+T(@)[ly IS@)y

S
[ ] HS—’—T” = Supxex\{o} W S Supxex\{o} Tl x +Supy€X\{0} % = HSH"‘”T”
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e Since || - || is subadditive, whenever S and 7" are bounded, so is S + 7. So L(X,Y) is a
vector space.
0

Proposition 2.58. If Y is a Banach space, then so is L(X,Y’) when equipped with the operator
norm.

Proof. e Let (T},)n be a Cauchy sequence in L(X,Y). = for any ¢ > 0 3 N € N such that
| T — Ty < € for myn > N.

e For m,n> N, z € X get ||Tn(x) — Tn(2)|ly < ellz|lx. So (Tn(x)), is Cauchy in Y. Since
Y is Banach, sequence has limit.

o Set T : x> limy, 00 Ty ().

e 7' is linear:

T(ax+by) = nlgl;o Th(lax +by) = JL%OaTn(x) +0T,(y)
(sum of Cauchy sequences is Cauchy)
=aT(z)+ 0T (y).
e T is bounded: let x € X \ {0}, n > N.

IT(@)ly < |T(x) = Ta(2)lly + I Ta(@)lly = Tim |[[Tr(z) = To(2)|ly + [[Tn(2)[ly

<e-[lzlx + 1Tl - flzllx

where we used ||T),(z) — Tn(x)|ly < €l|z]|x for m,n > N. Divide by |lz|x # 0 to get
uniform bound on ||T(x)||y/||x||x and thus that T" has finite norm.
Ul

Definition 2.59 (Dual space). e For a normed space X the Banach space of functionals
L(X,R) equipped with the operator norm is called the topological dual space of X and
denoted by X*.

e Every t € X* is a bounded linear functional on X. The application ¢(x) is often also
denoted as (t, )y, x-

e The map X* x X — R via (t,z) — (t,2) .,y is called duality pairing. The subscript
X* x X is dropped when the context is clear.

e From linearity of ¢t and since X ™ is a vector space, the duality pairing is bilinear.

Proposition 2.60. The duality pairing X* x X — R, (¢,z) — t(x) is jointly continuous in the
product topology of the (strong / norm) topologies on X* and X.

Proof. e Let (s,2) € X* x X, &> 0. Set § = min{1 }. Then 0 <

&£ € <
> s+l x +1 lIsll+[lzlx+1 —

e
[sl+llzllx+6"
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e Now let t € Bx+«(s,0), y € Bx(x,9). Get
3(2) — ty)] < Is(e) — ()| + Is(w) — )] < sl il + s — el Il x
<|sl[d+d([zllx +9) <e
O

Definition 2.61 (Weak topology). e The topology induced on X by the family of maps X*
(see Def. 2.17) is called weak topology on X.

e [t is the coarsest topology in which all maps ¢ € X* are continuous.
e We denote convergence in the weak topology by =, — .
o [z, = 2| & [t(zy) — t(x) for all t € X*].

Definition 2.62 (Weaks topology). e For fixed x € X consider the map f, : X* — R,
t— (t,x).

e The weak+ topology on X* is the topology induced by the family of maps {f,|zr € X}.
e Weaks convergence is denoted by ¢, — t.
o [ty > t] & [(tn,x) — (t,z) for all z € X].

Example 2.63. e By the Riesz representation theorem any bounded linear functional ¢ on
a Hilbert space H can be identified with a unique y € H such that ¢(z) = (z,y) . So H*
can be identified with H itself and the duality pairing is given by the inner product.

e The identification is not necessarily unique. Let H,J be Hilbert spaces with J C H, but
J is equipped with different inner product. Then J* can be identified with J via inner
product (-,-); or with subspace of H via inner product (-, -) 5.

The following Proposition simplifies study of dual spaces on Banach spaces with Schauder bases.

Proposition 2.64. Let (z,), be a Schauder basis on a Banach space X. Then any element of
X* can be identified with a unique real sequence ().

Proof. e For x € X let (a;); be the unique sequence such that x = lim,_,~ ,, Where x,, =
Z?:l Oy + 25,
e Let t € X*. By continuity of ¢ find ¢(z) = lim, o0 t(xr) = limp 00 D i q 05 - t(2:).
e Can represent t by sequence (A\; = t(2;))i: t(z) = limy oo Y 1y @i - Ai

e Representation is unique: let ¢, ¢ be represented by two sequences (A, )n, (Xn)n Assume
)\i 75 >\z Then t(zi) = )\z 75 )\Z = f(zi), sot 75 2?
O

Remark 2.65. The above proposition does not specify which sequences (\y,), represent some
t € X*. Doing this helps to fully characterize X*.

Proposition 2.66. For p € [1,00) the dual space of (P is isomorphic (exists bijection that
preserves norm / metric) with ¢¢ where % + % = 1.
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Proof. e First treat p > 1. By Propositions 2.51 (¢7 has Schauder basis (e;);) and 2.64 (¢P)*
can be identified with subset of real sequences.

e Let y € (7. Define t(x) = lim, 500> ;o ;Y. Holder inequality: sequence converges
absolutely, limit exists and is finite. = This defines linear functional.

o [t(z)| < ||z|ler]lylles = functional is bounded. For every y € (¢ can find z € (P s.t.
|t(z)| = ||z||ev|lyllea (for construction of x, see Prop. 2.27), so operator norm of ¢ equals £9
norm of y. So can identify ¢? with subset of (¢)*.

e Assume y ¢ ¢7. So > 7", |y;|? is unbounded as n — oo.
e Let Un = (Un,1,Un,2,--.) be real sequence where

[y ifi<n,
Yni 0 else.

| 9nllee < 00, (§r)n is unbounded sequence in ¢9.
o Let &y, € {7 such that "' | &n i Uni = |Znller||nlles With &, ; = 0 for i > n.

. 1 [e'e} ~ 1 00 A~ A ~
e Consider Tl Yo Yilns = W Yoo Unyi Tnyi = ||Unlles — 00 as n — o0o. So y does

not represent a bounded linear functional on /7.
e So can identify dual of /P with ¢4 for p € (1,00).

e Now: p=1,g=o0c. Let z € £1. If y € £> then | > 22, ;i yi| < ||z|la||lylle. So y induces
bounded, linear functional on ¢! as above.

e Assume y ¢ (*°. Then exists unbounded subsequence (yp, )k. Set &x = en,, so ||Zk|ler = 1.
Then | Y72, yi Zk.i| = |yn,| = 00, therefore y does not represent bounded functional.

O

Remark 2.67. Since £°° has no Schauder basis, cannot use this trick to study dual space of £°°.
Will later see indirectly that it cannot be identified with ¢

Remark 2.68. e Let Y be a subspace of a Banach space X.

e Any bounded linear functional on X is bounded linear functional on Y. So X* is subset
of Y*.

e But Y* may be strictly larger: there may be linear functionals on X that are bounded on
Y but not on X.

Example 2.69. /' is a (strict) subspace of £? (why? careful: not true for ‘big LP’ spaces!)
and £? = (£2)* is a strict subspace of £*° = (¢1)*. (In the presence of a canonical isomorphism
between two isomorphic spaces, we sometimes simply treat two isomorphic spaces as one. Here:

() =£2)
Definition 2.70. (i) The dual of the dual of a Banach space is called bidual space.

(ii) When a Banach space can be identified with its bidual, a space is called reflexive.
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Remark 2.71. Any z € X defines a bounded linear functional on X* via t — (¢, ) y., x, see
Def. 2.59. So X can be identified with subspace of X**. On a reflexive space, any bounded linear
functional can be identified with some =z € X.

Example 2.72. (i) Hilbert spaces are reflexive.
(ii) #P for p € (1,00) are reflexive.
(iii) Will soon see: ¢! is not reflexive, since (£>°)* # (1.

Now that we have introduced dual spaces and the weak and weak+ topologies, we can collect a
few facts on corresponding compactness.

Theorem 2.73 (Banach—Alaoglu). Let X be a normed space and X* the induced topological
dual space.

(i) The closed unit ball of X*, Bx+(0,1) is compact in the weak* topology.
(ii) If X is separable, then Bx+«(0, 1) is sequentially weak compact.
We also quote a generalization of the Eberlein-Smulian theorem.

Theorem 2.74 (Eberleinfémulian). Compactness and sequential compactness are equivalent in
the weak topology of a Banach space.

Comment: On Hilbert spaces H = H*, weak and weakx* topology coincide. Therefore, we were
able to use both Banach—Alaoglu and Eberlein—-Smulian in Section 1.
And a related result:

Theorem 2.75. X is reflexive if and only if Bx(0,1) is (sequentially) weakly compact.
With this result we can see that (£°°)* # (1.
Corollary 2.76. [I! is not reflexive] < [(£>°)* # 1]

Proof. e The equivalence in the statement follows from (¢!)* = ¢>° (Prop. 2.66).

e By Theorem 2.75 it suffices to show that By (0,1) is not weakly compact.

e Consider sequence (ey), of canonical Schauder basis vectors lies in ¢*. Let (e, )x be any
subsequence.

e Let z € £*° be given by

{(—1)’c if ¢ = ny, for some k € N,
zZi =

0 else.

o Then (z,en, ) ooy 1 = 2ny = (—1)’“. So the sequence ((z, e, ) joo 1 )k 18 DOt converging in R
and thus (e, )x is not weakly converging.

e Since this holds for any subsequence of (ey),, the sequence has no cluster point. Thus
Byi(0,1) is not weakly sequentially compact, which by Thm. 2.74 implies that it is not
weakly compact.

O]
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2.6 Hahn-Banach theorem and convex duality on Banach spaces

Comment: Hahn—Banach theorem is fundamental in functional analysis. For us useful to prove
existence of minimizers for problems formulated on a dual space.

Theorem 2.77 (Hahn—Banach). Let X be real vector space. Let f : X — R be positively
1-homogeneous and sub-additive, i.e.

flax) =af(x),  flety) <fle)+fly) forall zyeX aecR,.

Let Y C X be a subspace and let ¢t : Y = dom(¢) — R be a linear functional on Y that is
majorized on Y by f, i.e. t(x) < f(x) for x € Y. Then, there is a linear extension 7" : X — R of
t that is majorized by f on X i.e.

T(x)=t(x) for z€Y and T(z)< f(zr) for zeX.
The proof relies fundamentally on the axiom of choice, in form of Zorn’s Lemma.

Lemma 2.78 (Zorn’s Lemma). Let S be a non-empty partially ordered set. Assume that every
totally ordered subset of S has an upper bound in S. Then S has a maximal element.

Proof of Theorem 2.77. e Let S be the set of extensions of ¢ that are majorized by f, i.e.

S = {s:dom(s) — R, dom(s) subspace of X,
dom(t) C dom(s), s linear, s(z) < f(z) for z € dom(s)}.

S # () since t € S.
e Define partial ordering > on S via
[a>=b] < [dom(a) D dom(b)] A [a(z) = b(zx) Yz € dom(b)].
Is indeed partial ordering: [a = al, [a = b A[b>=a] =a=0b,[a= b A[b>c| = [a> ]
e Let C' C S be totally ordered. Define s¢ via:

dom(sc) = U dom(s), sc(z)=s(x) if x € dom(s)
seC

Verify: sc(z) is well defined: for every x € dom(sc) there is some s € C such that
x € dom(s). Let z € dom(s1) Ndom(sz), s1,52 € C. Then [s; > s9] or [s2 > s1], so
s1(x) = so(x) = so(x).

e It follows that s¢ is linear, majorized by f and sc¢(z) = t(z) for x € Y. So s¢ € S.
Moreover, s¢ > s for all s € C since dom(sc) D dom(s).

e = (' has upper bound s¢ in S. Zorn’s Lemma: S has maximal element 7.
e T is linear extension of ¢, majorized by f. Need to show dom(7") = X. By contradiction.

e Assume zp € X \ dom(7). Set Z = dom(T') @ span{zg}. For any z € Z 3 unique
decomposition z =z + A - 29, x € dom(T), A € R.
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Define 7' : Z — R via T'(x 4+ X - 29) = T'(z) + a - A for some a € R.

V x,y € dom(T) find (use linearity of T, majorization of by f, subadditivity of f):

T(x)=T(y)=T(x-y) < f(x —y) < f(x+z0) + f(—y — x0)
= —T(y) — f(~y —z0) < =T(2) + f(z + z0)

Choose a € [5up, cqom(r)(~T(¥) — (= = 20)), I seaom(r) (~T(x) + f(z +20))] # 0.

Now let z=x+ \-20 € Z.
Assume A = 0: T(z) = T(z) < f(2).

Assume )\ > 0:

N

T(z)=T(x)+a- A< T(x) + X (=T(&) + f(€+z0)) for all £ € dom(T)
< f(z+ Axo) = f(2) when setting £ = z/\

Assume )\ < 0:

T(z)=T(x)+a - A<T(x)+ X\ (=T() — f(—& —x0)) for all € € dom(T)
< f(x+ Azp) = f(z) when setting £ = z/\

eS0T €S, T+T,T # T contradiction! Therefore dom(7") = X.
O

Remark 2.79. In similar fashion can use Zorn’s Lemma to prove existence of basis for vector
spaces (possibly uncountable), existence of unbounded linear functionals, etcetera.

For instance can proof that £°° has basis. Since £°° is not separable, basis must be uncountable.
Can use this to define bounded linear functionals on £>° that have no correspondence in ¢*.

A few applications.

Proposition 2.80. Let Y be subspace of normed space X, t € L(Y,R). Then there exists some
T e L(X,R), Tly =t (T|y: restriction of T to Y), ||T']| = ||t]|-

Proof. e Apply Hahn—Banach to ¢ defined on Y with f(x) = ||¢]| |z]|.

e Get linear T': X — R with Ty =t and T'(z) < f(z) = ||t]| [|z||. So ||T|| = ||t|| and in
particular 7' € L(X,R).
O

Comment: Above proposition is ‘boring’ if we know how to project onto Y. Then set T' = to Py.
But as we have seen, this projection does not always exist.

Proposition 2.81. Let X be normed space, x € X. Then there exists some 7' € X* \ {0} such
that T(z) = | T |l2].

Proof. e Set subspace Y = span{z}, t:Y — R, a-z — afjz||. Note: [[t||y+ =1. f(z) = ||z]|.

e Apply Hahn—Banach, get T : X — R. T(azx) = t(az) = o||z||, T(z) < ||z|| = T(z) =
[l =TI ]l
O

72



Remark 2.82. e Conversely, for fixed ¢ € X* there is not always z € X \ {0} such that
t(z) = el {l]]-

e Example: (y;); € £° ~ (£1)* where y; = (1 — 1/4). ||y|¢= = sup; |yi| = 1.
e Let z € /', . #0. Then ||z|p = 200 o] > Y00, yi wi = y(@).

Between a normed space and its topological dual we can now introduce notions analogous to
orthogonality.

Definition 2.83. Let X be a normed space and X™ its topological dual space.
(i) t € X* is called aligned with x € X if t(x) = (t, ) oy x = |It]|x+]|2| x "
(i) z € X, t € X* are orthogonal if t(x) = 0.
(iii) The orthogonal complement of Y C X is Y+ = {t € X* : t(x) = 0Vz € Y}.
(iv) The orthogonal complement of Z C X* is *Z = {x € X : t(x) =0Vt € Z}.
Proposition 2.84. 1[Y*] =Y for any closed subspace Y C X.

Comment: Compare to polar cone, Def. 1.42 and Prop. 1.43.

Proof. e YL DY [reY]=[tlx)=0VteYt = [ye Y]

e LY CY: Fory ¢ Y definet € L(V =Y @ span{y},R) by t(x + Ay) = X for every
v=2x+ Ay € V (the decomposition is unique). We get

_ [tz +Ay)l _ [tz 4+ Ay)| _ 1
|t| = sup ————— = sup ——— = sup < 00
cevaer: [T+ AYl cevvioy, o+ Ayl cevyioy Iz +yll
T+ AY#0 ACR\{0}

since dist(y,Y) > 0 (Y is closed).
e Use Hahn—Banach via Prop. 2.81 to extend ¢ to T' € L(X,R).
e T(x)=t(z)=0forallzcY. =TecY"t

o I'(y)=ty) =1#0. Soy ¢ Y]
O

Now we very briefly generalize a few concepts of convex analysis from Hilbert spaces to Banach
spaces.

Definition 2.85 (Subdifferential). Let X be a normed space. For a function f: X — RU {oo}
the subdifferential of f at x € X is given by

Of(x)={te X*: f(y) > f(@)+ (t,y — @) yoyy forallye X}.

Definition 2.86 (Fenchel-Legendre conjugates). Let X be a normed space. For a proper func-
tion f: X — RU{oo} the Fenchel-Legendre conjugate f* : X* — R U {oo} is given by

[H(t) = sup (t,2) oy x — f(2).
rzeX

The preconjugate of a proper function g : X* — R U {00} is given by

*g(z) = sup (¢, ) yor . x — 9(t).
teX*
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In complete analogy to Prop. 1.73 (basic properties of conjugate), Prop. 1.74 (pointwise suprema
over families of convex, lsc functions remain convex, lsc.), Prop. 1.72 (Fenchel-Young) and
Prop. 1.81 (‘extreme points’ of Fenchel-Young) we can show:

Proposition 2.87. For a normed space X let f: X — RU{o0}, g: X* = RU{oco0} be proper.
Then

(i) f* and *g are convex, lsc.
(i) f*(t) + f(x) > (t,z) and g(t) + *g(x) > (t,x) for all (t,2) € X* x X.
(iii) [t € 0f(z)] & [f(t) + f(x) = (t, z)].

Remark 2.88. Since X** « X in general, one has to be somewhat careful with statements
about *¢ and in particular *(f*). The situation is a bit simpler on reflexive spaces.

We have already seen that the Hahn—Banach theorem can be invoked to imply existence of many
particular elements of the dual space. We now give a geometric variant, that we can then use to
prove an adaption of the Fenchel-Rockafellar theorem.

Theorem 2.89 (Hahn-Banach: separation form). Let X be a normed space, C' C X convex,
intC'# 0, z ¢ intC. Then 3¢ € X*\ {0} such that t(y —z) >0 forall y € C.

For the proof we need the following auxiliary result.

Proposition 2.90 (Minkowski functional). Let X be a normed space. Let C' C X be convex,
0 € int C. The Minkowski functional of C is defined as

pc:x — R, z— inf{r e Ry :x € rC}.
pc is nonnegative, positively 1-homogeneous, continuous and subadditive (this implies convexity).

Proof. e pc is indeed real valued: since 0 € int C' 3 n > 0 such that B(0,n7) C C and thus V
v € X\ {0} get z € ||z B(0,1) = LLB(0,9) c Ll = po(a) < 2L

e nonnegative and positively 1-homogeneous are immediate.
e subadditivity: let x € r-C,y€s-C (let x =ra,y=sb, a,b € C). Then

r+y=ra+sb=(r+s) (ma—kmb) €(r+s)-C

So for any z,y € X:

po(z) +po(y) =inf<r+slr,seRy:xerCyesC
—_———
=z+ye(r+s)C
>inf{r+seRy:z+yec(r+s)C}=pc(x+y)
e continuity: for z € X, e > 0set 6 =n-¢c. For y € B(z,0) find

pely) = po(e + (y — x)) < po(e) + pely — ) < pe(@) + 5 < po(z) + &,
po(r) =pc(y + (z —y)) < pc(y) +pe(r —y)
pc(y) = po(r) —pe(r —y) > po(z) — ¢

So pc(B(x,96)) € po(x) + [—¢,¢€].
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Proof of Theorem 2.89. e W.lo.g. assume 0 € int C' (otherwise, simply translate).
e Define ¢ : span{z} — R, t(Ax) = A.

o Set f(2) = pintc(z). Since z ¢ int C = f(x) > 1. For A > 0: t(Az) =X < Af(x) = f(Ax).
For A <0: t(Ax) =X <0< f(Ax). Moreover, f(y) < 1if y € int C and by continuity for
yeC.

e Now apply Hahn—Banach to ¢, majorized by f. Get T' € X* (T bounded since T'(z) < f(z)
which is 1-homogeneous and continuous) with T'(x) = t(z) =1 (so T # 0), T'(y) < f(y) <1
forye C. SoT(y—x) =T(y) — T(x) <0. Use —T to obtain sought-after functional.

O

With this result we can now proof the analogue to the Fenchel-Rockafellar theorem, Prop. 1.135.

Proposition 2.91. Let X be a normed space. Let f,g: X — RU{oco} be convex. Assume that
there exists some z¢ € X such that f(xg) < 00, g(xo) < oo and f is continuous in xg. Then

inf {f(w) +g(2)} = max{—F"(~t) —g"(0)}.

teX*
In particular, a maximizer for the dual problem exists.

Proof. The proof is completely equivalent to Prop. 1.135 except that we replace Prop. 1.136 by
the above Hahn—Banach separation theorem. O

Example 2.92. e Recall subspace projection problem on Banach space. Let Y be closed
subspace of normed space X, z € X \ Y.

dist(z,Y) = inf (||z — y|| + v (v))

2
o Let f(y) = ||z —yll, g(y) = ty(y). Brief calculation yields:

() = (& x) + e (), g (t) = 1y (1)
e By above duality we find:

dist(z,Y) = max{(t, )|t € B(0,1) N YL}
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2.7 TI'-convergence

Remark 2.93 (Motivation). Gamma convergence is a notion of convergence for minimization
problems and their solutions. We give a few intuitive examples where we ignore technical regu-
larity considerations.

Example 2.94 (Phase transitions). e Let 2 C R" be a spatial domain in which we want to
find the optimal configuration of two immiscible phases 0 and 1. We describe the domain of
the two phases by a set A C €2, where z € A indicates that x belongs to phase 1, otherwise
phase 0.

e A function s: Q — R indicates the affinity of each point to the two phases (s(z) large <
x prefers phase 0). The total volume of both phases is fixed. So [A] = [,dz = ¢ for a
constant c.

e In addition, there is surface tension between the two phases, which encourages the interface
to have small length / surface area. The total surface tension energy is assumed to be
proportional to the perimeter of A, denoted by Per(A).

e The energetically best configuration will be given by a minimizer to the following optimiza-
tion problem for sets A:

min {/A s(x)dz + Per(A) ' ACQ Al = c}

e This is an optimization problem over sets. Could try to define sufficiently regular classes of
sets for which Per is well defined, topology for sets, with notions of compactness etcetera.

e Alternative: try to approximate problem. Let u : © — [0, 1] indicate ‘concentration’ of
phases. u(z) =1 < phase 1 and vice versa. Ideally, u only takes values 0 and 1.

e But approximate perimeter term via gradient of u. So allow u to take values in [0, 1].
o Let W(z) be a ‘double well’ W(0) = W (1) =0, W(z) > 0 for z € (0,1).
Sketch: W

Let € > 0. Approximation for perimeter of ‘region’ described by w is then given by
/ (W(“($)) e |Vu(a:)|2> dz.
0 £
e The full problem can then be approximated by

min { /Q (s(x) u(z) + W +e |vU(x)|2> dz

e Correspondences: s-term, volume constraint. As e — 0 double well penalizes u(x) ¢ {0, 1},
so wants to ‘jump’. But gradient term wants smooth transition. Transition between 0-
phase and 1-phase will be determined by trade-off with optimal profile (for small ¢). For
transition region: has ‘width’ O(¢), ‘length’ L = Per(A), cost of W-term O(L - e/e = L),
gradient term: |Vu| = O(1/e), so cost O(L -¢-e72.e = L). Choose W careful, to get
precisely L in limit.

u:Q—>[0,1],/

Q

u(z) dz = c} .
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Example 2.95 (Homogenization). e Stationary heat equation on domain 2 with spatially
varying thermal conductivity a : @ — Ry and source f : @ — R and homogeneous
boundary conditions. Stationary heat energy distribution given by solution to

div(a-Vu) = f on €2,
u=20 on 0f).

o (Weak) solutions to this equation can be identified with minimizers to
min{/ (%|Vu|2 —uf)dzju: Q= Ru(z)=0forz e 39}.
Q

(of course need to identify reasonable subspace for candidates u).

e Now assume a contains ‘microscopic periodic’ structure at scale €. Solution will probably
also contain microscopic structure.

Sketch: a. with periodic cells with inhomogeneous content. Possibly breaks spatial sym-
metry.

e As we look at solution from far away, can no longer directly ‘see’ microscopic structure.
Only see ‘average’ of u over areas of much larger scale than . Corresponds to sending
e = 0.

Sketch: Oscillating u, local average.

Want to show: in limit get effective homogeneous equation

div(AVu) = f on €2,
u=20 on 0€.

and optimization problem
min{/ (3 (Vu,AVu) —u f)dz|u: Q@ = R,u(z) =0 for z € BQ}.
Q

with matrix A (can no contain spatial symmetry breaking).
e How do we formalize transition between minimization problems?

Example 2.96 (Dimension reduction). Consider again stationary heat equation on domain
Q2% [0,¢], i.e. a ‘thin film’. As e — 0 the temperature in every ‘column’ {z} x [0, ¢] for z €  will
probably be approximately constant, compared to variations along the film (for suitable boundary
conditions and assumptions on the source f). So we want to approximate the n + 1-dimensional
problem on Q x [0, ] by an n-dimensional problem on .

Example 2.97 (Discretization). In theory often analyze infinite-dimensional optimization prob-
lems. Numerically, can only solve finite-dimensional problems. Need to ensure that our solu-
tions to finite-dimensional approximations ‘converge’ to a solution to the underlying infinite-
dimensional problem in a suitable sense, as we increase the dimension of the numerical approxi-
mations.
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Remark 2.98. Throughout this subsection let X be a topological space. We will focus on
sequential notion of I'-convergence. As before, it is possible to introduce more general topological
definitions.

Definition 2.99 ((Sequential) I'-convergence). A sequence fi, : X — R U {oo}, k € N is said to
(sequentially) I'-converge to f: X — R U {oo} if for all x € X we have

(i) (lim inf inequality) for every sequence (zy); converging to z

f(z) < 1i]ginffk($k);

(ii) (lim sup inequality) there exists a sequence (xy); converging to = such that

f(x) > limsup fr(xp).

k—o0

The function f is called the I'-limit of (fx)r and we write f = I-limy, f.

Remark 2.100 (Recovery sequence). Let (xy)g satisfy the lim sup inequality. It must also
satisfy the lim inf inequality and therefore

f(a) 2 limsup fi.(zx) > iminf fi(zx) 2 f(z).

k—o0

So limg o fr(zk) = f(x) and (x)g is referred to as recovery sequence.

Remark 2.101 (Motivation of definition). The main motivation of I'-convergence is to study
the ‘limits’ of sequences of minimization problems. The sequence may be thought of as approxi-
mations to the limit problem. The two conditions serve two purposes:

(i) (lim inf inequality): ‘the approximations add no new minimizers’: whenever (xj); is a
converging sequence of minimizers of (fx)g, zx — x, then f(x) < liminfy fi(z). So the
limit problem is potentially ‘even better’.

(ii) (lim sup inequality): ‘the approximations do not remove minimizers’: for any x we can find
a recovery sequence (xy)r such that f at x can be approximated by (fx(x))r. Note: not
every minimizer of f can be written as limit of minimizers of (fx)x, but as limit of ‘almost
minimizers’.

Comment: As seen in intro: sometimes limit is approximation of sequence, e.g. in homogeniza-
tion.

Remark 2.102. In the above examples it is not always clear, whether the sequence of problems
and the limit are indeed defined on the same space. Usually must find one big ‘summary’ space
X that contains all subproblems.

(i) phase transitions: limit problem on sets A C €2, sequence on differentiable functions wu :
Q — [0, 1]. Possible solution: reasonable extension of function space, to handle both limit
and sequences.

(ii) dimension reduction: limit problem on functions u : @ — R, sequence on functions u :
Q2 x[0,e] — R. Rescale sequence problems to functions u : Q2 x [0, 1] (remove & from space),
limit problem on functions v : @ — [0,1] — R, add constraint u(z,s) = const for all
s € [0,1], for every fixed = € Q.
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Definition 2.103 ((Sequential) I'-limits). For a sequence of functions (f)x, fr : X = RU{oo}
and some z € X the quantities

(P_hrl? inf fi)(x) = inf{limkinf fre(zi)|(xg)g =z — x},
(F-liﬂkl sup fi)(z) = inf{limksup fr(zi)|(zp)k © xp — 2}
are called sequential I'-lower and upper limit of ( fx)x at x, where the infima are over all sequences

(x)r converging to z. If both limits coincide, we call (I'-lim infy, fi)(z) = (I'-lim supy, f)(z) =
(T-limy, fx)(x) the sequential I'-limit of (fy)x at x.

Proposition 2.104. If the sequence (fx); I'-converges to f the I'-limit of (fy)r exists for all
x € X and equals f(z).

Proof. e For all sequences (xy), with limit 2 have by lim inf condition f(z) < liminfy fx(zk).
Therefore, this condition holds after taking infimum over all such sequences and therefore

get f(z) < (D-lim infy, f)().
e Let (z1)x be recovery sequence at z. Then
f(a) 2 limsup fi(zx) = (I-lim sup fp)(z) 2 (T-lim inf fi)(2) = f(2).
k k
Therefore, both limits must coincide.

O

Remark 2.105. This implies that I-limit f of sequence (fx) is unique (if it exists) since I'-
lower and upper limit do not depend on f. Can conversely show that if ['-lower and upper limit
coincide at all points = then their value determines the I'-limit function f.

Proposition 2.106 (Stability under continuous perturbations). Let (fx)r be a sequence of
functions with I-limit f. Let g be a (sequentially) continuous function. Then f+g = I'-limy, fx+
g.

Proof. e Let (zx)x be a sequence converging to x. Then

limkinf(fk(xk) +g(x)) = limkinf fr(zr) + lillﬂrng(:vk) > f(z) + g(x).

e Let (z1)x be a recovery sequence for x. Then

hmksup(fk(xk) +g(xg)) = 1i’1€"ﬂ fr(zy) + liing(wk) < f(x) + g(=).

Comment: lim inf argument would work if g is Isc, lim sup argument does not.

Some examples.

Example 2.107. e Set

+1 ift=1,
g(t)=¢ -1 ift=—1,
0 else.
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o Set fr(t) = g(kt) and

ft) =

0 ift#£0,
1 ift=0.

e Proof that f is I-limit of f: let # # 0, xp — . 3 N € N s.t. |xg| > 1/k for all k > N. So
fr(zr) = g(zr k) = 0= f(x). So any sequence will satisfy lim inf and lim sup condition.

o Let z = 0. Since f(zr) = —1 < f(¢) for all k and ¢, the lim inf condition is clear. As
recovery sequence set xp = —1/k. Then fi(zx) = g(—1) = —1 = f(x).

e Note: limy — ocofi(x) = 0 for all z. So the I'-limit does not necessarily coincide with the
pointwise limit.

Example 2.108 (Constant sequence). o Let

+1 ifx <0,

ful@) = J(@) = {0 if 2> 0.

e Since f is not lower semicontinous, f is not the I'-limit of (fx)g: Let zx = 1/k. Then
fr(xr) = 0 but f(0) = 1.

e A function f is the I'-limit of the constant sequence (f)i if and only if f is (sequentially)
lower semicontinuous.

As illustration we prove a slightly more general result.

Proposition 2.109. Let (X,d) be a metric space. If f: X — RU{oo} is a I'-limit of some
sequence (fx)x then f is sequentially lower semicontinuous.

Proof. o Let (z)r be a sequence in X with limit x € X.

e For fixed k let (xy;); be recovery sequence in X with limit x;. By the lim sup condition
we obtain

fxy) = lim fj(z ).
J—00
e In particular there is some Nj such that f(zg) > fj(zk;) — + and d(2kj,z) < 1/k for
Jj > Ng.

e Let (ji)r be an increasing sequence of indices with ji > N for all k. Let

o Ty, if j = ji for some k,
! z else. '

e Then d(z,zj) < d(x, xy) +d(xg, zk 5, ) < d(z,x)+1/kif j = jj for some k and d(z, zj) =0
else. Therefore z; — x.

e Now:

limkinff(xk) > limkinf fir(@rg) — 1 = limkinf fix (@ j5,) > liminf f;(z;) > f(x).
J
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Now give simple prototypical results that show how sequence of minimizers of (f)x is related to
minimizers of [-limit f.

Proposition 2.110. Let (f)r be a sequence of functions X — R U {oo} as well as f : X —
R U {o0}.

(i) If (frx)r and f satisfy the lim inf inequality, Def. 2.99(i), and K is a sequentially compact
set then

nf £ < L infi .
inf f _hkrglor;f n%f fr

(ii) If (fx)r and f satisfy the lim sup inequality, Def. 2.99(ii), and U is an open set then
inf f > 1i inf fj.
in f> 1msup1r[} fr

k—oo

Proof. e (i): Let (Z)r be a sequence in K such that liminfy infx fi = liminfy fi(Zx) and
let (Tx;); be a convergent subsequence (exists due to sequential compactness of K) such
that lim infy fx(Zx) = limj fkj (:i‘kj) with limit :f'kj —zTeK.

e Set

B, if k=kj,
T =
T ifk#kV

Then z — 7.

With the lim inf condition we get

i?(ff < f(@ < limkinf Jr(zr) < limjinf Jr; (Tx;) = lijm Jr; (Tx;) = limkinf i?(f Jre-

(ii): Fix § > 0. Find « € U such that f(z) < infy f 4 0. Let (zx)x be a recovery sequence
for . Since U open, have eventually x; € U for k sufficiently large. Then

ir[}ff + 6 > f(x) > limsup fi(zg) > limsup ir(}f fr-
k k

Result follows since true for all § > 0.

O

Define (sequentially) compact notion of coerciveness. Recall: Def. 1.103 defined coerciveness via
boundedness.

Definition 2.111 (Variants of coerciveness). e A function f: X — RU{oo} is sequentially
coercive if for every r € R the sublevel set S,(f) is sequentially precompact.

e A function f is mildly sequentially coercive if there exists a non-empty sequentially compact
set K C X such that infx f = infg f.

e A family of functions (f;)ics is equi-mildly sequentially coercive if there exists a non-empty
sequentially compact set K C X such that infx f; = infg f; for all i € I.
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Proposition 2.112 (Convergence of minimizers). Let (fx)r, fr : X — RU{oo} be a sequence
of equi-mildly sequentially coercive functions and let f = I'-limy fx. Then

L F — liminf fo
min f = nigf i
Moreover, if (zy)x is a precompact sequence such that limy fi(zr) = limg infx fr then every
cluster point of (xx)g is a minimizer of f.
Proof. e Let K be the sequentially compact set on which infg fi = infx fj for all k.
e Apply Prop. 2.110(i) to K and (ii) to U = X to obtain:
inf f <inf f <liminfinf fr = liminfinf f; <li inf f, <inf
iny f< inf < im inf in fr im inf iny fi < 1mksup inj fr < inj f
e So infy f = limginfx fr. Since infx f = infg f, by sequential compactness of K, a
minimizer for f exists.

e Let (w;); be convergent subsequence of () with limit 7. ‘Replace’ all indices k # k; for
all j by Z, as in proof of Prop. 2.110. Call this sequence (Z)g. Get via lim inf condition:

inf f < f(z) < liminf fi(Z4) < lim inf £, (zk;) = lim fi(2x) = liminf fi = inf f

So z is minimizer.

e Now let (zx)x be sequence in K such that limg fx(x) = limy infx fi, for instance choose
xy such that fi(zr) <infx fr + % This is possible since (fx)x is equi-mildly sequentially
coercive. Then (z)x has cluster point, which must be minimizer of f, thus infy f = infg f.

[l
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2.8 Example: optimal transport

Comment: References:
Villani: Topics in Optimal Transportation, 2003,
Villani: Optimal Transport: Old and New, 2009

Remark 2.113. Throughout this section (€2, d) is a compact metric space. Most result extend to
non-compact spaces (with appropriate modifications) but the arguments become more technical.

2.8.1 Reminders on measure theory

Comment: Reference: Ambrosio, Fusco, Pallara: Functions of Bounded Variation and Free
Discontinuity Problems, Chapters 1 & 2.

Definition 2.114 (o-algebra). A collection £ C 2% of subsets of a set X is called o-algebra if
i) 0e&Acl]=[X\Aecl];

(ii) (closed under countable unions) for a sequence A, € € = J,~ A, € €.

Comment: Closed under finite unions, intersections and countable intersections. AN B = X \

(X\A) U (X\B)).

Comment: Elements of £: ‘measurable sets’. Pair (X,£): ‘measure space’.

Example 2.115. Borel algebra: smallest o algebra containing all open sets of a topological
space.
Comment: Intersection of two g-algebras is again o-algebra. ‘smallest’ is well-defined.

Definition 2.116 (Positive measure and vector measure). For measure space (X, ) a function
p: €+ [0, +00] is called ‘positive measure’ if

(i) u(@) =0;
(ii) for pairwise disjoint sequence A, € & = pu(UpZy An) = D meo 1(An)

For measure space (X, &) and R™, m > 1, a function p : £ — R™ is called ‘measure’ if p satisfies
(i) and (ii) with absolute convergence.

Comment: Measures are vector space, measures are finite, positive measures may be infinite.

Example 2.117. Examples for measures:
(i) counting measure: #(A) = |A] if A finite, +o00 else.
(ii) Dirac measure: §,(A) =1if z € A, 0 else.

(iii) Lebesgue measure L([a,b]) =b —a for b > a.

(iv) Scaled measures: positive measure p, function f € L'(u), new measure v = f - . v(A) =

Ja (@) dp().
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Definition 2.118 (Total variation). For finite measure p on (X, &) the total variation |u| of
Acfis

|ul(A) = sup {Z |1(An)]
n=0

o
A, € &, pairwise disjoint, U A, = A} .

n=0
|p| is finite, positive measure on (X, &).
Definition 2.119 (Negligible sets). A set N C X is p-negligible if 3 A € £ with N C A and

p(A) = 0. Two functions f, g : X — Y are identical ‘p-almost everywhere’ when {z € X|f(z) #
g(z)} is p-negligible.

Example 2.120. Null sets are Lebesgue-negligible sets.

Definition 2.121 (Measurable functions, push-forward). Let (X,&), (Y,F) be measurable

spaces. A function f: X — Y is ‘measurable’ if f~1(A) € & for A € F.
For measure 4 on (X, &) the ‘push-forward’ of p under f to (Y, F), we write fyu, is defined by

fop(A) = p(f~1(A)) for A € F.
Change of variables formula:

/g(f(x))du(x)Z/g(y)dfw(y)
X Y

Sketch: Varying densities.

Example 2.122 (Marginal). Let proj, : X x X — X, proj;(zo,z1) = z;. Marginals of measure
yon X x X:

projoyv(A) = v(A x X), projyy(A) = y(X x A).

Sketch: Discuss pre-images of proj;.

Definition 2.123 (Absolute continuity, singularity). Let u be positive measure, v measure on
measurable space (X, ). v is ‘absolutely continuous’ w.r.t. u, we write v < u, if [u(A4) = 0] =
[v(A) =0].

Sketch: Density < Lebesgue, density « density when support different, Dirac measures <«
Lebesgue, mixed measures &« density, mixed measures < mixed measures when Diracs coincide.

Positive measures p, v are ‘mutually singular’, we write p L v, if 3 A € £ such that u(A) = 0,
v(X \ A) = 0. For general measures replace p, v by ||, |v|.

Definition 2.124 (o-finite). A positive measure f is called o-finite if X = ;2 A, for sequence
A, € € with p(4,) < +oo.

Example 2.125. Lebesgue measure is not finite but o-finite.

Theorem 2.126 (Radon-Nikodym, Lebesgue decomposition [Ambrosio et al., Theorem 1.28]).
Let p be o-finite positive measure. v general measure.

Radon-Nikodym: For v < u there is a function f € L'(u) such that v = f - pu. f is unique
p-almost everywhere. It is called ‘density of v with respect to ” and usually denoted by f = g—/’:.
Lebesgue decomposition: there exist unique measures v,, vs such that

V =Vq + Vs, Vo < [, vs L.

Note: v, = f - u for some f € L(p).
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Corollary 2.127. A real-valued measure v can be decomposed into v = vy — v_ with vy, v_
mutually singular positive measures.

Proof. Since v < |v| there exists f € LY(|v|) with v = f-|v]. Set Ay = f~1((0,+)),
A_ = f7Y(~00,0)) and set v+ (B) = [v(BN AL)|. O

Comment: f is only unique |v|-almost everywhere.

Definition 2.128 (Support of measure). Let (£2,d) be a compact metric space with its Borel
o-algebra and p € M (Q). The support of pu, denoted spt i is the smallest closed set A C Q
such that p(A) = (). For x € spt u one has pu(By(z)) > 0 for any r > 0.

Definition 2.129 (Radon measures). Let (€2,d) be compact metric space, let £ be Borel-o-
algebra. A finite measure (positive or vector valued) is called a ‘Radon measure’. Write:

o M, (f2): positive Radon measures,
o P(Q2) C M4 (92): Radon probability measures (total mass = 1),
o M(Q)™: (vector valued) Radon measures.

Theorem 2.130 (Regularity [Ambrosio et al., Proposition 1.43|). For positive Radon measures
on (£2,€) one has for A € £

w(A) =sup{u(B)|B €&, BC A, B compact} =inf{u(B)|B €&, AC B, B open} .

Theorem 2.131 (Duality [Ambrosio et al., Theorem 1.54]). Let (€2, d) be compact metric space.
Let C(£2)™ be space of continuous functions from 2 to R™, equipped with sup-norm. The
topological dual of C(Q)™ can be identified with the space M(Q)™ equipped with the total

variation norm ||p v = [1|(€). Duality pairing for g € M(Q)™, f € C(Q)™:

u(F) = (o ) pancs = /Q £ () du(z)

Comment: Notation: C(Q) = C°(€) from Section 2.3 (Examples for Banach spaces).

Corollary 2.132. Two measures u, v € M(Q)™ with u(f) = v(f) for all f € C(Q2)™ coincide.
Remark 2.133. e By Theorem 2.73(i) (Banach—-Alaoglu) Ba(0,1) is weak* compact.
e Analogous to Prop. 2.48 (C([0,1]) is separable) can show that C(2) is separable. So by
Theorem 2.73(ii) (‘sequential’ Banach-Alaoglu) B (0, 1) is sequentially compact.

2.8.2 Monge formulation of optimal transport

8th

Comment: Gaspard Monge: French mathematician and engineer, 18" century. Studied problem

of optimal allocation of resources to minimize transport cost.

Sketch: Bakeries and cafes

Example 2.134 (According to Villani). Every morning in Paris bread must be transported from
bakeries to cafes for consumption. Every bakery produces prescribed amount of bread, every cafe
orders prescribed amount. Assume: total amounts identical. Look for most economical way to
distribute bread.
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Mathematical model:

e O C R2: area of Paris

w € P(Q): distribution of bakeries and produced amount of bread,

v € P(Q): distribution of cafes and consumed amount of bread

Cost function ¢ : Q x Q@ — Ry. ¢(z,y) gives cost of transporting 1 unit of bread from
bakery at x to cafe at y.

Describe transport by map 7' : Q — €. Bakery at z will deliver bread to cafe at T'(x).
Consistency condition: Thu = v.

Comment: Each cafe receives precisely ordered amount of bread.

Total cost of transport map

Cu(T) = /Q e(r, T(x)) du(x)

Comment: For bakery at location x pay c¢(z,T(x)) - u(x). Sum (i.e. integrate) over all
bakeries.

Definition 2.135. Monge optimal transport problem: find 7" that minimizes Cjy.
Problems:

e Do maps T with Typ = v exist? Can not split mass.

Sketch: Splitting of mass.

e Does minimal T" exist? Non-linear, non-convex constraint and objective.

Comment: = problem remained unsolved for long time.

2.8.3 Kantorovich formulation of optimal transport

Comment: Leonid Kantorovich: Russian mathematician, 20'" century. Founding father of linear

programming, proposed modern formulation of optimal transport. (Nobel prize in economics
1975.)

Do not describe transport by map 7', but by positive measure 7 € M (Q2 x Q).

Definition 2.136 (Coupling / Transport Plan). Let u, v € P(£2). Set of ‘couplings’ or ‘transport
plans’ II(u, v) is given by

(p,v) = {m € P(Ax Q) ‘projoﬂw = W, Projyym = v}.

Example 2.137. II(u,v) # 0, contains at least product measure p ®@ v € II(p,v). (@ v)(A X
B) = u(A) - v(B) for measurable A, B C Q.

Definition 2.138. For compact metric space (2, d), u, v € P(Q2), ¢c € C(Q x Q) the Kantorovich
optimal transport problem is given by

C(p,v) = inf {/QXQ c(z,y)dnr(z,y)

m e I(u, u)}
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Comment: Linear (continuous) objective, affine constraint set.

Comment: Language of measures covers finite dimensional and infinite dimensional case.

Proposition 2.139. Minimizers of Kantorovich problem (Def. 2.138) exist.
For proof use following result.

Proposition 2.140. The set II(u,v) is weak* sequentially closed.

Proof. e Let (m,), be sequence in I(y,v), with 7, — 7 € M(Q x Q).

e Positivity: 7 is a positive measure. Otherwise find function ¢ € C(Q x Q), ¢ > 0, with
Joxq @dm <0 (use Cor. 2.127 and Thm. 2.130 for construction) which contradicts weaks
convergence since f ¢odmy, >0V n.

e Unit mass: (2 x Q) = [, o 1dm =lim, 00 [0 1dmy = limy oo m (2 X Q) = 1.

e Marginal constraint: For every ¢ € C(92)

/gbdprojoﬁﬂ—/ ¢ o projodm
Q QxQ

= lim ¢ o projodm, = lim /gbdprojoﬂwn:/gﬁdu

n—oo QXQ
So projyym = p. Analogous: proj;ym = v.
O

Proof of Proposition 2.139. e Let m, be minimizing sequence. Since m, € P(Q x Q) have
|7 |la = 1. By Banach-Alaoglu (Thm. 2.73) 3 converging subsequence. After extraction
of subsequence have convergent minimizing sequence 7y, Ao

e By Prop. 2.140 7 € II(p, v).

e Since ¢ € (2 x Q) and 7, — 7 have

/ cdm = lim cdmy, .
OxQ n=0 JOxQ

Therefore, 7 is minimizer.

O

Comment: For proof under more general conditions see for instance [Villani, 2009, Chapter 4].

Relation to Monge problem:

Proposition 2.141 (Kantorovich is a relaxation of the Monge problem). Assume 7" : Q —  is
a feasible transport map for the Monge problem between p and v, Definition 2.135. In particular
Tip = v.

Let

(id, T): Q2 — Q2 x Q, z— (z,T(x)).
Then m = (id, T')4p € II(p, v) and

| ean= [ (o7 duta).
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Proof. e Clearly m € P(2 x Q): non-negative, unit mass.
® projom = projoy(id, T)gp = (projg o (id, T))sp = (id)gp = p.
e projy ;= projy (i, Ty = (proj, o (id, 7))y = Ty = v.

e Equality of cost:

/ () A((id, T)ym) () = / (co (id, T))(z) da(z) = / (2, T(@))du(z).
QxQ Q Q

O

Remark 2.142. Under suitable conditions (e.g. Q compact subset of R? with Euclidean distance,
c(z,y) = ||z —yl|?, 9 Lebesgue-negligible, 1 Lebesgue-absolutely continuous) one can show that
the optimal coupling indeed corresponds to an optimal Monge map and thus both problems are
equivalent. Proof is beyond scope of lecture. But shows: difficult non-convex problems can
sometimes be rewritten as equivalent convex problems in higher dimensions.

2.8.4 Duality

Now we study the corresponding dual problem.

Proposition 2.143. Given the setting of Definition 2.138 one finds

amyﬁzmp{éadu+lyﬁb

Proof. e Problem of Prop. 2.143 can be written as

C(u,v) = —inf {f(a, ) + g(Ala, B))| (e, B) € C(2)*}

a, f € C(Q),a(x)+ B(y) < c(z,y) for all (z,y) € QQ}

with
f:C(Q)? =R, ) — /a@ /5@
_ 9 if ¥(z,y) < c(z,y) for all (x,y) € Q2
g:C(Q%) - RU{c0}, (N {+OO else.

A:C()2 =), Al B)(z,y) = alz) + B(y).

e f, g are convex, Isc. A is bounded, linear.

e Let (a, 3) be two constant, finite functions with a(z) + B(y) < min{e(z’,y')|(2,y') € Q?}.
Then f(a, 8) < oo, g(A(a, 8)) < oo and g is continuous at A(«, §). Thus, by the Fenchel-

Rockafellar theorem (an extension of Prop. 2.91 to account for the linear transformation
A)

C(p,v) = min { f*(=A*7) + g* () |7 € M(2)} .
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e One obtains:

f*(—p,—o)=Sup{—/Qadp—/ﬂﬂdwr/gadwr/gﬂdy

{0 ifp=p, o=v,

(a,8) € c<9>2}

+o0 else.

(Reasoning similar than for positivity of limit 7 in proof of Prop. 2.140.)

g*(m) = sup {/Qz Ydr|p € C(Q%),p(x,y) < c(x,y) for all (z,y) € QQ}

_ {fm cdr if T € M (Q?),

400 else.

e Adjoint of A:

— [ laoprojo+ #oprojy)dn

I
S~

& d(projogm) + /Q 5 d(projy )

= A*r = (prOjoﬁmprojwﬂ)-
e Summarize:
FH(=A"T) + g*(7) = F*(=projom, —projy ;) + g ()

Joz cdm i m e I(p, v),

+00 else.

O

Remark 2.144 (Outlook on dual problem). e Could use duality to apply proximal primal
dual algorithm to solve problem: very simple proximal steps (f linear, g* almost linear,
pointwise). Not very efficient on large problems. But all efficient numerical methods heavily
rely on simultaneous primal and dual perspective.

e Primal-dual perspective also helpful for proving equivalence with Monge problem.

e Also: dual problem has interpretation in ‘transport perspective’: « and 8 can be interpreted
as prices that both sides have to pay for transport. a(x) + (y) < c¢(z,y) = ‘price may
never exceed cost’. ..
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2.8.5 Discretization and I'-convergence

In this subsection discuss discretization of optimal transport problem. Approximate original
problem by finite-dimensional problem which (in principle) we can solve. Furthermore, show
I'-convergence to original problem, as discretization is refined. Show that optimal plan can be
extracted as cluster point of discrete optimal plans.

Definition 2.145 (Discretization of domain). e Foreachn € Nlet {x,;}" ; C Q, {1},
Tnﬂ' C Q,

e with z,,; € T},; C B(xy, i, 7y) for some maximal radius r, with (), decreasing and r,, — 0
as n — 00,

e O =J" Ty, and T,,;NT, ; = O if i # j (‘collectively exhaustive and mutually exclusive’).

Example 2.146. {T),;}" ; and {x,;}" ; and might be cells and centroids of subsequently finer
triangulations or of Cartesian grids over ).

Definition 2.147 (Discretization of marginals). For given u,v € P(Q2) set

n

/ln = (ﬂn,i)?:la ﬂn,i = ,U'(Tn,i)a Hn = Z 5acn,i . ,&n,iy
=1
n

Up = (ﬁn,i)?:la ﬁn,i - V(Tn,i)u Vn = Z(Sx,” : ﬁn,i-
=1

Proposition 2.148. y, € P(Q) and p,, — p as n — co. Analogously v, € P(Q) and v, — v.
Proof. e Only proof for . Result for v completely analogous.

® [ini > 0 = pu, is non-negative. Total mass: (use T}, ; collectively exhaustive, mutually
exclusive)

() = fini =Y p(Tni) = p (U Tn> = () =1
=1 =1 =1

o Let ¢ € C(Q). (92,d) compact = ¢ uniformly continuous (Lemma 2.49). = Ve > 0 3
N € N such that for n > N have |¢p(x) — ¢p(zn;)| < e for & € T),; C B(xpi,n).

'/Qtﬁdu—/ﬂédun /Tn,igbdu_/nﬂdu" —zz; /Tn,igbdu_gb(xi’”)'ﬂ”’i
S| 0~ ot au)| < 3 ens ==
=1 7o i=1

Since € > 0 was arbitrary find (i, ®) o = (s ®) ppx- This is true for all ¢ € C(9).
O

n
<D
i=1

Comment: In general p, /4 p in the norm topology.

90



Proposition 2.149 (Discretization of couplings). For two non-negative vectors (a;)l, (b;)7, €
R™ let
+

n n
M (a,b) = § (Rig)ig €RT™ 0 > iy =ai, Y &y =0b;Vi,je{l,...,n}

§'=1 i'=1

Then [r € (pn, vn)| & [ = 3201 0(ap 1 0n,,) * iy fOr some 7 € IL, (fin, )]

Proof. o =: |1 € I(un,vn)| = [for measurable A C Q: 7(A x Q) = pp(A) = (AN
{n,i}1))] = [sptm C ({zn,i}ly x Q)]. Likewise: [sptm C (Q x {xp i} )] = [spt7 C

{zn,itimy X {znikiz)]-

Som =311 0(apiwn,) Ty for some 7 € RY*™. (+ since 7 is non-negative).
Forie{l,....n}: fini = pn({wni}) = 7({wni}t x Q) =35 #ij.

For j e {1,...,n}: inj =vn({xn;}) = m1(Q x {zp;}) =30 7ij.

e Som € ﬂn(/ln, Un).

o «: Let A C Q be measurable. Find:

(A x Q) ZZWH*Z/MH fin(A).

Z'n 1614 Z‘n 1€A

Likewise, m(Q2 x A) = vp(A).

Clearly m € M4 (2 x Q) and m € P(2 x Q). So 7 € I(pn, vp).

Corollary 2.150 (Discretized transport problem).

n
C(tin,vy) = min Z (T, Tnj) - T |7 € Hy(fin, On)
ij=1

Comment: This is a finite-dimensional problem. Discretization of marginals suffices such that
problem becomes finite-dimensional and can be solved exactly. No discretization of derivatives
etc. required.

Now we show I'-convergence of discretized problems to original transport problem.

Proposition 2.151. Let

F:M(QxQ)— RU{}, T cdm + i) ()
QxQ

F, : M x Q) = RU {0}, (s cdm + iy, ) ()
QxQ

Then F,, I'-converges sequentially to F' in the weak* topology as n — oo.

Proof. e (lim inf): Let 7, = m. Since c is continuous = [, ocdm, = [, o cdm.
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e For every subsequence of (), for which m, ¢ I(pn,v,) we have iy, 1,)(Tn) = oo and
thus the lim inf condition is trivial.

e So assume 7, € II(uy, vy,) for all n. Then by weak* convergence for any ¢ € C(2):
[odne [ odun= [ o@an o)~ [ olx)dntey
Q Q QxQ QxQ
So projoym = p and likewise proj,ym = v.

e By weakx convergence, 7 is also non-negative and has unit mass (as all m, are). So
m € I(u,v) and thus

n n

lim inf F,,(m,) = lim inf/ cdm, = lim cdm, = / cdm = F(r).
n QxQ QxQ QxQ

e (lim sup): Let 7 be fixed. If m ¢ II(u, v) then F(7) = oo and any sequence (), satisfies
the lim sup condition.

e So consider w € II(u,v). Define 7, = (ﬁn,i7j)2j:1 € RY" via # 5 = m(Thi x Tnj) and
Tn = D4 i1 Oen ien ) * Tnsisj-

° Z?:l ﬁ’n,z’,j = W(Tn,i X Q) = M(Tmi) = ﬂn,i~ Similarly E?:l 7?”71',]' = ﬁn,j' So T, €

L, (fin, o) and thus m, € (g, vy) (Prop. 2.149).
e Analogous to pi,, — p (Prop. 2.148) show that 7, — 7.

e So limsup,, Fy,(m,) = limsup,, [, qcdm, = [o,.qcdr = F(m).
O

Proposition 2.152. The minimal values of F}, converge to the minimal value of F'. Any sequence
(7 )n of minimizers of F,, is weakx sequentially precompact and any cluster point 7 is a minimizer
of F.

Proof. e For all n € N have II(uy, v,) C Baq(0,1). Which is weaks sequentially precompact
by Banach—Alaoglu (cf. Remark 2.133). Therefore (F),),, are equi-mildly weaks* sequentially
coercive.

e Also any sequence of minimizers (), lies in Bag(0, 1) and therefore is weaks* sequentially
precompact.

e The result then follows from Prop. 2.112.
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2.9 Example: binary image segmentation
2.9.1 Motivation and set formulation

Remark 2.153. Study prototypical and foundational problem in image analysis. Divide im-
age region into fore- and background. For simplicity only consider one-dimensional problem,
extension to higher dimensions is analogous.

Remark 2.154 (Original problem formulation).
e Image domain = [0, 1], throughout this subsection.
e Bounded function a € L*(€) indicates affinity of each point to be foreground (a negative)
or background (a positive).
a could be generated from color in photo: e.g., are we looking for a red object?
Sketch: Starfish

e Set S C () describes foreground. First proposal for optimization problem:

inf { /S o(z) da

e Without further assumptions best foreground would be obtained by thresholding of a:
la(x) < 0] & [z € S, i.e. x in foreground]|. Problem: if a contains noise / measurement
errors. S obtained by thresholding may be very irregular: ‘single pixels’ missing within
foreground, or single pixels far from object mistakenly identified as foreground.

Sketch: Add noise to starfish

e Add assumption to model: S should be ‘regular’. Most objects in real world have relatively
smooth (piecewise smooth) boundary. ‘Penalize irregular boundaries’ by adding new term
to minimization problem.

ScQ,S measurable}

e Simplest model: add term that measures volume of boundary. In 1d: number of points in
boundary. Express as #(0S5), #(-): counting measure. Minimize following energy:

Fun(S) = /S a(z) de + A - #(8S)

The first term is called data term: depends on observed (possibly noisy) image. Second term
is called regularizer: mathematically model assumptions on ‘true’ / noiseless observation.
A > 0 is weight. ‘Correct’ choice of A depends on ‘how much we trust’ observation a
vs. model of regularizer.

Example 2.155 (Choice of A). For § € (0, 3) let
—-1 ifzel;-6,5+7], Lo
= S =15 — 57 9 5 *
ale) {1 else, £ 2 )
We find #(9S) = 2 and so
Eeet(S) = =20 + 2, Eeet(0) =0, Eeet(Q) =1 — 40.

So for § € (0, i), S is optimal if § > X. Otherwise, () is optimal. So \ specifies length scale to
discriminate between noise and true image structure.

Simple observation on regularity of feasible candidates for Fget:

Corollary 2.156. Eg(S) < oo iff S is finite collection of intervals in .
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2.9.2 Functions of bounded variation and convex relaxation

Remark 2.157 (Choice of function space).

e Minimizing FEe over sets is inconvenient: set of candidates has no linear structure, so no
notion of convexity, many tools from analysis missing.

e Want to reformulate segmentation problem as convex optimization problem over vector
space.

e Segmentation encoded by function u : Q — {0, 1}, [u(z) = 1] & [z € 5].

e What is suitable function space? Must contain discontinuous functions. For convexity,
relax allowed values from {0, 1} to [0,1]. Need to reformulate Eg in terms of u. How to
handle non-binary values of u?

e If we find optimal function w, which may be non-binary, can we extract optimal S for
original problem?

To represent segmentation sets by functions, we use the following definition for convenience.

Definition 2.158 (Characteristic function). For a measurable set S C € the characteristic
function of S is given by

1 if S
xs : Q2 —{0,1}, T Hzes,
0 else.

Now we need a suitable function space that contains characteristic functions of sufficiently regular
sets. A good choice is called the functions of bounded variation, given in the next definition.
A thorough introduction can be found in [Ambrosio, Fusco, Pallara: Functions of Bounded
Variation and Free Discontinuity Problems, 2000].

Definition 2.159 (Functions of bounded variation). A function u € L(Q) is called a function
of bounded variation if its weak derivative can be expressed as a Radon measure u € M (int Q).
More precisely, for every test function ¢ € C3(Q) = {¢ € C1(Q2) : ¢(0) = (1) = 0} we find

| @@y ae == [ ola)duta).

Comment: Need to be a little careful about boundary conditions.

By a density argument it can be shown that this weak integration by parts formula holds for
any Lipschitz test function (with appropriate boundary conditions). The space of functions of
bounded variation is denoted by BV(2). If uw € BV(2) then the weak derivative is often denoted
by Du. By duality between C°(Q) and M(Q) the weak derivative Du is unique (if it exists).

Example 2.160. (i) Let u € WH(Q). Then u has weak derivative Du € L'(Q) with

/Q S (@) u(z) dz = — /Q () - Du(z) dz

for all ¢ € C}(Q2). Then Du - L]int o € M(int Q).
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(ii) Characteristic function of interval [a,b], 0 < a < b < 1: u = X|4p. For integration of any

test function ¢ € CL(Q) find:

b
| ¢@ - u@ar= [ ey = ot) = ol = [ pais -5

So Du = §q — & € M(int Q).

Definition 2.161 (Total variation of functions). For u € L'(Q) its total variation is given by

TV (1) = sup { /Q () - ) do

¢e%mwmm@g@

This definition should not be confused with Def. 2.118, the total variation norm for measures.

Proposition 2.162. For u € L'(Q2) have [u € BV(Q)] & [TV(u) < oo]. If u € BV(Q) then
TV(u) = || Dul| m-

Proof.

e =: Let u € BV(Q). = 3 Du € M(int Q) such that Vo € C§(2) have [, ¢ -udz =
— Jo @ dDu. So

TVW%=wp{/¢“U¢r¢€QHmAwaSl}
Q

sup{/ pdDu

Q

Ssup{/ pdDu
Q

«: Let TV(u) < co. Then by linearity of integral for any ¢ € C}(£2) have

/cp’-udx
Q

So C'() D C4(Q) > ¢ = [,¢ - udz is linear and continuous in C°(2) norm and
therefore can be represented as integration with respect to a measure —Du € M(). Since
©(0) = ¢(1) = 0 can confine —Du € M(int Q).

we%mmwms@

wewmwmms@=wMW<m

<TV(u) - [[¢llco-

(Some details required, since functional first only defined on C2(£2). Need to ‘remove’ mean
slope for ¢ € C(Q), need approximation argument for ¢ € C°(2). But functional remains
linear and bounded.)

TV (u) = ||Dul|pm: Need to show that both suprema above yield same value. Have already
seen above: TV (u) < ||Du||ap. Now show converse relation.

Have established that C*(Q) lies dense in C°(£2) in C%-norm. So can confine second supre-
mum for test functions to determine || Dul|a to C(R).

Let now ¢ € C1(2) and for ¢ > 0 let ¢. € C3(Q) with ¥.(z) = 1 if z € [¢,1 — €] and
Ye(x) € [0,1] for z € Q. Then ¢ - . € C3(2) and

’/ ¢dDu—/¢-¢€dDu < [[6llo - [Dul((0,) N (1 — &,1)).
Q Q
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By regularity of positive Radon measures (cf. Theorem 2.130) |Du|((0,e) N (1 —¢,1)) — 0
as € — 0. So the integral of any ¢ € C*(Q) can be approximated arbitrarily well by some
¢ - e € CL(Q) and thus the two suprema coincide.

O

Example 2.163. Reconsider Example 2.160(ii), u = x4 for 0 <a < b < 1. Then Du = §,—d
and therefore TV (u) = ||Du||pm = 2. This equals #(9[a, b)) = #({a,b}). A test function that
achieves the supremum is any function ¢ € C3(Q) with ¢(a) =1, ¢(b) = —1.

Sketch: §, — 0y, suitable ¢, comparison with integral of ¢ over [a, b]

We will extend this example to more general sets and their characteristic functions. First,
understand structure of BV () a little better.

Proposition 2.164. Let uj, ug € BV(2). TV(u; — ug2) = 0 if and only if there is some r € R
such that uj(z) — uz(z) = r z-almost everywhere.

Proof. e One has u; —ug € BV(Q) with D(u; — ug) = Duj — Dus.
o [TV(u1 —ug) =0] & [[o¢ - (w1 — uz)dz =0 for all p € C§(Q)]

e «<: Assume uj(r) — ua(z) = r € R z-almost everywhere. Then for ¢ € C3(Q) get
Jo#' - (w1 —ug) dw =7 - (o(1) = ¢(0)) = 0.
e =: Assume TV(u; —up) = 0. Set 7 = [,(u1 —uz) dz. For some ¢ € C°(Q) set ¢ = [, da

and define ¢ : © — R via ¢(z) = [ ¥ (t) dt—1-a. Clearly ¢ € C}(Q) and ¢/ () = ¢(z) 1.
Then:

/ () - (ur(z) —uz(w) —r)de = / (?P(x) - Qﬂ) (ur(z) — uz(z)) dz
Q Q
= [ #@)- (@) ~ wafe)) dz =0

This is true for any 1) € C°(Q). Therefore u1(x) — uz(z) = r z-almost everywhere.
Ul

Corollary 2.165. TV defines a semi-norm on BV(Q). Two functions ui, us € BV(£2) belong
to the same equivalence class (w.r.t. the TV semi-norm) if 3 r € R such that ui(z) —ua(z) =7
x-almost everywhere.

If one identifies all functions in BV(£2) that only differ on negligible sets, we can identify BV ()
with R x M(int ) with the identification rule BV(Q) 3 u ~ (r,Du) € R x M(int Q) where

u(z) = r + Du((0,z)) and ||(r, Du)|| =

Proposition 2.166. The representative u : = — r + Du((0,x)) of each equivalence class is
left-continuous.

Proof. e Let z € (0,1].

|7| + || Dul|p¢ defines a norm on this space.

limsup |u(z) — u(x — ¢)| = limsup |Du([z — &, z))]
e\0 e\0
< limsup |[Du({x — €})| + limsup |Du|((z — €, x))
e\

£

The first limsup must be 0 since otherwise Du would not be finite. The second limsup
must be 0 by regularity of Radon measures (cf. Thm. 2.130).
O
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We generalize the above example for general indicator functions.

Proposition 2.167. Let S C 2 be measurable. If #(95) < oo then #(95) = TV(xs). Con-
versely, if TV(yg) < oo then there is some measurable § C Q such that (S\ S)U (S\ S) is
negligible and TV(xs) = TV(xg) = #(09).

This implies that TV (xs) approximates #(0.S) reasonably well. Possibly we need to modify S
on a negligible set, e.g. adding missing ‘isolated points’.

AN

Proof. o Let #(0S) < oo. Then there are some pairs (a;,b;);
b; < ajt1, such that up to a negligible set one has [z € S] &
1,...,n], possibly a; <0, b, > 1 (cf. Corollary 2.156).

1 € R™ 2 with a; < b;,
[z € (ai,b;) for some i in

e Analogous to Example 2.160(ii) one finds Dxs = Y i ; da, — %, (again, possibly dropping
ai, bn)

e Then #(95) = TV(xs) = [[Dxsllm = #(int 2N {ar, b1, ... an, bn}).
e Now assume TV (xs) < co. Then the weak derivative Dyg lies in M (int ).

e Consider the left-continuous representative u; :  — r; + Dxs((0,2)). Since v is left-
continuous and coincides with yg almost everywhere, we have hat w;(z) € {0,1} for all
€ (0, 1]. By regularity of Radon measures must have r; € {0,1} (otherwise u;(x) ¢ {0, 1}

on a non-negligible set). So u; = xg, for some measurable S; C Q and TV(S) = TV(S5)).

e Analogously, consider u, :  — 7 + Dxs((0,]). u, is right-continuous and the indicator
function of some measurable S, C Q. Since w;(z) = u,(x) z-a.e., have 9S; = 05;.

e By left-continuity of u; and right-continuity of u, have for every x € 9S; = 05, that there
is some € > 0 such that (z — ¢,2) and (x,z + ) either lie completely in S; NS, or in the
complement.

e Then DXS‘(xfs,:EJrs) = 14,. If 9S5; were not finite, neither were Dyxg. So 35; must be
finite. Equality of #(05;) and TV(xs,) then follows from the first part.
0

Now we approximate the original functional Fg. for sets in terms of functions of bounded vari-
ation.

Definition 2.168.

Faune : BV(Q) = RU {00}, s {fQ a(z) -u(z)dr +X-TV(u) if u(z) € [0,1] z-a.e.,
e ’ 400 else.

From Prop. 2.167 we find:

Corollary 2.169. Let S C Q be measurable. If Exyp(S) < 0o (& #(0S) < 00) then Eget(S) =
Etunc(xs). Conversely, if Egne(xs) < oo then there is some measurable S C € such that

(S\ S)U(S\ S) is negligible and Egync(xs) = Brunc(Xg) = Eset ().

Proof. e Clear with above Proposition and [ga(z)dz = [, a(z) - xs(z) dz.
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Note that optimizing Fg. is a convex optimization problem. We now establish that it has a
solution.

Proposition 2.170. Efy,. has minimizers in BV(Q).

Proof. e We express FE(u) for u € BV(Q) via the left-continuous representative u : = —
r + Du((0,z)), and in particular via the pair (r, Du) (cf. Cor. 2.165 and Prop. 2.166).
Assume u(z) € [0, 1] for all z. We find

E(u):/ga(w)-u(x)dx+/\TV(u):/Qa(x)-[r+Du((0,x))]d:n+)\|Du||M

:/ardx—i—/a(a:)- /X(O,x)(t> dDu(t) | dz + A||Dul|m
Q Q Q N——

=X(t,1)(x)

:/Q(/Qa(a:) X (@) dx) dDu(t) 4+ | Dul|m :A(O)-r+/QAdDu+AHDUHM

A

e We have used Fubini (swap order of integration) for which we used a € L'() (provides
finiteness of integral).

e The first term is continuous in 7. The second term is linear and weak+ continuous (since
1 . . . . . :
A(t) = [, a(x)dz is continuous), the third term is weaks lower semicontinuous and coer-
cive.

e Consider a minimizing sequence (ug)g of Fryne and the corresponding (7, Duy ). Due to
the constraint have 7, € [0, 1] for all k£ and by the above coerciveness || Dug|| o¢ is bounded.
Therefore (Banach—Alaoglu), there is a subsequence such that Duy; X Du and Th; = T
for some (r, Du). It is easy to verify that the corresponding w satisfies u(z) € [0, 1] for
all z € Q. By the above discussed continuity and lower-semicontinuity, (r, Du) (or u) is a
minimizer of Epype.

O

Remark 2.171 (Motivation). e The next question is whether minimizers for the original
functional Fe can be recovered from minimizers of Epype.

e While a minimizer u of Fg need not be binary, i.e. u(z) ¢ {0, 1} for some x €  (possibly
all), we will show that by thresholding we can (almost surely) generate an optimal set for
By, i.e. by setting S = {z € Q: u(z) >t} = Q\ Sy(u) for almost every ¢ in [0, 1].

e For this we need to express Eppnc(u) in terms of the sublevel or superlevel sets of u. Data
term is relatively easy, need a suitable result for the regularizer.

Theorem 2.172 (Coarea formula [Ambrosio et al., Theorem 3.40]). For u € L*(2) have

[e.e]

V) = [ TVl

—00
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We illustrate this result with a smooth example.
Example 2.173. e Let uw e CY(Q). Then Du =+ Lingq and so TV(u) = [, [v/(z)|dz.

e Let (I;)!, be the interiors of the connected components of  where u/(x) # 0. That
is, on each I; v’ is non-zero and (by continuity of u') has constant sign. Let o; be the
corresponding sign. Then

Zaz/ dx—Z/ dt = / Z;x(ai,bi)(t)dt

where a; < b; are chosen such that (a;, b;) = u(l;).

o Ift € (ai,b;) = u(I;) then there exists (by continuity of u) a unique (by strict monotonicity
of won I;) x € I; such that u(x) =t and thus #(95:(u)NI;) = 1. Conversely, if t ¢ (a;, b;)
then #(9S¢(u) N I;) = 0. S0 X(a, ) (t) = #(ISt(uw) N ;).

e Let i€ {1, ‘e ,n}, if ¢ ¢ {CLi, bz} then 8[1 N 8St(u) = @ Further, Q= UZTZ = Uz(Il U 8[1)

Therefore, for t-a.e. have #(9Si(u)) = > ; #(9St(u) N I;) = 2 X(as ps)(t) < 0. Finally,

_ /Oo #(0S,(u)) dt = /OO TV (x5y(u) .

—0o0

We can now show how to recover minimizers of Fgt from minimizers of Fp,.. To avoid issues
with ‘spurious’ discontinuities we pick the left-continuous minimizers of Efy,. (which can be
constructed from any minimizer via integration, see Prop. 2.166).

Proposition 2.174. If u is a left-continuous minimizer of Fg,n. then for almost every threshold
t € [0,1] the (superlevel) set 2\ S¢(u) is a minimizer of Fges.

Proof. e Show a formula similar to coarea formula (Theorem 2.172) for data term:

/Qa(a:)u(x) dxz/ﬁa(m) (/ X (0,u(a)) ( dt> dx—// T)X[0\S, ()] () dtdw
_ /0 ( /Q ) d:z) dt

e Do a few manipulations with coarea formula. Use u(z) € [0,1] (i.e. dSi(u) = @ for t ¢ [0, 1])
and TV(xs) = TV(1 — xs) = TV(xa\s) (since TV does not change when one flips sign
and adds constant function).

1
TV(u) = /0 TV (x[\ 8 (w)) At

Since u is optimal, have TV (u) < oo and therefore TV (x[0\g,(u)]) < 00 t-almost everywhere.
By left-continuity of u this implies that #(9[Q\ S(u)]) = TV (x(a\s,w)])-

e Together find:

Efunc(u):/ga(:z;) u(z)dz + X TV (u / Eget (2 \ Se(u)) dt

99



e This implies Feet (2 \ S¢(u)) < oo t-a.e. and so by Cor. 2.169 (and since u is optimal)

Eset (2 \ Si(u)) = Efunc(X[Q\St(u)}) > Efunc(u)
This now implies Fge (2 \ Si(u)) = Efunc(u) t-almost everywhere.

e Let ¢t be some threshold with equality. Assume now FEget(S) < Eset (2\ St(u)) = Frunc(u) <
00. Then Ernc(xs) = Eset(S) < Efunc(u), which contradicts optimality of u. So Q\ Si(u)
must be optimal for Fye.

O

2.9.3 Discretization and I'-convergence

We introduce a finite number of equidistant points in €2 and discretize Epy, by only considering
functions that are constant between two neighbouring points.

Definition 2.175. For n € N let Q,, = {- |z €{1,...,n}} and

n+1
B, (u) Efyne(u) if spt Du C Qy,
u prd
" 400 else.

Set Foo = Erunc.
Minimizing F,, corresponds to a finite-dimensional optimization problem.

Proposition 2.176 (Discrete functional). If E,(u) < oo then there is some @ € [0,1]"*! C
R ! with u(z) = 1; for almost every z € (0,1) where i € {1,...,n + 1} is determined by
z € (&L, ~1o]. Then E,(u) = E, (@) with

n+1’ n+1
n+1 n n+1
. 1 . . . . . .
E, 2Rn+ %RU{OO}, U — E Qn, i ~ui+)\2|ui+1 —’U,i‘ + E L[O,l](uz‘)
i=1 =1 i=1

where for i € {1,...,n+ 1} set

N n+1
an; = /2,1 a(x) dz.

Conversely, if E, () < oo then u constructed from @ in the above way yields E,(u) = E, ().

Proof. o If E,(u) < oo then spt Du C €, which implies Du = > 6 i - Du; for some
n+1
Du e R"™.

i—1 % ]

e Pick now u to be the left-continuous representative of w, Prop. 2.166. For x € (n—s-l’ T

where i € {1,...,n+ 1} get

i—1
u(z) =7+ Du((0,z)) =1+ leuk
k=1

which implies that u is constant on intervals (;Ljrll, nil) and 4y =7, 4; =1+ 22;11 Duy,
forie{2,...,n+1}.
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o = Du; = Q41 — @ for i € {1,...,n}. And E,(u) < oo = u(z) € [0,1] z-a.e. =
@ € [0, 1],

e Now:

n+1

En<u>=/Q a(z) - ulz) dz + \| Dul) =

n+1 n+1

_Zaz-uZ—F)\Z\qu—qu—ZL[m ;) = ( )

x)dz - Uy +)\Z | Du|
i=1

e Conversely, if E,() < oo then define u as piecewise constant, as above. Then u(z) € [0, 1]
for all z € Q. So we can ignore the [0, 1]-constraint in Ffyy,. and therefore we can reverse
the above computation to find E, (1) = E,(u).

O

Proposition 2.177 (I'-convergence). We represent functions v € BV(Q2) by pairs (r, Du) €
R x M(int 2) (Cor. 2.165) and equip the space BV(€2) with the product topology of the standard
topology on R and the weakx topology on M (). For simplicity we denote convergence in this
topology by (un = (rn, Duy)) = (u = (r, Du)) < [rn — 7 A Du, — Dul.

In this topology, F,, I'-converges to F,. Further, lim,,_,o, min F,, = min F,, and any sequence
of minimizers of E,, has a convergent subsequence (in the topology described above) such that
its limit is a minimizer of F,

Proof. e liminf: Let u, — u. W.lo.g. we can focus on sequences where E,(u,) < 0o
(subsequences with F,,(u,) = co only contribute to the liminf with +00). Then E,(u,) =
Eoo(un) = Ernc(uy). As shown in the proof of Prop. 2.170, Epyc is sequentially lower-
semicontinuous in the considered topology. So liminf, E,(u,) = liminf, Eapc(u,) >
Etune(u) = Eoo(u).

e limsup: Let u be represented by (r, Du). For n € N set r, = r and

Duy =Y 8ijmsnyDul (57 7))
=1

Sketch: Intervals of €2, which areas get put where. Final interval is ignored.

Since Du((;47,1)) — 0 as n — oo, analogous to Prop. 2.148 have Duy, X Du. So
(7n, Dup) = (1, Du).

o TV(up) = ||[Dunllm = iy [Du(((5%, 75| < [Dul(Q) = |Dufla = TV (u). Moreover,
by weaks convergence have [, AdDu, — [, AdDu and A(0) - r, = A(0) - r with A as
defined in proof of Prop. 2.170. So

lim sup E,, (uy,) = limsup A(0) - r, —l—/ AdDuy, + ATV (uy,) < Exo(u).
Q

n—o0 n—oo

e Since the additional constraint spt Du C €, to change Fgu,. into E, is sequentially weaks
closed and non-empty, by Prop. 2.170 every E,, has a minimizer. So min FE,, is well-defined.
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e Due to the constraint u(z) € [0,1] for all  and the TV-term the functionals E,, are equi-
mildly [weak* + standard topology on r| coercive and sequences of minimizers are bounded.
Convergence of optimal values and convergence of (subsequences) of minimizers then follow
from Banach—Alaoglu and Prop. 2.112.

O

2.9.4 Optimization algorithm

Functional E,, from Prop. 2.176 can be written as follows:

n+1 n
By, (@) = Z [ani - i + to,1)(1:)] + )\Z i1 — ;| = F(a) + G(Ad)
=1 =1
with
n+1
F:R" 5 RU{occ}, s Y i), fili) = ang - + o (1),
=1
AR 5 R (Ad); = iy 1 — T,
G:R" =R, b gi(0s),  gi(Bi) = |04l.

Using & = 0 € R"™! we find that F(@4) = 0 < oo and since G is finite and continuous, have
G(A1) < oo and G is continuous in A 4. So the Fenchel-Rockafellar theorem (cf. Prop. 1.135
and exercise sheet) implies that the corresponding dual problem has a solution. We can solve
primal and dual problem with the extension of the primal-dual algorithm, Prop. 1.138 (see again
exercise sheet):

Let 7,0 € Ry, 70 < ||A]| 7% and (4(©), %) € (X = R""!) x (Y = R"). Then set:

4+ = Prox,p(a'9 — rA*w®),

Y = Prox,g (0 + o A2 — aO)),
Then 49 — 4, ¥ — % as £ — 0o where (G, W) are a pair of primal and dual solutions.
Compute the proximal operators: let p, & € R"™!. Then p = Prox,p (@) < p; = Prox,f,(i;) <
U; — p; € TOf;(p;) (Prop. 1.108). We find:

(—OO, dnﬂ] lf ]31 = 0,
R Qs if p; € (0,1), N e R
ofi(pi) = {A il o ©.1) Pi=10 if 5 — 7 - apg <0,
[, i, 00) if p; =1,

Ui — T Gn; if G —7-an,; €10,1],

@ else 1 if U; — T+ &n,z’ > 1.

Now consider Proxsg+. We find G* =371 gf. And gf = (|- |)* = ¢[—1,1)- Then, as above for ¢,
w € R"™ have § = Prox,g+(0) & §i = Proxyg: (w;) = P_q,1)W;.

Both proximal steps are pointwise and very simple to evaluate. The non-smoothness of the
problem is no problem for the algorithm.
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2.10 Local optimality theory

Remark 2.178 (Motivation). Not all problems can be solved with non-smooth convex analysis.
Sometimes need to rely on more classical arguments: if a smooth function has a local minimum
at some point its derivative vanishes in that point. On general Banach spaces need to be a little
bit more careful about notion of derivative.

Definition 2.179 (Gateaux and Fréchet differentials). e Let X, Y benormed vector spaces,
T:X — Y. The Gateaux differential of T at x € X in direction h € X is
T(x+ah)—T(x) d

0T (x;h) = olzli% " =% T(x+ah)|,_, if the limit exists.

o T is Gateauz differentiable at x if 6T (z;h) exists for all h € X.

o If there is a 6T(x;-) € L(X,Y) with limy,_o ||T(‘T+h)7T§l‘r)f5T(x;h)|| = 0 then T is Fréchet

(7]
differentiable at x with Fréchet differential 6T (x,-).

Proposition 2.180. (i) The Fréchet differential is unique (if it exists).

(ii) Fréchet differentiable = Gateaux differentiable, and both differentials coincide.
(iii) Fréchet differentiable in x = continuous in z.
The proof is a direct application of the definitions.

Example 2.181. (i) f € C'(R™) has Fréchet differential 6f(z;h) = > i %(l‘) < hi =
Df(z)h. Indeed 6 f(x;-) € L(R™,R) and by Taylor’s theorem f(x+h) = f(x)+df(z;h)+
o(h).

(ii) Let g € CY(R?), define f : C°([0,1]) = R by f : = folg(x(t),t) dt. The Gateaux
differential of f in direction h € C°([0,1]) is

_ [0 (z(t), ) h(t) dt.

d 1
5f(:r;h)=da/0 g(z(t) + ah(t),t)dt >

a=0

f is even Fréchet differentiable: Jf(z;-) is linear and

F(+B) — () — 5f (a3 1) = \ / 1 a0 = g(o.0) = 001 dt\

_ /01 [gi(x,t) - gi(x,t)] -hdt‘

(use mean value theorem: Z(t) € [z(t), z(t) + h(t)])

dg
< |l ==(7 ———
= ||h”CO Hax(:ﬁvt) 8.%'(1:’1:)

where the second term tends to 0 as h — 0 in C°([0, 1]): because h(t) — 0 uniformly for all
t € [0, 1], have T(t) — x(¢) uniformly, and by uniform continuity of % (since [0, 1] compact
metric space, cf. Lemma 2.49).
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(iii) Let T € L(X,Y), then 0T = T is its own Fréchet differential.
(iv) Let

1 if 2o € [23, 23],

fiR* 5 R, (x1,22) —
0 else.

Sketch: Draw R2, highlight ‘parabola’ where f = 1.

For all (h1,hs) € R?\ (0,0) have f(ah) = 0 for a > 0 sufficiently small (why?). So the
Gateaux differential of f at 01is df(0;h) = 0. But f is not continuous in 0. So f cannot be
Fréchet differentiable in 0 (Prop. 2.180(iii)).

Definition 2.182 (Fréchet derivative). Let T : X — Y, T' Fréchet differentiable for all z € X
with Fréchet differential 07'(z;-). The map

T : X = L(X,Y), x0T (x;-)
is called Fréchet derivative of T'.
Proposition 2.183.

(i) Taking derivative is linear: Let T3, 1o : X — Y Fréchet differentiable, o, ap € R. Then
(Oél T + as TQ)/ = Tll —+ o TQI.
(ii) Chain rule: Let 77 : X — Y, Ty : Y — Z Fréchet differentiable. Then T = Ty o T} is

def.

Fréchet differentiable with 7"(x) ‘= Ty(T1(z)) o T} (x).

Proof. e (i): Follows quickly from definition. h + T;(x + h) — T;(xz) — T](xz) = o(h). Then
so is their linear combination.

e (ii): Show that T'(z) = T5(T1(x)) o Ty (z) is Fréchet differential of T" at 2. Uniqueness was
shown in Prop. 2.180(i). Need to show:

lim HTQ(Tl (x+h) = To(Ti(z)) —

lim '@l =

e Have Tp(Ti(z + h)) = To(T1(2)) + To(Ti(2)) (T1(z + h) — Ta(z)) + o(T1(x + h) — Ta(x)).

o limy o PHEEEREDE < T (@) | 1x,y) < o0 So o(Ti(w +h) = Ti(x)) = o(h). So

lim HTQ(T1($ +h) = Ta(T1(x)) —

lim ()|,

(o(h) + IIT4(T1(2)) (Ty(z + ) — T1(x) — Ti(2)h)||)
= W (o(h) + I T5(Ta () | v,z - o(R)) = 0

O

= lIrllx

From the definition of the Fréchet differential, Def. 2.179, see that it can be used to locally
approximate function.
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Proposition 2.184 (Taylor-type formula). Let T': X — Y be Fréchet differentiable on an open
set D C X with [z,2 + h] C D. Then

IT(z+h) =T ()| < sup ||T"(z+ ah)h|.
a€(0,1]
Proof. e Lett € Y* be aligned with T'(x+h)—T(z) and ||t]| =1 (so (t,T(z + h) = T(x))y vy
= ||t|ly+ - |T'(x+h) —T(x)||y, see Def. 2.83. Existence of ¢ provided by Hahn-Banach, see
Prop. 2.81)

e Let p:[0,1] = R, a— t(T(x + ah)). Find ¢'(a) = t(T'(x + ah)h). (Use chain rule,
Prop. 2.183(ii) and ¢ = ¢, see Example 2.181(iii))

e mean value theorem: ¢(1) — ¢(0) < sup,cp 1 ¢’ (). Combine:

[T(x +h) =T()| = t(T(x+h) = T(x)) = (1) = (0)]

< sup [((T'(z +ah)h| < sup [|[T'(x+ ah)h|
a€lo,1] a€l0,1]

Analogously can show:

Proposition 2.185. Let T be twice Fréchet differentiable on open D C X with [,z + h] C D.
Then

IT(2 +h) = T(x) = T'(z) hl| < 3 e 17" (2 + ) (R) (B

The Gateaux and Fréchet differentials can be used to characterize local minima of functions.
Some examples for necessary conditions are given below.

Definition 2.186 (Local minimum). Let Q C X, f: Q — R. 29 € Q is a (strict) local minimum
of fon Qif f(xg) < f(x) (strict: f(zo) < f(x)) for all z in a neighbourhood of zy (and a global
minimum if the neighbourhood is €2).

Proposition 2.187. Let f : X — R be Géateaux differentiable in x and have a local minimum
at . Then 6 f(x;-) =0.

Proof. e Forall h € X, a — f(x 4+ ah) must have a local minimum at o = 0. = % (x +
ah)la=0 =0.
O

Proposition 2.188. Let f : X — R be Gateaux differentiable at xg € € for 2 C X convex, and
let f have a local minimum at xg. Then ¢ f(zo;z — x¢) > 0 for all z € Q.

Proof. e [Q convex| = [zg+a (z—z0) € Qfor all a € [0,1]] = [ f(z0+(z —20))|a=0 > 0]
O
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2.11 Euler—Lagrange equations

Proposition 2.189 (Euler-Lagrange equation). Let f € C'(R" x R" x R). For given a, b € R
set X = {x € C([t1,t2];R™) : x(t1) = a, 2(t2) = b}. Define J : X — R by
to
T f(z(t),2(t),t) dt.

t1

If x € X is a local minimizer of J then for ¢ € [t1, o]
0= azf(x7x7t> - %atf(l',l‘,t)
where the derivative % in the last term is well-defined. This is called the Fuler—Lagrange equation.

The proof also uses the two Propositions below.

Proof. o If z € X is a local minimizer then for h € CY([t1,t2]; R") with h(t1) = h(tz) = 0
need

ta )
0=6J(x;h) = / [axf(x,:'c,t) h+ s f(z, 1) h] dt

t1

(fow now assume that one can apply integration by parts on the second term, justify this
below)

— /tz (0o f (2, &,t) — 03 f(z,&,t)] hdt

t1

e Since this must hold for all allowed h, by Prop. 2.190 the first term in the integrand must
be 0 almost everywhere, and then by continuity everywhere.

e Integration by parts: introduce A : [t1,t2] — R, ¢t — fttl Oy f(x,2,s)ds. Then %A(t) =

Opf(z,&,t). Via integration by parts: fttf Opf(z, 2, t) hdt = — ttf A(t) h(t)dt. So from
first line above find:

0= /tQ [—A(t) + O3 f(x, &, )] hdt

t1

e So by Prop. 2.191 —A(t) 4+ 0; f(x,&,t) = const a.e., and then by continuity of both sum-
mands everywhere. Then differentiability of A implies differentiability of the other term
and therefore, integration by parts is admissible.

O

Proposition 2.190 (Fundamental lemma of the calculus of variations). Let Q@ C R"™ open,
g € LY(Q). Then:

(1) [[qhgdz =0Vh € C°(Q)] « (2) [ [, 9dz = 0Vbounded measurable E CC €]
< (3)[g = 0 almost everywhere]

Proof. e (1) = (2): Let (¢1)x be a Dirac sequence in C§°(R™). (This means ¢y - £ — &g as
k — 00.) Set hy = ¢ * xg (see Def. 2.158 for xg, * denotes convolution)
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Then 0 = fQ hy gdz — fQ xe gdxr as k — oo, with the dominated convergence theorem
(since 0 < hy, <1 and hy — xg a.e.).

(2) = (3): Fore > 0let p. = W%WXB(O’E). Then g.(z) et (pexg)(z) = m fB(:):,s) gdx
=0.

g — g in L'(Q) and thus also a.e. for a subsequence £ — 0.

(3) = (1): clear.
OJ

Comment: Have used similar arguments several times throughout Section 2.9 (Example: binary
image segmentation), e.g. in Prop. 2.164.

Proposition 2.191. Let  C R" open and connected, u € L{ (). If Jqudihdz = 0 for all

loc

heCg(Q),i=1,...,n, then u = const almost everywhere.

Proof. e Let B CC Q, B open, 0 < ¢ < dist(B,99), ¢. € C(R™) a Dirac sequence (as
e = 0) and h € C3°(B).

/Q(‘)Z-(u*goe)hdx:—/Q(u*npg)aihdx:—/u(cpa(—~)*8ih)d:c

Q
=~ [ wdilpu(=) xhydz =0
Q

e = V(uxp.) =0 on B (see Proposition above) = u % p, = const on B = u = const a.e. on
B = u = const a.e. on 2.

O

Example 2.192 (Shortest curve). Given (t1,a), (t2,b), what is the curve x € C([t1,t2]) con-
necting the two points, i.e. z(t1) = a, x(t2) = b, with minimal arclength?

Sketch: Graph of z on [¢1, 2], arclength formula.

t2
J(x):/ 1+@2dt = 0=22/1+[i2 = &= const
t1

So the shortest path is a straight line.

Example 2.193 (Maximal utility). e z(t): capital at time ¢, a: interest rate, r(t): expen-
diture = () = ax(t) — r(t). u(r(t)): utility / “pleasure” derived from expenditure r(t).
T lifetime, s initial capital. So maximize total utility:

T T
J(x) = /0 exp(—Ft)u(r(t))dt = /0 exp(—pt)u(az(t) —@(t))dt

such that z(0) = s, (T) = 0. (Weighting factor exp(—ft): future pleasure counts less.)

Euler-Lagrange equation: 0 = a exp(—ft) v/ (ax — &) + % exp(—pt)u (ax — )
= o/ (r(t)) = u/(r(0)) exp((8 — a)t)
e.g. u(r) =2/r, r(t) =r(0) exp(2(av — B) t) = x(t) = B - exp(at) + ;gf)a exp(2(a — B) t)

e Now solve for z(0) = s, (T) = 0 w.r.t. B, r(0). E.g. for @« > > «/2 = capital first
grows, then decreases.
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2.12 Inequality constraints

Throughout this section let X, Y be normed spaces.

Definition 2.194 (Positive cone). A cone P C X is positive if P N (—P) = {0}. A convex,
positive cone induces a partial order on X via [z <p z] & [z —x € P|]. We write z <p z if
z—x €int P.

Proof that < satisfies axioms of partial ordering. e Reflexivity: © <p x on X: |P positive]
=0€eP|=|zr—zeP|=z<pux.

e Transitivity: Let z <p y <p z. = [y—ax € P A z—y € P| = (by convexity of P)
[2((z —y) — (y — 2)) € P] = (cone scaling property) [z —z € P| = [z <p z].

e Antisymmetry: [z <py Ay <p z| = |z = y|: By assumption [y —x € P| A [x —y € P|.
Sox—ye Pn(—P)={0}.

O

Proposition 2.195 (Dual cone). For a positive, convex cone P C X the dual cone is given by

P*={te X*: (t,z) >0forallz € X}.

If int P # () then P* is a convex, positive cone.

Comment: Compare to Definition of polar cone, Def. 1.42. On Banach space must define ‘bi-dual’
cone asymmetrically, cf. Def. 2.86.

Proof. e Clear that P* is convex cone.

e Positivity: Assume t € P* N —(P*). = (t,z) =0 for all z € P. Let 2o € int P with ¢ > 0
such that B(zg,e) C P. Then for any x € B(0,¢) have x+x9 € P = 0= (t,x + zo) = (t, x)
=1t=0.

Ul

Example 2.196. (i) X =R", P =[0,00)". P* = P. y <p x means y < x component-wise.
(i) X = L*([0,1]), P ={u € X|u(z) >0 ae}. P*=P,int P = (.

Definition 2.197. Let G: X — Y, P C Y be a convex, positive cone. G is convex if for all
A€ 0,1], z,y € X have GAz+ (1 = N)y) <p AG(z) + (1 — ) G(y).

Proposition 2.198. Let G : X — Y be convex, z € Y. Then S = {z € X : G(z) <p z} is
convex.

Proof. e Let z,ye S, A€ [0,1].

e zeS=Gx)<pzyeS=G(y) <p =z Convexity of P: A (z—G(z))+(1-X) (2—G(y)) =
z+ (AG(z)+ (1 =X G(y)) € P.
o = (convexity of G) GAz+ (1 =N y) <p AG(z)+ (1 - X)) G(y) <p z.

We can use positive cones to formulate general inequality constraints.
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Definition 2.199. Let f : X — RU {co} be convex, G : X — Y convex w.r.t. positive cone
P CY. We consider the following optimization problem:

inf {f(z)|lzr € X : G(x) <p 0}

We will also consider the perturbed problem with modified inequality constraint where we demand
G(z) <p z instead for some z € Y. This has two reasons: 1) Analytical trick for understanding
structure of minimization problem. 2) In some applications precise constraint may be unknown
or depend on noisy measurement. Want to understand how sensitive optimal value and optimizer
are w.r.t. small perturbations in constraint.

Sketch: Illustrate simple linear program: f linear on R?, G(z) <p 0 describes polytope, where
whole face is optimal. Small perturbation of polytope: only one vertex will remain optimal. =
possibly huge sensitivity of optimizer w.r.t. constraint.

Proposition 2.200 (Effective primal). For the above minimization problem the effective primal
functional is given by w: Y — R U {00},

z—inf {f(z)lr € X : G(x) <p z}.
Clearly, w(0) yields the optimal value, sought-after above. Further w is convex and decreasing,
le. 21 <p z2 = w(z1) > w(z2).
Proof. e Convexity:
Aw(z1) + (1= A w(z2) = inf{A f(z1) + (1 = A) f(@2)|z1,22 € X : G(z1) <p 21,
G(r2) <p 22}

(using convexity of f, P and G:)

> 1nf{f()\ xr1 + (1 — )\) IE2)|IL‘1,ZL‘2 e X:
G()\l‘l + (1 — )\)1’2) <p Az + (1 — )\) 2’2}
=inf{f(z)lr € X : G(z) <p Az1 + (1 — A) 22}
=w(Az1 + (1= A) 22)
e Decreasing: If z; <p z9 then feasible set for w(z1) is contained in feasible set for w(z2). So

w(z2) < w(z).
O]

Proposition 2.201 (Karush-Kuhn-Tucker (KKT) conditions). Consider setup of Def. 2.199.
Denote the optimal value by p. If 3z € X with f(z9) < co and G(z9) <p 0 (implies int P # ()
then 3¢ € Y* with ¢ € P* such that

p=inf{f(z) +({,G(z)) : 2 € X} < <.

If the problem of Def. 2.199 has a solution & € X, then £ minimizes also inf{ f(z)+(t, G(z)) : = €
X} and (£, G(2)) = 0. { is also referred to as Lagrange multiplier.
Proof. e Express original problem via effective primal functional, Prop. 2.200:
p=inf{f(z)lzr € X : G(z) <p 0}
=inf{f(zx)lr € X,z€Y :G(z) <p z <p 0}
= inf{w(z) +v_p)(2)|]z € Y}
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e P is convex and w is convex (Prop. 2.200). By assumption have z = G(zp) € —int P. So
t(—p) is finite and continuous at zp and w(z) < f(z¢) < o0. So we can apply the duality
result Prop. 2.91. Get:

= max{—w"(—t) — y_py ()|t € Y}
° _p (t) = sup{(t, 2) |z GA —P} = 1p<(t). So p = max{—w*(—t)|t € P*}. In particular this
problem has a solution ¢.

e By Fenchel-Young (Prop. 1.72, but for Banach space, cf. Def. 2.86) get for all z € Y-
w(z)+w*(—t) > (—t,z) = w(z)+(¢,z) > pand equality for 2 = 0. So inf{w(2)+(t,2) |z €
Y} =p So

= inf{f(z) + ({,2)|[r € X,z €Y : G(z) <p 2}

For all feasible candidates have z — G(z) € P. Since { € P* have <f,z — G’(az)> > 0 and
therefore, for fixed z, optimal z is given by G(x). So

p=inf{f(z) + ({,G(z)) |z € X}.

e Finally, assume primal problem has minimizer & € X Wlth p= f(z) an
(t,G(#)) <0. So p=inf{f(z)+ ({,G(z)) |z € X} < f(2) + ({,G(&)) <
that & solves the auxiliary problem and <t, G(z )> =0.

nd G(z) € —P. So
w, which implies

O

Motivation behind this proposition is easier to understand in simple, finite-dimensional example.

Example 2.202. o Let X =R™, Y =R". Let f, G be differentiable and P = R’}. Then
G(z) = (Gi(z))"; <p 0 implies G;(x) <0 for i € {1,...,n}.

Sketch: Try to minimize f on sublevel sets of (G;(-))l;.

e Assume primal problem has solution #. Recall that Y* = R™. Then there is some { €
P* =R} C R" such that & is also the solution to the unconstrained problem inf{ f(x) +
(t,G(z)) |z € X} and (£,G(2)) = 0.

e The first condition implies that V(&) + Y1, #; - VG;(&) = 0. By feasibility of & have
Gi(#) < 0. The second condition implies G;(#) < 0 = #; = 0.

e Recall that VG is orthogonal to level line of G;. So the gradient of f at & is in span of
normals of level lines of ‘active’ constraints of G. Since ¢ has only positive entries, V f
points ‘inwards’. So  can be thought of ‘re-weighting’ primal objective, such that new
optimal point of unconstrained problem coincides with constrained optimal point.

Corollary 2.203 (Necessary optimality conditions). The function L : X x Y* — R U {oo},
(x,t) — f(x) + (t,G(x)) is called Lagrangian associated with the problem of Def. 2.199. If Z is
optimal for the primal problem 3¢ € Y*: ¢ € P*, <f, G(ﬁ:)> = 0 such that L has saddle point at
(&,1), i.e

L(3,t) < L(#,1) < L(z, )

forall z € X, t € P*.
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Proof. e Existence of t € P* with <f, G(2)) = 0 is given by Prop. 2.201. Since G(%) € —P
have V t € P*: (t,G(2)) < 0= ({,G(2)). So L(&,t) < L(,1).

e The second inequality follows since & minimizes the auxiliary problem inf{ f(z)+(t, G(z)) :
x € X} (Prop. 2.201).
O

Proposition 2.204 (Sufficient optimality conditions). Let f: X — RU {0}, G: X — Y, no
convexity required this time. P C Y positive cone.

(i) Bt€ P* CY*st. & € argmingy L(z,%)] = [¢ € argmin{f(z)|z € X : G(z) <p G(2)}].
(i) [3f€ P* C Y* s.t. (2,1) is saddle point of L] = [& € argmin{ f(z)|z € X : G(z) <p 0}].

Proof. e (i): Assume 3 2/ € X with f(2/) < f(2) and G(2') <p G(Z). Then, since { € P*
= ({,G(&) — G(2') € P) > 0. So L(«/,t) = f(2')+{{,G(")) < f(2)+({,G(2)) = L(&,1),
which is a contradiction.

Sketch: X =Y =R, f convex, decreasing G = id, so constraint is x < 0. Tangent with
slope —t. Shifts effective minimum of f to tangent point.

e (ii): From saddle point get (¢, G(2)) < (£, G(2)) for all t € P*. For ¢’ € P* have t' +{ € P*
since P* is convex cone. Set t =t/ 4+ to get (t', G(#)) < 0 for all ¢/ € P*.

e Set t =0 toget 0 < ({,G(&)) <0.

e For z € X with G(x) <p 0 have: <f, G($)> < 0. Again, with saddle point property:

f(@) = f(2) + (£, G(2)) < f(2) + ({,G(z)) < f(2)

Sketch: Second condition is stronger: also requires ¢ to be optimal. This helps to get the
right slope # such that the corresponding optimal # satisfies precisely G(#) <p 0.

O

As indicated: effective primal functional also helps to study the sensitivity of the optimal value
w.r.t. small perturbations in the constraints. This can be encoded as first order approximation
of w at 0.

Proposition 2.205 (Sensitivity w.r.t. constraints). Consider the setting of Def. 2.199 and
Prop. 2.201. Slightly modify problems: consider min{f(z)|x € X : G(z) <p z} for 21,22 € Y.
Let x;, t; be the corresponding primal solutions and optimal Lagrange multipliers (dual solu-
tions), ¢ = 1,2. Then

(ta, 20 — 21) < f(z1) — f(z2) < (1,22 — 21) -
This implies ¢; € dw(z;).

Proof. e Rewrite problems to bring into exact form of Def. 2.199: Set G;(z) = G(z) — z;.
Then G(z) <p z; < G;(x) <p 0.
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