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1 Convex non-smooth optimization with proximal operators

Remark 1.1 (Motivation). Convex optimization:

• easier to solve, global optimality,

• convexity is strong regularity property, even if functions are not differentiable, even in
infinite dimensions,

• usually strong duality,

• special class of algorithms for non-smooth, convex problems; easy to implement and to
parallelize. Objective function may assume value +∞, i.e. well suited for implementing
constraints.

So if possible: formulate convex optimization problems.
Of course: some phenomena can only be described by non-convex problems, e.g. formation of
transport networks.

Definition 1.2. Throughout this section H is Hilbert space, possibly infinite dimensional.

1.1 Convex sets

Definition 1.3 (Convex set). A set A ⊂ H is convex if for any a, b ∈ A, λ ∈ [0, 1] one has
λ · a+ (1− λ) · b ∈ A.

Comment: Line segment between any two points in A is contained in A

Sketch: Positive example with ellipsoid, counterexample with ‘kidney’

Comment: Study of geometry of convex sets is whole branch of mathematical research. See
lecture by Prof. Wirth in previous semester for more details. In this lecture: no focus on convex
sets, will repeat all relevant properties where required.

Proposition 1.4 (Intersection of convex sets). If {Ci}i∈I is family of convex sets, then C
def.
=⋂

i∈I Ci is convex.

Proof. • Let x, y ∈ C then for all i ∈ I have x, y ∈ Ci, thus λ · x + (1 − λ) · y ∈ Ci for all
λ ∈ [0, 1] and consequently λ · x+ (1− λ) · y ∈ C.
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Definition 1.5 (Convex hull). The convex hull convC of a set C is the intersection of all convex
sets that contain C.

Proposition 1.6. Let C ⊂ H, let T be the set of all convex combinations of elements of C, i.e.,

T
def.
=

{
k∑
i=1

λi xi

∣∣∣∣∣k ∈ N, x1, . . . , xk ∈ C, λ1, . . . , λk > 0,
k∑
i=1

λi = 1

}
.

Then T = convC.

Proof. convC ⊂ T . T is convex: any x, y ∈ T are (finite) convex combinations of points in C.
Thus, so is any convex combination of x and y. Also, C ⊂ T . So convC ⊂ T .
convC ⊃ T . Let S be convex and S ⊃ C. We will show that S ⊃ T and thus convC ⊃ T , which
with the previous step implies equality of the two sets.
We show S ⊃ T by recursion. For some k ∈ N, x1, . . . , xk ∈ C, λ1, . . . , λk > 0,

∑k
i=1 λi = 1 let

sk =

k∑
i=1

λi xi .

When k = 1 clearly sk ∈ S.
Otherwise, set λ̃i = λi/(1− λk) for i = 1, . . . , k − 1. Then

sk = λk xk + (1− λk) ·
k−1∑
i=1

λ̃i xi︸ ︷︷ ︸
def.
= sk−1

.

We find that sk ∈ S if sk−1 ∈ S. Applying this argument recursively to sk−1 until we reach s1,
we have shown that sk ∈ S.

Proposition 1.7 (Carathéodory). Let H = Rn. Every x ∈ convC can be written as convex
combination of at most n+ 1 elements of C.

Proof. Consider arbitrary convex combination x =
∑k

i=1 λi xi for k > n+ 1.
Claim: without changing x can change (λi)i such that one λi becomes 0.

• The vectors {x2 − x1, . . . , xk − x1} are linearly dependent, since k − 1 > n.

• ⇒ There are (β2, . . . , βk) ∈ Rk−1 \ {0} such that

0 =
k∑
i=2

βi (xi − x1) =
k∑
i=2

βi xi −
k∑
i=2

βi︸ ︷︷ ︸
def.
= −β1

x1 .

• Define λ̃i = λi − t∗ βi for t∗ = λi∗
βi∗

and i∗ = argmini=1,...,k:βi 6=0
λi
|βi| .

• λ̃i ≥ 0: λ̃i = λi ·
(
1− λi∗/βi∗

λi/βi︸ ︷︷ ︸
|·|≤1

)
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• λ̃i∗ = 0

•
k∑
i=1

λ̃i =

k∑
i=1

λi︸ ︷︷ ︸
=1

−t∗
k∑
i=1

βi︸ ︷︷ ︸
=0

= 1

•
k∑
i=1

λ̃i xi =
k∑
i=1

λi xi︸ ︷︷ ︸
=x

−t∗
k∑
i=1

βi xi︸ ︷︷ ︸
=0

= x

1.2 Convex functions

Definition 1.8 (Convex function). A function f : H → R ∪ {∞} is convex if for all x, y ∈ H,
λ ∈ [0, 1] one has f

(
λ · x+ (1− λ) · y

)
≤ λ · f(x) + (1− λ) · f(y). Set of convex functions over H

is denoted by Conv(H).

• f is strictly convex if for x 6= y and λ ∈ (0, 1): f
(
λ ·x+(1−λ) ·y

)
< λ ·f(x)+(1−λ) ·f(y).

• f is concave if −f is convex.

• The domain of f , denoted by dom f is the set {x ∈ H : f(x) < +∞}. f is called proper if
dom f 6= ∅.

• The graph of f is the set {(x, f(x))|x ∈ dom f}.

• The epigraph of f is the set ‘above the graph’, epi f = {(x, r) ∈ H × R : r ≥ f(x)}.

• The sublevel set of f with respect to r ∈ R is Sr(f) = {x ∈ H : f(x) ≤ r}.

Sketch: Strictly convex, graph, secant, epigraph, sublevel set

Proposition 1.9. (i) f convex ⇒ dom f convex.

(ii) [f convex] ⇔ [epi f convex].

(iii) [(x, r) ∈ epi f ] ⇔ [x ∈ Sr(f)].

Example 1.10. (i) characteristic or indicator function of convex set C ⊂ H:

ιC(x) =

{
0 if x ∈ C
+∞ else.

Do not confuse with χC(x) =

{
1 if x ∈ C
0 else.

(ii) any norm on H is convex: For all x, y ∈ H, λ ∈ [0, 1]:

‖λ · x+ (1− λ) · y‖ ≤ ‖λ · x‖+ ‖(1− λ) · y‖ = λ · ‖x‖+ (1− λ) · ‖y‖

(iii) for H = Rn the maximum function

Rn 3 x 7→ max{xi|i = 1, . . . , n}

is convex.
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(iv) linear and affine functions are convex.

Example 1.11 (Optimization with constraints). Assume we want to solve an optimization
problem with linear constraints, e.g.,

min{f(x)|x ∈ Rn, A x = y}

where f : Rn → R ∪ {∞}, A ∈ Rm×n, y ∈ Rm. This can be formally rewritten as unconstrained
problem:

min{f(x) + g(Ax)|x ∈ Rn} where g = ι{y} .

We will later discuss algorithms that are particularly suited for problems of this form where one
only has to ‘interact’ with f and g separately, but not their combination.

As mentioned in the motivation: convexity is a strong regularity property. Here we give some
examples of consequences of convexity.

Definition 1.12. A function f : H → R ∪ {∞} is (sequentially) continuous in x if for every
convergent sequence (xk)k with limit x one has limk→∞ f(xk) = f(x). The set of points x where
f(x) ∈ R and f is continuous in x is denoted by cont f .

Remark 1.13 (Continuity in infinite dimensions). If H is infinite dimensional, it is a priori not
clear, whether closedness and sequential closedness coincide. But since H is a Hilbert space,
it has an inner product, which induces a norm, which induces a metric. On metric spaces the
notions of closedness and sequential closedness coincide and thus so do the corresponding notions
of continuity.

Proposition 1.14 (On convexity and continuity I). Let f ∈ Conv(H) be proper and let x0 ∈
dom f . Then the following are equivalent:

(i) f is locally Lipschitz continuous near x0.

(ii) f is bounded on a neighbourhood of x0.

(iii) f is bounded from above on a neighbourhood of x0.

Proof. The implications (i) ⇒ (ii) ⇒ (iii) are clear. We show (iii) ⇒ (i).

• If f is bounded from above in an environment of x0 then there is some ρ ∈ R++ such that
sup f(B(x0, ρ)) = η < +∞.

• Let x ∈ H, x 6= x0, such that α def.
= ‖x− x0‖/ρ ∈ (0, 1]

Sketch: Draw position of x̃.

• Let x̃ = x0 + 1
α(x−x0) ∈ B(x0, ρ). Then x = (1−α) ·x0 +α · x̃ and therefore by convexity

of f

f(x) ≤ (1− α) · f(x0) + α · f(x̃)

f(x)− f(x0) ≤ α · (η − f(x0)) = ‖x− x0‖ · η−f(x0)
ρ

Sketch: Draw position of new x̃.
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• Now let x̃ = x0 + 1
α(x0 − x) ∈ B(x0, ρ). Then x0 = α

1+α · x̃+ 1
1+α · x. So:

f(x0) ≤ 1
1+α · f(x) + α

1+α · f(x̃)

f(x0)− f(x) ≤ α
1+α · (f(x̃)− f(x0) + f(x0)− f(x))

f(x0)− f(x) ≤ α · (η − f(x0)) = ‖x− x0‖ · η−f(x0)
ρ

We combine to get:

|f(x)− f(x0)| ≤ ‖x− x0‖ · η−f(x0)
ρ

• Now need to extend to other ‘base points’ near x0. For every x1 ∈ B(x0, ρ/4) have
sup f(B(x1, ρ/2)) ≤ η and f(x1) ≥ f(x0) − ρ

4 ·
η−f(x0)

ρ ≥ 2 f(x0) − η. With arguments
above get for every x ∈ B(x1, ρ/2) that

|f(x)− f(x1)| ≤ ‖x− x1‖ · η−f(x1)
ρ/2 ≤ ‖x− x1‖ · 4(η−f(x0))

ρ .

• For every x1, x2 ∈ B(x0, ρ/4) have ‖x1 − x2‖ ≤ ρ/2 and thus

|f(x1)− f(x2)| ≤ ‖x1 − x2‖ · 4(η−f(x0))
ρ .

Proposition 1.15 (On convexity and continuity II). If any of the conditions of Proposition 1.14
hold, then f is locally Lipschitz continuous on int dom f .

Proof. Sketch: Positions of x0, x, y and balls B(x0, ρ), B(x, α · ρ)

• By assumption there is some x0 ∈ dom f , ρ ∈ R++ and η < ∞ such that sup f(B(x0, ρ))
≤ η.

• For any x ∈ int dom f there is some y ∈ dom f such that x = γ · x0 + (1− γ) · y for some
γ ∈ (0, 1).

• Further, there is some α ∈ (0, γ) such that B(x, α · ρ) ⊂ dom f and y /∈ B(x, α · ρ).

• Then, B(x, α · ρ) ⊂ conv(B(x0, ρ) ∪ {y}).

• So for any z ∈ B(x, α · ρ) there is some w ∈ B(x0, ρ) and some β ∈ [0, 1] such that
z = β · w + (1− β) · y. Therefore,

f(z) ≤ β · f(w) + (1− β) · f(y) ≤ max{η, f(y)} .

• So f is bounded from above on B(x, α · ρ) and thus by Proposition 1.14 f is locally Lipschitz
near x.

Remark 1.16. One can show: If f : H → R∪{∞} is proper, convex and lower semicontinuous,
then cont f = int dom f .
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Proposition 1.17 (On convexity and continuity in finite dimensions). If f ∈ Conv(H = Rn)
then f is locally Lipschitz continuous at every point in int dom f .

Proof. • Let x0 ∈ int dom f .

• If H is finite-dimensional then there is a finite set {xi}i∈I ⊂ dom f such that x0 ∈
int conv({xi}i∈I) ⊂ dom f .

• For example: along every axis i = 1, . . . , n pick x2i−1 = x + ε · ei, x2i = x − ε · ei for
sufficiently small ε where ei denotes the canonical i-th Euclidean basis vector.

• Since every point in conv({xi}i∈I) can be written as convex combination of {xi}i∈I we find
sup f(conv({xi}i∈I)) ≤ maxi∈I f(xi) < +∞.

• So f is bounded from above on an environment of x0 and thus Lipschitz continuous in x0

by the previous Proposition.

Comment: Why is interior necessary in Proposition above?

Example 1.18. The above result does not extend to infinite dimensions.

• For instance, the H1-norm is not continuous with respect to the topology induced by the
L2-norm.

• An unbounded linear functional is convex but not continuous.

Definition 1.19 (Lower semi-continuity). A function f : H → R ∪ {∞} is called (sequentially,
see Remark 1.13) lower semicontinuous in x ∈ H if for every sequence (xn)n that converges to
x one has

lim inf
n→∞

f(xn) ≥ f(x) .

f is called lower semicontinuous if it is lower semicontinuous on H.

Example 1.20. f(x) =

{
0 if x ≤ 0,

1 if x > 0
is lower semicontinuous, f(x) =

{
0 if x < 0,

1 if x ≥ 0
is not.

Sketch: Plot the two graphs.

Comment: Assuming continuity is sometimes impractically strong. Lower semi-continuity is a
weaker assumption and also sufficient for well-posedness of minimization problems: If (xn)n is
a convergent minimizing sequence of a lower semicontinuous function f with limit x then x is a
minimizer.

Proposition 1.21. Let f : H → R ∪ {∞}. The following are equivalent:

(i) f is lower semicontinuous.

(ii) epi f is closed in H × R.

(iii) The sublevel sets Sr(f) are closed for all r ∈ R.
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Proof. (i) ⇒ (ii). Let (yk, rk)k be a converging sequence in epi f with limit (y, r). Then

r = lim
k→∞

rk ≥ lim inf
k→∞

f(yk) ≥ f(y) ⇒ (y, r) ∈ epi f .

(ii) ⇒ (iii). For r ∈ R let Ar : H → H × R, x 7→ (x, r) and Qr = epi f ∩ (H × {r}). Qr is
closed, Ar is continuous.

Sr(f) = {x ∈ H : f(x) ≤ r} = {x ∈ H : (x, y) ∈ Qr} = A−1
r (Qr) is closed.

(iii)⇒ (i). Assume (i) is false. Then there is a sequence (yk)k inH converging to y ∈ H such that
ρ

def.
= limk→∞ f(yk) < f(x). Let r ∈ (ρ, f(y)). For k ≥ k0 sufficiently large, f(yk) ≤ r < f(y),

i.e. yk ∈ Sr(f) but y /∈ Sr(f). Contradiction.
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1.3 Subdifferential

Definition 1.22. The power set of H is the set of all subsets of H and denoted by 2H .

Comment: Meaning of notation.

Definition 1.23 (Subdifferential). Let f : H → R ∪ {∞} be proper. The subdifferential of f is
the set-valued operator

∂f : H → 2H , x 7→ {u ∈ H : f(y) ≥ f(x) + 〈y − x, u〉 for all y ∈ H}

For x ∈ H, f is subdifferentiable at x if ∂f(x) 6= ∅. Elements of ∂f(x) are called subgradients of
f at x.

Sketch: Subgradients are slopes of affine functions that touch graph of function in x from below.

Definition 1.24. The domain domA of a set-valued operator A are the points where A(x) 6= ∅.

Definition 1.25. Let f : H → R ∪ {∞} be proper. x is a minimizer of f if f(x) = inf f(H).
The set of minimizers of f is denoted by argmin f .

The following is an adaption of first order optimality condition for differentiable functions to
convex non-smooth functions.

Proposition 1.26 (Fermat’s rule). Let f : H → R ∪ {∞} be proper. Then

argmin f = {x ∈ H : 0 ∈ ∂f(x)} .

Proof. Let x ∈ H. Then

[x ∈ argmin f ]⇔ [f(y) ≥ f(x) = f(x) + 〈y − x, 0〉 for all y ∈ H]⇔ [0 ∈ ∂f(x)] .

Proposition 1.27 (Basic properties of subdifferential). Let f : H → R ∪ {∞}.

(i) ∂f(x) is closed and convex.

(ii) If x ∈ dom ∂f then f is lower semicontinuous at x.

Proof. (i):

∂f(x) =
⋂

y∈dom f

{u ∈ H : f(y) ≥ f(x) + 〈y − x, u〉}

So ∂f(x) is the intersection of closed and convex sets. Therefore it is closed and convex.
(ii): Let u ∈ ∂f(x). Then for all y ∈ H: f(y) ≥ f(x) + 〈y − x, u〉. So, for any sequence (xk)k
converging to x one finds

lim inf
k→∞

f(xk) ≥ f(x) + lim inf
k→∞

〈y − x, u〉 = f(x) .

8



Definition 1.28 (Monotonicity). A set-valued function A : H → 2H is monotone if

〈x− y, u− v〉 ≥ 0

for every tuple (x, y, u, v) ∈ H4 such that u ∈ A(x) and v ∈ A(y).

Proposition 1.29. The subdifferential of a proper function is monotone.

Proof. Let u ∈ ∂f(x), v ∈ ∂f(y). We get:

f(y) ≥ f(x) + 〈y − x, u〉 ,
f(x) ≥ f(y) + 〈x− y, v〉 ,

and by combining:

0 ≥ 〈y − x, u− v〉

Proposition 1.30. Let I be a finite index set, let H =
⊗

i∈I Hi a product of several Hilbert
spaces. Let fi : Hi → R ∪ {∞} be proper and let f : H → R ∪ {∞}, x = (xi)i∈I 7→

∑
i∈I fi(xi).

Then ∂f(x) =
⊗

i∈I ∂fi(xi).

Proof. ∂f(x) ⊃
⊗

i∈I ∂fi(xi): For x ∈ H let pi ∈ ∂fi(xi). Then

f(x+ y) =
∑
i∈I

fi(xi + yi) ≥
∑
i∈I

fi(xi) + 〈yi, pi〉 = f(x) + 〈y, p〉 .

Therefore p = (pi)i∈I ∈ ∂f(x).
∂f(x) ⊂

⊗
i∈I ∂fi(xi): Let p = (pi)i∈I ∈ ∂f(x). For j ∈ I let yj ∈ Hj and let y = (ỹi)i∈I where

ỹi = 0 if i 6= j and ỹj = yj . We get

f(x+ y) =
∑
i∈I

fi(xi + ỹi) =
∑

i∈I\{j}

fi(xi) + fj(xj + yj) ≥ f(x) + 〈y, p〉 =
∑
i∈I

fi(xi) + 〈yj , pj〉

This holds for all yj ∈ Hj . Therefore, pj ∈ ∂fj(xj).

Example 1.31. • f(x) = 1
2‖x‖

2: f is Gâteaux differentiable (see below) with ∇f(x) = x.
We will show that this implies ∂f(x) = {∇f(x)} = {x}.

• f(x) = ‖x‖:

– For x 6= 0 f is again Gâteaux differentiable with ∇f(x) = x
‖x‖ .

– For x = 0 we get f(y) ≥ 〈y, p〉 = f(0)+ 〈y − 0, p〉 for ‖p‖ ≤ 1 via the Cauchy-Schwarz
inequality. So B(0, 1) ⊂ ∂f(0).

– Assume some p ∈ ∂f(0) has ‖p‖ > 1. Then p
‖p‖ ∈ ∂f(p). We test:

〈
p− 0, p

‖p‖ − p
〉

=

‖p‖ − ‖p‖2 < 0 which contradicts monotonicity of the subdifferential. Therefore
∂f(0) = B(0, 1).

Sketch: Draw ‘graph’ of subdifferential.
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• H = R, f(x) = |x| is a special case of the above.

∂f(x) =


{−1} if x < 0,

[−1, 1] if x = 0,

{+1} if x > 0

• H = Rn, f(x) = ‖x‖1. The L1 norm is not induced by an inner product. Therefore the
above does not apply. We can use Proposition 1.30:

∂f(x) =
n⊗
k=1

∂abs(xk)

Sketch: Draw subdifferential ‘graph’ for 2D.

Proposition 1.32. Let f, g : H → R∪ {∞}. For x ∈ H one finds ∂f(x) + ∂g(x) ⊂ ∂(f + g)(x).

Proof. Let u ∈ ∂f(x), v ∈ ∂g(x). Then

f(x+ y) + g(x+ y) ≥ f(x) + 〈u, y〉+ g(x) + 〈v, y〉 = f(x) + g(x) + 〈u+ v, y〉 .

Therefore, u+ v ∈ ∂(f + g)(x).

Remark 1.33. The converse inclusion is not true in general and much harder to proof. A simple
counter-example is f(x) = ‖x‖2 and g(x) = −‖x‖2/2. The subdifferential of g is empty but the
subdifferential of f + g is not.

An application of the sub-differential is a simple proof of Jensen’s inequality.

Proposition 1.34 (Jensen’s inequality). Let f : H = Rn → R ∪ {∞} be convex. Let µ be a
probability measure on H such that

x =

∫
H
x dµ(x) ∈ H

and x ∈ dom ∂f . Then ∫
H
f(x) dµ(x) ≥ f(x) .

Proof. Let u ∈ ∂f(x).∫
H
f(x) dµ(x) ≥

∫
H
f(x) + 〈x− x, u〉 dµ(x) = f(x)

Let us examine the subdifferential of differentiable functions.

Definition 1.35 (Gâteaux differentiability). A function f : H → R ∪ {∞} is Gâteaux differen-
tiable in x ∈ dom f if there is a unique Gâteaux gradient ∇f(x) ∈ H such that for any y ∈ H
the directional derivative is given by

lim
α↘0

f(x+α·y)−f(x)
α = 〈y,∇f(x)〉 .
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Proposition 1.36. Let f : H → R∪{∞} be proper and convex, let x ∈ dom f . If f is Gâteaux
differentiable in x then ∂f(x) = {∇f(x)}.

Proof. ∇f(x) ∈ ∂f(x):

• For fixed y ∈ H consider the function φ : R++→ R ∪ {∞}, α 7→ f(x+α·y)−f(x)
α .

• φ is increasing: let β ∈ (0, α). Then x+ β · y = (1− β/α) · x+ β/α · (x+ α · y). So

f(x+ β · y) ≤ (1− β/α) · f(x) + β/α · f(x+ α · y),

φ(β) ≤ (1− β/α) · f(x) + β/α · f(x+ α · y)− f(x)

β

=
β/α · (f(x+ α · y)− f(x))

β
= φ(α) .

• Therefore,

〈y,∇f(x)〉 = lim
α↘0

f(x+ α · y)− f(x)

α
= inf

α∈R++

φ(α) ≤ f(x+ y)− f(x) .

(We set α = 1 to get the last inequality.)

∂f(x) ⊂ {∇f(x)}:

• For u ∈ ∂f(x) we find for any y ∈ H

〈y,∇f(x)〉 = lim
α↘0

f(x+ α · y)− f(x)

α
≥ lim

α↘0

f(x) + 〈α · y, u〉 − f(x)

α
= 〈y, u〉 .

• This inequality holds for any y and −y simultaneously. Therefore u = ∇f(x).

Remark 1.37. For differentiable functions in one dimension this implies monotonicity of the
derivative: Let f ∈ C1(R). With Propositions 1.36 and 1.29 we get: if x ≥ y then f ′(x) ≥ f ′(y).
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1.4 Cones and support functions

Cones are a special class of sets with many applications in convex analysis.

Definition 1.38. A set C ⊂ H is a cone if for any x ∈ C, λ ∈ R++ one has λ · x ∈ C. In short
notation: C = R++ · C.

Remark 1.39. A cone need not contain 0, but for any x ∈ C it must contain the open line
segment (0, x].

Proposition 1.40. The intersection of a family {Ci}i∈I of cones is cone. The conical hull of a
set C ⊂ H, denoted by coneC is the smallest cone that contains C. It is given by R++ · C.

Proof. • Let C =
⋂
i∈I Ci. If x ∈ C then x ∈ Ci for all i ∈ I and for any λ ∈ R++ one has

λ · x ∈ Ci for all i ∈ I. Hence λ · x ∈ C and C is also a cone.

• Let D = R++ · C. Then D is a cone, C ⊂ D and therefore coneC ⊂ D. Conversely, let
y ∈ D. Then there are x ∈ C and λ ∈ R++ such that y = λ · x. So x ∈ coneC, therefore
y ∈ coneC and thus D ⊂ coneC.

Proposition 1.41. A cone C is convex if and only if C + C ⊂ C.

Proof. C convex ⇒ C +C ⊂ C: Let a, b ∈ C. ⇒ 1
2 · a+ 1

2 · b ∈ C ⇒ a+ b ∈ C ⇒ C +C ⊂ C.
C +C ⊂ C ⇒ C convex: Let a, b ∈ C. ⇒ a+ b ∈ C and λ · a, (1− λ) · b ∈ C for all λ ∈ (0, 1).
⇒ λ · a+ (1− λ) · b ∈ C. ⇒ [a, b] ∈ C ⇒ C convex.

Definition 1.42. Let C ⊂ H. The polar cone of C is

C	 = {y ∈ H : sup 〈C, y〉 ≤ 0} .

Sketch: Draw a cone in 2D with angle < π/2 and its polar cone.

Proposition 1.43. Let C be a linear subspace of H. Then C	 = C⊥.

Proof. • Since C is a linear subspace, if 〈x, y〉 6= 0 for some y ∈ H, x ∈ C then sup 〈C, y〉 =∞.

• Therefore, C	 = {y ∈ H : 〈x, y〉 = 0 for all x ∈ C}.

Definition 1.44. Let C ⊂ H convex, non-empty and x ∈ H. The tangent cone to C at x is

TCx =

{
cone(C − x) if x ∈ C,
∅ else.

The normal cone to C at x is

NCx =

{
(C − x)	 = {u ∈ H : sup 〈C − x, u〉 ≤ 0} if x ∈ C,
∅ else.
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Example 1.45. Let C = B(0, 1). Then for x ∈ C:

TCx =

{
{y ∈ H : 〈y, x〉 ≤ 0} if ‖x‖ = 1,

H if ‖x‖ < 1.

Note: the ≤ in the ‖x‖ = 1 case comes from the closure in the definition of TCx. Without closure
it would merely be <.

NCx =

{
R+ · x if ‖x‖ = 1,

{0} if ‖x‖ < 1.

Example 1.46. What are tangent and normal cone for the L1-norm ball in R2?

We start to see connections between different concepts introduced so far.

Proposition 1.47. Let C ⊂ H be a convex set. Then ∂ιC(x) = NCx.

Proof. • x /∈ C: ∂ιC(x) = ∅ = NCx.

• x ∈ C:

[u ∈ ∂ιC(x)] ⇔ [ιC(y) ≥ ιC(x) + 〈y − x, u〉 ∀ y ∈ C]⇔ [0 ≥ 〈y − x, u〉 ∀ y ∈ C]

⇔ [sup 〈C − x, u〉 ≤ 0]⇔ [u ∈ NCx]

Comment: This will become relevant, when doing constrained optimization, where parts of the
objective are given by indicator functions.
Now we introduce the projection onto convex sets. It will play an important role in analysis and
numerical methods for constrained optimization.

Proposition 1.48 (Projection). Let C ⊂ H be non-empty, closed convex. For x ∈ H the
problem

inf{‖x− p‖ | p ∈ C}

has a unique minimizer. This minimizer is called the projection of x onto C and is denoted by
PCx.

Proof. • We will need the following inequality for any x, y, z ∈ H, which can be shown by
careful expansion:

‖x− y‖2 = 2 ‖x− z‖2 + 2 ‖y − z‖2 − 4 ‖(x+ y)/2− z‖2

• C is non-empty, y 7→ ‖x− y‖ is bounded from below, so the infimal value is a real number,
denoted by d.

• Let (pk)k∈N be a minimizing sequence. For k, l ∈ N one has 1
2(pk + pl) ∈ C by convexity

and therefore ‖x− 1
2(pk + pl)‖ ≥ d.

• With the above inequality we find:

‖pk − pl‖2 = 2‖pk − x‖2 + 2‖pl − x‖2 − 4‖pk+pl
2 − x‖2 ≤ 2‖pk − x‖2 + 2‖pl − x‖2 − 4 d2

13



• So by sending k, l→∞ we find that (pk)k is a Cauchy sequence which converges to a limit
p. Since C is closed, p ∈ C. And since y 7→ ‖x− y‖ is continuous, p is a minimizer.

• Uniqueness of p, quick answer: the optimization problem is equivalent to minimizing y 7→
‖x− y‖2, which is strictly convex. Therefore p must be unique.

• Uniqueness of p, detailed answer: assume there is another minimizer q 6= p. Then 1
2(p+q) ∈

C and we find:

‖x− p‖2 + ‖x− q‖2 − 2‖x− 1
2(p+ q)‖2 = 1

2‖p− q‖
2 > 0

So the sum of the objectives at p and q is strictly larger than twice the objective at the
midpoint. Therefore, neither p nor q can be optimal.

Proposition 1.49 (Characterization of projection). Let C ⊂ H be non-empty, convex, closed.
Then p = PCx if and only if

[p ∈ C] ∧ [〈y − p, x− p〉 ≤ 0 for all y ∈ C] .

Sketch: Illustrate inequality.

Proof. • It is clear that [p = PCx] ⇒ [p ∈ C], and that [p /∈ C] ⇒ [p 6= PCx].

• So, need to show that for p ∈ C one has [p = PCx] ⇔ [〈y − p, x− p〉 ≤ 0 for all y ∈ C].

• For some y ∈ C and some ε ∈ R++ consider:

‖x− (p+ ε · (y − p))‖2 − ‖x− p‖2 = ‖p+ ε · (y − p)‖2 − ‖p‖2 − 2 ε 〈x, y − p〉
= ε2‖y − p‖2 − 2 ε 〈x− p, y − p〉

If 〈x− p, y − p〉 > 0 then this is negative for sufficiently small ε and thus p cannot be the
projection. Conversely, if 〈x− p, y − p〉 ≤ 0 for all y ∈ C, then for ε = 1 we see that p is
indeed the minimizer of y 7→ ‖x− y‖2 over C and thus the projection.

Corollary 1.50 (Projection and normal cone). Let C ⊂ H be non-empty, closed, convex. Then
[p = PCx] ⇔ [x ∈ p+NCp].

Proof. [p = PCx] ⇔ [p ∈ C ∧ sup 〈C − p, x− p〉 ≥ 0] ⇔ [x− p ∈ NCp].

Comment: This condition is actually useful for computing projections.

Example 1.51 (Projection onto L1-ball in R2). Let C = {(x, y) ∈ R2 : |x|+ |y| ≤ 1}. We find:

NC(x, y) =



∅ if |x|+ |y| > 1,

{0} if |x|+ |y| < 1,

cone{(1, 1), (−1, 1)} if (x, y) = (0, 1),

cone{(1, 1), (1,−1)} if (x, y) = (1, 0),

cone{(1, 1)} if x+ y = 1, x ∈ (0, 1),

. . .
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Sketch: Draw normal cones attached to points in C.
Now compute projection of (a, b) ∈ R2. W.l.o.g. assume (a, b) ∈ R2

+. Then

PC(a, b) =


(0, 1) if [a+ b ≥ 1] ∧ [b− a ≥ 1],

(1, 0) if [a+ b ≥ 1] ∧ [a− b ≥ 1],

((1 + a− b)/2, (1− a+ b)/2) else.

Comment: Do computation in detail.

Comment: Result is very intuitive, but not so trivial to prove rigorously due to non-smoothness
of problem. Comment: Eistüte.
We now establish a sequence of results that will later allow us to analyze the subdifferential via
cones and prepare results for the study of the Fenchel–Legendre conjugate.

Proposition 1.52. Let K ⊂ H be a non-empty, closed, convex cone. Let x, p ∈ H. Then

[p = PKx] ⇔ [p ∈ K, x− p ⊥ p, x− p ∈ K	] .

Proof. • By virtue of Corollary 1.50 (Characterization of projection with normal cone inclu-
sion) we need to show

[x− p ∈ NKp] ⇔ [p ∈ K, x− p ⊥ p, x− p ∈ K	] .

• ⇒: Let x − p ∈ NKp. Then p ∈ K. By definition have sup 〈K − p, x− p〉 ≤ 0. Since
2p, 0 ∈ K (K is closed) this implies 〈p, x− p〉 = 0. Further, since K is convex, we have
(Prop. 1.41) K+K ⊂ K, and in particular K+p ⊂ K. Therefore sup 〈K + p− p, x− p〉 ≤
sup 〈K − p, x− p〉 ≤ 0 and thus x− p ∈ K	.

Sketch: Recall that K + p ⊂ K. Counter-example for non-convex K.

• ⇐: Since p ⊥ x− p have sup 〈K − p, x− p〉 = sup 〈K,x− p〉 ≤ 0 since x− p ∈ K	. Then,
since p ∈ K have x− p ∈ NKp.

Proposition 1.53. Let K ⊂ H be a non-empty, closed, convex cone. Then K		 = K.

Proof. • K ⊂ K		: Recall: K	 = {u ∈ H : sup 〈K,u〉 ≤ 0}.

• Let x ∈ K. Then 〈x, u〉 ≤ 0 for all u ∈ K	. Therefore sup 〈x,K	〉 ≤ 0 and so x ∈ K		.
Therefore: K ⊂ K		.

• K		 ⊂ K: Let x ∈ K		, set p ∈ PKx. Then by Proposition 1.52 (Projection onto closed,
convex cone): x− p ⊥ p, x− p ∈ K	.

• [x ∈ K		] ∧ [x− p ∈ K	]⇒ 〈x, x− p〉 ≤ 0.

• ‖x− p‖2 = 〈x, x− p〉 − 〈p, x− p〉 ≤ 0 ⇒ x = p ⇒ x ∈ K. Therefore K		 ⊂ K.

For subsequent results we need the following Lemma that once more illustrates that convexity
implies strong regularity.
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Proposition 1.54. Let C ⊂ H be convex. Then the following hold:

(i) For all x ∈ intC, y ∈ C, [x, y) ⊂ intC.

(ii) C is convex.

(iii) intC is convex.

(iv) If intC 6= ∅ then intC = intC and C = intC.

Proof. • (i): Assume x 6= y (otherwise the result is trivial). Then for z ∈ [x, y) there is some
α ∈ (0, 1] such that z = α · x+ (1− α) · y.

• Since x ∈ intC there is some ε ∈ R++ such that B(x, ε · (2− α)/α) ⊂ C.

• Since y ∈ C, one has y ∈ C +B(0, ε).

• By convexity of C:

B(z, ε) = α · x+ (1− α) · y +B(0, ε)

⊂ α · x+ (1− α) · (C +B(0, ε)) +B(0, ε)

= α ·B(x, ε · 2−α
α ) + (1− α) · C

⊂ α · C + (1− α) · C = C

• Therefore z ∈ intC.

• (ii): Let x, y ∈ C. By definition there are sequences (xk)k, (yk)k in C that converge to x
and y. For λ ∈ [0, 1] the sequence (λ ·xk + (1−λ) · yk)k converges to λ ·x+ (1−λ) · y ⊂ C.

• (iii): Let x, y ∈ intC. Then y ∈ C. By (i) therefore (x, y) ∈ intC.

• (iv): By definition intC ⊂ intC. Show converse inclusion. Let y ∈ intC. Then there is
ε ∈ R++ such that B(y, ε) ⊂ C. Let x ∈ intC, x 6= y. Then there is some α ∈ R++ such
that y + α · (y − x) ∈ B(y, ε) ⊂ C.

• Since y ∈ (x, y + α · (y − x)) it follows from (i) that y ∈ intC.

• Similarly, it is clear that intC ⊂ C. We show the converse inclusion. Let x ∈ intC,
y ∈ C. For α ∈ (0, 1] let yα = (1 − α) · y + α · x. Then yα ∈ intC by (i) and thus
y = limα→0 yα ∈ intC.

Example 1.55. Let H = R, C = Q ∪ [0, 1]. intC = (0, 1) 6= ∅ but C is not convex. We find
intC = (0, 1) 6= intC = intR = R and C = R 6= intC = [0, 1].

We can characterize the tangent and normal cones of a convex set, depending on the base point
position.

Proposition 1.56. Let C ⊂ H be convex with intC 6= ∅ and x ∈ C. Then

[x ∈ intC]⇔ [TCx = H]⇔ [NCx = {0}] .

Proof. • [x ∈ intC]⇔ [TCx = H]: Let D = C − x. Then 0 ∈ D, [[x ∈ intC]⇔ [0 ∈ intD]]
and TCx = coneD.
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• One can show: if D ⊂ H is convex with intD 6= ∅ and 0 ∈ D, then [0 ∈ intD] ⇔
[coneD = H].

• Sketch: assume 0 ∈ intD. Then coneD = coneD = H since there is some ε > 0 such that
for any u ∈ H \ {0} one has ε u

‖u‖ ∈ D. The converse conclusion is more tedious. It relies
on Proposition 1.54. See [Bauschke, Combettes; Prop. 6.17] for details.

• [TCx = H] ⇔ [NCx = {0}]: Recall NCx = {u ∈ H : sup 〈C − x, u〉 ≤ 0}. We can extend
the supremum to cone(C−x) and we can then extend it to the closure cone(C − x) without
changing whether it will be ≤ 0 (why?). So NCx = {u ∈ H : sup 〈TCx, u〉 ≤ 0} = (TCx)	.

• Now, if TCx = H then NCx = {0}.

• Conversely, since for x ∈ C, TCx is a non-empty, closed, convex cone, one has (TCx)		 =
TCx (Prop. 1.53) and therefore TCx = (NCx)	. So if NCx = {0} then TCx = H.

Comment: Observation: subdifferential describes affine functions that touch graph in one point
and always lie below graph. Similarly: for convex sets there are hyperplanes, that touch set in
one point and separate the set from the opposite half-space. These are called ‘supporting hyper-
planes’. The study of the subdifferential is thus related to the study of supporting hyperplanes.
Supporting hyperplanes, in turn, are again closely related to normal cones, as we will learn.

Definition 1.57. Let C ⊂ H, x ∈ C and let u ∈ H \ {0}. If

sup 〈C, u〉 ≤ 〈x, u〉

then the set {y ∈ H : 〈y, u〉 = 〈x, u〉} is a supporting hyperplane of C at x and x is a support
point at C with normal vector u. The set of support points of C is denoted by sptsC.

Proposition 1.58. Let C ⊂ H, C 6= ∅ and convex. Then:

sptsC = {x ∈ C : NCx 6= {0}}

Proof. Let x ∈ C. Then:

[x ∈ sptsC] ⇔ [∃u ∈ H \ {0} : sup 〈C − x, u〉 ≤ 0] ⇔ [0 6= u ∈ NCx]

Proposition 1.59. Let C ⊂ H convex, intC 6= ∅. Then

bdryC ⊂ sptsC and C ∩ bdryC ⊂ sptsC .

Proof. • If C = H the result is clear. (Why?) So assume C 6= H.

• Let x ∈ bdryC ⊂ C. So x ∈ C \ intC = C \ intC (Prop. 1.54).

• Consequence of Prop. 1.56: ∃u ∈ NCx \ {0}.

• Consequence of Prop. 1.58: x ∈ sptsC. Therefore bdryC ⊂ sptsC.

• Show sptsC = C ∩ sptsC: For this use sup
〈
C, u

〉
= sup 〈C, u〉 (why?).
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• Let x ∈ sptsC: ⇒ x ∈ C ⊂ C, ∃u 6= 0 s.t. sup 〈C, u〉 ≤ 〈x, u〉. ⇒ x ∈ C ∩ sptsC.

• Let x ∈ sptsC ∩ C: ⇒ x ∈ C, ∃u 6= 0 s.t. sup
〈
C, u

〉
≤ 〈x, u〉. ⇒ x ∈ sptsC.

• So: C ∩ bdryC ⊂ C ∩ sptsC = sptsC.

Example 1.60. Let H = R, C = [−1, 1). Then intC = (−1, 1), C = [−1, 1], bdryC = {−1, 1},
sptsC = {−1}, sptsC = {−1, 1}.

An application of the previous results is to show that the subdifferential of a convex function is
non-empty in a point of its domain where the function is continuous.

Proposition 1.61. Let f : H → R∪{∞} be proper and convex and let x ∈ dom f . If x ∈ cont f
then ∂f(x) 6= ∅.

Proof. • Since f is proper and convex, epi f is non-empty and convex.

• Since x ∈ cont f , f is bounded in an environment of x. Let ε > 0, η < +∞ such
that f(y) < f(x) + η for ‖x − y‖ < ε. Therefore, int epi f 6= ∅ because it contains
B(x, ε/2)× (f(x) + 2 η,∞).

• Further: consider sequence (yk = (x, f(x)− 1/k))∞k=1. Clearly yk /∈ epi f but limk→∞ yk =
(x, f(x) ∈ epi f . Therefore (x, f(x)) ∈ bdry epi f .

• So by Proposition 1.59 there is some (u, r) ∈ Nepi f (x, f(x)) \ {(0, 0)}.

• By definition of normal cone: For every (v, s) ∈ epi f have:〈(
v
s

)
−
(

x
f(x)

)
,

(
u
r

)〉
≤ 0

• So in particular for y ∈ dom f have (y, f(y)) ∈ epi f and therefore:

〈y − x, u〉+ (f(y)− f(x)) · r ≤ 0

• If r < 0 we could divide by r and get that u/|r| ∈ ∂f(x). So need to show r < 0.

• Show that r ≤ 0: For any δ > 0 have:

[(x, f(x)+δ) ∈ epi f ]⇔
[〈(

x
f(x) + δ

)
−
(

x
f(x)

)
,

(
u
r

)〉
≤ 0

]
⇔ [δ ·r ≤ 0]⇔ [r ≤ 0]

• Assume r = 0: Then must have u 6= 0. Then there is some ρ > 0 such that ‖ρ · u‖ < ε and
therefore (x+ ρ · u, f(x) + η) ∈ epi f . Then:[〈(

x+ ρ · u
f(x) + η

)
−
(

x
f(x)

)
,

(
u
0

)〉
≤ 0

]
⇔ [ρ · 〈u, u〉 ≤ 0]

This is a contradiction, therefore r 6= 0.
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Corollary 1.62. Let f : H → R ∪ {∞} convex, proper, lower semicontinuous. Then

int dom f = cont f ⊂ dom ∂f ⊂ dom f

Proof. • The first inclusion was cited in Remark 1.16 (see e.g. [Bauschke, Combettes; Corol-
lary 8.30]).

• The second inclusion is shown in Prop. 1.61.

• The third inclusion follows from contraposition of [x /∈ dom f ]⇒ [∂f(x) = ∅].

Finally, we show that closed, convex sets can be expressed solely in terms of their supporting
hyperplanes.
For notational convenience introduce ‘support function’.

Definition 1.63. Let C ⊂ H. The support function of C is

σC : H 7→ [−∞,∞], u 7→ sup 〈C, u〉 .

Sketch: Definition.
We will later learn that each convex, lower semicontinuous and 1-homogeneous function is the
support function of a suitable auxiliary set.
Sketch: Following remark.

Remark 1.64. If C 6= ∅, u ∈ H \ {0} and σC(u) < +∞, then {x ∈ H : 〈x, u〉 ≤ σC(u)} is
smallest closed half-space with outer normal u that contains C. If x ∈ C and σC(u) = 〈x, u〉
then x ∈ sptsC and {y ∈ H : 〈y, u〉 = σC(u) = 〈x, u〉} is a supporting hyperplane of C at x.

Proposition 1.65. Let C ⊂ H and set for u ∈ H

Au = {x ∈ H : 〈x, u〉 ≤ σC(u)} .

Then convC =
⋂
u∈H Au.

Proof. • If C = ∅ then σC(u) = −∞ and Au = ∅ for all u ∈ H. Hence, the result is trivial.

• Otherwise, σC(u) > −∞. Let D =
⋂
u∈H Au.

• Each Au is closed, convex and contains C. Therefore D is closed, convex and convC ⊂ D.
Since D is closed, also convC ⊂ D.

• Now, let x ∈ D, set p = PconvCx.

• Then 〈x− p, y − p〉 ≤ 0 for all y ∈ convC and thus σconvC(x− p) = sup
〈
convC, x− p

〉
=

〈p, x− p〉.

• Moreover, x ∈ D ⊂ Ax−p. So 〈x, x− p〉 ≤ σC(x− p).

• Since C ⊂ convC we get σC ≤ σconvC .

• Now: ‖x − p‖2 = 〈x, x− p〉 − 〈p, x− p〉 ≤ σC(x − p) − σconvC(x − p) ≤ 0. Therefore
x = p ⊂ convC and thus D ⊂ convC.

Corollary 1.66. Any closed convex subset of H is the intersection of all closed half-spaces of
which it is a subset.
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1.5 The Fenchel–Legendre conjugate

Remark 1.67 (Motivation). Previous result (Cor. 1.66): closed, convex set is intersection of all
half-spaces that contain set.
Analogous idea: is convex, lower semicontinuous function f pointwise supremum over all affine
lower bounds x 7→ 〈x, u〉 − au? How to get minimal offset au for given slope u?

au = inf{r ∈ R : f(x) ≥ 〈x, u〉 − r for all x ∈ H}
= inf{r ∈ R : r ≥ sup

x∈H
〈x, u〉 − f(x)}

= sup
x∈H
〈x, u〉 − f(x)

For given slopes and offsets (u, au), how do we reconstruct f? Pointwise-supremum (≡ intersec-
tion of all half-spaces containing epi f):

f(x) = sup
u∈H
〈x, u〉 − au

Note: same formula for obtaining au and reconstructing f . Write au = f∗(u) and call this
Fenchel–Legendre conjugate. Reconstruction of f is then bi-conjugate f∗∗. When is f∗∗ = f and
what happens if f∗∗ 6= f?

The Fenchel–Legendre conjugate and the bi-conjugate are fundamental in convex analysis and
optimization. We start by a formal definition of f∗, by studying some examples and showing
some basic properties of f∗. We return to a systematic study of f∗∗ in second half of this
subsection.

Definition 1.68 (Fenchel–Legendre conjugate). Let f : H 7→ [−∞,∞]. The Fenchel–Legendre
conjugate of f is

f∗ : H 7→ [−∞,∞], u 7→ sup
x∈H
〈x, u〉 − f(x) .

The biconjugate of f is (f∗)∗ = f∗∗.

Example 1.69. (i) f(x) = 1
2‖x‖

2:

f∗(u) = sup
x∈H
〈x, u〉 − 1

2‖x‖
2 = −

(
inf
x∈H

1
2‖x‖

2 − 〈x, u〉
)

= − inf
x∈H

f̃(x)

Convex optimization problem. Fermat’s rule (Prop. 1.26): y is optimizer if 0 ∈ ∂f̃(y).
Minkowski sum of subdifferentials (Prop. 1.32): y − u ∈ ∂f̃(y). ⇒ sufficient optimality
condition: y = u, so u is minimizer. ⇒ f∗(u) = 1

2‖u‖
2, f is self-conjugate.

(ii) f(x) = ‖x‖:

f∗(u) = sup
x∈H
〈x, u〉 − ‖x‖

If ‖u‖ > 1 consider sequence xk = u · k. Then

f∗(u)|[‖u‖>1] ≥ lim sup
k→∞

(
‖u‖2 − ‖u‖

)
· k =∞
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If ‖u‖ ≤ 1 then by Cauchy-Schwarz:

f∗(u)|[‖u‖≤1] ≤ sup
x∈H

(‖u‖ · ‖x‖ − ‖x‖) ≤ 0

And by setting x = 0 get f∗(u)|[‖u‖≤1] ≥ 0. We summarize

f∗(u) =

{
+∞ if ‖u‖ > 1,

0 if ‖u‖ ≤ 1
= ι

B(0,1)
(u)

(iii) special case: H = R, f(x) = |x|: f∗ = ι[−1,1]

(iv) H = Rn, f(x) = ‖x‖1 =
∑n

k=1 |xk|:

f∗(u) = sup
x∈H
〈u, x〉 − f(x) = sup

x∈H

n∑
k=1

uk · xk − |xk| =
n∑
k=1

sup
s∈R

uk · s− |s| =
n∑
k=1

abs∗(uk)

(v) f(x) = 0:

f∗(u) = sup
x∈H
〈u, x〉 =

{
0 if u = 0,

+∞ else.

From Examples 1.69 we learn a result on conjugation.

Proposition 1.70. Let (Hk)
n
k=1 be a tuple of Hilbert spaces, fk : Hk → [−∞,∞], let H =⊗n

k=1Hk, f : H → [−∞,∞], ((xk)k) 7→
∑n

k=1 fk(xk). Then f
∗((uk)k) =

∑n
k=1 f

∗
k (uk).

Proof. The proof is completely analogous to Example 1.69, (iv).

A few simple ‘transformation rules’:

Proposition 1.71. Let f : H → [−∞,∞], γ ∈ R++.

(i) Let h : x 7→ f(γ · x). Then h∗(u) = f∗(u/γ).

(ii) Let h : x 7→ γ · f(x). Then h∗(u) = γ · f∗(u/γ).

(iii) Let h : x 7→ f(−x). Then h∗(u) = f∗(−u).

(iv) Let h : x 7→ f(x)− a for a ∈ R. Then h∗(u) = f∗(u) + a. (Adding offset to function adds
same offset to all affine lower bounds.)

(v) Let h : x 7→ f(x− y) for y ∈ H. Then h∗(u) = f∗(u) + 〈u, y〉. (Shifting the effective origin
of a function requires adjustment of all offsets ≡ axis intercept at origin.)

Proof. All points follow from direct computation.

Proposition 1.72 (Fenchel–Young inequality). Let f : H → R ∪ {∞} be proper. Then for all
x, u ∈ H:

f(x) + f∗(u) ≥ 〈x, u〉
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Proof. • Let x, u ∈ H.

• Since f is proper, have f∗ > −∞ (why?).

• So if f(x) =∞, the inequality holds trivially.

• Otherwise: f∗(u) = supy∈H 〈u, y〉 − f(y) ≥ 〈u, x〉 − f(x).

Now we establish some basic properties of the conjugate. We need an auxiliary Lemma.

Proposition 1.73. Let (fi)i∈I be an arbitrary set of functions H → [−∞,∞]. Set f : H →
[−∞,∞], x 7→ supi∈I fi(x). Then:

(i) epi f = ∩i∈I epi fi

(ii) If all fi are lower semicontinuous, so is f .

(iii) If all fi are convex, so is f .

Proof. • (i): [(x, r) ∈ epi f ] ⇔ [R 3 r ≥ f(x)] ⇔ [R 3 r ≥ fi(x) for all i ∈ I] ⇔ [(x, r) ∈
epi fi for all i ∈ I] ⇔ [(x, r) ∈

⋂
i∈I epi fi].

• (ii): If all fi are lower semicontinuous, all epi fi are closed (Prop. 1.21). Then epi f =⋂
i∈I epi fi is closed, i.e. f is lower semicontinuous.

• (iii): If all fi are convex, all epi fi are convex (Prop. 1.9). Then epi f =
⋂
i∈I epi fi is

convex (Prop. 1.4), i.e. f is convex.

Proposition 1.74 (Basic properties of conjugate). Let f : H → [−∞,∞]. Then f∗ is convex
and lower semicontinuous.

Proof. • The result is trivial if f(x) = −∞ for some x ∈ H. So assume f > −∞ from now
on.

• Can write conjugate as: f∗(u) = supx∈dom f 〈u, x〉 − f(x).

• So conjugate is pointwise supremum over family of convex, lower semicontinuous functions:
(y 7→ 〈y, x〉 − f(x))x∈dom f .

• By Proposition 1.73 have: f∗ is convex and lower semicontinuous.

Now, we return to the initial motivation and start to study the bi-conjugate f∗∗. We first give
some related background.

Definition 1.75. Let f : H → [−∞,∞].

• The lower semicontinuous envelope or closure of f is given by

f : x 7→ sup{g(x)|g : H → [−∞,∞], g is lsc, g ≤ f}.

• The convex lower semicontinuous envelope of f is given by

conv f : x 7→ sup{g(x)|g : H → [−∞,∞], g is convex, lsc, g ≤ f}.
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Proposition 1.76. f is lower semicontinuous and conv f is convex, lower continuous.

Proof. This follows directly from Prop. 1.73.

Proposition 1.77. Let f : H → [−∞,∞]. Then epi conv f = conv epi f .

Proof. • Set F = conv f and D = conv epi f .

• Since F ≤ f ⇒ epi f ⊂ epiF . Since epiF is convex, have conv epi f ⊂ epiF . Since epiF
is also closed (why?), have D = conv epi f ⊂ epiF .

• Show converse inclusion. Let (x, ζ) ∈ epiF \D. SinceD is closed and convex, the projection
onto D is well defined. Let (p, π) = PD(x, ζ). Characterization of projection:〈(

x− p
ζ − π

)
,

(
y − p
η − π

)〉
≤ 0 for all (y, η) ∈ D

• For some (y, η) ∈ D, send η →∞ (which is still in D, why?). We deduce: ζ − π ≤ 0.

• Note that (y, η) ∈ D ⇒ y ∈ conv dom f . (Details: any (y, η) ∈ D = conv epi f can be
written as limit of sequence (yk, ηk)k in conv epi f . Any (yk, ηk) can be written as finite
convex combination of some (yk,i, ηk,i)i in epi f . So all yk,i ∈ dom f and thus the convex
combination yk ∈ conv dom f and therefore the limit y ∈ conv dom f .)

• Also note: domF ⊂ conv dom f = E: Define function

g(x) =

{
F (x) if x ∈ E,
+∞ else.

Since E is closed and convex, and F is lsc and convex, g is lsc and convex. Since F ≤ f and
g(x) = F (x) for x ∈ dom f ⊂ E, have g ≤ f . Since F is the convex lower semicontinuous
envelope of f we must therefore have g ≤ F and therefore domF ⊂ E.

• Assume ζ = π. Then projection characterization yields: 〈x− p, y − p〉 ≤ 0 for all y ∈
conv dom f . Since [(x, ζ) ∈ epiF ] ⇒ [x ∈ domF ⊂ conv dom f ] we may set y = x and
obtain ‖x− p‖2 ≤ 0. Therefore x = p which contradicts (x, ζ) /∈ D.

• Now assume ζ < π. Set u = x−p
π−ζ and let η = f(y). Then from characterization pf

projection get:

〈u, y − p〉+ π ≤ f(y)

Once more, set y = x and use ζ ≥ f(x) to get[
ζ ≥ π +

〈
x− p, x−pπ−ζ

〉]
⇐
[
−(π − ζ)2 ≥ ‖x− p‖2

]
.

This is a contradiction and therefore there cannot be any (x, ζ) ∈ epiF \D.

Now some basic properties of the biconjugate.

Proposition 1.78. Let f : H → [−∞,∞]. Then f∗∗ ≤ f and f∗∗ is the pointwise supremum
over all continuous affine lower bounds on f .
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Proof. • We find:

f∗(u) = sup
y∈H
〈u, y〉 − f(y)

f∗∗(x) = sup
u∈H
〈u, x〉 −

(
sup
y∈H
〈u, y〉 − f(y)

)
= sup

u∈H
inf
y∈H
〈u, x〉 − 〈u, y〉+ f(y)

≤ sup
v∈H
〈u, x− x〉+ f(x) = f(x) (set y = x in infimum)

• By Prop. 1.72 (Fenchel–Young): f(x) ≥ 〈u, x〉 − f∗(u) for all x, u ∈ H. So f∗∗(x) =
supu∈H 〈u, x〉 − f∗(u) is the pointwise supremum over a family of continuous affine lower
bounds on f .

• So f∗∗ is pointwise supremum over family of convex, lsc functions ⇒ f∗∗ is convex lsc
(Prop. 1.73).

• On the other hand, let g(x) = 〈v, x〉 − r ≤ f(x) for some (v, r) ∈ H × R be a continuous
affine lower bound. Then:

f∗(v) = sup
x∈H
〈v, x〉 − f(x)︸︷︷︸

≥g(x)

≤ sup
x∈H
〈v, x〉 − 〈v, x〉+ r = r

f∗∗(x) = sup
u∈H
〈u, x〉 − f∗(u) ≥ 〈v, x〉 − f∗(v)︸ ︷︷ ︸

≤r

≥ 〈v, x〉 − r = g(x)

So f∗∗ is larger (or equal) than any continuous affine lower bound on f .

We now prove the main result of this subsection.

Proposition 1.79. Assume f : H → R ∪ {∞} has a continuous affine lower bound. Then
f∗∗ = conv f .

Proof. • Let F = conv f . By Prop. 1.77 have epiF = conv epiF and by Prop. 1.65 epiF is
the intersection of all closed halfspaces that contain epi f .

• Let (v, r) ∈ H × R be the outward normal of a closed halfspace that contains epiF . If
r > 0 then epiF = ∅ and then f = +∞ = f∗∗ and we are done.

• So assume that epiF 6= ∅ and therefore r ≤ 0 for all closed halfspaces that contain epiF .

• Similarly, f∗∗ is the pointwise supremum over all continuous affine lower bounds on f .
Therefore, epi f∗∗ is the intersection of all closed halfspaces that contain epi f∗∗ and for
which the outward normal (v, r) has r < 0.

• Therefore, epiF ⊂ epi f∗∗ which implies f∗∗ ≤ F . (Also follows from f∗∗ convex, lsc and
f∗∗ ≤ f , why?)

• Let (u, a) ∈ H ×R such that x 7→ 〈u, x〉 − a is a continuous affine lower bound of f . Then
it is also a lower bound on f∗∗ and finally F .

• Assume (z, ζ) ∈ epi f∗∗ \ epiF .
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• Then there must be a closed halfspace in H×R with horizontal outward normal (i.e. r = 0)
that contains epiF , but not (z, ζ). That is, there is some (v, y) ∈ H2 such that 〈x− y, v〉 ≤
0 for all x ∈ domF but 〈z − y, v〉 > 0.

Sketch: epiF , (z, ζ), (y, v) ∈ H ×H, (u, a) ∈ H × R

• For s ≥ 0 let gs(x) = 〈u, x〉 − a+ s · 〈x− y, v〉. Recall that g0 is a continuous affine lower
bound on f .

• For x ∈ dom f ⊂ domF (follows from F ≤ f) have gs(x) = g0(x) + s · 〈x− y, v〉 ≤ f(x).
So for s ≥ 0, gs is a continuous affine lower bound on f , and thus on f∗∗.

• But for s→∞ have gs(z) = g0(z) + s · 〈z − y, v〉 → ∞ > ζ ≥ f∗∗(z).

• This is a contradiction, thus points like (z, ζ) cannot exist and epi f∗∗ = epiF .

We obtain the famous Fenchel–Moreau Theorem as a corollary.

Corollary 1.80 (Fenchel–Moreau). Let f : H → R ∪ {∞} be proper. Then

[f is convex, lsc] ⇔ [f∗∗ = f ] ⇒ [f∗ is proper] .

Proof. • ⇐ of equivalence: If f = f∗∗ then f is the conjugate of f∗. Therefore, it is convex
and lsc.

• ⇒ of equivalence: f is convex, lsc. ⇒ epi f is convex, closed. ⇒ it is intersection of
all closed halfspaces that contain epi f . If f has no continuous affine lower bound then
all these halfspaces must have ‘horizontal’ normals (r = 0) ⇒ f(H) ⊂ {−∞,+∞}, which
contradicts assumptions. So f must have continuous affine lower bound.

• By previous result f∗∗ = conv f which equals f since f convex, lsc.

• f∗ is proper: we have just shown that f has continuous affine lower bound, say f(x) ≥
〈x, v〉 − a for some (v, a) ∈ H ×R. Recall: this implies f∗(v) ≤ a. Conversely, f is proper,
i.e. f(x0) <∞ for some x0 and then f∗(u) ≥ 〈x0, u〉 − f(x0).

Comment: We showed in proof: A convex lsc function must have a continuous affine lower bound.
This is not true for general convex (but not lsc) functions. Recall: unbounded linear functions
are convex.
A few applications: The following result is helpful to translate knowledge from ∂f or f∗ onto
the other. It gives the ‘extreme cases’ of the Fenchel–Young inequality.

Proposition 1.81. Let f : H → R ∪ {∞} be convex, lsc. Let x, u ∈ H. Then:

[u ∈ ∂f(x)] ⇔ [f(x) + f∗(u) = 〈x, u〉] ⇔ [x ∈ ∂f∗(u)]

Comment: Intuitive interpretation: conjugate f∗(u) computes minimal offset a such that y 7→
〈u, y〉 − a is lower bound on f . If u ∈ ∂f(x) then y 7→ 〈u, y − x〉+ f(x) is affine lower bound for
f that touches graph in x. So offset 〈u, x〉 − f(x) is minimal for slope u.

Proof. • Consider first equivalence.
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• ⇒: By Prop. 1.72 (Fenchel–Young): f∗(u) ≥ 〈u, x〉 − f(x).

• Have f(y) ≥ f(x) + 〈u, y − x〉 for all y ∈ H. Get:

f∗(u) = sup
y∈H
〈u, y〉 − f(y) ≤ sup

y∈H
〈u, y〉 − 〈u, y − x〉 − f(x) = 〈u, x〉 − f(x)

• So f∗(u) + f(x) = 〈u, x〉.

• ⇐:

f∗(u) = 〈x, u〉 − f(x) = sup
y∈H
〈y, u〉 − f(y) ≥ 〈y, u〉 − f(y) for all y ∈ H

So f(y) ≥ 〈u, y − x〉+ f(x) for all y ∈ H. ⇒ u ∈ ∂f(x).

• For second equivalence, apply first equivalence to f∗ and use that f∗∗ = f .

Now we can relate one-homogeneous functions and indicator functions:

Definition 1.82. A function f : H → R∪{∞} is positively 1-homogeneous if f(λ ·x) = λ · f(x)
for all x ∈ H, λ ∈ R++.

Proposition 1.83. Let f : H → R ∪ {∞}. Then f is a convex, lsc, positively 1-homogeneous
function if and only if f = (ιC)∗ = σC for some closed, convex, non-empty C ⊂ H.

Comment: Relation between indicator functions and support functions: ι∗C = σC .

Proof. • ⇐: ι∗C is lsc and convex. Moreover, for x ∈ H, λ ∈ R++

ι∗C(λ · x) = σC(λ · x) = sup
y∈C
〈y, λ · x〉 = λ sup

y∈C
〈y, x〉 = λ · σC(x) .

So ι∗C is positively 1-homogeneous.

• ⇒: Observe: f(0) = 0 (why?). So

f∗(u) = sup
x∈H
〈u, x〉 − f(x) ≥ 0 (set x = 0 in sup).

• If, for fixed u ∈ H there is some x ∈ H such that 〈u, x〉 − f(x) > 0, then

f∗(u) ≥ lim sup
k→∞

〈u, k · x〉 − f(k · x) = lim sup
k→∞

k · (〈u, x〉 − f(x)) =∞ .

• So f∗(H) ⊂ {0,+∞} and therefore f∗ = ιC for some C ⊂ H. Since f∗ is convex, lsc ⇒ C
is convex, closed (why?).

• Since f is convex, lsc have f = f∗∗ = ι∗C .

This allows us to describe subdifferential of 1-homogeneous functions.

Corollary 1.84. If f : H → R ∪ {∞} is convex, lsc, positively 1-homogeneous, then f = σC
where C = ∂f(0).
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Proof. • By assumption, f = σC for some closed, convex C ⊂ H, f∗ = ιC .

• Then [u ∈ ∂f(0)] ⇔ [0 ∈ ∂f∗(u) = ∂ιC(u)] ⇔ [u ∈ C].

Example 1.85. Go through Examples 1.69 and study biconjugates. Note the relation between
positively 1-homogeneous functions and indicator functions.
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1.6 Convex variational problems

Remark 1.86 (Motivation). We want to find minimizers of functionals. Standard argument:
minimizing sequence + compactness: Weierstrass provides cluster point. Lower semicontinuity:
cluster point is minimizer.
Problem: compactness in infinite dimensions is far from trivial. Example: orthonormal sequences
(xk)k∈N, 〈xi, xj〉 = δi,j (e.g. ‘traveling bumps’ in L2(R) or canonical ‘basis vectors’ in `2(N)). ⇒
closed unit ball in infinite-dimensional Hilbert spaces is not compact.
Recall: avoided this problem for proof of existence of projection via Cauchy sequence, but this
argument will not work in general. ⇒ we need a different tool.

Definition 1.87 (Weak convergence on Hilbert space). A sequence (xk)k in H is said to converge
weakly to some x ∈ H, we write xa ⇀ x, if for all u ∈ H

lim
k→∞

〈u, xk〉 = 〈u, x〉 .

Comment: For now only use weak convergence for Hilbert spaces. More general and detailed
discussion will follow later.

Remark 1.88. Weak convergence corresponds to weak topology. Weak topology is coarsest
topology in which all maps x 7→ 〈u, x〉 for all u ∈ H are continuous (this implies precisely that
〈u, xk〉 → 〈u, x〉 for weakly converging sequences xk ⇀ x). So, subbasis is given by all open
halfspaces. Weak topology still yields Hausdorff space (e.g. for any two distinct points x, y ∈ H
can find open halfspace A such that x ∈ A, y /∈ A). Need Hausdorff property for uniqueness of
limits.

In general it is easier to obtain compactness with respect to the weak topology due to the
following theorem.

Theorem 1.89 (Banach–Alaoglu). The closed unit ball of H is weakly compact.

Corollary 1.90. Weakly closed, bounded subsets of H are weakly compact.

Proof. Let C ⊂ H be weakly closed and bounded. Then there is some ρ ∈ R++ such that
C ⊂ B(0, ρ), which is weakly compact by Banach–Alaoglu. C is a weakly closed subset of a
weakly compact set, therefore it is weakly compact.

Example 1.91 (Orthonormal sequence and Bessel’s inequality). Let (xk)k∈N be an orthonormal
sequence in H, i.e. 〈xi, xj〉 = δi,j for all i, j ∈ N, and let u ∈ H. Then for all N ∈ N

0 ≤

∥∥∥∥∥u−
N∑
k=1

xk 〈xk, u〉

∥∥∥∥∥
2

= ‖u‖2 − 2

〈
u,

N∑
k=1

xk 〈xk, u〉

〉
+

∥∥∥∥∥
N∑
k=1

xk 〈xk, u〉

∥∥∥∥∥
2

= ‖u‖2 − 2

N∑
k=1

〈u, xk〉2 +

N∑
k=1

〈u, xk〉2 = ‖u‖2 −
N∑
k=1

〈u, xk〉2 .

So ‖u‖2 ≥
∑N

k=1 〈u, xk〉
2 for all N (which then also holds in the limit N →∞) and 〈u, xk〉 → 0

as k →∞. Therefore xk ⇀ 0. (But clearly not xk → 0.)

The previous example shows that weak convergence does in general not imply strong convergence.
We require an additional condition.
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Proposition 1.92. Let (xk)k∈N be a sequence in H and let x ∈ H. Then the following are
equivalent:

[xk → x] ⇔ [xk ⇀ x and ‖xk‖ → ‖x‖]

Proof. • ⇒: For every u ∈ H have y 7→ 〈u, y〉 is continuous. Therefore, if xk → x one finds
〈u, xk〉 → 〈u, x〉 for all u ∈ H, therefore xk ⇀ x. The norm function is also (strongly)
continuous, therefore it also implies ‖xk‖ → ‖x‖.

• ⇐:

‖xk − x‖2 = ‖xk‖2︸ ︷︷ ︸
→‖x‖2

−2 〈xk, x〉︸ ︷︷ ︸
→〈x,x〉

+‖x‖2 → 0

Remark 1.93. In the previous example we find indeed limk→∞ ‖xk‖ = 1 6= ‖0‖. Therefore, the
sequence cannot converge strongly.

Theorem 1.94 (Characterization of infinite-dimensional Hilbert spaces). The following are
equivalent:

(i) H is finite-dimensional.

(ii) The closed unit ball B(0, 1) is compact.

(iii) The weak topology of H coincides with its strong topology.

(iv) The weak topology of H is metrizable.

Remark 1.95. Note that item (iv) implies that for the weak topology we can in general not
equate sequential closedness and closedness, as for the strong topology (cf. Remark 1.13). We
will now show that it remains at least equivalent for convex sets (and functions).

Proposition 1.96. Let C ⊂ H be convex. Then the following are equivalent:

(i) C is weakly sequentially closed.

(ii) C is sequentially closed.

(iii) C is closed.

(iv) C is weakly closed.

Proof. • (i) ⇒ (ii): Let (xk)k be a sequence in C that converges strongly to some x ∈ H.
Prop. 1.92: [xk → x] ⇒ [xk ⇀ x]. Therefore, x ∈ C since C is weakly sequentially closed.
Therefore, C is (strongly) sequentially closed.

• (ii) ⇔ (iii): The two are equivalent because the strong topology is metrizable (cf. Remark
1.13).

• (iii) ⇒ (iv): For this need convexity. C is closed and convex. Therefore, C is the
intersection of all closed halfspaces that contain C.
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• A subbasis for the open sets of the weak topology are open halfspaces. So subbasis for
weakly closed sets are closed halfspaces. C can be written as intersection of weakly closed
sets. ⇒ C is weakly closed.

• (iv) ⇒ (i): Sequential closedness is implied by ‘full’ closedness. (Proof: Let C be weakly
closed. Let (xk)k be a sequence in C with xk ⇀ x for some x ∈ H. Assume x 6= C. Then
there is some weakly open U such that x ∈ U , U ∩C = ∅. But since xk ⇀ x, for sufficiently
large k one must have xk ∈ U which is a contradiction.)

Corollary 1.97. For a convex function f : H → R∪{∞} the notions of weak, strong, sequential
and ‘full’ lower semicontinuity coincide.

Proof. When f is convex, all its sublevel sets are convex and for these all corresponding notions
of closedness coincide.

Corollary 1.98. The norm x 7→ ‖x‖ is (sequentially) weakly lower semicontinuous.

Remark 1.99. Note: the norm is not (sequentially) weakly continuous in infinite dimensions.
Recall an orthonormal sequence (xk)k∈N. Then xk ⇀ 0 but ‖xk‖ → 1.

Corollary 1.100. The closed unit ball B(0, 1) is weakly closed. But in infinite dimensions the
(strongly) open unit ball B(0, 1) is not weakly open.

Proof. • B(0, 1) is a convex set. Therefore the notion of strong and weak closure coincide.

• Consider once more an orthonormal sequence (xk)k∈N. Then xk /∈ B(0, 1) for all k, but
xk ⇀ 0 ∈ B(0, 1).

So in the following we resort to weak topology to obtain minimizers via compactness. We do not
have to worry too much about the new notion of lower semicontinuity. But since (strongly) open
balls are no longer weakly open, we will face some subtleties when we try to extract converging
subsequences from minimizing sequences: we do not know whether weak compactness implies
weak sequential compactness. This is provided by the following theorem:

Theorem 1.101 (Eberlein–Šmulian). For subsets of H weak compactness and weak sequential
compactness are equivalent.

Now we give a prototypical theorem for the existence of minimizers.

Proposition 1.102. Let f : H → R ∪ {∞} be convex, lower semicontinuous. Let C ⊂ H be
closed, convex such that for some r ∈ R the set C ∩ Sr(f) is non-empty and bounded. Then f
has a minimizer over C.

Proof. • The sets C and Sr(f) are closed and convex. So D = C∩Sr(f) is closed and convex
and by assumption bonded.

• D closed, convex ⇒ D is weakly closed (Prop. 1.96).

• D bounded, weakly closed ⇒ weakly compact (Cor. 1.90 of Banach–Alaoglu).

• D weakly compact ⇒ weakly sequentially compact (Thm. 1.101, Eberlein–Šmulian).
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• SinceD = C∩Sr(f) is non-empty, we can confine minimization of f over C to minimization
of f over D.

• Let (xk)k∈N be minimizing sequence of f over D. Since D is weakly sequentially compact,
there is a subsequence of (xk)k that converges to some x ∈ D in the weak topology.

• Since f is convex and lower semicontinuous, it is weakly sequentially lower semicontinuous
(Cor. 1.97). Therefore, x is a minimizer.

A useful criterion to check whether the sublevel sets of a function are bounded is coerciveness.

Definition 1.103 (Coerciveness). A function f : H → [−∞,∞] is coercive if lim‖x‖→∞ f(x) =
∞.

Proposition 1.104. Let f : H → [−∞,∞]. Then f is coercive if and only if its sublevel sets
Sr(f) are bounded for all r ∈ R.

Proof. • Assume Sr(f) is unbounded for some r ∈ R. Then we can find a sequence (xk) in
Sr(f) with ‖xk‖ → ∞ but lim sup f(xk) ≤ r.

• Assume Sr(f) is bounded for every r ∈ R. Let (xk)k be an unbounded sequence with
lim ‖xk‖ → ∞. Then for any s ∈ R there is some N ∈ N such that xk /∈ Ss(f) for k ≥ N .
Hence, lim inf f(xk) ≥ s. Since this holds for any s ∈ R, have lim f(xk) =∞.

Once existence of minimizers is ensured, uniqueness is simpler to handle. ‘Mere’ convexity is not
sufficient for uniqueness. We require additional assumptions. Strict convexity is sufficient.

Proposition 1.105. Consider the setting of Prop. 1.102. If f is strictly convex then there is a
unique minimizer.

Proof. Assume x and y ∈ C are two distinct minimizers. Then f(x) = f(y). Then z = (x +
y)/2) ∈ C and f(z) < 1

2f(x) + 1
2f(y) = f(x) = f(y). So neither x nor y can be minimizers.
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1.7 Proximal operators

Definition 1.106. Let f : H → R∪{∞} convex, lsc and proper. Then the map Proxf : H → H
is given by

x 7→ argmin
y∈H

(
1
2‖x− y‖

2 + f(y)
)
.

The minimizer exists and is unique, so the map is well-defined.

Remark 1.107 (Motivation). Interpretation: near point x try to minimize f , but penalize if
we move too far from x. Intuitively: do small step in direction where f decreases, similarly to
gradient descent, but Proxf is also defined for non-smooth f .
The proximal operator will be our basic tool for optimization. Later we will show that we can
optimize f + g by only knowing the proximal operators of f and g separately. This is the basis
for the proximal splitting strategy. One tries to decompose the objective into components such
that the proximal operator for each component is easy to compute.

Proof that Proxf is well-defined. • Since f is convex and lsc ⇒ f∗ is proper. Therefore f
has a continuous affine lower bound, which we denote by f̃ : y 7→ 〈u, y〉 − r.

• For fixed x ∈ H let g : y 7→ 1
2‖x− y‖

2. By ‘completing the square’ we get

f̃(y) + g(y) = 1
2‖x− y‖

2 + 〈u, y〉 − r = 1
2‖y − v‖

2 + C

for some v ∈ H, C ∈ R. So sublevel sets of f̃ + g are bounded.

• Since f̃ ≤ f have Sr(f + g) ⊂ Sr(f̃ + g), so sublevel sets of f + g are bounded.

• Since f is proper and g is finite, there is some r ∈ R such that Sr(f + g) is non-empty.

• Using Prop. 1.102 with C = H and f = f + g we find that f + g has a minimizer over H.

• Since f is convex and g is strictly convex, f + g is strictly convex. Prop. 1.105 ⇒ this
minimizer is unique.

Characterization of proximal operator.

Proposition 1.108. Let f be convex, lsc, proper, let x ∈ H. Then

[p = Proxf (x)] ⇔ [〈y − p, x− p〉+ f(p) ≤ f(y) for all y ∈ H] ⇔ [x− p ∈ ∂f(p)]

Proof. • The second equivalence is trivial. We prove the first.

• ⇒: Assume p = Proxf (x), let y ∈ H. For α ∈ [0, 1] let pα = α · y + (1− α) · p.

• Then f(pα) + 1
2‖x− pα‖

2 ≥ f(p) + 1
2‖x− p‖

2.

• By convexity of f : f(pα) ≤ α · f(y) + (1− α) · f(p).

• We get:

α · f(y) + (1− α) · f(p) + 1
2‖x− pα‖

2 ≥ f(p) + 1
2‖x− p‖

2
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• Setting g(α) = α · f(y) + (1 − α) · f(p) + 1
2‖x − pα‖

2 this translates to g(α) ≥ g(0) for
α ∈ [0, 1].

• Note that g is differentiable, so we must have ∂αg(α)|α=0 ≥ 0. This implies:

f(y)− f(p) + 〈x− p, y − p〉 ≥ 0 .

• ⇐: For fixed x let g : y 7→ 1
2‖x− y‖

2. Then ∂g(y) = {y − x}. Then

[x− p ∈ ∂f(p)] ⇔ [0 ∈ p− x+ ∂f(p) = ∂g(p) + ∂f(p)]

⇒ (∂f + ∂g ⊂ ∂(f + g),Prop. 1.32) [0 ∈ ∂(g + f)(p)]

⇔ [p ∈ argmin(g + f)] ⇔ [p = Proxf (x)]

Comment: Since we did not prove any results of the form ∂(f+g) = ∂f+∂g we had to ‘manually’
do the ⇒-argument.

Example 1.109 (Projections). Projections are special cases of proximal operators. Let C ⊂ H
be non-empty, closed, convex. We find

PCx = argmin
p∈C

1
2‖x− p‖

2 = argmin
p∈H

1
2‖x− p‖

2 + ιC(p) = ProxιC(x) .

Then the characterization for projections (Prop. 1.49) is a special case of Prop. 1.108:

[p = ProxιC(x)] ⇔ [〈y − p, x− p〉+ ιC(p) ≤ ιC(y) for all y ∈ H]

⇔ [p ∈ C ∧ 〈y − p, x− p〉 ≤ 0 for all y ∈ C] ⇔ [p = PCx]

Similarly, the characterization of projections via the normal cone (Cor. 1.50) is a special case
of the characterization of the proximal operator via the subdifferential: Recall ∂ιC(y) = NCy
(Prop. 1.47). Then:

[x ∈ p+ ∂ιC(p)] ⇔ [x ∈ p+NCp]

So, conversely we may think of the proximal operator as a generalization of projections with ‘soft
walls’: instead of paying an infinite penalty when we leave C, the penalty is now controlled by
a more general function f .

A few more examples, that are not projections:

Example 1.110. Let λ > 0.

(i) f(y) = λ
2‖y‖

2: [p = Proxf (x)] ⇔ [x − p ∈ ∂f(p) = {λ · p}] ⇔ [p = x/(1 + λ)]. So
Proxf (x) = x/(1 + λ).

(ii) f(y) = λ · ‖y‖: Recall:

∂f(y) = λ ·

{
y
‖y‖ if y 6= 0,

B(0, 1) if y = 0 .
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If x ∈ λ · B(0, 1) we find that p = 0 is a solution to x ∈ p+ ∂f(p). Otherwise, we need to
solve x = p + λ·p

‖p‖ for some p 6= 0. We deduce that p = ρ · x for some ρ ∈ R \ {0} (since p
and x must be linearly dependent) and get:

[x = ρ · x+ λ·ρ·x
‖ρ·x‖ ]⇔ [1 = ρ+ λ

‖x‖ ]⇔ [ρ = 1− λ
‖x‖ ]⇔ [p = x− λx

‖x‖ ]

We summarize:

Proxf (x) =

{
0 if x ∈ B(0, λ)

x− λx
‖x‖ else.

Interpretation: if ‖x‖ > λ we move towards the origin with stepsize λ, otherwise, go directly
to origin.

Example 1.111 (Comparison with explicit gradient descent). Assume f is Gâteaux differen-
tiable. Then ∂f(x) = {∇f(x)}. Consider a naive discrete gradient descent with stepsize λ > 0
for some initial x(0) ∈ H:

x(`+1) def.
= x(`) − λ∇f(x(`))

For comparison consider repeated application of the proximal operator on some initial y(0) ∈ H:

y(`+1) def.
= Proxλf (y(`))

We find y(`) ∈ y(`+1) + λ∂f(y(`+1)) = {y(`+1) + λ∇f(y(`+1))}, so

y(`+1) = y(`) − λ∇f(y(`+1)) .

This is called an implicit gradient descent, since the new iterate depends on the gradient at the
position of the new iterate, and it is thus only implicitly defined. For comparison, the above rule
for x(`+1) is called explicit.
Usually, the explicit gradient scheme is much easier to implement, but the proximal operator has
several important advantages:

• The proximal scheme also works, when f is not differentiable. (But it must be convex.)

• The proximal scheme can be started from any point in H, even from outside of dom f .

• The proximal scheme tends to converge more robustly.

As an illustration of the latter point return to two previous examples:

(i) f(x) = 1
2‖x‖

2. Then ∇f(x) = x and we get

x(`+1) = x(`) − λx(`) = x(0) (1− λ)` .

This converges geometrically to x(`) → 0 for |1 − λ| < 1 ⇔ λ ∈ (0, 2). For λ > 1 the
solution oscillates around the minimizer, for λ > 2 the sequence diverges.

For comparison we get

y(`+1) = y(`)/(1 + λ) = y(0)(1 + λ)−`

This converges geometrically for all λ > 0. For very small positive λ we have (1+λ)−1 ≈ 1−
λ and the implicit and explicit scheme act similarly (for the first few iterations). Intuitively,
this stems from the fact that if f is continuously differentiable and the stepsize is small,
then ∇f(x(`)) ≈ ∇f(x(`+1)).

34



(ii) f(x) = ‖x‖. Then ∇f(x) = x/‖x‖ for x 6= 0 and we obtain

x(`+1) = x(`) − λx(`)

‖x(`)‖

For ‖x‖ > λ this is the same effect as the proximal operator, but for ‖x‖ < λ it does not
jump to the origin and terminate, but oscillates around the minimizer.

The examples indicate that Proxf (x) moves from x towards a minimum of f . We also observe
that a prefactor λ acts like a stepsize. We establish a few corresponding results.

Proposition 1.112. Let f : H → R ∪ {∞} be convex, lsc, proper. Let λ ∈ R++.

(i) [x ∈ argmin f ] ⇔ [x = Proxf (x)].

(ii) [x /∈ argmin f ] ⇒ [f(Proxf (x)) < f(x)].

(iii) Let p = Proxf (x), C = Sf(p)(f). Then p = PCx.

(iv) The function λ 7→ ‖x− Proxλf (x)‖ is increasing.

(v) The function λ 7→ f(Proxf (x)) is decreasing.

Proof. • (i): Assume x ∈ argmin f . Then for all p ∈ H

f(x) = 1
2‖x− x‖

2 + f(x) ≤ 1
2‖x− p‖

2 + f(p)

Therefore, x = Proxf (x).

• Conversely, assume x = Proxf (x). ⇒ [x ∈ x + ∂f(x)] ⇒ [0 ∈ ∂f(x)] ⇒ (Fermat’s rule,
Prop. 1.26) [x ∈ argmin f ].

• (ii): By assumption x /∈ argmin f . Let p = Proxf (x). By (i) p 6= x and then

1
2‖x− p‖

2 + f(p) < 1
2‖x− x‖

2 + f(x) = f(x)

which implies f(x)− f(p) > 1
2‖x− p‖

2 > 0.

• (iii): By construction p ∈ C. Let p′ = PCx. So p′ ∈ C = Sf(p) ⇒ f(p′) ≤ f(p). Assume
p′ 6= p. Then ‖x− p‖ > ‖x− p′‖ (p′ is point that minimizes distance to x among all points
in C). Then

1
2‖x− p

′‖2 + f(p′) < 1
2‖x− p‖

2 + f(p)

and therefore p′ is a better candidate for Proxf (x) than p. Therefore we must have p′ = p.

• (iv): We use the monotonicity of the subdifferential for this (Prop. 1.29). Let 0 < λ1 ≤ λ2.
Let pi = Proxλif (x) and set ui = x− pi for i = 1, 2.

• Let ∆u = u2 − u1, ∆p = p2 − p1. From x = pi + ui we get ∆u = −∆p.

• By characterization of the proximal operator we find: ui ∈ λi ∂f(pi).

Sketch: x, p1, u1, then transition from p1 to p2 ‘towards’ x and change of u1 to u2 as
dictated by λ2 ≥ λ1 and monotonicity of subdifferential.
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• By monotonicity of the subdifferential:

0 ≤
〈
u2
λ2
− u1

λ1
, p2 − p1

〉
0 ≤

〈
u2 − λ2

λ1
u1,∆p

〉
=
〈

∆u− λ2−λ1
λ1

u1,∆p
〉

= −‖∆p‖2 − λ2−λ1
λ1
〈u1,∆p〉

We deduce 〈u1,∆p〉 ≤ 0. Then

‖x− p2‖2 = ‖x− p1 − (p2 − p1)‖2 = ‖x− p1 −∆p‖2

= ‖x− p1‖2 − 2 〈u1,∆p〉+ ‖∆p‖2 ≥ ‖x− p1‖2 .

• (v): Use notation from previous point. Assume f(p2) > f(p1), let C = Sf(p2)(f). Then
p1 6= p2 and p1 ∈ C. By (iii) have p2 = PCx, therefore ‖x − p2‖ < ‖x − p1‖, which
contradicts (iv). Therefore we must have f(p2) ≤ f(p1).

It turns out that there is a surprisingly simple relation between the proximal operators for f and
f∗. This can be used to compute one via the other, in case one seems easier to implement.

Proposition 1.113 (Moreau decomposition). Let f : H → R∪ {∞} be convex, lsc and proper,
x ∈ H. Then Proxf (x) + Proxf∗(x) = x.

Proof. Let p ∈ H. Then:

[p = Proxf (x)]⇔ [x− p ∈ ∂f(p)]⇔ (Prop. 1.81) [p ∈ ∂f∗(x− p)]
⇔ [x− (x− p) ∈ ∂f∗(x− p)]⇔ [x− p = Proxf∗(x)]

Example 1.114 (Moreau decomposition for projections). Let C be a closed subspace of H.
Then ιC is convex, lsc. Consider the conjugate

ι∗C(x) = sup
y∈H
〈x, y〉 − ιC(y) = sup

y∈C
〈x, y〉 =

{
0 if x ⊥ y for all y ∈ C,
+∞ else

= ιC⊥(x)

So ι∗C is the indicator of the orthogonal complement of C. Then ProxιC = PC and Proxι∗C = PC⊥
and the Moreau decomposition yields:

x = PCx+ PC⊥x

which is the orthogonal decomposition of x. So we may interpret the Moreau decomposition as
a generalization in the same sense that the proximal operator generalizes the projection.

Example 1.115. In an implicit descent scheme x(`+1) = Proxf (x(`)) we now find that x(`+1) +
Proxf∗(x

(`)) = x(`), ⇒ x(`+1) = x(`) − Proxf∗(x
(`)), so Proxf∗ gives the ‘implicit gradient steps’

∆x(`+1).
Let f(x) = ‖x‖. Then f∗ = ι

B(0,1)
and

Proxf (x) =

{
0 = x− x if x ∈ B(0, 1),

x− x
‖x‖ else.

Proxf∗(x) =

{
x if x ∈ B(0, 1),
x
‖x‖ else.

Interpretation: if x(`) ∈ B(0, 1) then ∆x(`+1) = −x(`) (i.e. we jump directly to the origin).
Otherwise we move by − x(`)

‖x(`)‖ .
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1.8 Proximal algorithm

Now we discuss the simplest possible algorithm built from the proximal iterator: simple iteration
of the proximal operator of the objective. We have already discussed this in the context of
simple examples (Example 1.111) and shown some preliminary results that support our intuition
(Prop. 1.112).

Proposition 1.116 (Proximal algorithm). Let f : H → R ∪ {∞} be proper, convex, lsc with
argmin f 6= ∅. For some γ ∈ R++ and x(0) ∈ H set

x(`+1) = Proxγ f (x(`)) .

Then

(i) (x(`))` is a minimizing sequence of f .

(ii) (x(`))` converges weakly to some point in argmin f .

For the proof we need to gather some auxiliary definitions and results.

Definition 1.117. Let C ⊂ H be non-empty. Let (xk)k be a sequence in H. (xk)k is Fejér
monotone with respect to C if for all y ∈ C and k ∈ N

‖xk+1 − y‖ ≤ ‖xk − y‖ .

Proposition 1.118 (Basic consequences of Fejér monotonicity). If (xk)k is Fejér monotone with
respect to some C then:

(i) (xk)k is bounded.

(ii) For all y ∈ C the sequence (‖xk − y‖)k converges.

(iii) Let dC(z) = infy∈C ‖y − z‖. The sequence (dC(xk))k is decreasing and converges.

Proof. • (i): Let y ∈ C. Then by definition ‖xk−y‖ ≤ ‖x0−y‖, so (xk)k is in B(y, ‖x0 − y‖).

• (ii): By definition, the sequence (‖xk−y‖)k is decreasing and bounded from below. There-
fore limk→∞ ‖xk − y‖ = infk ‖xk − y‖.

• (iii): We find: dC(xk+1) = infy∈C ‖xk+1 − y‖ ≤ infy∈C ‖xk − y‖ = dC(xk). Therefore, the
sequence is decreasing. Also clearly dC(xk) ≥ 0 for all k. Therefore the sequence (dC(xk))k
is converging.

Lemma 1.119. Let (xk)k be a bounded sequence in H. Then (xk)k converges weakly if and
only if it has at most one weak sequential cluster point.

Proof. • Assume (xk)k converges weakly. Since the weak topology is Hausdorff, it has a
unique limit which is its only cluster point.

• Assume (xk)k has at most one weak sequential cluster point. Since (xk)k is bounded, by
Banach–Alaoglu and Eberlein–Šmulian (Theorems 1.89 and 1.101) it has at least one weak
sequential cluster point. So it has precisely one. Let this cluster point be x.
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• Assume xk does not converge weakly to x. Then there is a weakly open environment U of
x such that H \ U contains an infinite number of elements of the sequence.

• U is weakly open ⇒ H \ U is weakly closed ⇒ weakly sequentially closed.

• Apply Banach–Alaoglu and Eberlein–Šmulian to the sequence in H \ U to get a cluster
point in H \ U .

• This cluster point cannot be x which contradicts the assumption of a unique cluster point.
Hence, xk must converge weakly to x.

Remark 1.120. One can in fact show a slightly stronger result: [(xk)k converges weakly] ⇔
[(xk)k is bounded and has at most one cluster point]. See [Bauschke, Combettes; Lemma 2.38].

Lemma 1.121. Let (xk)k be a sequence in H, let C ⊂ H nonempty. Suppose that for every
y ∈ C the sequence (‖xk − y‖)k converges (to a finite value) and that every weak sequential
cluster point of (xk)k lies in C. Then (xk)k converges weakly to a point in C.

Proof. • By assumption (xk)k is bounded. Therefore by Lemma 1.119 it suffices to show
that (xk)k can have at most one weak sequential cluster point.

• Let x and y be two weak sequential cluster points of (xk)k, i.e. xik ⇀ x and xjk ⇀ y.

• By assumption x, y ∈ C. Therefore (‖xk − x‖)k and (‖xk − y‖)k converge.

• Therefore, by

‖xk − y‖2 − ‖xk − x‖2 − ‖y‖2 + ‖x‖2 = 2 〈xk, x− y〉

we find that (〈xk, x− y〉)k converges, call the limit r ∈ R.

• Further, by weak convergence of the two extracted subsequences we find

lim
k
〈xik , x− y〉 = 〈x, x− y〉 , lim

k
〈xjk , x− y〉 = 〈y, x− y〉 .

• Both sequences are subsequences of the converging sequence (〈xk, x− y〉)k. Therefore,
their limits must therefore coincide and equal r. Then

‖x− y‖2 = 〈x− y, x− y〉 = r − r = 0

and therefore the two cluster points must coincide.

Corollary 1.122. Let (xk)k be Fejér monotone with respect to C and every weak sequential
cluster point of (xk)k is in C. Then (xk)k converges weakly to some x ∈ C.

Proof. • From Prop. 1.118 (ii) the sequence (‖xk − y‖)k converges for all y ∈ C (to a finite
value).

• Then the result follows from Lemma 1.121.
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Finally, we can give the proof for the convergence of the proximal minimization scheme.

Proof of Prop. 1.116. • Let z ∈ argmin f . From x(`+1) = Proxγf (x(`)) we deduce x(`) −
x(`+1) ∈ γ∂f(x(`+1)). Therefore:

f(x(`)) ≥ f(x(`+1)) +
〈
x(`) − x(`+1), x(`) − x(`+1)

〉
/γ ,

f(z) ≥ f(x(`+1)) +
〈
z − x(`+1), x(`) − x(`+1)

〉
/γ .

• The first inequality implies that (f(x(`)))` is decreasing.

• The second inequality implies:

‖x(`+1) − z‖2 = ‖(x(`+1) − x(`))− (z − x(`))‖2

= ‖x(`+1) − x(`)‖2 + ‖z − x(`)‖2 − 2
〈
x(`+1) − x(`), z − (x(`+1) − x(`+1))− x(`)

〉
= ‖x(`) − z‖2 − ‖x(`+1) − x(`)‖2 + 2

〈
z − x(`+1), x(`) − x(`+1)

〉
≤ ‖x(`) − z‖2 + 2γ(f(z)− f(x(`+1)))

• Therefore, (x(`))` is Fejér monotone with respect to argmin f .

• Summing the above inequality over ` = 0, . . . , N we obtain:

N∑
`=0

f(x(`+1))− f(z) ≤ 1
2γ

N∑
`=0

‖x(`) − z‖2 − ‖x(`+1) − z‖2

= 1
2γ

(
‖x(0) − z‖2 − ‖x(N+1) − z‖2

)
≤ ∞

• (i): So (f(x(`))−f(z))`) is monotone decreasing, nonnegative (since z is minimizer) and the
sum over its elements is bounded. Therefore lim` f(x(`)) = f(z) and (x(`))` is a minimizing
sequence.

• (ii): Let x be a weak sequential cluster point of (x(`))`. Since f is convex and lsc, it is
weakly sequentially lsc (Cor. 1.97). Therefore, x ∈ argmin f .

• Now apply Cor. 1.122.

Remark 1.123. Observe that the proximal algorithm converges for all step sizes γ > 0, unlike
the explicit gradient step scheme.
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1.9 The Douglas–Rachford algorithm

Now we introduce the first true proximal splitting method that minimizes the sum f + g of
two convex lsc proper functions by only applying the proximal operators of f and g separately.
The algorithm will therefore be much more practical and easier to implement than the simple
proximal algorithm. But its convergence analysis is more involved.

Proposition 1.124 (Douglas–Rachford algorithm). Let f and g be convex, lsc, proper such
that ∃ z ∈ H with 0 ∈ ∂f(z) + ∂g(z). Further, let λ ∈ (0, 2) and γ ∈ R++. For some x(0) ∈ H
set by iteration for ` = 0, 1, . . .:

y(`) = Proxγg(x
(`)),

z(`) = Proxγf (2y(`) − x(`)),

x(`+1) = x(`) + λ ·
(
z(`) − y(`)

)
Then there exists some x ∈ H such that

(i) Proxγg(x) ∈ argmin(f + g).

(ii) y(`) − z(`) → 0 strongly.

(iii) x(`) ⇀ x weakly.

Remark 1.125. One can in addition show that y(`) ⇀ Proxγg(x) ∈ argmin f .

We start by going through an explicit example.

Example 1.126. Let H = R2. f(x) = 1
2‖x‖

2, C = {x ∈ H : x1 = 1}, g(x) = ιC(x). Then
Proxγf (x) = 1

1+γx. Further Proxγg(x) = PCx. Recall [y = PCx] ⇔ [y ∈ C ∧ x ∈ y +NCy]. For
the normal cone we get:

NCx =

{
∅ if x /∈ C,
R · (1, 0) else.

This implies

y1 = 1,

(
x1

x2

)
=

(
y1

y2

)
+ λ

(
1
0

)
.

We obtain λ = x1 − 1, y1 = 1, y2 = x2. So PC(x1, x2) = (1, x2). For the iterations we get:

y(`) = (1, x
(`)
2 ), v(`) = 2y(`) − x(`) = (2− x(`)

1 , x
(`)
2 )

z(`) = 1
1+γ (2− x(`)

1 , x
(`)
2 ), x(`+1) =

(
x

(`)
1 · (1− λ

1+γ ) + λ (1−γ)
1+γ , x

(`)
2 · (1−

λ γ
1+γ )

)
Iterations for x(`)

1 and x(`)
2 separate. Both are affine maps. For the slopes we find:

1− λ
1+γ < 1, 1− λ

1+γ > −1,

(1− λ γ
1+γ ) < 1, (1− λ γ

1+γ ) > −1.
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So by the Banach fixed-point theorem both coordinates converge to a unique limit. Determine
the fixed point of x(`)

1 :

r = r · (1− λ
1+γ ) + λ (1−γ)

1+γ ⇔ r = 1− γ

For the fixed-point of x(`)
2 we immediately find r = 0. So we deduce x(`) → x = (1− γ, 0). Note

in particular that this is not optimal (in fact g(x) = +∞). Then y(`) = PCx
(`) → y = (1, 0)

which is indeed the minimizer. Further, v(`) = 2y(`) − x(`) → 2y − x = (1 + γ, 0) such that
z(`) = Proxγf (v(`)) = 1

1+γ v
(`) → (1, 0) = y.

Remark 1.127 (Interpretation of Douglas–Rachford algorithm). The goal is to find a minimizer
y = z and an offset vector ∆x such that x = y + ∆x ‘lies on the f side of the minimizer’ and
v = y −∆x ‘lies on the g side’, i.e. y = Proxγg(y + ∆x) = Proxγf (y −∆x). Unless argmin f ∩
argmin g 6= ∅ there can be no such point for ∆x = 0, which is why mere alternating application of
Proxγf and Proxγg is in general too simplistic and a more sophisticated combination of proximal
operators is required.

Sketch: Compare interpretation with example: x
(`)
2 iteration simply approaches 0. For x(`)

1

iterations the sign of the x(`)
2 -update depends on whether x(`)

2 was too close to 0 or too close to
1.
Now we start proving Prop. 1.124. We need considerable auxiliary definitions and results.
First note, that if argmin f contains more than one element, then Proxf has more than one
fixed-point (Prop. 1.112 (i)). So Proxf cannot be a contraction and therefore convergence proofs
cannot rely e.g. on the Banach fixed-point theorem. We need a refined notion of contraction.

Definition 1.128. A map T : H 7→ H is called

(i) nonexpansive if it is Lipschitz continuous with constant 1. That is

‖T (x)− T (y)‖ ≤ ‖x− y‖ for all x, y ∈ H;

(ii) firmly nonexpansive if

‖T (x)− T (y)‖2 + ‖(T (x)− x)− (T (y)− y)‖2 ≤ ‖x− y‖2 for all x, y ∈ H.

Proposition 1.129. Let f : H → R ∪ {∞} be proper, convex lsc. Then

(i) Proxf is firmly nonexpansive.

(ii) id−Proxf is firmly nonexpansive.

(iii) 2 Proxf − id is nonexpansive.

Proof. • (i) Use monotonicity of subdifferential. Let x, y ∈ H, set p = Proxf (x), q =
Proxf (y). Denote ∆x = x− y and ∆p = p− q.

• From x− p ∈ ∂f(p), y − q ∈ ∂f(q) and monotonicity of the subdifferential we get:

[〈(x− p)− (y − q), p− q〉 ≥ 0]⇔ [〈∆x−∆p,∆p〉 ≥ 0]⇔ [2‖∆p‖2 − 2 〈∆p,∆x〉 ≤ 0]

⇔ [‖∆p‖2 + ‖∆p‖2− 2 〈∆p,∆x〉+ ‖∆x‖2 ≤ ‖∆x‖2]⇔ [‖∆p‖2 + ‖∆p−∆x‖2 ≤ ‖∆x‖2]
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• (ii) By the Moreau decomposition (Prop. 1.113), id−Proxf = Proxf∗ . Since f∗ is convex,
lsc, proper, Proxf∗ is firmly nonexpansive by (i).

• (iii) Use the above notation. Then we need to bound:

‖(2p− x)− (2q − y)‖2 = ‖2∆p−∆x‖2 = 4‖∆p‖2 − 4 〈∆p,∆x〉︸ ︷︷ ︸
≤0, see (i)

+‖∆x‖2 ≤ ‖∆x‖2

We need a result to identify fixed-points of nonexpansive maps in the context of weak convergence.

Proposition 1.130. Let T : H → H be nonexpansive. Let (xk)k be a bounded sequence in H
and let x ∈ H. If xk ⇀ x and xk − T (xk)→ 0 then x = T (x).

Proof.

‖x− T (x)‖2 = ‖(x− xk)− (T (x)− xk)‖2

= ‖x− xk‖2 + ‖T (x)− xk‖2 − 2 〈x− xk, T (x)− x+ x− xk〉
= ‖T (x)− xk‖2 − ‖x− xk‖2 − 2 〈x− xk, T (x)− x〉
= ‖(T (x)− T (xk))− (xk − T (xk))‖2 − ‖x− xk‖2 − 2 〈x− xk, T (x)− x〉

(use nonexpansiveness of T to bound ‖T (x)− T (xk)‖ ≤ ‖x− xk‖)

≤ ‖xk − T (xk)‖2 − 2 〈T (x)− T (xk), xk − T (xk)〉 − 2 〈x− xk, T (x)− x〉

Now, recall xk ⇀ x, xk−T (xk)→ 0 and (xk)k bounded, i.e. ‖xk‖ ≤ C1 for some C1 < +∞.
Further, since T is nonexpansive: ‖T (xk)‖ = ‖T (xk)− T (0) + T (0)‖ ≤ ‖T (xk)− T (0)‖+

‖T (0)‖ ≤ C + ‖T (0)‖ def.
= C2. Then

‖xk − T (xk)‖2 → 0,

lim sup
k
| 〈T (x)− T (xk), xk − T (xk)〉 | ≤ lim sup

k
(‖T (x)‖+ C2) · ‖xk − T (xk)‖ = 0

(here have used Cauchy-Schwarz and ‖T (x)−T (xk)‖ ≤ ‖T (x)‖+ ‖T (xk)‖ ≤ ‖T (x)‖+C2)

〈x− xk, T (x)− x〉 → 〈x− x, T (x)− x〉 = 0 .

Therefore, by going to the limit in the above upper bound on ‖x − T (x)‖2 we get ‖x −
T (x)‖ ≤ 0, i.e. T (x) = x.

Definition 1.131. In the following, for an operator T : H → H denote by

FixT = {x ∈ H : T (x) = x} the set of fixed-points of T .
zerT = {x ∈ H : T (x) = 0} the set of ‘roots’ of T .

Analogously, for T : H → 2H let

zerT = {x ∈ H : 0 ∈ T (x)}.
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We will shortly show that the Douglas–Rachford iteration can be compactly rewritten as an
iteration as analyzed in the following Proposition.

Proposition 1.132. Let T : H → H be nonexpansive, let FixT 6= ∅, λ ∈ (0, 1) and x(0) ∈ H.
Set

x(`+1) = x(`) + λ (T (x(`))− x(`)) .

Then:

(i) (x(`))` is Fejér monotone with respect to FixT .

(ii) (T (x(`))− x(`))` converges strongly to 0.

(iii) (x(`))` converges weakly to a point in FixT .

Proof. • For the proof we use the following equality which can be verified by expansion: For
λ ∈ [0, 1], x, y ∈ H:

‖λx+ (1− λ) y‖2 = λ‖x‖2 + (1− λ)‖y‖2 − λ(1− λ)‖x− y‖2

• (i) Let y ∈ FixT . Then

‖x(`+1) − y‖2 = ‖(1− λ)(x(`) − y) + λ(T (x(`))− y)‖2

= (1− λ)‖x(`) − y‖2 + λ‖T (x(`))− T (y)‖2 − λ(1− λ)‖x(`) − T (x(`))‖2

≤ ‖x(`) − y‖2 − λ(1− λ)‖x(`) − T (x(`))‖2

So (x(`))` is Fejér monotone with respect to FixT .

• (ii) From the above bound we find:

N∑
`=0

λ(1− λ)‖x(`) − T (x(`))‖2 ≤ ‖x(0) − y‖2 − ‖x(N+1) − y‖2 <∞

Therefore ‖x(`) − T (x(`))‖ → 0 ⇒ x(`) − T (x(`))→ 0. (Here use that λ(1− λ) > 0.)

• (iii) (x(`))` is bounded due to Fejér monotonicity (Prop. 1.118). From (ii) we have T (x(`))−
x(`) → 0. So by the previous result, Prop. 1.130, we obtain that any weak sequential cluster
point of (x(`))` is in FixT .

• It follows then from Cor. 1.122 that (x(`))` converges weakly to a point in FixT .

Proposition 1.133. Let f, g : H → R ∪ {∞} be proper, convex, lsc. Let

Rf = 2 Proxf − id, Rg = 2 Proxg − id .

Then zer(∂f + ∂g) = Proxg(FixRf Rg).

Comment: We will shortly show that fixed-points of (x(`))` in the Douglas–Rachford iterations
are precisely the fixed-points of Rf Rg.
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Proof. We find:

[0 ∈ ∂f(x) + ∂g(x)]⇔
[
∃u ∈ H : [u ∈ ∂f(x)] ∧ [−u ∈ ∂g(x)]

]
⇔
[
∃y ∈ H : [x− y ∈ ∂f(x)] ∧ [y − x ∈ ∂g(x)]

]
⇔
[
∃y ∈ H : [x = Proxf (2x− y)] ∧ [x = Proxg(y)]

]
⇔
[
∃y ∈ H : [x = Proxf (Rg(y))] ∧ [x = Proxg(y)]

]
(⇒: Rg(y) = 2 Proxg(y)−y = 2x−y ⇒ y = 2x−Rg(y) = 2 Proxf (Rg(y))−Rg(y) = Rf (Rg(y)),
(⇐: y = Rf (Rg(y)) = 2 Proxf (Rg(y))− 2 Proxg(y) + y ⇒ x = Proxg(y) = Proxf (Rg(y)))

⇔
[
∃y ∈ H : [y = Rf (Rg(y))] ∧ [x = Proxg(y)]

]

Now we are ready to assemble the proof of Prop. 1.124.

Proof of Prop. 1.124. • Let

Rf = 2 Proxγf − id, Rg = 2 Proxγg − id, T = Rf Rg.

• Conversely Proxγg = 1
2(Rg + id). Then we can rewrite the Douglas–Rachford iterations as

follows:

x(`+1) = x(`) + λ ·
(

Proxγf (2y(`) − x(`))− y(`)
)

= x(`) + λ ·
(

Proxγf (2 Proxγg(x
(`))− x(`))− Proxγg(x

(`))
)

= x(`) + λ ·
(

Proxγf (Rg(x
(`)))− 1

2Rg(x
(`))− 1

2x
(`)
)

= x(`) + λ ·
(

1
2Rf (Rg(x

(`)))− 1
2x

(`)
)

= x(`) + λ
2 ·
(
T (x(`))− x(`)

)
Note that z(`) − y(`) = 1

2(T (x(`))− x(`)).

• Apply Prop. 1.133 to γf and γg to obtain

zer(∂f + ∂g) = zer(∂γf + ∂γg) = Proxγg(FixT ) .

Since by assumption zer(∂f + ∂g) 6= ∅ this implies also FixT 6= ∅.

• In view of (i) we note that for every x ∈ FixT have therefore Proxγg(x) ∈ argmin(f + g).

• Due to Prop. 1.129(iii) the operators Rf and Rg are nonexpansive. Then so is their com-
position T = Rf Rg.

• (ii) From Prop. 1.132(ii) we find z(`) − y(`) = 1
2(T (x(`))− x(`))→ 0 strongly.

• From Prop. 1.132 (iii) we get: there is some x ∈ FixT such that x(`) ⇀ x weakly. Since
Proxγg(x) ∈ argmin(f + g) (see above) this establishes (i) and (iii).
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1.10 Primal-Dual Methods

In this subsection we study an alternative approach to optimizing objectives of the form f + g
that is intimately linked to conjugation.

Definition 1.134. • For convex functions f, g : H → R ∪ {∞} let

P (x) = f(x) + g(x), D(y) = −f∗(−y)− g∗(y), L(x, y) = f(x)− g∗(y) + 〈x, y〉 .

• The problem infx∈H P (x) is called primal problem, the problem supy∈H D(y) is called dual
problem and L is called Lagrangian.

• Note that since D is concave, the dual problem is also a convex optimization problem.

• For all (x, y) ∈ H2 one has

P (x) ≥ L(x, y) ≥ D(y).

This follows quickly from the Fenchel–Young inequality (Prop. 1.72).

• In particular:

P (x) ≥ inf
x′∈H

P (x′) ≥ sup
y′∈H

D(y′) ≥ D(y)

• So for every feasible pair (x, y) ∈ H2 of primal and dual problem the value ∆(x, y) =
P (x)−D(y) is an upper bound on the combined suboptimality of x and y with respect to
primal and dual problem. Therefore ∆(x, y) is called the duality gap.

• If ∆(x, y) = 0 then x and y must be optimizers of primal and dual problem respectively.

We give a simple variant of the famous Fenchel–Rockafellar duality.

Proposition 1.135 (Duality). Assume there exists some x0 ∈ H such that f(x0) <∞, g(x0) <
∞ and f is continuous in x0. Then

inf
x∈H
{f(x) + g(x)} = max

y∈H
{−f∗(−y)− g∗(y)} .

In particular, a maximizer for the dual problem exists.

Comment: Sometimes one tries to show that a given optimization problem is the dual problem
of some auxiliary problem to use the above Proposition for showing that a solution exists.
For the proof we need an auxiliary result on separating points from convex sets via hyperplanes.

Proposition 1.136. Let C ⊂ H be convex, 0 /∈ intC, intC 6= ∅. Then there is some z ∈ H \{0}
such that 〈z, x〉 ≥ 0 for all x ∈ C.

Comment: This means, the hyperplane with normal z through the origin separates C from 0.

Proof. • Let D = C. By Prop. 1.54 we have intD = intC 6= ∅ and in particular 0 /∈ C ⊃
intD.

• Since D is closed and convex, it is the intersection of all closed halfspaces that contain D
(Cor. 1.66).
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• If 0 /∈ D there must be a closed halfspace Au = {x ∈ H : 〈u, x〉 − r ≥ 0}, u 6= 0, such that
D ⊂ Au and 0 /∈ Au.

• 0 /∈ Au ⇒ 〈0, x〉 − r < 0 ⇒ r > 0.

• x ∈ D ⊂ Au ⇒ 0 ≤ 〈u, x〉 − r < 〈u, x〉. So setting z = u we have found an appropriate z.

• Alternatively, must have 0 ∈ D, but 0 /∈ intD. Then by Prop. 1.56 there is some u ∈ ND0
with u 6= 0. By definition sup 〈u,D〉 ≤ 0. Then set z = −u above:

〈−u, x〉 ≥ inf 〈−u,D〉 = − sup 〈u,D〉 ≥ 0

Proof of Prop. 1.135. • The inequality infx∈H P (x) ≥ supy∈H D(y) is clear by Def. 1.134.
We need to show the converse inequality.

• Denote by m = infx∈H P (x). We have m ≤ f(x0) + g(x0) <∞. If m = −∞ the converse
inequality is trivial. Hence, assume m ∈ R.

• Assume we had some z ∈ H such that for all a, b ∈ H one has

f(a) + g(b) + 〈z, a− b〉 ≥ m.

• Then we find:

sup
y∈H
−f∗(−y)− g∗(y) = sup

y∈H
inf
a,b∈H

[f(a)− 〈a,−y〉+ g(b)− 〈b, y〉]

≥ inf
a,b∈H

[f(a) + g(b) + 〈z, a− b〉] ≥ m

• Since also supy∈H −f∗(−y)− g∗(y) ≤ m, z must therefore be a dual maximizer and primal
and dual problem have the same optimal value.

• Now we show existence of a suitable z.

• Let

A = {(a, λ) ∈ H × R : λ > f(a)} ,
B = {(b, µ) ∈ H × R : µ ≤ m− g(b)} .

• A and B are convex. Since f is continuous in x0 and f(x0) <∞, we have intA 6= ∅.

• Assume there were some (a, λ) ∈ A ∩B. Then we would find

f(a) + g(a) < λ+ (m− λ) = m

which is a contradiction. Therefore A ∩B = ∅.

• This implies 0 /∈ A − B and in particular 0 /∈ int(A − B). A − B is convex. Also,
∅ 6= intA−B ⊂ int(A−B). So by Prop. 1.136 there is some (u, r) ∈ H ×R \ {(0, 0)} such
that 〈(u, r), (a, λ)〉 ≥ 0 for all (a, λ) ∈ A−B. This implies

〈(u, r), (a, λ)〉 ≥ 〈(u, r), (b, µ)〉 ⇔ 〈u, a〉+ r · λ ≥ 〈u, b〉+ r · µ

for all(a, λ) ∈ A, (b, µ) ∈ B.
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• Since we can send λ → ∞ and µ → −∞ (and remain in A, B respectively) we find that
r ≥ 0.

• If r = 0, we can violate the inequality by setting b = x0 (where g is finite) and a = x0−ε ·u
for sufficiently small ε > 0 (which works since f is continuous in x0). So must have r > 0.

• Set now z = u/r. The above inequality yields

〈z, a− b〉+ λ− µ ≥ 0

for all λ > f(a), µ ≤ m− g(b), i.e. for λ− µ > f(a) + g(b)−m. Therefore, the given z is
as needed above and the proof is complete.

Remark 1.137. There are considerably more general variants of Prop. 1.135 on Banach spaces
and their dual spaces. Then the auxiliary separation result, Prop. 1.136, must usually be provided
by the Hahn–Banach theorem.

Finally, we give another proximal splitting algorithm, specialized for primal-dual problem pairs
as above.

Proposition 1.138. Assume that f and g are proper, convex, lsc and that primal and dual
problem have solutions. For τ ∈ (0, 1) and x(0), y(0) ∈ H set

x(`+1) = Proxτf (x(`) − τ · y(`)),

y(`+1) = Proxτg∗(y
(`) + τ · (2x(`+1) − x(`))).

Then (x(`))` and (y(`))` converge weakly to solutions of the primal and dual problem, respectively.

Remark 1.139. For more details on such algorithms and generalizations, see for instance [Cham-
bolle, Pock: A First-Order Primal-Dual Algorithm for Convex Problems with Applications to
Imaging, 2011].

Proposition 1.140. A pair (x, y) ∈ H2 are solutions to the primal and dual problem if and
only if x ∈ g∗(y) and −y ∈ ∂f(x).

Proof.

[(x, y) are solutions]⇔ [P (x) = D(y)]⇔ [f(x) + g(x) = −f∗(−y)− g∗(y)]

⇔ [(f(x) + f∗(−y)− 〈x,−y〉) + (g(x) + g∗(y)− 〈x, y〉) = 0]

(By Fenchel–Young (Prop. 1.72) this is 0 if and only if both parantheses are 0, which, by
Prop. 1.81, is equivalent to:)

⇔
[
[−y ∈ ∂f(x)] ∧ [x ∈ ∂g∗(y)]

]

Remark 1.141. The strategy for the convergence proof of Prop. 1.138 is as follows: we show
that the optimality condition of Prop. 1.140 can be written as zeros of a monotone operator
acting on the pair (x, y). These zeros can be identified with fixed-points of carefully constructed
firmly nonexpansive operators and corresponding metrics. If we choose the right metric, this
operator can be identified with the iterations of Prop. 1.138. We then generalize the original
proximal optimization algorithm (Prop. 1.116) to firmly nonexpansive operators.
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Proposition 1.142. Let A : H → 2H be monotone. Let M : H → H be linear, continuous,
self-adjoint and positive definite, i.e. 〈x,Mx〉 ≥ C‖x‖2 for some C ∈ R++. Let the operator
T : K → H be given by

[y = T (x)]⇔ [Mx ∈My +A(y)]

where K ⊂ H is the set such that the above inclusion has a solution y for fixed x ∈ K.

(i) This inclusion has at most one solution, i.e. T is well-defined on K.

(ii) FixT = zerA.

(iii) T is firmly nonexpansive with respect to the inner product induced by M , 〈x, y〉M =
〈x,My〉.

Proof. • (i) For fixed x ∈ H and y1, y2 ∈ H assume:

[Mx ∈My1 +A(y1)] ∧ [Mx ∈My2 +A(y2)]

By monotonicity of A we get:

0 ≤ 〈M(x− y1)−M(x− y2), y1 − y2〉 = −〈M(y1 − y2), (y1 − y2)〉 ≤ −C‖y1 − y2‖2

Therefore y1 = y2 and thus, T is well-defined on K.

• (ii)

[x ∈ zer(A)]⇔ [0 ∈ A(x)]⇔ [Mx ∈Mx+A(x)]⇔ [T (x) = x]⇔ [x ∈ FixT ]

• (iii) Let p = T (x), q = T (y), ∆x = x− y, ∆p = p− q. Then

M(x− p) ∈ A(p), M(y − q) ∈ A(q).

By monotonicity:

[〈M(x− p)−M(y − q), p− q〉 ≥ 0]⇔ [〈∆x−∆p,∆p〉M ≥ 0]

⇔ [‖∆p‖2M − 〈∆p,∆x〉M ≤ 0]

⇔ [‖p− q‖2M + ‖(p− x)− (q − y)‖2M ≤ ‖x− y‖2M ]

Now we generalize Prop. 1.116 to arbitrary firmly nonexpansive operators.

Proposition 1.143. Assume T : H → H is firmly nonexpansive and FixT 6= ∅. For x(0) ∈ H
set

x(`+1) = T (x(`)).

Then (x(`))` converges weakly to some point x ∈ FixT .

Proof. • Let z ∈ FixT . Then by firm nonexpansiveness:

‖x(`+1) − z‖2 = ‖T (x(`))− T (z)‖2 ≤ ‖x(`) − z‖2 − ‖(T (x(`))− x(`))− (T (z)− z)‖2

= ‖x(`) − z‖2 − ‖T (x(`))− x(`)‖2
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• So (x(`))` is Fejér monotone with respect to FixT .

• Further
∑N

`=0 ‖T (x(`))− x(`)‖2 ≤ ‖x(0) − z‖2. Therefore T (x(`))− x(`) → 0 strongly.

• By Prop. 1.130 every weak sequential cluster point of (x(`))` is a fixed-point of T .

• By Cor. 1.122 x(`) ⇀ x for some x ∈ FixT .

Proof of Proposition 1.138. • Define set valued operator A : H ×H → 2H × 2H as follows:(
x
y

)
7→
(
∂f(x) + y
∂g∗(y)− x

)
• By Prop. 1.140 the primal and dual optimizers are given precisely by zerA, and therefore

by assumption zerA 6= ∅.

• Note that 2H × 2H can be identified with a subset of 2(H×H). So formally A can be
interpreted as H ×H → 2H×H .

Sketch: 2H × 2H vs 2(H×H) for H = R: product of two intervals vs general 2d sets.

• A is monotonous: let [ai ∈ ∂f(xi)∧ bi ∈ ∂g∗(yi)]⇔ (ai+yi, bi−xi) ∈ A(xi, yi) for i = 1, 2.
Denote by ∆x, ∆y, ∆a, ∆b all pairwise differences. Then by monotonicity of ∂f and ∂g∗:

〈(a2 + y2, b2 − x2)− (a1 + y1, b1 − x1), (x2 − x1, y2 − y1)〉 =

〈(∆a+ ∆y,∆b−∆x), (∆x,∆y)〉 = 〈∆a,∆x〉+ 〈∆y,∆x〉+ 〈∆b,∆y〉 − 〈∆x,∆y〉 ≥ 0

• Now set M : H2 → H2 as

M =

(
1
τ id − id
− id 1

τ id

)
M is continuous, linear and symmetric. Furthermore, it is positive definite, since for
x, y ∈ H:

〈(x, y),M(x, y)〉 = 1
τ ‖x‖

2 + 1
τ ‖y‖

2 − 2 〈x, y〉 ≥ ( 1
τ − 1) ·

(
‖x‖2 + ‖y‖2

)
+ ‖x− y‖2

• Now analyze operator T constructed from A and M via Prop. 1.142: From (a, b) = T (x, y)
we obtain the following inclusion condition:

M

(
x− a
y − b

)
∈ A

(
a
b

)
⇔
(

1
τ x−

1
τ a− y + b

1
τ y −

1
τ b− x+ a

)
∈
(
∂f(a) + b
∂g∗(b)− a

)
⇔
(

x− τy
y + τ(2a− x)

)
∈
(
a+ ∂τf(a)
b+ ∂τg∗(b)

)
⇔ a = Proxτf (x− τy) ∧ b = Proxτg∗(y + τ(2a− x))

So the iterations of the algorithm, Prop. 1.138, correspond to the induced operator T ,
i.e. (x(`+1), y(`+1)) = T (x(`), y(`)). This also implies that the domain of T is H2.
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• By Prop. 1.142 (ii) have FixT = zerA 6= ∅.

• Now consider the Hilbert space H ×H, equipped with the inner product induced by M .
Note that the topology induced by M is the same as the product topology on H × H.
Therefore, both topologies induce the same weak topology.

• On this space T is firmly nonexpansive by Prop. 1.142 (iii). So by Prop. 1.143 the sequence
(x(`), y(`))` converges weakly to some (x, y) ∈ FixT = zerA, which is therefore a pair of
solutions to primal and dual problem.

• Note: the iteration would converge to a fixed-point for every positive definite M . We
chose M carefully such that computing x(`+1) does not depend on y(`+1) and thus the two
updates can be computed subsequently and separately.

Remark 1.144. • Prop. 1.143 studies convergence to fixed-points of general firmly non-
expansive operators, it is a generalization of Prop. 1.116, which only treated the special
case of the proximal operator.

• Prop. 1.142 defines a firmly nonexpansive operator from a monotone operator. T is usually
called resolvent of A. This is a generalization of the relation between the subdifferential
and the proximal operator, Prop. 1.108.

• Generalize minimization problems to finding zeros of monotone operators via their resol-
vents. Douglas–Rachford algorithm can also be generalized to finding zero of sum of two
monotone operators. In fact, this was application of the algorithm in first publication.
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2 Optimization in Banach spaces

Remark 2.1 (Motivation). • We go through some fundamental aspects of analysis in Ba-
nach spaces. Goal: ensure that minimization problems are well-defined (e.g. minimizers
exist, sufficient and necessary criteria for optimality).

• For numerical solution we need to discretize, i.e. approximate by finite-dimensional prob-
lem. Must ensure ‘quality’ of approximations. Will introduce Γ-convergence, essentially
notion of convergence for minimization problems.

• Discrete problems always finite dimensional. Still: must analyze infinite dimensional prob-
lems, to ensure that limit of solutions as we choose finer and finer discretizations is reason-
able.

Definition 2.2. Throughout this subsection V is a real vector space.

2.1 Foundations

Definition 2.3 (Norm and inner product). • A map ‖ · ‖ : V → R+ on V is a norm if for
all x, y ∈ V , λ ∈ R have

(i) (positive definite) ‖x‖ = 0 ⇒ x = 0,

(ii) (subadditive) ‖x+ y‖ ≤ ‖x‖+ ‖y‖,
(iii) (homogeneity) ‖λ · x‖ = |λ| · ‖x‖.

• A norm induces a metric on V via d(x, y) = ‖x− y‖.

• A map 〈·, ·〉 : V × V → R is an inner product on V if for all x, y, z ∈ V , λ ∈ R it satisfies

(i) (symmetry) 〈x, y〉 = 〈y, x〉,
(ii) (linearity in first argument) 〈λ · x, y〉 = λ · 〈x, y〉, 〈x+ y, z〉 = 〈x, z〉+ 〈y, z〉,
(iii) (positive definite) 〈x, x〉 ≥ 0, [〈x, x〉 = 0] ⇒ [x = 0].

• From the axioms for the inner product we quickly obtain the Cauchy-Schwarz inequality,
〈x, y〉 ≤ ‖x‖ · ‖y‖, and that an inner product induces a norm via ‖x‖ =

√
〈x, x〉.

• A vector space V with a norm ‖ · ‖ is called a normed space. A vector space with an inner
product 〈·, ·〉 is called pre-Hilbert space.

Definition 2.4 (Convergence in metric). We say a sequence (xk)k on a metric space (X, d)
converges to some x ∈ X if d(xk, x)→ 0. x is called the limit of (xk)k and is unique.

Definition 2.5 (Cauchy sequence and complete metric spaces). A sequence (xk)k on a metric
space (X, d) is a Cauchy sequence if for all ε > 0 there is some N ∈ N such that d(xi, xj) ≤ ε
whenever i, j ≥ N . A metric space is called complete if all Cauchy sequences converge.

Definition 2.6 (Banach and Hilbert spaces). A complete normed space is called Banach space.
A complete pre-Hilbert space is called Hilbert space.

Definition 2.7. • A finite set {x1, . . . , xn} ⊂ V is linearly independent if for all (αi)
n
i=1 ∈ Rn

one has
∑n

i=1 αi · xi = 0 ⇒ αi = 0.
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• The span of a finite set {x1, . . . , xn} is span{x1, . . . , xn} = {
∑n

i=1 αi · xi | (αi)ni=1 ∈ Rn}.

• A basis of V is a linearly independent finite set X ⊂ V such that spanX = V .

• The dimension of V is the cardinality of any basis. If no basis exists, the dimension is ∞.

• On an ∞-dimensional normed vector space a Schauder basis is a sequence (xk)k in V such
that for any x ∈ V there is a unique sequence (λk)k such that

lim
n→∞

∥∥∥∥∥x−
n∑
k=1

λk · xk

∥∥∥∥∥ = 0 .

Remark 2.8 (Convexity in Banach spaces). The notions of of convex sets, convex hull, convex
functions, lower semicontinuity and cones can be defined on Banach spaces just as in the previous
part, since these do not rely on the inner product. For definitions such as subdifferential, normal
cone, conjugation we need to be more careful, but generalizations exist. Some more details later.

2.2 Reminders on topology

We recall a few basic facts about topologies.

Definition 2.9. Let X be a set. A set T ⊂ 2X of subsets of X is called a topology for X if

(i) X, ∅ ∈ T ,

(ii) For arbitrary subsets S ⊂ T their union is also in T , i.e.⋂
s∈S

s ∈ T.

(iii) For finite subsets S = {s1, . . . , sn} ⊂ T their intersection is also in T , i.e.

n⋂
i=1

si ∈ T.

Sets in T are called open. A set is closed, if its complement in X is open. The set X with a
corresponding topology T is called topological space. If not required, we may drop the explicit
reference to T .

Remark 2.10. The restriction that only finite intersections of open sets are open is necessary.
Recall basic example from X = R: for every ε > 0 the set (−ε, ε) is open. But

∞⋂
n=1

(−1/n, 1/n) = {0}

which is not open.

Proposition 2.11 (de Morgan’s law). Let (Ai)i∈I be a set of subsets ofX where I is an arbitrary
index set. Then ⋂

i∈I
Ai = X \

(⋃
i∈I

(X \Ai)
)
.
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Proof.

[x ∈
⋂
i∈I

Ai]⇔ [x ∈ Ai ∀ i ∈ I]⇔ [x /∈ X \Ai ∀ i ∈ I]

⇔ [x /∈
⋃
i∈I

(X \Ai)]⇔ [x ∈ X \
(⋃
i∈I

(X \Ai)
)
]

Corollary 2.12. With this we quickly find that arbitrary intersections of closed sets are closed
and finite unions of closed sets are closed.

Definition 2.13. Let (X,T ) be a topological space. The interior intA of a set A ⊂ X is the
union of all open sets contained in A:

intA =
⋃
{U ∈ T : U ⊂ A}

Since this set is by construction open and contains all open sets contained in A it is also referred
to as ‘largest open set contained in A’. Similarly, the closure clA of A is the intersection of all
closed sets that contain A.

Definition 2.14 (Convergence of sequences). A sequence (xk)k in a topological space (X,T ) is
said to converge to a point x ∈ X if for any any t ∈ T with x ∈ t there is some N ∈ N such that
xk ∈ t for k ≥ N .

Definition 2.15 (Continuous maps). Let (X,T ), (Y, S) be two topological spaces and let f :
X → Y . f is called continuous if f−1(s) ∈ T for all s ∈ S. (‘Preimages of open sets are open.’ )

Proposition 2.16. Let {Ti}i∈I be a set of topologies over a set X, where I is an arbitrary index
set. Then their intersection T , where t ∈ T iff t ∈ Ti for all i ∈ I, is a topology.

Definition 2.17 (Induced topology). Let (fi : X → Yi)i∈I be a family of maps from X to
topological spaces Yi. Then the intersection T of all topologies (Tj)j∈J such that all maps (fi)i∈I
are continuous is the induced topology. Since T only contains sets that are contained in all other
Tj , T also referred to as coarsest topology in which the family (fi)i∈I is continuous.

Comment: Transition from metric to metric topology often simply ‘stated as fact’. Take some
time to re-check.

Proposition 2.18 (Metric topology). • Let (X, d) be a metric space. The metric topology
on X is the topology induced by the family of maps (y 7→ d(x, y))x∈X from X to R where
R is equipped with the standard topology.

• For x ∈ X, ε > 0 the set B(x, ε) = {y ∈ X : d(x, y) < ε) is called the open ball of radius ε
around x. B(x, ε) is open in the metric topology.

• Any open set in the metric topology can be written as union of open balls.

Proof. • Note thatB(x, ε) = d(x, ·)−1((−ε, ε)). Since (−ε, ε) is open in R, B(x, ε) is therefore
open in the metric topology by construction.
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• The intersection of two open balls can be written as union of open balls: For x1, x2 ∈ X,
r1, r2 > 0 and x ∈ B(x1, r1)∩B(x2, r2) set εi = ri− d(xi, x). Let ε = min{ε1, ε2}/2. Then
for z ∈ B(x, ε) have d(z, xi) ≤ d(z, x) + d(x, xi) < ε+ ri − εi ≤ εi/2 + ri − εi = ri − εi/2.
So z ∈ B(xi, ri) and B(x, ε) ⊂ B(xi, ri).

• More generally, for any y ∈ B(x1, r1) ∩ B(x2, r2) denote by εy > 0 a positive radius such
that B(y, εy) ⊂ B(x1, r1) ∩B(x2, r2). Then

B(x1, r1) ∩B(x2, r2) =
⋃

y∈B(x1,r1)∩B(x2,r2)

B(y, εy)

• Finite intersections of arbitrary unions of open balls can be written as unions of open balls.
We start with the intersection of two unions. The rest follows by induction. Let

S =

(⋃
i∈I

Ai

)
∩

⋃
j∈J

Bj


where I and J are some index sets and (Ai)i∈I , (Bj)j∈J are families of open balls. Then
x ∈ S ⇔ ∃ ix ∈ I, jx ∈ J such that x ∈ Aix ∩Bjx ⊂ S. So

S =
⋃
x∈S

(Aix ∩Bjx) .

By the previous point we can rewrite the intersection Aix ∩Bjx of two open balls as union
of open balls, therefore we can rewrite S as union of open balls.

• Now set T = {
⋃
i∈I Bi| index sets I, open balls (Bi)i∈I} be the set of unions of open balls.

We set by convention that X, ∅ ∈ T . Then T is a topology (see previous point for the
intersection property) and it contains all open balls. Therefore, the metric topology is a
subset of T .

• The metric topology must contain at least all open balls, and therefore all arbitrary unions
thereof. So T is contained in the metric topology. Therefore, the two coincide.

Corollary 2.19. The metric topology is Hausdorff. That is, for every distinct pair x1, x2 ∈ X
there are open sets A1, A2 ⊂ X with xi ∈ Ai, A1 ∩A2 = ∅.

Proof. Since x1 6= x2 have d(x1, x2) > 0. Set Ai = B(xi, d(x1, x2)/3).

Corollary 2.20. Let A ⊂ X be open. Then for every x ∈ A there is some ε > 0 such that
B(x, ε) ⊂ A.

Proof. By Prop. 2.18 A can be written as union of open balls. Therefore, we must have some
y ∈ A, δ > 0 such that x ∈ B(y, δ) ⊂ A. Set ε = (δ − d(x, y))/2. By triangle inequality
B(x, ε) ⊂ B(y, δ) ⊂ A.

Corollary 2.21 (Convergence in metric topology). Convergence in the metric (Def. 2.4) is
equivalent to convergence in the metric topology (Prop. 2.18).
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Proof. • Assume d(xk, x)→ 0. For any open set U containing x, by Cor. 2.20, there is some
ε > 0 such that B(x, ε) ⊂ U and consequentially some N ∈ N such that d(xk, x) < ε for
k > N , i.e. xk ∈ U . This implies convergence in metric topology.

• Assume convergence in metric topology. Then for any ε > 0 there is some N ∈ N such
that xk ∈ B(x, ε) for k > N , i.e. d(xk, x) < ε. This implies d(xk, x)→ 0.

2.3 Examples

Let Ω ⊂ Rn be open, bounded, non-empty. For a ‘multiindex’ a ∈ {0, 1, 2, . . .}n let |a| =

a1 + . . .+ an and Daf
def.
= ∂|a|

∂
a1
x1
...∂anxn

f .

Definition 2.22. The space of k times continuously differentiable functions on Ω is denoted by
Ck(Ω). It is a Banach space when equipped with the norm

‖f‖Ck(Ω)
def.
= max

a:|a|≤k
max
x∈Ω
|Daf(x)| .

Remark 2.23. The maximizer in the definition of the norm exists since Daf is continuous for
|a| ≤ k and Ω is compact (since Ω is bounded).

Proof. • Start with C0(Ω). ‖f‖C0(Ω) = maxx∈Ω |f(x)|.

• ‖f‖C0(Ω) is a norm: finiteness, positive definiteness and homogeneity are immediate. Check
subadditivity: ‖f+g‖C0(Ω) = maxx∈Ω |f(x)+g(x)| ≤ maxx,y∈Ω |f(x)|+|g(y)| = ‖f‖C0(Ω)+

‖g‖C0(Ω).

• Now assume (fk)k is Cauchy sequence in C0(Ω). Then for any ε > 0 there is some N such
that for i, j > N one finds for all x ∈ Ω

|fi(x)− fj(x)| ≤ ‖fi − fj‖C0(Ω) < ε.

So (fk(x)))k is a Cauchy sequence in R and thus, for every x ∈ Ω there is a limit. We
denote the limits by f(x).

• ‖fi − f‖C0(Ω) → 0: For ε > 0 there is some N such that |fi(x) − fj(x)| < ε/3 for all
i, j > N , x ∈ Ω.

• For all x ∈ Ω there is some jx > N such that |fjx(x)− f(x)| < ε/3. Therefore

|fi(x)− f(x)| ≤ |fi(x)− fjx(x)|+ |fjx(x)− f(x)| < 2ε/3

for all i > N and x ∈ Ω.

• f ∈ C0(Ω): For x ∈ Ω and ε > 0 choose i ∈ N such that ‖fi − f‖C0(Ω) < ε/3. Then there
exists some δ > 0 such that |fi(x) − fi(y)| < ε/3 for y ∈ B(x, δ). Finally, for y ∈ B(x, δ)
get

|f(x)− f(y)| ≤ |f(x)− fi(x)|+ |fi(x)− fi(y)|+ |fi(y)− f(y)|
≤ 2‖fi − f‖C0(Ω) + |fi(x)− fi(y)| < ε .
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• Now C1(Ω). ‖f‖C1(Ω) = max
{
‖f‖C0(Ω), ‖∇f‖C0(Ω,Rn)

}
where the norm ‖ · ‖C0(Ω,Rn) is

the maximum of the ‖ · ‖C0(Ω) norm of each component. We show analogously that this is
indeed a norm.

• Now let (fi)i be a Cauchy sequence in C1(Ω). Then (fi)i is a Cauchy sequence in C0(Ω)
and (∇fi)i is a Cauchy sequence in C0(Ω,Rn). Therefore, they have limits in C0(Ω) and
C0(Ω,Rn), which we denote by f and g.

• Now show: ∇f = g: For x, y ∈ Ω, i ∈ N we get:

‖fi(y)− fi(x)− 〈y − x,∇fi(x)〉‖ =

∥∥∥∥∫ 1

0
〈∇fi(xt)−∇fi(x), y − x〉 dt

∥∥∥∥
(Where xt = x+ (y − x) · t. Note also: ‖∇fi(z)− g(z)‖ ≤

√
n‖∇fi − g‖C0(Ω,Rn).)

≤
∥∥∥∥∫ 1

0
〈g(xt)− g(x), y − x〉 dt

∥∥∥∥+ 2
√
n‖∇fi − g‖C0(Ω,Rn) · ‖x− y‖

By sending i→∞ for x 6= y we obtain∥∥∥∥f(y)− f(x)

‖y − x‖
− 〈y − x, g(x)〉

‖y − x‖

∥∥∥∥ ≤ ∥∥∥∥∫ 1

0
‖g(xt)− g(x)‖dt

∥∥∥∥ −−−→y→x
0

• General Ck+1(Ω), k ≥ 1, follow by recursion. Assume we have dealt with Ck(Ω). Then for
a Cauchy sequence (fi)i in Ck+1(Ω) each component of (∇fi)i converges in Ck(Ω). With
the above argument we show that the gradient of the limit f is the limit of the gradients
(∇fi)i.

We give a prototypical result for the relation between different function spaces.

Proposition 2.24 (Relation between Ck([0, 1])). For some integers k > 0 the space C0([0, 1])
is the completion of Ck([0, 1]) with respect to the norm ‖ · ‖C0([0,1]). More precisely,

(i) any sequence (fi)i in Ck([0, 1]) that is Cauchy with respect to the norm ‖ · ‖C0([0,1]) has a
limit in C0([0, 1]),

(ii) and any f ∈ C0([0, 1]) can be reached as limit of such a sequence.

Comment: Result sometimes allows to ‘temporarily’ restrict an optimization problem to a space
with higher regularity, since the regularity is only lost ‘in the limit’.

Comment: Approximating sequences are in general not Cauchy in Ck([0, 1]).

Proof. • (i) follows directly from Ck([0, 1]) ⊂ C0([0, 1]). We turn to (ii).

• By the famous Weierstrass approximation theorem any f ∈ C0([0, 1]) can be approximated
to any given precision ε > 0 in the norm ‖ · ‖C0([0,1]) by a polynomial, see e.g. [Narici,
Beckenstein: Topological Vector Spaces; Section 16.5].
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• So any f can be written as limit of a convergent (in ‖ · ‖C0([0,1])) sequence (fi)i of polyno-
mials; therefore (fi)i is Cauchy with respect to this norm. And clearly fi ∈ Ck([0, 1]).

Definition 2.25. For an exponent β ∈ (0, 1] a function f : Ω → R is Hölder continuous with
exponent β if there is a constant C <∞ such that for all x, y ∈ Ω

|f(x)− f(y)| ≤ C · |x− y|β

The space of k times Hölder continuously differentiable functions on Ω with exponent β is denoted
by Ck,β(Ω). It is a Banach space when equipped with the norm

‖f‖Ck,β(Ω) = ‖f‖Ck(Ω) + max
a:|a|=k

sup
x,y∈Ω:
x 6=y

|Daf(x)−Daf(y)|
|x− y|β

Proof. • When all derivatives of f up to k-th order are Hölder continuous, ‖f‖Ck,β(Ω) is finite.
Moreover, ‖ · ‖Ck,β(Ω) is positive definite, homogeneous and subadditive and thus is a norm
on Ck,β(Ω).

• Completeness for k = 0: Let (fi)i be a Cauchy sequence in C0,β(Ω). Then it is a Cauchy
sequence in C0(Ω) and thus its pointwise limit f exists and is in C0(Ω). Then for any
x, y ∈ Ω, x 6= y

|(f − fi)(x)− (f − fi)(y)|
‖x− y‖β

= lim
j→∞

|(fj − fi)(x)− (fj − fi)(y)|
‖x− y‖β︸ ︷︷ ︸

≤‖fi−fj‖C0,β(Ω)

The right-hand-side is bounded, therefore ‖f‖C0,β(Ω) ≤ ‖f − fi‖C0,β(Ω) + ‖fi‖C0,β(Ω) < ∞
and thus f ∈ C0,k(Ω). Moreover, as i → ∞ the right-hand-side goes to zero, therefore
‖f − fi‖C0,k(Ω) → 0.

• Extension to Ck,β , k > 0 as above.

The following family of spaces will often serve as useful examples.

Definition 2.26. For p ∈ [1,∞] let `p = {x = (x1, x2, . . .) ∈ RN|‖x‖`p <∞} where

‖x‖`p =

{
(
∑∞

i=1 |xi|p)
1/p if p <∞,

supi |xi| if p =∞.

The following inequalities are often useful when one must derive upper bounds. They will also
allow to prove that `p is a Banach space.

Proposition 2.27 (Hölder inequality for `p). For p, q ∈ [1,∞] with 1
p + 1

q = 1, x ∈ `p, y ∈ `q

we have
∑∞

i=1 |xi yi| ≤ ‖x‖`p · ‖y‖`q . For p, q ∈ (1,∞) there is equality if and only if
(
|xi|
‖x‖`p

)p
=(

|yi|
‖y‖`q

)q
.
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Comment: Generalization of Cauchy-Schwarz inequality

Proof. • For p = 1 or q = 1 the inequality is immediate. So assume p, q ∈ (1,∞).

• For a, b ≥ 0, λ ∈ (0, 1) one has aλ b1−λ ≤ λ ·a+ (1−λ) · b (‘geometric average ≤ arithmetic
average’), with equality only if a = b.

• The statement is trivial if a = 0 or b = 0 since then the left-hand-side is zero.

• So assume a, b > 0. Then both expressions are well defined for λ ∈ [0, 1]. We find equality
for λ = 0 and λ = 1.

• Let g(λ) = aλ b1−λ = exp(λ log(a) + (1 − λ) log(b)). We find ∂k

∂λk
g(λ) = g(λ) · (log(a) −

log(b))k. So ∂2

∂λ2 g(λ) ≥ 0 and therefore g is convex and so g(λ) ≤ g(0) · (1− λ) + g(1) · λ.

• If a 6= b then ∂2

∂λ2 g(λ) > 0 and thus the function is strictly convex. So equality can only
happen if a = b.

• Now set

a =

(
|xi|
‖x‖`p

)p
, b =

(
|yi|
‖y‖`q

)q
, λ = 1

p , 1− λ = 1
q .

• Then
|xi|
‖x‖`p

|yi|
‖y‖`q

≤ 1
p

(
|xi|
‖x‖`p

)p
+ 1

q

(
|yi|
‖y‖`q

)q
• Now sum both sides over i to get:

∞∑
i=1

|xi yi|
‖x‖`p‖y‖`q

=
∞∑
i=1

|xi|
‖x‖`p

|yi|
‖y‖`q

≤
∞∑
i=1

[
1
p

(
|xi|
‖x‖`p

)p
+ 1

q

(
|yi|
‖y‖`q

)q]
= 1

p + 1
q = 1

Proposition 2.28 (Minkowski inequality for `p). For p ∈ [1,∞] find x, y ∈ `p ⇒ x+y ∈ `p with
‖x+ y‖`p ≤ ‖x‖`p + ‖y‖`q . For p ∈ (1,∞) there is equality if and only if x = q · y for some q ≥ 0.

Proof. • For p = 1, p = ∞ the inequality follows directly (for p = 1 from subadditivity of
the function s 7→ |s|; for p =∞ as for the C0(Ω) space).

• Inequality is also trivial if x = 0 or y = 0. So assume p ∈ (1,∞), x, y 6= 0. In the following
let q ∈ (1,∞) such that 1

p + 1
q = 1. In particular (p− 1) · q = p and 1

q = 1
p(p− 1). Then:

‖x+ y‖p`p =

∞∑
i=1

|xi + yi|p ≤
∞∑
i=1

|xi + yi|p−1(|xi|+ |yi|)

≤
∞∑
i=1

|xi + yi|p−1|xi|+
∞∑
i=1

|xi + yi|p−1|yi|

(using Hölder inequality)

≤

( ∞∑
i=1

|xi + yi|(p−1)q

)1/q

(‖x‖`p + ‖y‖`p) = ‖x+ y‖p−1
`p (‖x‖`p + ‖y‖`p)
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• This implies the inequality. If x = q · y for some q ≥ 0 we have equality. Conversely, for
Hölders inequality to yield equality it is necessary that(

|xi|
‖x‖`p

)p
=

(
|xi + yi|p−1

‖|x+ y|p−1‖`q

)q
=

(
|xi + yi|
‖x+ y‖`p

)p
which requires existence of some q.

Proposition 2.29. For p ∈ [1,∞] the space `p equipped with ‖ · ‖`p is a Banach space.

Proof. • Finiteness, positive definiteness and homogeneity of ‖ · ‖`p are immediate. Subad-
ditivity follows from the Minkowski inequality. So `p is normed space.

• For p =∞ the proof for completeness is analogous to C0(Ω). So let p <∞.

• Let (xk)k be a Cauchy sequence in `p, where for each k (xk,i)i is a sequence in R. Then
|xk,i − xj,i| ≤ ‖xk − xj‖`p , so for each i (xk,i)k is a Cauchy sequence in R. Denote the
sequence of limits by (zi)i.

• Since (xk)k is Cauchy, ‖xk‖`p < M for some M <∞. So for all n ∈ N

n∑
i=1

|xk,i|p ≤Mp ⇒
n∑
i=1

|zi|p ≤Mp

and consequently as n→∞ find ‖z‖`p ≤M , i.e. z ∈ `p.

• For any ε > 0 ∃ N such that ∀ m,n > N , k ∈ N get

k∑
i=1

|xm,i − xn,i|p ≤ ‖xm − xn‖p`p ≤ ε

Now let m→∞, then k →∞ to get ‖z − xn‖p ≤ ε.

Remark 2.30. Other prominent examples that are also very common in applications are Lp

spaces and Sobolev spaces.

2.4 Compactness and separability

We introduce the topological dual of a Banach space, which can be interpreted as an ‘approxi-
mation’ for an inner product on Banach spaces. We study related questions on compactness and
see how far we can adapt notions of convex duality to this setting.
In Hilbert spaces we have shown that projections onto closed convex sets, i.e. points of minimal
distance, exist (and are unique). This is in general no longer true in Banach spaces, due to a
lack of a notion of orthogonality.
To gain some intuition, we first give an example where projections exist and then give a coun-
terexample.

Example 2.31. • Let X = C0([0, 1]), equipped with the norm ‖ · ‖ = ‖ · ‖C0([0,1]).

• Let Y = {f ∈ X :
∫ 1

0 f(x) dx = 0}. Y is a closed subspace of X.
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• Consider now the projection problem from X onto Y . For f ∈ X study infg∈Y ‖f − g‖.

• Intuition: for given f 6= Y , how do we change ‘mean’ of f with minimal perturbation in
the norm? ⇒ change each point of f by same value.

• Let g ∈ Y and set h = f − g. From
∫ 1

0 g dx = 0 we find that we need to find h ∈ X with∫ 1
0 fdx =

∫ 1
0 hdx that has minimal norm.

• This implies that ‖h‖ ≥ |
∫ 1

0 fdx| (otherwise |
∫ 1

0 hdx| ≤
∫ 1

0 ‖h‖dx < |
∫ 1

0 fdx|).

• Try constant function h(x) =
∫ 1

0 f(y)dy. This satisfies integral constraint and we find
‖h‖ = |

∫ 1
0 f(y)dy|. So h is optimal and g(x) = f(x)−

∫ 1
0 f(y)dy.

• Note: h is unique. Assume, h were not constant. Then ‖h‖ > |
∫ 1

0 hdx|.

Now, by giving a counterexample, we show that projections onto closed convex sets do not always
exist in Banach spaces.

Proposition 2.32. For a Banach space (X, ‖ · ‖) and a closed subspace Y ⊂ X and some fixed
x ∈ X, there is not always a minimizer of infy∈Y ‖x− y‖.

Proof. • The proof is a slight modification of the example above.

• Let X = {f ∈ C0([0, 1]) : f(0) = 0} with norm ‖ · ‖ = ‖ · ‖C0([0,1]). X is a closed subspace
of C0([0, 1]) (why? check Cauchy sequences) and therefore X is a Banach space.

• Let Y = {g ∈ X :
∫ 1

0 g(x)dx = 0}.

• Analogous to above: fix f ∈ X \ Y , rewrite problem. Let g ∈ Y , set h = f − g. Solve s =
inf{‖h‖|h ∈ X :

∫ 1
0 hdx =

∫ 1
0 fdx}. Almost as above, but now have additional constraint

h(0) = 0, since we may not change f(0) = 0.

• So constant shift no longer works, infimal norm of h cannot be smaller than above, i.e. s ≥
|
∫ 1

0 fdx|. Since feasible h cannot be constant, must have ‖h‖ > |
∫ 1

0 fdx| for all feasible h.

• Now show that infimum s = |
∫ 1

0 fdx| which then implies that no minimizer exists. Do
this by ‘approximating’ constant shift as good as possible, while obeying the h(0) = 0
constraint.

• Set hi(x) = (
∫ 1

0 f(y)dy) · (1 + 1/i) · x1/i. hi(0) = 0,
∫ 1

0 hi(x)dx =
∫ 1

0 f(y)dy and ‖hi‖ =

|hi(1)| = |
∫ 1

0 f(y)dy| · (1 + 1/i). So (hi)i is a minimizing sequence.

Sketch: hi, approximation of constant shift.

Comment: (hi)i is not Cauchy. Its pointwise limit is h∞(x) = 1 for x ∈ (0, 1], h(0) = 0,
which is not in X ⊂ C0([0, 1]).

So the projection does not exist, but we can find a sequence (hi)i that is approximately orthogonal
to the subspace. Such a sequence exists in general.

Proposition 2.33 (Almost orthogonal element). For a Banach space X let Y be a subspace,
Y 6= X. For any x ∈ X and θ > 1 there are some xθ ∈ X, yθ ∈ Y such that x = xθ + yθ and
dist(x, Y ) = dist(xθ, Y ) ≤ ‖xθ‖ ≤ θ · dist(x, Y ).
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Proof. • dist(x, Y ) = infy∈Y ‖x− y‖ is finite and non-negative.

• Let yθ ∈ Y such that ‖x− yθ‖ < θ · dist(x, Y ) (take from a minimizing sequence) and set
xθ = x− yθ.

• dist(xθ, Y ) = infy∈Y ‖x− yθ − y‖ = infy∈Y ‖x− y‖ = dist(x, Y ).

Remark 2.34. If Y is not closed, then may have dist(x, Y ) = 0 even when x /∈ Y and ‖xθ‖ → 0
as θ ↘ 1.

Corollary 2.35. If Y is closed and Y 6= X then for any θ > 1 there is some xθ with ‖xθ‖ = 1
and dist(xθ, Y ) ≥ 1

θ .

We have learned that an important ingredient for existence of minimizers is compactness. Now
study (strong) compactness on Banach spaces.

Proposition 2.36. On a normed space X the notions of compactness and sequential compact-
ness are equivalent.

Proof. • compactness ⇒ sequential compactness: Let A ⊂ X be compact, let (xk)k be
a sequence in A. Assume (xk)k has no cluster point. Then ∀y ∈ A ∃ δy > 0 such that
Ny = {k ∈ N : xk ∈ B(y, δy)} is finite.

• The sets B(y, δy) for y ∈ A form an open cover of A. Since A is compact, there is a finite
subcover for some (y1, . . . , yn):

A ⊂
⋃
y∈A

B(y, δy) ⇒ A ⊂
n⋃
i=1

B(yi, δyi) ⇒ N =
n⋃
i=1

Ni

• This implies that N is finite. So (xk)k must have at least one cluster point and thus A is
sequentially compact.

• sequential compactness ⇒ compactness: For any ε > 0 can cover A with finitely
many ε-balls (otherwise, we could define sequence in A without cluster points via xk ∈
A \

⋃k−1
i=1 B(xi, ε)).

• For an open cover A ⊂
⋃
i∈I Ui, ∃ ε0 > 0 such that ∀ x ∈ A ∃ ix ∈ I such thatB(x, ε0) ⊂ Iix .

Prove this by contradiction.

• Assume ∀ k ∈ N ∃ xk ∈ A such that ∀ i ∈ I B(xk, 1/k) 6⊂ Ui. Since A is sequentially
compact, (xk)k has cluster point x ∈ A. Let (xkj )j be subsequence converging to x. ∃δ > 0
such that B(x, δ) ∈ Ui for some i ∈ I.

• ∃j ∈ N such that 1
kj
< δ

2 and ‖xkj−x‖ < δ
2 . ⇒ B(xkj , 1/kj) ⊂ Ui, which is a contradiction.

• So for this ε0 chose x1, . . . , xn ∈ A such that

A ⊂
n⋃
k=1

B(xk, ε0) ⊂
n⋃
k=1

Uixk
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Corollary 2.37. Projections onto compact sets exist in Banach spaces.

Proof. Can extract cluster point from any minimizing sequence of dist(x, Y ). Is minimizer (and
therefore, projection) since y 7→ d(x, y) is continuous (by construction of metric topology).

Proposition 2.38. For a Banach space X we find: [B(0, 1) compact]⇔ [X is finite-dimensional]

Proof. • ⇒: B(0, 1) ⊂
⋃
y∈B(0,1)B(y, 1

2) ⇒ (finite subcover from compactness) B(0, 1) ⊂⋃n
i=1B(yi,

1
2).

• Y = span{y1, . . . , yn} is closed subspace. Assume Y 6= X.

• By Corollary 2.35 for θ > 1 there is some xθ with ‖xθ‖ = 1 and dist(xθ, {y1, . . . , yn}) ≥
dist(xθ, Y ) ≥ 1

θ .

• But since ‖xθ‖ = 1 ⇒ xθ ∈ B(0, 1) ⊂
⋃n
i=1B(yi,

1
2) ⇒ dist(xθ, {y1, . . . , yn}) < 1

2 . For
θ < 2 this is a contradiction.

• ⇐: If X is finite dimensional, identify it with Rn. All norms are equivalent on Rn. There-
fore compactness of B(0, 1) follows from Heine–Borel.

So B(0, 1) in C0([0, 1]) is not compact. However, one can show that B(0, 1) of C1([0, 1]) is
compact with respect to the C0([0, 1]) topology.

Definition 2.39 (Equicontinuity). A family of functions fi : V → R, i ∈ I is equicontinuous
if for any x ∈ V and ε > 0 there is some δ > 0 such that |fi(y) − fi(x)| < ε for all y with
‖y − x‖ < δ, i ∈ I.

Proposition 2.40 (Arzelà–Ascoli). A set A ⊂ C0([0, 1]) is (sequentially, equivalent, why?)
pre-compact (the closure of A is compact) if and only if it is bounded and equicontinuous.

Corollary 2.41. The set A = B(0, 1) of C1([0, 1]) is pre-compact with respect to the C0([0, 1])
topology.

Proof. • For every f ∈ A, x ∈ [0, 1] have |f(x)| ≤ 1 and |f ′(x)| ≤ 1. Therefore A is bounded
in C0([0, 1]) and A is equicontinuous: |f(x)− f(y)| ≤ |x− y|.

Definition 2.42 (Separable metric space). A topological space X is separable if it contains a
countable, dense subset A.

Remark 2.43. A dense inX means that any point inX can be reached as the limit of a sequence
in A, or equivalently that any non-empty open set in X has non-empty intersection with A.
Intuitively, separability is a bound on the cardinality of the space. Even if X is uncountable, it
can be ‘reasonably approximated’ by countable elements. On separable spaces many proofs are
constructive and one can avoid the axiom of choice.

Example 2.44. (i) The set R with the usual topology is separable, as Q is dense in R.

(ii) The set R with the discrete topology (all sets are open) is not separable, since the only set
that is dense in this space is R itself, which is not countable.
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More examples:

Proposition 2.45. A compact metric space (X, d) is separable.

Proof. • For n ∈ N have X ⊂
⋃
x∈X B(x, 1

n) as an open cover. Therefore, there is a finite
subcover X ⊂

⋃kn
i∈1B(xn,i,

1
n).

• The countable set A =
⋃∞
n=1{xn,1, . . . , xn,kn} is dense in X: For x ∈ X and ε > 0, set

n > 1/ε, then x ∈ B(xn,i,
1
n) ⊂ B(xn,i, ε) for some i ∈ {1, . . . , nk}.

• So we can generate a sequence in A that converges to x.

Proposition 2.46. An infinite-dimensional Banach space with a Schauder basis is separable.

Remark 2.47. The converse implication is not true in general, see e.g. [Narici, Beckenstein:
Topological Vector Spaces; Section 11.1] (which is primarily a very interesting brief historical
summary of the mathematical life of Stefan Banach).

Proof. • Let (xi)i be a Schauder basis of X. In particular it is countable. W.l.o.g. we can
assume that {‖xi‖}i is bounded by some C <∞.

• Let An = {
∑n

i=1 si xi|(si)i ∈ Qn}. SinceQ is countable and An is a finite union of countable
sets {Q · xi}, An is countable.

• Let A =
⋃∞
n=1An. Since A is a countable union of countable sets, A is countable.

• Fix now x ∈ X and some ε > 0.

• By definition there is a (unique) sequence (αi)i in R such that limn→∞ ‖x−
∑n

i=1 αi xi‖ → 0,
in particular there is some n such that ‖x−

∑n
i=1 αi xi‖ < ε/2.

• Let now βi ∈ Q such that |αi − βi| < ε
2i+1C

. Let zn =
∑n

i=1 αi xi, yn =
∑n

i=1 βi xi ∈ A.

‖x− yn‖ ≤ ‖x− zn‖+ ‖zn + yn‖ < ε
2 +

n∑
i=1

|αi − βi| · ‖xi‖ < ε
2 + ε

n∑
i=1

2−i−1 < ε

Proposition 2.48. C0([0, 1]) is separable.

We use a small auxiliary Lemma for the proof that is often helpful when working on compact
spaces.

Lemma 2.49. Let (X, d) be a compact metric space. A continuous function f : X → R is
uniformly continuous, i.e. ∀ ε > 0 ∃ δ > 0 such that |f(x)− f(y)| < ε when d(x, y) < δ.

Proof. • For every ε > 0, x ∈ X ∃ δx > 0 such that |f(x)− f(y)| < ε/2 if y ∈ B(x, δx).

• The sets (B(x, δx/2))x∈X form an open cover of X and X is compact ⇒ there is a finite
subcover with midpoints {x1, . . . , xn}. Let δ = min{δx1 , . . . , δxn} > 0.

• Now let x, y ∈ X, d(x, y) < δ/2. Then x ∈ B(xi, δxi/2) for some i and therefore y ∈
B(xi, δxi).
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• So |f(x)− f(y)| ≤ |f(x)− f(xi)|+ |f(y)− f(xi)| < ε.

Proof of Proposition 2.48. • By Lemma 2.49 any f ∈ C0([0, 1]) is uniformly continuous. So
for any ε > 0 can find n ∈ N such that |f(x) − f(y)| < ε for |x − y| < 2−n. So we can
uniformly approximate f by piecewise affine interpolation between values at points i · 2−n
for i ∈ {0, . . . , 2n}.

• Define set of ‘tent functions’ of scale n for i ∈ {0, . . . , 2n}:

fn,i(x) =

{
0 if |x− i · 2−n| ≥ 2−n,

1− |2nx− i| else

Sketch: Tent functions.

• So piecewise affine interpolation with resolution n can be written as superposition of func-
tions fn,i. The functions (fn,i}n,i) are an ‘overcomplete’ Schauder basis of C0([0, 1]). The
decomposition may not be unique, since the fn,i are not all linearly independent.

• Could re-establish uniqueness, by iteratively removing linearly dependent elements. But
reasoning of Prop. 2.46 does not depend on uniqueness of the decomposition. So separability
of C0([0, 1]) follows.

Remark 2.50. (i) Since Ck([0, 1]) can be parametrized by C0([0, 1]) and a finite number of
integration constants, this argument extends to Ck([0, 1]).

(ii) For spaces X that can be written as subsets of Ck([0, 1]) with respect to coarser norms by
construction Ck([0, 1]) is dense in X and thus X is then also separable. This covers many
spaces of integrable functions and Sobolev spaces.

Comment: Many ‘practical’ spaces remain separable, even if they ‘look’ very high dimensional.
For this need ‘sufficiently coarse’ topology. (Recall R with discrete topology is not separable.)

Proposition 2.51. The spaces `p for p ∈ [1,∞) have a Schauder basis and are separable.

Proof. • Let ei ∈ `p with ei,j = δi,j . Claim: (ei)i∈N is a Schauder basis of `p.

• Let x ∈ `p. Set zi =
∑i

j=1 ej xj , zi,j = xj δj≤i. Find:

‖x− zi‖p`p =

∞∑
j=1

|xj − zi,j |p =

∞∑
j=1

|xj − xj δj≤i|p =

∞∑
j=i+1

|xj |p = ‖x‖p`p −
i∑

j=1

|xj |p → 0

as i→∞. So zi → x.

• This decomposition is unique. Let (yi)i be another sequence such that limi→∞ vi → x for
vi =

∑i
j=1 yi · ei with |yi0 − xi0 | > δ for some i0. Then ‖vi − x‖ ≥ δ for all i ≥ i0 and thus

this sequence cannot converge to x.

Proposition 2.52. The space `∞ is not separable.
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Proof. • Let A ⊂ `∞ be countable, i.e. A = (ak)k∈N where for each k ∈ N have ak =
(ak,1, ak,2, . . .) ∈ `∞.

• Define sequence (bk)k by

bk =

{
ak,k + 1 if |ak,k| ≤ 1,

0 if |ak,k| > 1.

• supk∈N |bk| ≤ 2, i.e. ‖b‖`∞ ≤ 2 and thus b ∈ `∞.

• ‖b − ak‖`∞ ≥ |bk − ak,k| ≥ 1 for all k ∈ N. Therefore, b cannot be approximated by a
sequence in A and thus no countable set can be dense in `∞.

Proposition 2.53. An infinite-dimensional Hilbert space H is separable if and only if it has a
orthonormal Schauder basis.

Proof. • ⇐: If H has a orthonormal Schauder basis, separability follows from Prop. 2.46.

• ⇒: Let {ak}k be a countable set that is dense in H. Apply Gram-Schmidt orthonormal-
ization to (ak)k to generate orthonormal sequence (xi)i. (Start with smallest k such that
ak 6= 0, set x1 = ak/‖ak‖, i = 1. Then increase k until ak /∈ span{xj}ij=1. Add orthonormal
component of ak as new basis vector to (xi)i, increase i. Since H is infinite-dimensional
and {ak}k is dense, i will tend to ∞. Note that i ≤ k throughout the process and that
ak ∈ span{xj}kj=1 at all steps.)

• (xi)i is orthonormal by construction. Show that it is Schauder basis.

• By construction ak =
∑k

i=1 xi 〈xi, ak〉. For any z ∈ H by density there is a subsequence
(akj )j that converges to z. So∥∥∥∥∥∥z −

kj∑
i=1

xi 〈xi, z〉

∥∥∥∥∥∥ ≤ ‖z − akj‖+

∥∥∥∥∥∥
kj∑
i=1

xi
〈
xi, akj − z

〉∥∥∥∥∥∥
≤ ‖z − akj‖+

〈 kj∑
i=1

xi
〈
xi, akj − z

〉
,

kj∑
i=1

xi
〈
xi, akj − z

〉〉1/2

(Bessel inequality, cf. Example 1.91)

≤ 2‖z − akj‖ → 0 as j →∞.

• By orthonormality of (xi)i the coefficients 〈xi, z〉 are unique.

Corollary 2.54. Every separable Hilbert space H is isomorphic to `2, i.e. there is a bijection
φ : H → `2 such that 〈x, y〉H = 〈φ(x), φ(y)〉`2 .
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2.5 Linear transformations and topological dual

Definition 2.55 (Linear transformations and functionals). • For two normed spaces X, Y ,
D ⊂ X a map T : D → Y is called transformation from X to Y with domain D.

• A transformation T : D → R is called functional.

• T : X → Y is linear if T (a x+ b y) = a T (x) + b T (y) for all x, y ∈ X, a, b ∈ R.

• The operator norm of a transformation T : X → Y is defined as

‖T‖ = sup
x∈X\{0}

‖T (x)‖Y
‖x‖X

.

T is called bounded if ‖T‖ <∞.

• The set of bounded linear transformations from X to Y is denoted by L(X,Y ).

Proposition 2.56. Let T be a linear transformation from X to Y .

(i) [T continuous in 0] ⇔ [T continuous on X]

(ii) [T bounded] ⇔ [T continuous]

Proof. • X and Y normed spaces ⇒ “ε-δ-notion” of continuity is sufficient.

• (i): Let x ∈ X, ε > 0. [∃ δ > 0 : ‖T (z)‖Y < ε if ‖z‖X < δ]⇔ [∃ δ > 0 : ‖T (x)−T (y)‖Y =
‖T (x− y)‖Y < ε if y ∈ BX(x, δ)]

• (ii): ⇒: [T bounded] ⇒ [∀x ∈ X: ‖T (x)‖Y ≤ ‖T‖ · ‖x‖X ⇒ [T continuous in 0] ⇔ [T
continuous].

• ⇐: let ε > 0. [T continuous in 0] ⇒ [∃ δ > 0: ‖T (x)‖Y ≤ ε if ‖x‖X < δ].

• for any y ∈ X \ {0} find:

‖T (y)‖Y
‖y‖X

=

2‖y‖X
δ ‖T ( δ

2‖y‖X y)‖Y
‖y‖X

≤ 2ε

δ
<∞

• This bound is uniform for all y ∈ Y \ {0}, therefore ‖T‖ < 2ε
δ .

Proposition 2.57. L(X,Y ) is a vector space and the operator norm is indeed a norm on
L(X,Y ).

Proof. • For S, T ∈ L(X,Y ), a, b ∈ R clearly (aS + b T ) : x 7→ aS(x) + b T (x) is a linear
transformation.

• ‖T‖ ≥ 0 by definition. [‖T‖ = 0] ⇔ [T (x) = 0 for all x ∈ X] ⇔ [T = 0].

• ‖a · T‖ = |a| · ‖T‖ by homogeneity of ‖ · ‖Y .

• ‖S+T‖ = supx∈X\{0}
‖S(x)+T (x)‖Y

‖x‖X ≤ supx∈X\{0}
‖S(x)‖Y
‖x‖X +supy∈X\{0}

‖S(y)‖Y
‖y‖X = ‖S‖+‖T‖.
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• Since ‖ · ‖ is subadditive, whenever S and T are bounded, so is S + T . So L(X,Y ) is a
vector space.

Proposition 2.58. If Y is a Banach space, then so is L(X,Y ) when equipped with the operator
norm.

Proof. • Let (Tn)n be a Cauchy sequence in L(X,Y ). ⇒ for any ε > 0 ∃ N ∈ N such that
‖Tm − Tn‖ < ε for m,n > N .

• For m,n > N , x ∈ X get ‖Tm(x)− Tn(x)‖Y < ε‖x‖X . So (Tn(x))n is Cauchy in Y . Since
Y is Banach, sequence has limit.

• Set T : x 7→ limn→∞ Tn(x).

• T is linear:

T (a x+ b y) = lim
n→∞

Tn(a x+ b y) = lim
n→∞

a Tn(x) + b Tn(y)

(sum of Cauchy sequences is Cauchy)

= a T (x) + b T (y).

• T is bounded: let x ∈ X \ {0}, n > N .

‖T (x)‖Y ≤ ‖T (x)− Tn(x)‖Y + ‖Tn(x)‖Y = lim
m→∞

‖Tm(x)− Tn(x)‖Y + ‖Tn(x)‖Y

≤ ε · ‖x‖X + ‖Tn‖ · ‖x‖X

where we used ‖Tm(x) − Tn(x)‖Y < ε‖x‖X for m,n > N . Divide by ‖x‖X 6= 0 to get
uniform bound on ‖T (x)‖Y /‖x‖X and thus that T has finite norm.

Definition 2.59 (Dual space). • For a normed space X the Banach space of functionals
L(X,R) equipped with the operator norm is called the topological dual space of X and
denoted by X∗.

• Every t ∈ X∗ is a bounded linear functional on X. The application t(x) is often also
denoted as 〈t, x〉X∗×X .

• The map X∗ × X → R via (t, x) 7→ 〈t, x〉X∗×X is called duality pairing. The subscript
X∗ ×X is dropped when the context is clear.

• From linearity of t and since X∗ is a vector space, the duality pairing is bilinear.

Proposition 2.60. The duality pairing X∗ ×X → R, (t, x) 7→ t(x) is jointly continuous in the
product topology of the (strong / norm) topologies on X∗ and X.

Proof. • Let (s, x) ∈ X∗ ×X, ε > 0. Set δ = min{1, ε
‖s‖+‖x‖X+1}. Then δ ≤ ε

‖s‖+‖x‖X+1 ≤
ε

‖s‖+‖x‖X+δ .
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• Now let t ∈ BX∗(s, δ), y ∈ BX(x, δ). Get

|s(x)− t(y)| ≤ |s(x)− s(y)|+ |s(y)− t(y)| ≤ ‖s‖ ‖x− y‖X + ‖s− t‖ ‖y‖X
≤ ‖s‖ δ + δ (‖x‖X + δ) ≤ ε

Definition 2.61 (Weak topology). • The topology induced on X by the family of maps X∗

(see Def. 2.17) is called weak topology on X.

• It is the coarsest topology in which all maps t ∈ X∗ are continuous.

• We denote convergence in the weak topology by xn ⇀ x.

• [xn ⇀ x] ⇔ [t(xn)→ t(x) for all t ∈ X∗].

Definition 2.62 (Weak∗ topology). • For fixed x ∈ X consider the map fx : X∗ → R,
t 7→ 〈t, x〉.

• The weak∗ topology on X∗ is the topology induced by the family of maps {fx|x ∈ X}.

• Weak∗ convergence is denoted by tn
∗
⇀ t.

• [tn
∗
⇀ t] ⇔ [〈tn, x〉 → 〈t, x〉 for all x ∈ X].

Example 2.63. • By the Riesz representation theorem any bounded linear functional t on
a Hilbert space H can be identified with a unique y ∈ H such that t(x) = 〈x, y〉H . So H∗
can be identified with H itself and the duality pairing is given by the inner product.

• The identification is not necessarily unique. Let H,J be Hilbert spaces with J ⊂ H, but
J is equipped with different inner product. Then J∗ can be identified with J via inner
product 〈·, ·〉J or with subspace of H via inner product 〈·, ·〉H .

The following Proposition simplifies study of dual spaces on Banach spaces with Schauder bases.

Proposition 2.64. Let (zn)n be a Schauder basis on a Banach space X. Then any element of
X∗ can be identified with a unique real sequence (λn)n.

Proof. • For x ∈ X let (αi)i be the unique sequence such that x = limn→∞ xn where xn =∑n
i=1 αi · zi.

• Let t ∈ X∗. By continuity of t find t(x) = limn→∞ t(xn) = limn→∞
∑n

i=1 αi · t(zi).

• Can represent t by sequence (λi = t(zi))i: t(x) = limn→∞
∑n

i=1 αi · λi.

• Representation is unique: let t, t̂ be represented by two sequences (λn)n, (λ̂n)n. Assume
λi 6= λ̂i. Then t(zi) = λi 6= λ̂i = t̂(zi), so t 6= t̂.

Remark 2.65. The above proposition does not specify which sequences (λn)n represent some
t ∈ X∗. Doing this helps to fully characterize X∗.

Proposition 2.66. For p ∈ [1,∞) the dual space of `p is isomorphic (exists bijection that
preserves norm / metric) with `q where 1

p + 1
q = 1.
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Proof. • First treat p > 1. By Propositions 2.51 (`p has Schauder basis (ei)i) and 2.64 (`p)∗

can be identified with subset of real sequences.

• Let y ∈ `q. Define t(x) = limn→∞
∑n

i=1 xi yi. Hölder inequality: sequence converges
absolutely, limit exists and is finite. ⇒ This defines linear functional.

• |t(x)| ≤ ‖x‖`p‖y‖`q ⇒ functional is bounded. For every y ∈ `q can find x ∈ `p s.t.
|t(x)| = ‖x‖`p‖y‖`q (for construction of xn see Prop. 2.27), so operator norm of t equals `q

norm of y. So can identify `q with subset of (`p)∗.

• Assume y /∈ `q. So
∑n

i=1 |yi|q is unbounded as n→∞.

• Let ŷn = (ŷn,1, ŷn,2, . . .) be real sequence where

ŷn,i =

{
yi if i ≤ n,
0 else.

‖ŷn‖`q <∞, (ŷn)n is unbounded sequence in `q.

• Let x̂n ∈ `p such that
∑n

i=1 x̂n,i ŷn,i = ‖x̂n‖`p‖ŷn‖`q with x̂n,i = 0 for i > n.

• Consider 1
‖x̂n‖`p

∑∞
i=1 yi x̂n,i = 1

‖x̂n‖`p
∑∞

i=1 ŷn,i x̂n,i = ‖ŷn‖`q → ∞ as n → ∞. So y does
not represent a bounded linear functional on `p.

• So can identify dual of `p with `q for p ∈ (1,∞).

• Now: p = 1, q = ∞. Let x ∈ `1. If y ∈ `∞ then |
∑∞

i=1 xi yi| ≤ ‖x‖`1‖y‖`∞ . So y induces
bounded, linear functional on `1 as above.

• Assume y /∈ `∞. Then exists unbounded subsequence (ynk)k. Set x̂k = enk , so ‖x̂k‖`p = 1.
Then |

∑∞
i=1 yi x̂k,i| = |ynk | → ∞, therefore y does not represent bounded functional.

Remark 2.67. Since `∞ has no Schauder basis, cannot use this trick to study dual space of `∞.
Will later see indirectly that it cannot be identified with `1.

Remark 2.68. • Let Y be a subspace of a Banach space X.

• Any bounded linear functional on X is bounded linear functional on Y . So X∗ is subset
of Y ∗.

• But Y ∗ may be strictly larger: there may be linear functionals on X that are bounded on
Y but not on X.

Example 2.69. `1 is a (strict) subspace of `2 (why? careful: not true for ‘big Lp’ spaces!)
and `2 = (`2)∗ is a strict subspace of `∞ = (`1)∗. (In the presence of a canonical isomorphism
between two isomorphic spaces, we sometimes simply treat two isomorphic spaces as one. Here:
(`1)∗ = `∞.)

Definition 2.70. (i) The dual of the dual of a Banach space is called bidual space.

(ii) When a Banach space can be identified with its bidual, a space is called reflexive.
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Remark 2.71. Any x ∈ X defines a bounded linear functional on X∗ via t 7→ 〈t, x〉X∗×X , see
Def. 2.59. So X can be identified with subspace of X∗∗. On a reflexive space, any bounded linear
functional can be identified with some x ∈ X.

Example 2.72. (i) Hilbert spaces are reflexive.

(ii) `p for p ∈ (1,∞) are reflexive.

(iii) Will soon see: `1 is not reflexive, since (`∞)∗ 6= `1.

Now that we have introduced dual spaces and the weak and weak∗ topologies, we can collect a
few facts on corresponding compactness.

Theorem 2.73 (Banach–Alaoglu). Let X be a normed space and X∗ the induced topological
dual space.

(i) The closed unit ball of X∗, BX∗(0, 1) is compact in the weak∗ topology.

(ii) If X is separable, then BX∗(0, 1) is sequentially weak∗ compact.

We also quote a generalization of the Eberlein–Šmulian theorem.

Theorem 2.74 (Eberlein–Šmulian). Compactness and sequential compactness are equivalent in
the weak topology of a Banach space.

Comment: On Hilbert spaces H = H∗, weak and weak∗ topology coincide. Therefore, we were
able to use both Banach–Alaoglu and Eberlein–Šmulian in Section 1.
And a related result:

Theorem 2.75. X is reflexive if and only if BX(0, 1) is (sequentially) weakly compact.

With this result we can see that (`∞)∗ 6= `1.

Corollary 2.76. [l1 is not reflexive] ⇔ [(`∞)∗ 6= `1]

Proof. • The equivalence in the statement follows from (`1)∗ = `∞ (Prop. 2.66).

• By Theorem 2.75 it suffices to show that B`1(0, 1) is not weakly compact.

• Consider sequence (en)n of canonical Schauder basis vectors lies in `1. Let (enk)k be any
subsequence.

• Let z ∈ `∞ be given by

zi =

{
(−1)k if i = nk for some k ∈ N,
0 else.

• Then 〈z, enk〉`∞×`1 = znk = (−1)k. So the sequence (〈z, enk〉`∞×`1)k is not converging in R
and thus (enk)k is not weakly converging.

• Since this holds for any subsequence of (en)n, the sequence has no cluster point. Thus
B`1(0, 1) is not weakly sequentially compact, which by Thm. 2.74 implies that it is not
weakly compact.
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2.6 Hahn–Banach theorem and convex duality on Banach spaces

Comment: Hahn–Banach theorem is fundamental in functional analysis. For us useful to prove
existence of minimizers for problems formulated on a dual space.

Theorem 2.77 (Hahn–Banach). Let X be real vector space. Let f : X → R be positively
1-homogeneous and sub-additive, i.e.

f(αx) = α f(x), f(x+ y) ≤ f(x) + f(y) for all x, y ∈ X,α ∈ R+.

Let Y ⊂ X be a subspace and let t : Y = dom(t) → R be a linear functional on Y that is
majorized on Y by f , i.e. t(x) ≤ f(x) for x ∈ Y . Then, there is a linear extension T : X → R of
t that is majorized by f on X, i.e.

T (x) = t(x) for x ∈ Y and T (x) ≤ f(x) for x ∈ X.

The proof relies fundamentally on the axiom of choice, in form of Zorn’s Lemma.

Lemma 2.78 (Zorn’s Lemma). Let S be a non-empty partially ordered set. Assume that every
totally ordered subset of S has an upper bound in S. Then S has a maximal element.

Proof of Theorem 2.77. • Let S be the set of extensions of t that are majorized by f , i.e.

S = {s : dom(s)→ R, dom(s) subspace of X, dom(t) ⊂ dom(s), s linear} .

• S 6= ∅ since t ∈ S.

• Define partial ordering � on S via

[a � b] ⇔ [dom(a) ⊃ dom(b)] ∧ [a(x) = b(x) ∀x ∈ dom(b)].

Is indeed partial ordering: [a � a], [a � b] ∧ [b � a] ⇒ a = b, [a � b] ∧ [b � c] ⇒ [a � c].

• Let C ⊂ S be totally ordered. Define sC via:

dom(sC) =
⋃
s∈C

dom(s), sC(x) = s(x) if x ∈ dom(s)

Verify: sC(x) is well defined: for every x ∈ dom(sC) there is some s ∈ C such that
x ∈ dom(s). Let x ∈ dom(s1) ∩ dom(s2), s1, s2 ∈ C. Then [s1 � s2] or [s2 � s1], so
s1(x) = s2(x) = sC(x).

• It follows that sC is linear, majorized by f and sC(x) = t(x) for x ∈ Y . So sC ∈ S.
Moreover, sC ≥ s for all s ∈ C since dom(sC) ⊃ dom(s).

• ⇒ C has upper bound sC in S. Zorn’s Lemma: S has maximal element T .

• T is linear extension of t, majorized by f . Need to show dom(T ) = X. By contradiction.

• Assume x0 ∈ X \ dom(T ). Set Z = dom(T ) ⊕ span{x0}. For any z ∈ Z ∃ unique
decomposition z = x+ λ · x0, x ∈ dom(T ), λ ∈ R.

• Define T̂ : Z → R via T̂ (x+ λ · x0) = T (x) + a · λ for some a ∈ R.
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• ∀ x, y ∈ dom(T ) find (use linearity of T , majorization of by f , subadditivity of f):

T (x)− T (y) = T (x− y) ≤ f(x− y) ≤ f(x+ x0) + f(−y − x0)

⇒− T (y)− f(−y − x0) ≤ −T (x) + f(x+ x0)

Choose a ∈
[
supy∈dom(T )(−T (y)− f(−y − x0)), infx∈dom(T )(−T (x) + f(x+ x0))

]
6= ∅.

• Now let z = x+ λ · x0 ∈ Z.

• Assume λ = 0: T̂ (z) = T (x) ≤ f(z).

• Assume λ > 0:

T̂ (z) = T (x) + a · λ ≤ T (x) + λ · (−T (ξ) + f(ξ + x0)) for all ξ ∈ dom(T )

≤ f(x+ λx0) = f(z) when setting ξ = x/λ

• Assume λ < 0:

T̂ (z) = T (x) + a · λ ≤ T (x) + λ · (−T (ξ)− f(−ξ − x0)) for all ξ ∈ dom(T )

≤ f(x+ λx0) = f(z) when setting ξ = x/λ

• So T̂ ∈ S, T̂ � T , T̂ 6= T : contradiction! Therefore dom(T ) = X.

Remark 2.79. In similar fashion can use Zorn’s Lemma to prove existence of basis for vector
spaces (possibly uncountable), existence of unbounded linear functionals, etcetera.
For instance can proof that `∞ has basis. Since `∞ is not separable, basis must be uncountable.
Can use this to define bounded linear functionals on `∞ that have no correspondence in `1.

A few applications.

Proposition 2.80. Let Y be subspace of normed space X, t ∈ L(Y,R). Then there exists some
T ∈ L(X,R), T |Y = t (T |Y : restriction of T to Y ), ‖T‖ = ‖t‖.

Proof. • Apply Hahn–Banach to t defined on Y with f(x) = ‖t‖ ‖x‖.

• Get linear T : X → R with T |Y = t and T (x) ≤ f(x) = ‖t‖ ‖x‖. So ‖T‖ = ‖t‖ and in
particular T ∈ L(X,R).

Comment: Above proposition is ‘boring’ if we know how to project onto Y . Then set T = t◦PY .
But as we have seen, this projection does not always exist.

Proposition 2.81. Let X be normed space, x ∈ X. Then there exists some T ∈ X∗ \ {0} such
that T (x) = ‖T‖ ‖x‖.

Proof. • Set subspace Y = span{x}, t : Y → R, α ·x 7→ α‖x‖. Note: ‖t‖Y ∗ = 1. f(z) = ‖z‖.

• Apply Hahn–Banach, get T : X → R. T (αx) = t(αx) = α‖x‖, T (z) ≤ ‖z‖ ⇒ T (x) =
‖x‖ = ‖T‖ ‖x‖.
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Remark 2.82. • Conversely, for fixed t ∈ X∗ there is not always x ∈ X \ {0} such that
t(x) = ‖t‖ ‖x‖.

• Example: (yi)i ∈ `∞ ∼ (`1)∗ where yi = (1− 1/i). ‖y‖`∞ = supi |yi| = 1.

• Let x ∈ `1, x 6= 0. Then ‖x‖`1 =
∑∞

i=1 |xi| >
∑∞

i=1 yi xi = y(x).

Between a normed space and its topological dual we can now introduce notions analogous to
orthogonality.

Definition 2.83. Let X be a normed space and X∗ its topological dual space.

(i) t ∈ X∗ is called aligned with x ∈ X if t(x) = 〈t, x〉X∗×X = ‖t‖X∗‖x‖X .

(ii) x ∈ X, t ∈ X∗ are orthogonal if t(x) = 0.

(iii) The orthogonal complement of Y ⊂ X is Y ⊥ = {t ∈ X∗ : t(x) = 0∀x ∈ Y }.

(iv) The orthogonal complement of Z ⊂ X∗ is Z⊥ = {x ∈ X : t(x) = 0∀ t ∈ Z}.

Proposition 2.84. [Y ⊥]⊥ for any closed subspace Y ⊂ X.

Comment: Compare to polar cone, Def. 1.42 and Prop. 1.43.

Proof. • [Y ⊥]⊥ ⊃ Y : [x ∈ Y ] ⇒ [t(x) = 0 ∀ t ∈ Y ⊥] ⇒ [y ∈ [Y ⊥]⊥ ].

• [Y ⊥]⊥ ⊂ Y : For y /∈ Y define t ∈ L(V = Y ⊕ span{y},R) by t(x + λ y) = λ for every
v = x+ λ y ∈ V (the decomposition is unique). We get

‖t‖ = sup
x∈Y,λ∈R:
x+λ y 6=0

|t(x+ λ y)|
‖x+ λ y‖

= sup
x∈Y \{0},
λ∈R\{0}

|t(x+ λ y)|
‖x+ λ y‖

= sup
x∈Y \{0}

1

‖x+ y‖
<∞

since dist(y, Y ) > 0 (Y is closed).

• Use Hahn–Banach via Prop. 2.81 to extend t to T ∈ L(X,R).

• T (x) = t(x) = 0 for all x ∈ Y . ⇒ T ∈ Y ⊥.

• T (y) = t(y) = 1 6= 0. So y /∈ [Y ⊥]⊥ .

Now we very briefly generalize a few concepts of convex analysis from Hilbert spaces to Banach
spaces.

Definition 2.85 (Subdifferential). Let X be a normed space. For a function f : X → R ∪ {∞}
the subdifferential of f at x ∈ X is given by

∂f(x) =
{
t ∈ X∗ : f(y) ≥ f(x) + 〈t, y − x〉X∗×X for all y ∈ X

}
.

Definition 2.86 (Fenchel–Legendre conjugates). Let X be a normed space. For a proper func-
tion f : X → R ∪ {∞} the Fenchel–Legendre conjugate f∗ : X∗ → R ∪ {∞} is given by

f∗(t) = sup
x∈X
〈t, x〉X∗×X − f(x).

The preconjugate of a proper function g : X∗ → R ∪ {∞} is given by

g∗ (x) = sup
t∈X∗

〈t, x〉X∗×X − g(t).
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In complete analogy to Prop. 1.73 (basic properties of conjugate), Prop. 1.74 (pointwise suprema
over families of convex, lsc functions remain convex, lsc.), Prop. 1.72 (Fenchel–Young) and
Prop. 1.81 (‘extreme points’ of Fenchel–Young) we can show:

Proposition 2.87. For a normed space X let f : X → R ∪ {∞}, g : X∗ → R ∪ {∞} be proper.
Then

(i) f∗ and g∗ are convex, lsc.

(ii) f∗(t) + f(x) ≥ 〈t, x〉 and g(t) + g∗ (x) ≥ 〈t, x〉 for all (t, x) ∈ X∗ ×X.

(iii) [t ∈ ∂f(x)] ⇔ [f∗(t) + f(x) = 〈t, x〉].

Remark 2.88. Since X∗∗ 6∼ X in general, one has to be somewhat careful with statements
about g∗ and in particular (f∗)∗ . The situation is a bit simpler on reflexive spaces.

We have already seen that the Hahn–Banach theorem can be invoked to imply existence of many
particular elements of the dual space. We now give a geometric variant, that we can then use to
prove an adaption of the Fenchel–Rockafellar theorem.

Theorem 2.89 (Hahn–Banach: separation form). Let X be a normed space, C ⊂ X convex,
intC 6= ∅, x /∈ intC. Then ∃ t ∈ X∗ \ {0} such that t(y − x) ≥ 0 for all y ∈ C.

For the proof we need the following auxiliary result.

Proposition 2.90 (Minkowski functional). Let X be a normed space. Let C ⊂ X be convex,
0 ∈ intC. The Minkowski functional of C is defined as

pC : x→ R, x 7→ inf{r ∈ R+ : x ∈ r C}.

pC is nonnegative, positively 1-homogeneous, continuous and subadditive (this implies convexity).

Proof. • pC is indeed real valued: since 0 ∈ intC ∃ η > 0 such that B(0, η) ⊂ C and thus ∀
x ∈ X \ {0} get x ∈ ‖x‖B(0, 1) = ‖x‖

η B(0, η) ⊂ ‖x‖η C. ⇒ pC(x) ≤ ‖x‖η .

• nonnegative and positively 1-homogeneous are immediate.

• subadditivity: let x ∈ r · C, y ∈ s · C (let x = r a, y = s b, a, b ∈ C). Then

x+ y = r a+ s b = (r + s)
(

r
r+sa+ s

r+sb
)
∈ (r + s) · C

So for any x, y ∈ X:

pC(x) + pC(y) = inf

r + s|r, s ∈ R+ : x ∈ r C, y ∈ sC︸ ︷︷ ︸
⇒x+y∈(r+s)C


≥ inf {r + s ∈ R+ : x+ y ∈ (r + s)C} = pC(x+ y)

• continuity: for x ∈ X, ε > 0 set δ = η · ε. For y ∈ B(x, δ) find

pC(y) = pC(x+ (y − x)) ≤ pC(x) + pC(y − x) ≤ pC(x) + δ
η ≤ pC(x) + ε,

pC(x) = pC(y + (x− y)) ≤ pC(y) + pC(x− y)

pC(y) ≥ pC(x)− pC(x− y) ≥ pC(x)− ε

So pC(B(x, δ)) ∈ pC(x) + [−ε, ε].
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Proof of Theorem 2.89. • W.l.o.g. assume 0 ∈ intC (otherwise, simply translate).

• Define t : span{x} → R, t(λx) = λ.

• Set f(z) = pintC(z). Since x /∈ intC ⇒ f(x) ≥ 1. For λ ≥ 0: t(λx) = λ ≤ λf(x) = f(λx).
For λ ≤ 0: t(λx) = λ ≤ 0 ≤ f(λx). Moreover, f(y) ≤ 1 if y ∈ intC and by continuity for
y ∈ C.

• Now apply Hahn–Banach to t, majorized by f . Get T ∈ X∗ (T bounded since T (z) ≤ f(z)
which is 1-homogeneous and continuous) with T (x) = t(x) = 1 (so T 6= 0), T (y) ≤ f(y) ≤ 1
for y ∈ C. So T (y − x) = T (y)− T (x) ≤ 0. Use −T to obtain sought-after functional.

With this result we can now proof the analogue to the Fenchel–Rockafellar theorem, Prop. 1.135.

Proposition 2.91. Let X be a normed space. Let f, g : X → R∪{∞} be convex. Assume that
there exists some x0 ∈ X such that f(x0) <∞, g(x0) <∞ and f is continuous in x0. Then

inf
x∈X
{f(x) + g(x)} = max

t∈X∗
{−f∗(−t)− g∗(t)} .

In particular, a maximizer for the dual problem exists.

Proof. The proof is completely equivalent to Prop. 1.135 except that we replace Prop. 1.136 by
the above Hahn–Banach separation theorem.

Example 2.92. • Recall subspace projection problem on Banach space. Let Y be closed
subspace of normed space X, x ∈ X \ Y .

dist(x, Y ) = inf
y∈X

(‖x− y‖+ ιY (y))

• Let f(y) = ‖x− y‖, g(y) = ιY (y). Brief calculation yields:

f∗(t) = 〈t, x〉+ ι
B(0,1)

(t), g∗(t) = ιY ⊥(t)

• By above duality we find:

dist(x, Y ) = max
{
〈t, x〉 |t ∈ B(0, 1) ∩ Y ⊥

}
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