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1 Convex non-smooth optimization with proximal operators

Remark 1.1 (Motivation). Convex optimization:

• easier to solve, global optimality,

• convexity is strong regularity property, even if functions are not differentiable, even in
infinite dimensions,

• usually strong duality,

• special class of algorithms for non-smooth, convex problems; easy to implement and to
parallelize. Objective function may assume value +∞, i.e. well suited for implementing
constraints.

So if possible: formulate convex optimization problems.
Of course: some phenomena can only be described by non-convex problems, e.g. formation of
transport networks.

Definition 1.2. Throughout this section H is Hilbert space, possibly infinite dimensional.

1.1 Convex sets

Definition 1.3 (Convex set). A set A ⊂ H is convex if for any a, b ∈ A, λ ∈ [0, 1] one has
λ · a+ (1− λ) · b ∈ A.

Comment: Line segment between any two points in A is contained in A

Sketch: Positive example with ellipsoid, counterexample with ‘kidney’

Comment: Study of geometry of convex sets is whole branch of mathematical research. See
lecture by Prof. Wirth in previous semester for more details. In this lecture: no focus on convex
sets, will repeat all relevant properties where required.

Proposition 1.4 (Intersection of convex sets). If {Ci}i∈I is family of convex sets, then C
def.
=⋂

i∈I Ci is convex.

Proof. • Let x, y ∈ C then for all i ∈ I have x, y ∈ Ci, thus λ · x + (1 − λ) · y ∈ Ci for all
λ ∈ [0, 1] and consequently λ · x+ (1− λ) · y ∈ C.
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Definition 1.5 (Convex hull). The convex hull convC of a set C is the intersection of all convex
sets that contain C.

Proposition 1.6. Let C ⊂ H, let T be the set of all convex combinations of elements of C, i.e.,

T
def.
=

{
k∑
i=1

λi xi

∣∣∣∣∣k ∈ N, x1, . . . , xk ∈ C, λ1, . . . , λk > 0,
k∑
i=1

λi = 1

}
.

Then T = convC.

Proof. convC ⊂ T . T is convex: any x, y ∈ T are (finite) convex combinations of points in C.
Thus, so is any convex combination of x and y. Also, C ⊂ T . So convC ⊂ T .
convC ⊃ T . Let S be convex and S ⊃ C. We will show that S ⊃ T and thus convC ⊃ T , which
with the previous step implies equality of the two sets.
We show S ⊃ T by recursion. For some k ∈ N, x1, . . . , xk ∈ C, λ1, . . . , λk > 0,

∑k
i=1 λi = 1 let

sk =

k∑
i=1

λi xi .

When k = 1 clearly sk ∈ S.
Otherwise, set λ̃i = λi/(1− λk) for i = 1, . . . , k − 1. Then

sk = λk xk + (1− λk) ·
k−1∑
i=1

λ̃i xi︸ ︷︷ ︸
def.
= sk−1

.

We find that sk ∈ S if sk−1 ∈ S. Applying this argument recursively to sk−1 until we reach s1,
we have shown that sk ∈ S.

Proposition 1.7 (Carathéodory). Let H = Rn. Every x ∈ convC can be written as convex
combination of at most n+ 1 elements of C.

Proof. Consider arbitrary convex combination x =
∑k

i=1 λi xi for k > n+ 1.
Claim: without changing x can change (λi)i such that one λi becomes 0.

• The vectors {x2 − x1, . . . , xk − x1} are linearly dependent, since k − 1 > n.

• ⇒ There are (β2, . . . , βk) ∈ Rk−1 \ {0} such that

0 =
k∑
i=2

βi (xi − x1) =
k∑
i=2

βi xi −
k∑
i=2

βi︸ ︷︷ ︸
def.
= −β1

x1 .

• Define λ̃i = λi − t∗ βi for t∗ = λi∗
βi∗

and i∗ = argmini=1,...,k:βi 6=0
λi
|βi| .

• λ̃i ≥ 0: λ̃i = λi ·
(
1− λi∗/βi∗

λi/βi︸ ︷︷ ︸
|·|≤1

)
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• λ̃i∗ = 0

•
k∑
i=1

λ̃i =

k∑
i=1

λi︸ ︷︷ ︸
=1

−t∗
k∑
i=1

βi︸ ︷︷ ︸
=0

= 1

•
k∑
i=1

λ̃i xi =
k∑
i=1

λi xi︸ ︷︷ ︸
=x

−t∗
k∑
i=1

βi xi︸ ︷︷ ︸
=0

= x

1.2 Convex functions

Definition 1.8 (Convex function). A function f : H → R ∪ {∞} is convex if for all x, y ∈ H,
λ ∈ [0, 1] one has f

(
λ · x+ (1− λ) · y

)
≤ λ · f(x) + (1− λ) · f(y). Set of convex functions over H

is denoted by Conv(H).

• f is strictly convex if for x 6= y and λ ∈ (0, 1): f
(
λ ·x+(1−λ) ·y

)
< λ ·f(x)+(1−λ) ·f(y).

• f is concave if −f is convex.

• The domain of f , denoted by dom f is the set {x ∈ H : f(x) < +∞}. f is called proper if
dom f 6= ∅.

• The graph of f is the set {(x, f(x))|x ∈ dom f}.

• The epigraph of f is the set ‘above the graph’, epi f = {(x, r) ∈ H × R : r ≥ f(x)}.

• The sublevel set of f with respect to r ∈ R is Sr(f) = {x ∈ H : f(x) ≤ r}.

Sketch: Strictly convex, graph, secant, epigraph, sublevel set

Proposition 1.9. (i) f convex ⇒ dom f convex.

(ii) [f convex] ⇔ [epi f convex].

(iii) [(x, r) ∈ epi f ] ⇔ [x ∈ Sr(f)].

Example 1.10. (i) characteristic or indicator function of convex set C ⊂ H:

ιC(x) =

{
0 if x ∈ C
+∞ else.

Do not confuse with χC(x) =

{
1 if x ∈ C
0 else.

(ii) any norm on H is convex: For all x, y ∈ H, λ ∈ [0, 1]:

‖λ · x+ (1− λ) · y‖ ≤ ‖λ · x‖+ ‖(1− λ) · y‖ = λ · ‖x‖+ (1− λ) · ‖y‖

(iii) for H = Rn the maximum function

Rn 3 x 7→ max{xi|i = 1, . . . , n}

is convex.
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(iv) linear and affine functions are convex.

Example 1.11 (Optimization with constraints). Assume we want to solve an optimization
problem with linear constraints, e.g.,

min{f(x)|x ∈ Rn, A x = y}

where f : Rn → R ∪ {∞}, A ∈ Rm×n, y ∈ Rm. This can be formally rewritten as unconstrained
problem:

min{f(x) + g(Ax)|x ∈ Rn} where g = ι{y} .

We will later discuss algorithms that are particularly suited for problems of this form where one
only has to ‘interact’ with f and g separately, but not their combination.

As mentioned in the motivation: convexity is a strong regularity property. Here we give some
examples of consequences of convexity.

Definition 1.12. A function f : H → R ∪ {∞} is (sequentially) continuous in x if for every
convergent sequence (xk)k with limit x one has limk→∞ f(xk) = f(x). The set of points x where
f(x) ∈ R and f is continuous in x is denoted by cont f .

Remark 1.13 (Continuity in infinite dimensions). If H is infinite dimensional, it is a priori not
clear, whether closedness and sequential closedness coincide. But since H is a Hilbert space,
it has an inner product, which induces a norm, which induces a metric. On metric spaces the
notions of closedness and sequential closedness coincide and thus so do the corresponding notions
of continuity.

Proposition 1.14 (On convexity and continuity I). Let f ∈ Conv(H) be proper and let x0 ∈
dom f . Then the following are equivalent:

(i) f is locally Lipschitz continuous near x0.

(ii) f is bounded on a neighbourhood of x0.

(iii) f is bounded from above on a neighbourhood of x0.

Proof. The implications (i) ⇒ (ii) ⇒ (iii) are clear. We show (iii) ⇒ (i).

• If f is bounded from above in an environment of x0 then there is some ρ ∈ R++ such that
sup f(B(x0, ρ)) = η < +∞.

• Let x ∈ H, x 6= x0, such that α def.
= ‖x− x0‖/ρ ∈ (0, 1]

Sketch: Draw position of x̃.

• Let x̃ = x0 + 1
α(x−x0) ∈ B(x0, ρ). Then x = (1−α) ·x0 +α · x̃ and therefore by convexity

of f

f(x) ≤ (1− α) · f(x0) + α · f(x̃)

f(x)− f(x0) ≤ α · (η − f(x0)) = ‖x− x0‖ · η−f(x0)ρ

Sketch: Draw position of new x̃.
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• Now let x̃ = x0 + 1
α(x0 − x) ∈ B(x0, ρ). Then x0 = α

1+α · x̃+ 1
1+α · x. So:

f(x0) ≤ 1
1+α · f(x) + α

1+α · f(x̃)

f(x0)− f(x) ≤ α
1+α · (f(x̃)− f(x0) + f(x0)− f(x))

f(x0)− f(x) ≤ α · (η − f(x0)) = ‖x− x0‖ · η−f(x0)ρ

We combine to get:

|f(x)− f(x0)| ≤ ‖x− x0‖ · η−f(x0)ρ

• Now need to extend to other ‘base points’ near x0. For every x1 ∈ B(x0, ρ/4) have
sup f(B(x1, ρ/2)) ≤ η and f(x1) ≥ f(x0) − ρ

4 ·
η−f(x0)

ρ ≥ 2 f(x0) − η. With arguments
above get for every x ∈ B(x1, ρ/2) that

|f(x)− f(x1)| ≤ ‖x− x1‖ · η−f(x1)ρ/2 ≤ ‖x− x1‖ · 4(η−f(x0))ρ .

• For every x1, x2 ∈ B(x0, ρ/4) have ‖x1 − x2‖ ≤ ρ/2 and thus

|f(x1)− f(x2)| ≤ ‖x1 − x2‖ · 4(η−f(x0))ρ .

Proposition 1.15 (On convexity and continuity II). If any of the conditions of Proposition 1.14
hold, then f is locally Lipschitz continuous on int dom f .

Proof. Sketch: Positions of x0, x, y and balls B(x0, ρ), B(x, α · ρ)

• By assumption there is some x0 ∈ dom f , ρ ∈ R++ and η < ∞ such that sup f(B(x0, ρ))
≤ η.

• For any x ∈ int dom f there is some y ∈ dom f such that x = γ · x0 + (1− γ) · y for some
γ ∈ (0, 1).

• Further, there is some α ∈ (0, γ) such that B(x, α · ρ) ⊂ dom f and y /∈ B(x, α · ρ).

• Then, B(x, α · ρ) ⊂ conv(B(x0, ρ) ∪ {y}).

• So for any z ∈ B(x, α · ρ) there is some w ∈ B(x0, ρ) and some β ∈ [0, 1] such that
z = β · w + (1− β) · y. Therefore,

f(z) ≤ β · f(w) + (1− β) · f(y) ≤ max{η, f(y)} .

• So f is bounded from above on B(x, α · ρ) and thus by Proposition 1.14 f is locally Lipschitz
near x.

Remark 1.16. One can show: If f : H → R∪{∞} is proper, convex and lower semicontinuous,
then cont f = int dom f .
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Proposition 1.17 (On convexity and continuity in finite dimensions). If f ∈ Conv(H = Rn)
then f is locally Lipschitz continuous at every point in int dom f .

Proof. • Let x0 ∈ int dom f .

• If H is finite-dimensional then there is a finite set {xi}i∈I ⊂ dom f such that x0 ∈
int conv({xi}i∈I) ⊂ dom f .

• For example: along every axis i = 1, . . . , n pick x2i−1 = x + ε · ei, x2i = x − ε · ei for
sufficiently small ε where ei denotes the canonical i-th Euclidean basis vector.

• Since every point in conv({xi}i∈I) can be written as convex combination of {xi}i∈I we find
sup f(conv({xi}i∈I)) ≤ maxi∈I f(xi) < +∞.

• So f is bounded from above on an environment of x0 and thus Lipschitz continuous in x0
by the previous Proposition.

Comment: Why is interior necessary in Proposition above?

Example 1.18. The above result does not extend to infinite dimensions.

• For instance, the H1-norm is not continuous with respect to the topology induced by the
L2-norm.

• An unbounded linear functional is convex but not continuous.

Definition 1.19 (Lower semi-continuity). A function f : H → R ∪ {∞} is called (sequentially,
see Remark 1.13) lower semicontinuous in x ∈ H if for every sequence (xn)n that converges to
x one has

lim inf
n→∞

f(xn) ≥ f(x) .

f is called lower semicontinuous if it is lower semicontinuous on H.

Example 1.20. f(x) =

{
0 if x ≤ 0,

1 if x > 0
is lower semicontinuous, f(x) =

{
0 if x < 0,

1 if x ≥ 0
is not.

Sketch: Plot the two graphs.

Comment: Assuming continuity is sometimes impractically strong. Lower semi-continuity is a
weaker assumption and also sufficient for well-posedness of minimization problems: If (xn)n is
a convergent minimizing sequence of a lower semicontinuous function f with limit x then x is a
minimizer.

Proposition 1.21. Let f : H → R ∪ {∞}. The following are equivalent:

(i) f is lower semicontinuous.

(ii) epi f is closed in H × R.

(iii) The sublevel sets Sr(f) are closed for all r ∈ R.
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Proof. (i) ⇒ (ii). Let (yk, rk)k be a converging sequence in epi f with limit (y, r). Then

r = lim
k→∞

rk ≥ lim inf
k→∞

f(yk) ≥ f(y) ⇒ (y, r) ∈ epi f .

(ii) ⇒ (iii). For r ∈ R let Ar : H → H × R, x 7→ (x, r) and Qr = epi f ∩ (H × {r}). Qr is
closed, Ar is continuous.

Sr(f) = {x ∈ H : f(x) ≤ r} = {x ∈ H : (x, y) ∈ Qr} = A−1r (Qr) is closed.

(iii)⇒ (i). Assume (i) is false. Then there is a sequence (yk)k inH converging to y ∈ H such that
ρ

def.
= limk→∞ f(yk) < f(x). Let r ∈ (ρ, f(y)). For k ≥ k0 sufficiently large, f(yk) ≤ r < f(y),

i.e. yk ∈ Sr(f) but y /∈ Sr(f). Contradiction.
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1.3 Subdifferential

Definition 1.22. The power set of H is the set of all subsets of H and denoted by 2H .

Comment: Meaning of notation.

Definition 1.23 (Subdifferential). Let f : H → R ∪ {∞} be proper. The subdifferential of f is
the set-valued operator

∂f : H → 2H , x 7→ {u ∈ H : f(y) ≥ f(x) + 〈y − x, u〉 for all y ∈ H}

For x ∈ H, f is subdifferentiable at x if ∂f(x) 6= ∅. Elements of ∂f(x) are called subgradients of
f at x.

Sketch: Subgradients are slopes of affine functions that touch graph of function in x from below.

Definition 1.24. The domain domA of a set-valued operator A are the points where A(x) 6= ∅.

Definition 1.25. Let f : H → R ∪ {∞} be proper. x is a minimizer of f if f(x) = inf f(H).
The set of minimizers of f is denoted by argmin f .

The following is an adaption of first order optimality condition for differentiable functions to
convex non-smooth functions.

Proposition 1.26 (Fermat’s rule). Let f : H → R ∪ {∞} be proper. Then

argmin f = {x ∈ H : 0 ∈ ∂f(x)} .

Proof. Let x ∈ H. Then

[x ∈ argmin f ]⇔ [f(y) ≥ f(x) = f(x) + 〈y − x, 0〉 for all y ∈ H]⇔ [0 ∈ ∂f(x)] .

Proposition 1.27 (Basic properties of subdifferential). Let f : H → R ∪ {∞}.

(i) ∂f(x) is closed and convex.

(ii) If x ∈ dom ∂f then f is lower semicontinuous at x.

Proof. (i):

∂f(x) =
⋂

y∈dom f

{u ∈ H : f(y) ≥ f(x) + 〈y − x, u〉}

So ∂f(x) is the intersection of closed and convex sets. Therefore it is closed and convex.
(ii): Let u ∈ ∂f(x). Then for all y ∈ H: f(y) ≥ f(x) + 〈y − x, u〉. So, for any sequence (xk)k
converging to x one finds

lim inf
k→∞

f(xk) ≥ f(x) + lim inf
k→∞

〈y − x, u〉 = f(x) .
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Definition 1.28 (Monotonicity). A set-valued function A : H → 2H is monotone if

〈x− y, u− v〉 ≥ 0

for every tuple (x, y, u, v) ∈ H4 such that u ∈ A(x) and v ∈ A(y).

Proposition 1.29. The subdifferential of a proper function is monotone.

Proof. Let u ∈ ∂f(x), v ∈ ∂f(y). We get:

f(y) ≥ f(x) + 〈y − x, u〉 ,
f(x) ≥ f(y) + 〈x− y, v〉 ,

and by combining:

0 ≥ 〈y − x, u− v〉

Proposition 1.30. Let I be a finite index set, let H =
⊗

i∈I Hi a product of several Hilbert
spaces. Let fi : Hi → R ∪ {∞} be proper and let f : H → R ∪ {∞}, x = (xi)i∈I 7→

∑
i∈I fi(xi).

Then ∂f(x) =
⊗

i∈I ∂fi(xi).

Proof. ∂f(x) ⊃
⊗

i∈I ∂fi(xi): For x ∈ H let pi ∈ ∂fi(xi). Then

f(x+ y) =
∑
i∈I

fi(xi + yi) ≥
∑
i∈I

fi(xi) + 〈yi, pi〉 = f(x) + 〈y, p〉 .

Therefore p = (pi)i∈I ∈ ∂f(x).
∂f(x) ⊂

⊗
i∈I ∂fi(xi): Let p = (pi)i∈I ∈ ∂f(x). For j ∈ I let yj ∈ Hj and let y = (ỹi)i∈I where

ỹi = 0 if i 6= j and ỹj = yj . We get

f(x+ y) =
∑
i∈I

fi(xi + ỹi) =
∑

i∈I\{j}

fi(xi) + fj(xj + yj) ≥ f(x) + 〈y, p〉 =
∑
i∈I

fi(xi) + 〈yj , pj〉

This holds for all yj ∈ Hj . Therefore, pj ∈ ∂fj(xj).

Example 1.31. • f(x) = 1
2‖x‖

2: f is Gâteaux differentiable (see below) with ∇f(x) = x.
We will show that this implies ∂f(x) = {∇f(x)} = {x}.

• f(x) = ‖x‖:

– For x 6= 0 f is again Gâteaux differentiable with ∇f(x) = x
‖x‖ .

– For x = 0 we get f(y) ≥ 〈y, p〉 = f(0)+ 〈y − 0, p〉 for ‖p‖ ≤ 1 via the Cauchy-Schwarz
inequality. So B(0, 1) ⊂ ∂f(0).

– Assume some p ∈ ∂f(0) has ‖p‖ > 1. Then p
‖p‖ ∈ ∂f(p). We test:

〈
p− 0, p

‖p‖ − p
〉

=

‖p‖ − ‖p‖2 < 0 which contradicts monotonicity of the subdifferential. Therefore
∂f(0) = B(0, 1).

Sketch: Draw ‘graph’ of subdifferential.
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• H = R, f(x) = |x| is a special case of the above.

∂f(x) =


{−1} if x < 0,

[−1, 1] if x = 0,

{+1} if x > 0

• H = Rn, f(x) = ‖x‖1. The L1 norm is not induced by an inner product. Therefore the
above does not apply. We can use Proposition 1.30:

∂f(x) =
n⊗
k=1

∂abs(xk)

Sketch: Draw subdifferential ‘graph’ for 2D.

Proposition 1.32. Let f, g : H → R∪ {∞}. For x ∈ H one finds ∂f(x) + ∂g(x) ⊂ ∂(f + g)(x).

Proof. Let u ∈ ∂f(x), v ∈ ∂g(x). Then

f(x+ y) + g(x+ y) ≥ f(x) + 〈u, y〉+ g(x) + 〈v, y〉 = f(x) + g(x) + 〈u+ v, y〉 .

Therefore, u+ v ∈ ∂(f + g)(x).

Remark 1.33. The converse inclusion is not true in general and much harder to proof. A simple
counter-example is f(x) = ‖x‖2 and g(x) = −‖x‖2/2. The subdifferential of g is empty but the
subdifferential of f + g is not.

An application of the sub-differential is a simple proof of Jensen’s inequality.

Proposition 1.34 (Jensen’s inequality). Let f : H = Rn → R ∪ {∞} be convex. Let µ be a
probability measure on H such that

x =

∫
H
x dµ(x) ∈ H

and x ∈ dom ∂f . Then ∫
H
f(x) dµ(x) ≥ f(x) .

Proof. Let u ∈ ∂f(x).∫
H
f(x) dµ(x) ≥

∫
H
f(x) + 〈x− x, u〉 dµ(x) = f(x)

Let us examine the subdifferential of differentiable functions.

Definition 1.35 (Gâteaux differentiability). A function f : H → R ∪ {∞} is Gâteaux differen-
tiable in x ∈ dom f if there is a unique Gâteaux gradient ∇f(x) ∈ H such that for any y ∈ H
the directional derivative is given by

lim
α↘0

f(x+α·y)−f(x)
α = 〈y,∇f(x)〉 .
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Proposition 1.36. Let f : H → R∪{∞} be proper and convex, let x ∈ dom f . If f is Gâteaux
differentiable in x then ∂f(x) = {∇f(x)}.

Proof. ∇f(x) ∈ ∂f(x):

• For fixed y ∈ H consider the function φ : R++→ R ∪ {∞}, α 7→ f(x+α·y)−f(x)
α .

• φ is increasing: let β ∈ (0, α). Then x+ β · y = (1− β/α) · x+ β/α · (x+ α · y). So

f(x+ β · y) ≤ (1− β/α) · f(x) + β/α · f(x+ α · y),

φ(β) ≤ (1− β/α) · f(x) + β/α · f(x+ α · y)− f(x)

β

=
β/α · (f(x+ α · y)− f(x))

β
= φ(α) .

• Therefore,

〈y,∇f(x)〉 = lim
α↘0

f(x+ α · y)− f(x)

α
= inf

α∈R++

φ(α) ≤ f(x+ y)− f(x) .

(We set α = 1 to get the last inequality.)

∂f(x) ⊂ {∇f(x)}:

• For u ∈ ∂f(x) we find for any y ∈ H

〈y,∇f(x)〉 = lim
α↘0

f(x+ α · y)− f(x)

α
≥ lim

α↘0

f(x) + 〈α · y, u〉 − f(x)

α
= 〈y, u〉 .

• This inequality holds for any y and −y simultaneously. Therefore u = ∇f(x).

Remark 1.37. For differentiable functions in one dimension this implies monotonicity of the
derivative: Let f ∈ C1(R). With Propositions 1.36 and 1.29 we get: if x ≥ y then f ′(x) ≥ f ′(y).
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1.4 Cones and support functions

Cones are a special class of sets with many applications in convex analysis.

Definition 1.38. A set C ⊂ H is a cone if for any x ∈ C, λ ∈ R++ one has λ · x ∈ C. In short
notation: C = R++ · C.

Remark 1.39. A cone need not contain 0, but for any x ∈ C it must contain the open line
segment (0, x].

Proposition 1.40. The intersection of a family {Ci}i∈I of cones is cone. The conical hull of a
set C ⊂ H, denoted by coneC is the smallest cone that contains C. It is given by R++ · C.

Proof. • Let C =
⋂
i∈I Ci. If x ∈ C then x ∈ Ci for all i ∈ I and for any λ ∈ R++ one has

λ · x ∈ Ci for all i ∈ I. Hence λ · x ∈ C and C is also a cone.

• Let D = R++ · C. Then D is a cone, C ⊂ D and therefore coneC ⊂ D. Conversely, let
y ∈ D. Then there are x ∈ C and λ ∈ R++ such that y = λ · x. So x ∈ coneC, therefore
y ∈ coneC and thus D ⊂ coneC.

Proposition 1.41. A cone C is convex if and only if C + C ⊂ C.

Proof. C convex ⇒ C +C ⊂ C: Let a, b ∈ C. ⇒ 1
2 · a+ 1

2 · b ∈ C ⇒ a+ b ∈ C ⇒ C +C ⊂ C.
C +C ⊂ C ⇒ C convex: Let a, b ∈ C. ⇒ a+ b ∈ C and λ · a, (1− λ) · b ∈ C for all λ ∈ (0, 1).
⇒ λ · a+ (1− λ) · b ∈ C. ⇒ [a, b] ∈ C ⇒ C convex.

Definition 1.42. Let C ⊂ H. The polar cone of C is

C	 = {y ∈ H : sup 〈C, y〉 ≤ 0} .

Sketch: Draw a cone in 2D with angle < π/2 and its polar cone.

Proposition 1.43. Let C be a linear subspace of H. Then C	 = C⊥.

Proof. • Since C is a linear subspace, if 〈x, y〉 6= 0 for some y ∈ H, x ∈ C then sup 〈C, y〉 =∞.

• Therefore, C	 = {y ∈ H : 〈x, y〉 = 0 for all x ∈ C}.

Definition 1.44. Let C ⊂ H convex, non-empty and x ∈ H. The tangent cone to C at x is

TCx =

{
cone(C − x) if x ∈ C,
∅ else.

The normal cone to C at x is

NCx =

{
(C − x)	 = {u ∈ H : sup 〈C − x, u〉 ≤ 0} if x ∈ C,
∅ else.
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Example 1.45. Let C = B(0, 1). Then for x ∈ C:

TCx =

{
{y ∈ H : 〈y, x〉 ≤ 0} if ‖x‖ = 1,

H if ‖x‖ < 1.

Note: the ≤ in the ‖x‖ = 1 case comes from the closure in the definition of TCx. Without closure
it would merely be <.

NCx =

{
R+ · x if ‖x‖ = 1,

{0} if ‖x‖ < 1.

Example 1.46. What are tangent and normal cone for the L1-norm ball in R2?

We start to see connections between different concepts introduced so far.

Proposition 1.47. Let C ⊂ H be a convex set. Then ∂ιC(x) = NCx.

Proof. • x /∈ C: ∂ιC(x) = ∅ = NCx.

• x ∈ C:

[u ∈ ∂ιC(x)] ⇔ [ιC(y) ≥ ιC(x) + 〈y − x, u〉 ∀ y ∈ C]⇔ [0 ≥ 〈y − x, u〉 ∀ y ∈ C]

⇔ [sup 〈C − x, u〉 ≤ 0]⇔ [u ∈ NCx]

Comment: This will become relevant, when doing constrained optimization, where parts of the
objective are given by indicator functions.
Now we introduce the projection onto convex sets. It will play an important role in analysis and
numerical methods for constrained optimization.

Proposition 1.48 (Projection). Let C ⊂ H be non-empty, closed convex. For x ∈ H the
problem

inf{‖x− p‖ | p ∈ C}

has a unique minimizer. This minimizer is called the projection of x onto C and is denoted by
PCx.

Proof. • We will need the following inequality for any x, y, z ∈ H, which can be shown by
careful expansion:

‖x− y‖2 = 2 ‖x− z‖2 + 2 ‖y − z‖2 − 4 ‖(x+ y)/2− z‖2

• C is non-empty, y 7→ ‖x− y‖ is bounded from below, so the infimal value is a real number,
denoted by d.

• Let (pk)k∈N be a minimizing sequence. For k, l ∈ N one has 1
2(pk + pl) ∈ C by convexity

and therefore ‖x− 1
2(pk + pl)‖ ≥ d.

• With the above inequality we find:

‖pk − pl‖2 = 2‖pk − x‖2 + 2‖pl − x‖2 − 4‖pk+pl2 − x‖2 ≤ 2‖pk − x‖2 + 2‖pl − x‖2 − 4 d2

13



• So by sending k, l→∞ we find that (pk)k is a Cauchy sequence which converges to a limit
p. Since C is closed, p ∈ C. And since y 7→ ‖x− y‖ is continuous, p is a minimizer.

• Uniqueness of p, quick answer: the optimization problem is equivalent to minimizing y 7→
‖x− y‖2, which is strictly convex. Therefore p must be unique.

• Uniqueness of p, detailed answer: assume there is another minimizer q 6= p. Then 1
2(p+q) ∈

C and we find:

‖x− p‖2 + ‖x− q‖2 − 2‖x− 1
2(p+ q)‖2 = 1

2‖p− q‖
2 > 0

So the sum of the objectives at p and q is strictly larger than twice the objective at the
midpoint. Therefore, neither p nor q can be optimal.

Proposition 1.49 (Characterization of projection). Let C ⊂ H be non-empty, convex, closed.
Then p = PCx if and only if

[p ∈ C] ∧ [〈y − p, x− p〉 ≤ 0 for all y ∈ C] .

Sketch: Illustrate inequality.

Proof. • It is clear that [p = PCx] ⇒ [p ∈ C], and that [p /∈ C] ⇒ [p 6= PCx].

• So, need to show that for p ∈ C one has [p = PCx] ⇔ [〈y − p, x− p〉 ≤ 0 for all y ∈ C].

• For some y ∈ C and some ε ∈ R++ consider:

‖x− (p+ ε · (y − p))‖2 − ‖x− p‖2 = ‖p+ ε · (y − p)‖2 − ‖p‖2 − 2 ε 〈x, y − p〉
= ε2‖y − p‖2 − 2 ε 〈x− p, y − p〉

If 〈x− p, y − p〉 > 0 then this is negative for sufficiently small ε and thus p cannot be the
projection. Conversely, if 〈x− p, y − p〉 ≤ 0 for all y ∈ C, then for ε = 1 we see that p is
indeed the minimizer of y 7→ ‖x− y‖2 over C and thus the projection.

Corollary 1.50 (Projection and normal cone). Let C ⊂ H be non-empty, closed, convex. Then
[p = PCx] ⇔ [x ∈ p+NCp].

Proof. [p = PCx] ⇔ [p ∈ C ∧ sup 〈C − p, x− p〉 ≥ 0] ⇔ [x− p ∈ NCp].

Comment: This condition is actually useful for computing projections.

Example 1.51 (Projection onto L1-ball in R2). Let C = {(x, y) ∈ R2 : |x|+ |y| ≤ 1}. We find:

NC(x, y) =



∅ if |x|+ |y| > 1,

{0} if |x|+ |y| < 1,

cone{(1, 1), (−1, 1)} if (x, y) = (0, 1),

cone{(1, 1), (1,−1)} if (x, y) = (1, 0),

cone{(1, 1)} if x+ y = 1, x ∈ (0, 1),

. . .
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Sketch: Draw normal cones attached to points in C.
Now compute projection of (a, b) ∈ R2. W.l.o.g. assume (a, b) ∈ R2

+. Then

PC(a, b) =


(0, 1) if [a+ b ≥ 1] ∧ [b− a ≥ 1],

(1, 0) if [a+ b ≥ 1] ∧ [a− b ≥ 1],

((1 + a− b)/2, (1− a+ b)/2) else.

Comment: Do computation in detail.

Comment: Result is very intuitive, but not so trivial to prove rigorously due to non-smoothness
of problem. Comment: Eistüte.
We now establish a sequence of results that will later allow us to analyze the subdifferential via
cones and prepare results for the study of the Fenchel–Legendre conjugate.

Proposition 1.52. Let K ⊂ H be a non-empty, closed, convex cone. Let x, p ∈ H. Then

[p = PKx] ⇔ [p ∈ K, x− p ⊥ p, x− p ∈ K	] .

Proof. • By virtue of Corollary 1.50 (Characterization of projection with normal cone inclu-
sion) we need to show

[x− p ∈ NKp] ⇔ [p ∈ K, x− p ⊥ p, x− p ∈ K	] .

• ⇒: Let x − p ∈ NKp. Then p ∈ K. By definition have sup 〈K − p, x− p〉 ≤ 0. Since
2p, 0 ∈ K (K is closed) this implies 〈p, x− p〉 = 0. Further, since K is convex, we have
(Prop. 1.41) K+K ⊂ K, and in particular K+p ⊂ K. Therefore sup 〈K + p− p, x− p〉 ≤
sup 〈K − p, x− p〉 ≤ 0 and thus x− p ∈ K	.

Sketch: Recall that K + p ⊂ K. Counter-example for non-convex K.

• ⇐: Since p ⊥ x− p have sup 〈K − p, x− p〉 = sup 〈K,x− p〉 ≤ 0 since x− p ∈ K	. Then,
since p ∈ K have x− p ∈ NKp.

Proposition 1.53. Let K ⊂ H be a non-empty, closed, convex cone. Then K		 = K.

Proof. • K ⊂ K		: Recall: K	 = {u ∈ H : sup 〈K,u〉 ≤ 0}.

• Let x ∈ K. Then 〈x, u〉 ≤ 0 for all u ∈ K	. Therefore sup 〈x,K	〉 ≤ 0 and so x ∈ K		.
Therefore: K ⊂ K		.

• K		 ⊂ K: Let x ∈ K		, set p ∈ PKx. Then by Proposition 1.52 (Projection onto closed,
convex cone): x− p ⊥ p, x− p ∈ K	.

• [x ∈ K		] ∧ [x− p ∈ K	]⇒ 〈x, x− p〉 ≤ 0.

• ‖x− p‖2 = 〈x, x− p〉 − 〈p, x− p〉 ≤ 0 ⇒ x = p ⇒ x ∈ K. Therefore K		 ⊂ K.

For subsequent results we need the following Lemma that once more illustrates that convexity
implies strong regularity.
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Proposition 1.54. Let C ⊂ H be convex. Then the following hold:

(i) For all x ∈ intC, y ∈ C, [x, y) ⊂ intC.

(ii) C is convex.

(iii) intC is convex.

(iv) If intC 6= ∅ then intC = intC and C = intC.

Proof. • (i): Assume x 6= y (otherwise the result is trivial). Then for z ∈ [x, y) there is some
α ∈ (0, 1] such that z = α · x+ (1− α) · y.

• Since x ∈ intC there is some ε ∈ R++ such that B(x, ε · (2− α)/α) ⊂ C.

• Since y ∈ C, one has y ∈ C +B(0, ε).

• By convexity of C:

B(z, ε) = α · x+ (1− α) · y +B(0, ε)

⊂ α · x+ (1− α) · (C +B(0, ε)) +B(0, ε)

= α ·B(x, ε · 2−αα ) + (1− α) · C
⊂ α · C + (1− α) · C = C

• Therefore z ∈ intC.

• (ii): Let x, y ∈ C. By definition there are sequences (xk)k, (yk)k in C that converge to x
and y. For λ ∈ [0, 1] the sequence (λ ·xk + (1−λ) · yk)k converges to λ ·x+ (1−λ) · y ⊂ C.

• (iii): Let x, y ∈ intC. Then y ∈ C. By (i) therefore (x, y) ∈ intC.

• (iv): By definition intC ⊂ intC. Show converse inclusion. Let y ∈ intC. Then there is
ε ∈ R++ such that B(y, ε) ⊂ C. Let x ∈ intC, x 6= y. Then there is some α ∈ R++ such
that y + α · (y − x) ∈ B(y, ε) ⊂ C.

• Since y ∈ (x, y + α · (y − x)) it follows from (i) that y ∈ intC.

• Similarly, it is clear that intC ⊂ C. We show the converse inclusion. Let x ∈ intC,
y ∈ C. For α ∈ (0, 1] let yα = (1 − α) · y + α · x. Then yα ∈ intC by (i) and thus
y = limα→0 yα ∈ intC.

Example 1.55. Let H = R, C = Q ∪ [0, 1]. intC = (0, 1) 6= ∅ but C is not convex. We find
intC = (0, 1) 6= intC = intR = R and C = R 6= intC = [0, 1].

We can characterize the tangent and normal cones of a convex set, depending on the base point
position.

Proposition 1.56. Let C ⊂ H be convex with intC 6= ∅ and x ∈ C. Then

[x ∈ intC]⇔ [TCx = H]⇔ [NCx = {0}] .

Proof. • [x ∈ intC]⇔ [TCx = H]: Let D = C − x. Then 0 ∈ D, [[x ∈ intC]⇔ [0 ∈ intD]]
and TCx = coneD.
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• One can show: if D ⊂ H is convex with intD 6= ∅ and 0 ∈ D, then [0 ∈ intD] ⇔
[coneD = H].

• Sketch: assume 0 ∈ intD. Then coneD = coneD = H since there is some ε > 0 such that
for any u ∈ H \ {0} one has ε u

‖u‖ ∈ D. The converse conclusion is more tedious. It relies
on Proposition 1.54. See [Bauschke, Combettes; Prop. 6.17] for details.

• [TCx = H] ⇔ [NCx = {0}]: Recall NCx = {u ∈ H : sup 〈C − x, u〉 ≤ 0}. We can extend
the supremum to cone(C−x) and we can then extend it to the closure cone(C − x) without
changing whether it will be ≤ 0 (why?). So NCx = {u ∈ H : sup 〈TCx, u〉 ≤ 0} = (TCx)	.

• Now, if TCx = H then NCx = {0}.

• Conversely, since for x ∈ C, TCx is a non-empty, closed, convex cone, one has (TCx)		 =
TCx (Prop. 1.53) and therefore TCx = (NCx)	. So if NCx = {0} then TCx = H.

Comment: Observation: subdifferential describes affine functions that touch graph in one point
and always lie below graph. Similarly: for convex sets there are hyperplanes, that touch set in
one point and separate the set from the opposite half-space. These are called ‘supporting hyper-
planes’. The study of the subdifferential is thus related to the study of supporting hyperplanes.
Supporting hyperplanes, in turn, are again closely related to normal cones, as we will learn.

Definition 1.57. Let C ⊂ H, x ∈ C and let u ∈ H \ {0}. If

sup 〈C, u〉 ≤ 〈x, u〉

then the set {y ∈ H : 〈y, u〉 = 〈x, u〉} is a supporting hyperplane of C at x and x is a support
point at C with normal vector u. The set of support points of C is denoted by sptsC.

Proposition 1.58. Let C ⊂ H, C 6= ∅ and convex. Then:

sptsC = {x ∈ C : NCx 6= {0}}

Proof. Let x ∈ C. Then:

[x ∈ sptsC] ⇔ [∃u ∈ H \ {0} : sup 〈C − x, u〉 ≤ 0] ⇔ [0 6= u ∈ NCx]

Proposition 1.59. Let C ⊂ H convex, intC 6= ∅. Then

bdryC ⊂ sptsC and C ∩ bdryC ⊂ sptsC .

Proof. • If C = H the result is clear. (Why?) So assume C 6= H.

• Let x ∈ bdryC ⊂ C. So x ∈ C \ intC = C \ intC (Prop. 1.54).

• Consequence of Prop. 1.56: ∃u ∈ NCx \ {0}.

• Consequence of Prop. 1.58: x ∈ sptsC. Therefore bdryC ⊂ sptsC.

• Show sptsC = C ∩ sptsC: For this use sup
〈
C, u

〉
= sup 〈C, u〉 (why?).
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• Let x ∈ sptsC: ⇒ x ∈ C ⊂ C, ∃u 6= 0 s.t. sup 〈C, u〉 ≤ 〈x, u〉. ⇒ x ∈ C ∩ sptsC.

• Let x ∈ sptsC ∩ C: ⇒ x ∈ C, ∃u 6= 0 s.t. sup
〈
C, u

〉
≤ 〈x, u〉. ⇒ x ∈ sptsC.

• So: C ∩ bdryC ⊂ C ∩ sptsC = sptsC.

Example 1.60. Let H = R, C = [−1, 1). Then intC = (−1, 1), C = [−1, 1], bdryC = {−1, 1},
sptsC = {−1}, sptsC = {−1, 1}.

An application of the previous results is to show that the subdifferential of a convex function is
non-empty in a point of its domain where the function is continuous.

Proposition 1.61. Let f : H → R∪{∞} be proper and convex and let x ∈ dom f . If x ∈ cont f
then ∂f(x) 6= ∅.

Proof. • Since f is proper and convex, epi f is non-empty and convex.

• Since x ∈ cont f , f is bounded in an environment of x. Let ε > 0, η < +∞ such
that f(y) < f(x) + η for ‖x − y‖ < ε. Therefore, int epi f 6= ∅ because it contains
B(x, ε/2)× (f(x) + 2 η,∞).

• Further: consider sequence (yk = (x, f(x)− 1/k))∞k=1. Clearly yk /∈ epi f but limk→∞ yk =
(x, f(x) ∈ epi f . Therefore (x, f(x)) ∈ bdry epi f .

• So by Proposition 1.59 there is some (u, r) ∈ Nepi f (x, f(x)) \ {(0, 0)}.

• By definition of normal cone: For every (v, s) ∈ epi f have:〈(
v
s

)
−
(

x
f(x)

)
,

(
u
r

)〉
≤ 0

• So in particular for y ∈ dom f have (y, f(y)) ∈ epi f and therefore:

〈y − x, u〉+ (f(y)− f(x)) · r ≤ 0

• If r < 0 we could divide by r and get that u/|r| ∈ ∂f(x). So need to show r < 0.

• Show that r ≤ 0: For any δ > 0 have:

[(x, f(x)+δ) ∈ epi f ]⇔
[〈(

x
f(x) + δ

)
−
(

x
f(x)

)
,

(
u
r

)〉
≤ 0

]
⇔ [δ ·r ≤ 0]⇔ [r ≤ 0]

• Assume r = 0: Then must have u 6= 0. Then there is some ρ > 0 such that ‖ρ · u‖ < ε and
therefore (x+ ρ · u, f(x) + η) ∈ epi f . Then:[〈(

x+ ρ · u
f(x) + η

)
−
(

x
f(x)

)
,

(
u
0

)〉
≤ 0

]
⇔ [ρ · 〈u, u〉 ≤ 0]

This is a contradiction, therefore r 6= 0.
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Corollary 1.62. Let f : H → R ∪ {∞} convex, proper, lower semicontinuous. Then

int dom f = cont f ⊂ dom ∂f ⊂ dom f

Proof. • The first inclusion was cited in Remark 1.16 (see e.g. [Bauschke, Combettes; Corol-
lary 8.30]).

• The second inclusion is shown in Prop. 1.61.

• The third inclusion follows from contraposition of [x /∈ dom f ]⇒ [∂f(x) = ∅].

Finally, we show that closed, convex sets can be expressed solely in terms of their supporting
hyperplanes.
For notational convenience introduce ‘support function’.

Definition 1.63. Let C ⊂ H. The support function of C is

σC : H 7→ [−∞,∞], u 7→ sup 〈C, u〉 .

Sketch: Definition.
We will later learn that each convex, lower semicontinuous and 1-homogeneous function is the
support function of a suitable auxiliary set.
Sketch: Following remark.

Remark 1.64. If C 6= ∅, u ∈ H \ {0} and σC(u) < +∞, then {x ∈ H : 〈x, u〉 ≤ σC(u)} is
smallest closed half-space with outer normal u that contains C. If x ∈ C and σC(u) = 〈x, u〉
then x ∈ sptsC and {y ∈ H : 〈y, u〉 = σC(u) = 〈x, u〉} is a supporting hyperplane of C at x.

Proposition 1.65. Let C ⊂ H and set for u ∈ H

Au = {x ∈ H : 〈x, u〉 ≤ σC(u)} .

Then convC =
⋂
u∈H Au.

Proof. • If C = ∅ then σC(u) = −∞ and Au = ∅ for all u ∈ H. Hence, the result is trivial.

• Otherwise, σC(u) > −∞. Let D =
⋂
u∈H Au.

• Each Au is closed, convex and contains C. Therefore D is closed, convex and convC ⊂ D.
Since D is closed, also convC ⊂ D.

• Now, let x ∈ D, set p = PconvCx.

• Then 〈x− p, y − p〉 ≤ 0 for all y ∈ convC and thus σconvC(x− p) = sup
〈
convC, x− p

〉
=

〈p, x− p〉.

• Moreover, x ∈ D ⊂ Ax−p. So 〈x, x− p〉 ≤ σC(x− p).

• Since C ⊂ convC we get σC ≤ σconvC .

• Now: ‖x − p‖2 = 〈x, x− p〉 − 〈p, x− p〉 ≤ σC(x − p) − σconvC(x − p) ≤ 0. Therefore
x = p ⊂ convC and thus D ⊂ convC.

Corollary 1.66. Any closed convex subset of H is the intersection of all closed half-spaces of
which it is a subset.
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1.5 The Fenchel–Legendre conjugate

Remark 1.67 (Motivation). Previous result (Cor. 1.66): closed, convex set is intersection of all
half-spaces that contain set.
Analogous idea: is convex, lower semicontinuous function f pointwise supremum over all affine
lower bounds x 7→ 〈x, u〉 − au? How to get minimal offset au for given slope u?

au = inf{r ∈ R : f(x) ≥ 〈x, u〉 − r for all x ∈ H}
= inf{r ∈ R : r ≥ sup

x∈H
〈x, u〉 − f(x)}

= sup
x∈H
〈x, u〉 − f(x)

For given slopes and offsets (u, au), how do we reconstruct f? Pointwise-supremum (≡ intersec-
tion of all half-spaces containing epi f):

f(x) = sup
u∈H
〈x, u〉 − au

Note: same formula for obtaining au and reconstructing f . Write au = f∗(u) and call this
Fenchel–Legendre conjugate. Reconstruction of f is then bi-conjugate f∗∗. When is f∗∗ = f and
what happens if f∗∗ 6= f?

The Fenchel–Legendre conjugate and the bi-conjugate are fundamental in convex analysis and
optimization. We start by a formal definition of f∗, by studying some examples and showing
some basic properties of f∗. We return to a systematic study of f∗∗ in second half of this
subsection.

Definition 1.68 (Fenchel–Legendre conjugate). Let f : H 7→ [−∞,∞]. The Fenchel–Legendre
conjugate of f is

f∗ : H 7→ [−∞,∞], u 7→ sup
x∈H
〈x, u〉 − f(x) .

The biconjugate of f is (f∗)∗ = f∗∗.

Example 1.69. (i) f(x) = 1
2‖x‖

2:

f∗(u) = sup
x∈H
〈x, u〉 − 1

2‖x‖
2 = −

(
inf
x∈H

1
2‖x‖

2 − 〈x, u〉
)

= − inf
x∈H

f̃(x)

Convex optimization problem. Fermat’s rule (Prop. 1.26): y is optimizer if 0 ∈ ∂f̃(y).
Minkowski sum of subdifferentials (Prop. 1.32): y − u ∈ ∂f̃(y). ⇒ sufficient optimality
condition: y = u, so u is minimizer. ⇒ f∗(u) = 1

2‖u‖
2, f is self-conjugate.

(ii) f(x) = ‖x‖:

f∗(u) = sup
x∈H
〈x, u〉 − ‖x‖

If ‖u‖ > 1 consider sequence xk = u · k. Then

f∗(u)|[‖u‖>1] ≥ lim sup
k→∞

(
‖u‖2 − ‖u‖

)
· k =∞
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If ‖u‖ ≤ 1 then by Cauchy-Schwarz:

f∗(u)|[‖u‖≤1] ≤ sup
x∈H

(‖u‖ · ‖x‖ − ‖x‖) ≤ 0

And by setting x = 0 get f∗(u)|[‖u‖≤1] ≥ 0. We summarize

f∗(u) =

{
+∞ if ‖u‖ > 1,

0 if ‖u‖ ≤ 1
= ι

B(0,1)
(u)

(iii) special case: H = R, f(x) = |x|: f∗ = ι[−1,1]

(iv) H = Rn, f(x) = ‖x‖1 =
∑n

k=1 |xk|:

f∗(u) = sup
x∈H
〈u, x〉 − f(x) = sup

x∈H

n∑
k=1

uk · xk − |xk| =
n∑
k=1

sup
s∈R

uk · s− |s| =
n∑
k=1

abs∗(uk)

(v) f(x) = 0:

f∗(u) = sup
x∈H
〈u, x〉 =

{
0 if u = 0,

+∞ else.

From Examples 1.69 we learn a result on conjugation.

Proposition 1.70. Let (Hk)
n
k=1 be a tuple of Hilbert spaces, fk : Hk → [−∞,∞], let H =⊗n

k=1Hk, f : H → [−∞,∞], ((xk)k) 7→
∑n

k=1 fk(xk). Then f
∗((uk)k) =

∑n
k=1 f

∗
k (uk).

Proof. The proof is completely analogous to Example 1.69, (iv).

A few simple ‘transformation rules’:

Proposition 1.71. Let f : H → [−∞,∞], γ ∈ R++.

(i) Let h : x 7→ f(γ · x). Then h∗(u) = f∗(u/γ).

(ii) Let h : x 7→ γ · f(x). Then h∗(u) = γ · f∗(u/γ).

(iii) Let h : x 7→ f(−x). Then h∗(u) = f∗(−u).

(iv) Let h : x 7→ f(x)− a for a ∈ R. Then h∗(u) = f∗(u) + a. (Adding offset to function adds
same offset to all affine lower bounds.)

(v) Let h : x 7→ f(x− y) for y ∈ H. Then h∗(u) = f∗(u) + 〈u, y〉. (Shifting the effective origin
of a function requires adjustment of all offsets ≡ axis intercept at origin.)

Proof. All points follow from direct computation.

Proposition 1.72 (Fenchel–Young inequality). Let f : H → R ∪ {∞} be proper. Then for all
x, u ∈ H:

f(x) + f∗(u) ≥ 〈x, u〉
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Proof. • Let x, u ∈ H.

• Since f is proper, have f∗ > −∞ (why?).

• So if f(x) =∞, the inequality holds trivially.

• Otherwise: f∗(u) = supy∈H 〈u, y〉 − f(y) ≥ 〈u, x〉 − f(x).

Now we establish some basic properties of the conjugate. We need an auxiliary Lemma.

Proposition 1.73. Let (fi)i∈I be an arbitrary set of functions H → [−∞,∞]. Set f : H →
[−∞,∞], x 7→ supi∈I fi(x). Then:

(i) epi f = ∩i∈I epi fi

(ii) If all fi are lower semicontinuous, so is f .

(iii) If all fi are convex, so is f .

Proof. • (i): [(x, r) ∈ epi f ] ⇔ [R 3 r ≥ f(x)] ⇔ [R 3 r ≥ fi(x) for all i ∈ I] ⇔ [(x, r) ∈
epi fi for all i ∈ I] ⇔ [(x, r) ∈

⋂
i∈I epi fi].

• (ii): If all fi are lower semicontinuous, all epi fi are closed (Prop. 1.21). Then epi f =⋂
i∈I epi fi is closed, i.e. f is lower semicontinuous.

• (iii): If all fi are convex, all epi fi are convex (Prop. 1.9). Then epi f =
⋂
i∈I epi fi is

convex (Prop. 1.4), i.e. f is convex.

Proposition 1.74 (Basic properties of conjugate). Let f : H → [−∞,∞]. Then f∗ is convex
and lower semicontinuous.

Proof. • The result is trivial if f(x) = −∞ for some x ∈ H. So assume f > −∞ from now
on.

• Can write conjugate as: f∗(u) = supx∈dom f 〈u, x〉 − f(x).

• So conjugate is pointwise supremum over family of convex, lower semicontinuous functions:
(y 7→ 〈y, x〉 − f(x))x∈dom f .

• By Proposition 1.73 have: f∗ is convex and lower semicontinuous.

Now, we return to the initial motivation and start to study the bi-conjugate f∗∗. We first give
some related background.

Definition 1.75. Let f : H → [−∞,∞].

• The lower semicontinuous envelope or closure of f is given by

f : x 7→ sup{g(x)|g : H → [−∞,∞], g is lsc, g ≤ f}.

• The convex lower semicontinuous envelope of f is given by

conv f : x 7→ sup{g(x)|g : H → [−∞,∞], g is convex, lsc, g ≤ f}.
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Proposition 1.76. f is lower semicontinuous and conv f is convex, lower continuous.

Proof. This follows directly from Prop. 1.73.

Proposition 1.77. Let f : H → [−∞,∞]. Then epi conv f = conv epi f .

Proof. • Set F = conv f and D = conv epi f .

• Since F ≤ f ⇒ epi f ⊂ epiF . Since epiF is convex, have conv epi f ⊂ epiF . Since epiF
is also closed (why?), have D = conv epi f ⊂ epiF .

• Show converse inclusion. Let (x, ζ) ∈ epiF \D. SinceD is closed and convex, the projection
onto D is well defined. Let (p, π) = PD(x, ζ). Characterization of projection:〈(

x− p
ζ − π

)
,

(
y − p
η − π

)〉
≤ 0 for all (y, η) ∈ D

• For some (y, η) ∈ D, send η →∞ (which is still in D, why?). We deduce: ζ − π ≤ 0.

• Note that (y, η) ∈ D ⇒ y ∈ conv dom f . (Details: any (y, η) ∈ D = conv epi f can be
written as limit of sequence (yk, ηk)k in conv epi f . Any (yk, ηk) can be written as finite
convex combination of some (yk,i, ηk,i)i in epi f . So all yk,i ∈ dom f and thus the convex
combination yk ∈ conv dom f and therefore the limit y ∈ conv dom f .)

• Also note: domF ⊂ conv dom f = E: Define function

g(x) =

{
F (x) if x ∈ E,
+∞ else.

Since E is closed and convex, and F is lsc and convex, g is lsc and convex. Since F ≤ f and
g(x) = F (x) for x ∈ dom f ⊂ E, have g ≤ f . Since F is the convex lower semicontinuous
envelope of f we must therefore have g ≤ F and therefore domF ⊂ E.

• Assume ζ = π. Then projection characterization yields: 〈x− p, y − p〉 ≤ 0 for all y ∈
conv dom f . Since [(x, ζ) ∈ epiF ] ⇒ [x ∈ domF ⊂ conv dom f ] we may set y = x and
obtain ‖x− p‖2 ≤ 0. Therefore x = p which contradicts (x, ζ) /∈ D.

• Now assume ζ < π. Set u = x−p
π−ζ and let η = f(y). Then from characterization pf

projection get:

〈u, y − p〉+ π ≤ f(y)

Once more, set y = x and use ζ ≥ f(x) to get[
ζ ≥ π +

〈
x− p, x−pπ−ζ

〉]
⇐
[
−(π − ζ)2 ≥ ‖x− p‖2

]
.

This is a contradiction and therefore there cannot be any (x, ζ) ∈ epiF \D.

Now some basic properties of the biconjugate.

Proposition 1.78. Let f : H → [−∞,∞]. Then f∗∗ ≤ f and f∗∗ is the pointwise supremum
over all continuous affine lower bounds on f .
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Proof. • We find:

f∗(u) = sup
y∈H
〈u, y〉 − f(y)

f∗∗(x) = sup
u∈H
〈u, x〉 −

(
sup
y∈H
〈u, y〉 − f(y)

)
= sup

u∈H
inf
y∈H
〈u, x〉 − 〈u, y〉+ f(y)

≤ sup
v∈H
〈u, x− x〉+ f(x) = f(x) (set y = x in infimum)

• By Prop. 1.72 (Fenchel–Young): f(x) ≥ 〈u, x〉 − f∗(u) for all x, u ∈ H. So f∗∗(x) =
supu∈H 〈u, x〉 − f∗(u) is the pointwise supremum over a family of continuous affine lower
bounds on f .

• So f∗∗ is pointwise supremum over family of convex, lsc functions ⇒ f∗∗ is convex lsc
(Prop. 1.73).

• On the other hand, let g(x) = 〈v, x〉 − r ≤ f(x) for some (v, r) ∈ H × R be a continuous
affine lower bound. Then:

f∗(v) = sup
x∈H
〈v, x〉 − f(x)︸︷︷︸

≥g(x)

≤ sup
x∈H
〈v, x〉 − 〈v, x〉+ r = r

f∗∗(x) = sup
u∈H
〈u, x〉 − f∗(u) ≥ 〈v, x〉 − f∗(v)︸ ︷︷ ︸

≤r

≥ 〈v, x〉 − r = g(x)

So f∗∗ is larger (or equal) than any continuous affine lower bound on f .

We now prove the main result of this subsection.

Proposition 1.79. Assume f : H → R ∪ {∞} has a continuous affine lower bound. Then
f∗∗ = conv f .

Proof. • Let F = conv f . By Prop. 1.77 have epiF = conv epiF and by Prop. 1.65 epiF is
the intersection of all closed halfspaces that contain epi f .

• Let (v, r) ∈ H × R be the outward normal of a closed halfspace that contains epiF . If
r > 0 then epiF = ∅ and then f = +∞ = f∗∗ and we are done.

• So assume that epiF 6= ∅ and therefore r ≤ 0 for all closed halfspaces that contain epiF .

• Similarly, f∗∗ is the pointwise supremum over all continuous affine lower bounds on f .
Therefore, epi f∗∗ is the intersection of all closed halfspaces that contain epi f∗∗ and for
which the outward normal (v, r) has r < 0.

• Therefore, epiF ⊂ epi f∗∗ which implies f∗∗ ≤ F . (Also follows from f∗∗ convex, lsc and
f∗∗ ≤ f , why?)

• Let (u, a) ∈ H ×R such that x 7→ 〈u, x〉 − a is a continuous affine lower bound of f . Then
it is also a lower bound on f∗∗ and finally F .

• Assume (z, ζ) ∈ epi f∗∗ \ epiF .
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• Then there must be a closed halfspace in H×R with horizontal outward normal (i.e. r = 0)
that contains epiF , but not (z, ζ). That is, there is some (v, y) ∈ H2 such that 〈x− y, v〉 ≤
0 for all x ∈ domF but 〈z − y, v〉 > 0.

Sketch: epiF , (z, ζ), (y, v) ∈ H ×H, (u, a) ∈ H × R

• For s ≥ 0 let gs(x) = 〈u, x〉 − a+ s · 〈x− y, v〉. Recall that g0 is a continuous affine lower
bound on f .

• For x ∈ dom f ⊂ domF (follows from F ≤ f) have gs(x) = g0(x) + s · 〈x− y, v〉 ≤ f(x).
So for s ≥ 0, gs is a continuous affine lower bound on f , and thus on f∗∗.

• But for s→∞ have gs(z) = g0(z) + s · 〈z − y, v〉 → ∞ > ζ ≥ f∗∗(z).

• This is a contradiction, thus points like (z, ζ) cannot exist and epi f∗∗ = epiF .

We obtain the famous Fenchel–Moreau Theorem as a corollary.

Corollary 1.80 (Fenchel–Moreau). Let f : H → R ∪ {∞} be proper. Then

[f is convex, lsc] ⇔ [f∗∗ = f ] ⇒ [f∗ is proper] .

Proof. • ⇐ of equivalence: If f = f∗∗ then f is the conjugate of f∗. Therefore, it is convex
and lsc.

• ⇒ of equivalence: f is convex, lsc. ⇒ epi f is convex, closed. ⇒ it is intersection of
all closed halfspaces that contain epi f . If f has no continuous affine lower bound then
all these halfspaces must have ‘horizontal’ normals (r = 0) ⇒ f(H) ⊂ {−∞,+∞}, which
contradicts assumptions. So f must have continuous affine lower bound.

• By previous result f∗∗ = conv f which equals f since f convex, lsc.

• f∗ is proper: we have just shown that f has continuous affine lower bound, say f(x) ≥
〈x, v〉 − a for some (v, a) ∈ H ×R. Recall: this implies f∗(v) ≤ a. Conversely, f is proper,
i.e. f(x0) <∞ for some x0 and then f∗(u) ≥ 〈x0, u〉 − f(x0).

Comment: We showed in proof: A convex lsc function must have a continuous affine lower bound.
This is not true for general convex (but not lsc) functions. Recall: unbounded linear functions
are convex.
A few applications: The following result is helpful to translate knowledge from ∂f or f∗ onto
the other. It gives the ‘extreme cases’ of the Fenchel–Young inequality.

Proposition 1.81. Let f : H → R ∪ {∞} be convex, lsc. Let x, u ∈ H. Then:

[u ∈ ∂f(x)] ⇔ [f(x) + f∗(u) = 〈x, u〉] ⇔ [x ∈ ∂f∗(u)]

Comment: Intuitive interpretation: conjugate f∗(u) computes minimal offset a such that y 7→
〈u, y〉 − a is lower bound on f . If u ∈ ∂f(x) then y 7→ 〈u, y − x〉+ f(x) is affine lower bound for
f that touches graph in x. So offset 〈u, x〉 − f(x) is minimal for slope u.

Proof. • Consider first equivalence.
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• ⇒: By Prop. 1.72 (Fenchel–Young): f∗(u) ≥ 〈u, x〉 − f(x).

• Have f(y) ≥ f(x) + 〈u, y − x〉 for all y ∈ H. Get:

f∗(u) = sup
y∈H
〈u, y〉 − f(y) ≤ sup

y∈H
〈u, y〉 − 〈u, y − x〉 − f(x) = 〈u, x〉 − f(x)

• So f∗(u) + f(x) = 〈u, x〉.

• ⇐:

f∗(u) = 〈x, u〉 − f(x) = sup
y∈H
〈y, u〉 − f(y) ≥ 〈y, u〉 − f(y) for all y ∈ H

So f(y) ≥ 〈u, y − x〉+ f(x) for all y ∈ H. ⇒ u ∈ ∂f(x).

• For second equivalence, apply first equivalence to f∗ and use that f∗∗ = f .

Now we can relate one-homogeneous functions and indicator functions:

Definition 1.82. A function f : H → R∪{∞} is positively 1-homogeneous if f(λ ·x) = λ · f(x)
for all x ∈ H, λ ∈ R++.

Proposition 1.83. Let f : H → R ∪ {∞}. Then f is a convex, lsc, positively 1-homogeneous
function if and only if f = (ιC)∗ = σC for some closed, convex, non-empty C ⊂ H.

Comment: Relation between indicator functions and support functions: ι∗C = σC .

Proof. • ⇐: ι∗C is lsc and convex. Moreover, for x ∈ H, λ ∈ R++

ι∗C(λ · x) = σC(λ · x) = sup
y∈C
〈y, λ · x〉 = λ sup

y∈C
〈y, x〉 = λ · σC(x) .

So ι∗C is positively 1-homogeneous.

• ⇒: Observe: f(0) = 0 (why?). So

f∗(u) = sup
x∈H
〈u, x〉 − f(x) ≥ 0 (set x = 0 in sup).

• If, for fixed u ∈ H there is some x ∈ H such that 〈u, x〉 − f(x) > 0, then

f∗(u) ≥ lim sup
k→∞

〈u, k · x〉 − f(k · x) = lim sup
k→∞

k · (〈u, x〉 − f(x)) =∞ .

• So f∗(H) ⊂ {0,+∞} and therefore f∗ = ιC for some C ⊂ H. Since f∗ is convex, lsc ⇒ C
is convex, closed (why?).

• Since f is convex, lsc have f = f∗∗ = ι∗C .

This allows us to describe subdifferential of 1-homogeneous functions.

Corollary 1.84. If f : H → R ∪ {∞} is convex, lsc, positively 1-homogeneous, then f = σC
where C = ∂f(0).
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Proof. • By assumption, f = σC for some closed, convex C ⊂ H, f∗ = ιC .

• Then [u ∈ ∂f(0)] ⇔ [0 ∈ ∂f∗(u) = ∂ιC(u)] ⇔ [u ∈ C].

Example 1.85. Go through Examples 1.69 and study biconjugates. Note the relation between
positively 1-homogeneous functions and indicator functions.

27



1.6 Convex variational problems

Remark 1.86 (Motivation). We want to find minimizers of functionals. Standard argument:
minimizing sequence + compactness: Weierstrass provides cluster point. Lower semicontinuity:
cluster point is minimizer.
Problem: compactness in infinite dimensions is far from trivial. Example: orthonormal sequences
(xk)k∈N, 〈xi, xj〉 = δi,j (e.g. ‘traveling bumps’ in L2(R) or canonical ‘basis vectors’ in `2(N)). ⇒
closed unit ball in infinite-dimensional Hilbert spaces is not compact.
Recall: avoided this problem for proof of existence of projection via Cauchy sequence, but this
argument will not work in general. ⇒ we need a different tool.

Definition 1.87 (Weak convergence on Hilbert space). A sequence (xk)k in H is said to converge
weakly to some x ∈ H, we write xa ⇀ x, if for all u ∈ H

lim
k→∞

〈u, xk〉 = 〈u, x〉 .

Comment: For now only use weak convergence for Hilbert spaces. More general and detailed
discussion will follow later.

Remark 1.88. Weak convergence corresponds to weak topology. Weak topology is coarsest
topology in which all maps x 7→ 〈u, x〉 for all u ∈ H are continuous (this implies precisely that
〈u, xk〉 → 〈u, x〉 for weakly converging sequences xk ⇀ x). So, subbasis is given by all open
halfspaces. Weak topology still yields Hausdorff space (e.g. for any two distinct points x, y ∈ H
can find open halfspace A such that x ∈ A, y /∈ A). Need Hausdorff property for uniqueness of
limits.

In general it is easier to obtain compactness with respect to the weak topology due to the
following theorem.

Theorem 1.89 (Banach–Alaoglu). The closed unit ball of H is weakly compact.

Corollary 1.90. Weakly closed, bounded subsets of H are weakly compact.

Proof. Let C ⊂ H be weakly closed and bounded. Then there is some ρ ∈ R++ such that
C ⊂ B(0, ρ), which is weakly compact by Banach–Alaoglu. C is a weakly closed subset of a
weakly compact set, therefore it is weakly compact.

Example 1.91 (Orthonormal sequence and Bessel’s inequality). Let (xk)k∈N be an orthonormal
sequence in H, i.e. 〈xi, xj〉 = δi,j for all i, j ∈ N, and let u ∈ H. Then for all N ∈ N

0 ≤

∥∥∥∥∥u−
N∑
k=1

xk 〈xk, u〉

∥∥∥∥∥
2

= ‖u‖2 − 2

〈
u,

N∑
k=1

xk 〈xk, u〉

〉
+

∥∥∥∥∥
N∑
k=1

xk 〈xk, u〉

∥∥∥∥∥
2

= ‖u‖2 − 2

N∑
k=1

〈u, xk〉2 +

N∑
k=1

〈u, xk〉2 = ‖u‖2 −
N∑
k=1

〈u, xk〉2 .

So ‖u‖2 ≥
∑N

k=1 〈u, xk〉
2 for all N (which then also holds in the limit N →∞) and 〈u, xk〉 → 0

as k →∞. Therefore xk ⇀ 0. (But clearly not xk → 0.)

The previous example shows that weak convergence does in general not imply strong convergence.
We require an additional condition.
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Proposition 1.92. Let (xk)k∈N be a sequence in H and let x ∈ H. Then the following are
equivalent:

[xk → x] ⇔ [xk ⇀ x and ‖xk‖ → ‖x‖]

Proof. • ⇒: For every u ∈ H have y 7→ 〈u, y〉 is continuous. Therefore, if xk → x one finds
〈u, xk〉 → 〈u, x〉 for all u ∈ H, therefore xk ⇀ x. The norm function is also (strongly)
continuous, therefore it also implies ‖xk‖ → ‖x‖.

• ⇐:

‖xk − x‖2 = ‖xk‖2︸ ︷︷ ︸
→‖x‖2

−2 〈xk, x〉︸ ︷︷ ︸
→〈x,x〉

+‖x‖2 → 0

Remark 1.93. In the previous example we find indeed limk→∞ ‖xk‖ = 1 6= ‖0‖. Therefore, the
sequence cannot converge strongly.

Theorem 1.94 (Characterization of infinite-dimensional Hilbert spaces). The following are
equivalent:

(i) H is finite-dimensional.

(ii) The closed unit ball B(0, 1) is compact.

(iii) The weak topology of H coincides with its strong topology.

(iv) The weak topology of H is metrizable.

Remark 1.95. Note that item (iv) implies that for the weak topology we can in general not
equate sequential closedness and closedness, as for the strong topology (cf. Remark 1.13). We
will now show that it remains at least equivalent for convex sets (and functions).

Proposition 1.96. Let C ⊂ H be convex. Then the following are equivalent:

(i) C is weakly sequentially closed.

(ii) C is sequentially closed.

(iii) C is closed.

(iv) C is weakly closed.

Proof. • (i) ⇒ (ii): Let (xk)k be a sequence in C that converges strongly to some x ∈ H.
Prop. 1.92: [xk → x] ⇒ [xk ⇀ x]. Therefore, x ∈ C since C is weakly sequentially closed.
Therefore, C is (strongly) sequentially closed.

• (ii) ⇔ (iii): The two are equivalent because the strong topology is metrizable (cf. Remark
1.13).

• (iii) ⇒ (iv): For this need convexity. C is closed and convex. Therefore, C is the
intersection of all closed halfspaces that contain C.
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• A subbasis for the open sets of the weak topology are open halfspaces. So subbasis for
weakly closed sets are closed halfspaces. C can be written as intersection of weakly closed
sets. ⇒ C is weakly closed.

• (iv) ⇒ (i): Sequential closedness is implied by ‘full’ closedness. (Proof: Let C be weakly
closed. Let (xk)k be a sequence in C with xk ⇀ x for some x ∈ H. Assume x 6= C. Then
there is some weakly open U such that x ∈ U , U ∩C = ∅. But since xk ⇀ x, for sufficiently
large k one must have xk ∈ U which is a contradiction.)

Corollary 1.97. For a convex function f : H → R∪{∞} the notions of weak, strong, sequential
and ‘full’ lower semicontinuity coincide.

Proof. When f is convex, all its sublevel sets are convex and for these all corresponding notions
of closedness coincide.

Corollary 1.98. The norm x 7→ ‖x‖ is (sequentially) weakly lower semicontinuous.

Remark 1.99. Note: the norm is not (sequentially) weakly continuous in infinite dimensions.
Recall an orthonormal sequence (xk)k∈N. Then xk ⇀ 0 but ‖xk‖ → 1.

Corollary 1.100. The closed unit ball B(0, 1) is weakly closed. But in infinite dimensions the
(strongly) open unit ball B(0, 1) is not weakly open.

Proof. • B(0, 1) is a convex set. Therefore the notion of strong and weak closure coincide.

• Consider once more an orthonormal sequence (xk)k∈N. Then xk /∈ B(0, 1) for all k, but
xk ⇀ 0 ∈ B(0, 1).

So in the following we resort to weak topology to obtain minimizers via compactness. We do not
have to worry too much about the new notion of lower semicontinuity. But since (strongly) open
balls are no longer weakly open, we will face some subtleties when we try to extract converging
subsequences from minimizing sequences: we do not know whether weak compactness implies
weak sequential compactness. This is provided by the following theorem:

Theorem 1.101 (Eberlein–Šmulian). For subsets of H weak compactness and weak sequential
compactness are equivalent.

Now we give a prototypical theorem for the existence of minimizers.

Proposition 1.102. Let f : H → R ∪ {∞} be convex, lower semicontinuous. Let C ⊂ H be
closed, convex such that for some r ∈ R the set C ∩ Sr(f) is non-empty and bounded. Then f
has a minimizer over C.

Proof. • The sets C and Sr(f) are closed and convex. So D = C∩Sr(f) is closed and convex
and by assumption bonded.

• D closed, convex ⇒ D is weakly closed (Prop. 1.96).

• D bounded, weakly closed ⇒ weakly compact (Cor. 1.90 of Banach–Alaoglu).

• D weakly compact ⇒ weakly sequentially compact (Thm. 1.101, Eberlein–Šmulian).
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• SinceD = C∩Sr(f) is non-empty, we can confine minimization of f over C to minimization
of f over D.

• Let (xk)k∈N be minimizing sequence of f over D. Since D is weakly sequentially compact,
there is a subsequence of (xk)k that converges to some x ∈ D in the weak topology.

• Since f is convex and lower semicontinuous, it is weakly sequentially lower semicontinuous
(Cor. 1.97). Therefore, x is a minimizer.

A useful criterion to check whether the sublevel sets of a function are bounded is coerciveness.

Definition 1.103 (Coerciveness). A function f : H → [−∞,∞] is coercive if lim‖x‖→∞ f(x) =
∞.

Proposition 1.104. Let f : H → [−∞,∞]. Then f is coercive if and only if its sublevel sets
Sr(f) are bounded for all r ∈ R.

Proof. • Assume Sr(f) is unbounded for some r ∈ R. Then we can find a sequence (xk) in
Sr(f) with ‖xk‖ → ∞ but lim sup f(xk) ≤ r.

• Assume Sr(f) is bounded for every r ∈ R. Let (xk)k be an unbounded sequence with
lim ‖xk‖ → ∞. Then for any s ∈ R there is some N ∈ N such that xk /∈ Ss(f) for k ≥ N .
Hence, lim inf f(xk) ≥ s. Since this holds for any s ∈ R, have lim f(xk) =∞.

Once existence of minimizers is ensured, uniqueness is simpler to handle. ‘Mere’ convexity is not
sufficient for uniqueness. We require additional assumptions. Strict convexity is sufficient.

Proposition 1.105. Consider the setting of Prop. 1.102. If f is strictly convex then there is a
unique minimizer.

Proof. Assume x and y ∈ C are two distinct minimizers. Then f(x) = f(y). Then z = (x +
y)/2) ∈ C and f(z) < 1

2f(x) + 1
2f(y) = f(x) = f(y). So neither x nor y can be minimizers.
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1.7 Proximal operators

Definition 1.106. For f : H → R∪{∞} convex, lsc and proper. Then the map Proxf : H → H
is given by

x 7→ argmin
y∈H

(
1
2‖x− y‖

2 + f(y)
)
.

The minimizer exists and is unique, so the map is well-defined.

Remark 1.107 (Motivation). Interpretation: near point x try to minimize f , but penalize if
we move too far from x. Intuitively: do small step in direction where f decreases, similarly to
gradient descent, but Proxf is also defined for non-smooth f .
The proximal operator will be our basic tool for optimization. Later we will show that we can
optimize f + g by only knowing the proximal operators of f and g separately. This is the basis
for the proximal splitting strategy. One tries to decompose the objective into components such
that the proximal operator for each component is easy to compute.

Proof that Proxf is well-defined. • Since f is convex and lsc ⇒ f∗ is proper. Therefore f
has a continuous affine lower bound, which we denote by f̃ : y 7→ 〈u, y〉 − r.

• For fixed x ∈ H let g : y 7→ 1
2‖x− y‖

2. By ‘completing the square’ we get

f̃(y) + g(y) = 1
2‖x− y‖

2 + 〈u, y〉 − r = 1
2‖y − v‖

2 + C

for some v ∈ H, C ∈ R. So sublevel sets of f̃ + g are bounded.

• Since f̃ ≤ f have Sr(f + g) ⊂ Sr(f̃ + g), so sublevel sets of f + g are bounded.

• Since f is proper and g is finite, there is some r ∈ R such that Sr(f + g) is non-empty.

• Using Prop. 1.102 with C = H and f = f + g we find that f + g has a minimizer over H.

• Since f is convex and g is strictly convex, f + g is strictly convex. Prop. 1.105 ⇒ this
minimizer is unique.

Characterization of proximal operator.

Proposition 1.108. Let f be convex, lsc, proper, let x ∈ H. Then

[p = Proxf (x)] ⇔ [〈y − p, x− p〉+ f(p) ≤ f(y) for all y ∈ H] ⇔ [x− p ∈ ∂f(p)]

Proof. • The second equivalence is trivial. We prove the first.

• ⇒: Assume p = Proxf (x), let y ∈ H. For α ∈ [0, 1] let pα = α · y + (1− α) · p.

• Then f(pα) + 1
2‖x− pα‖

2 ≥ f(p) + 1
2‖x− p‖

2.

• By convexity of f : f(pα) ≤ α · f(y) + (1− α) · f(p).

• We get:

α · f(y) + (1− α) · f(p) + 1
2‖x− pα‖

2 ≥ f(p) + 1
2‖x− p‖

2
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• Setting g(α) = α · f(y) + (1 − α) · f(p) + 1
2‖x − pα‖

2 this translates to g(α) ≥ g(0) for
α ∈ [0, 1].

• Note that g is differentiable, so we must have ∂αg(α)|α=0 ≥ 0. This implies:

f(y)− f(p) + 〈x− p, y − p〉 ≥ 0 .

• ⇐: For fixed x let g : y 7→ 1
2‖x− y‖

2. Then ∂g(y) = {y − x}. Then

[x− p ∈ ∂f(p)] ⇔ [0 ∈ p− x+ ∂f(p) = ∂g(p) + ∂f(p)]

⇒ (∂f + ∂g ⊂ ∂(f + g),Prop. 1.32) [0 ∈ ∂(g + f)(p)]

⇔ [p ∈ argmin(g + f)] ⇔ [p = Proxf (x)]

Comment: Since we did not prove any results of the form ∂(f+g) = ∂f+∂g we had to ‘manually’
do the ⇒-argument.

Example 1.109 (Projections). Projections are special cases of proximal operators. Let C ⊂ H
be non-empty, closed, convex. We find

PCx = argmin
p∈C

1
2‖x− p‖

2 = argmin
p∈H

1
2‖x− p‖

2 + ιC(p) = ProxιC(x) .

Then the characterization for projections (Prop. 1.49) is a special case of Prop. 1.108:

[p = ProxιC(x)] ⇔ [〈y − p, x− p〉+ ιC(p) ≤ ιC(y) for all y ∈ H]

⇔ [p ∈ C ∧ 〈y − p, x− p〉 ≤ 0 for all y ∈ C] ⇔ [p = PCx]

Similarly, the characterization of projections via the normal cone (Cor. 1.50) is a special case
of the characterization of the proximal operator via the subdifferential: Recall ∂ιC(y) = NCy
(Prop. 1.47). Then:

[x ∈ p+ ∂ιC(p)] ⇔ [x ∈ p+NCp]

So, conversely we may think of the proximal operator as a generalization of projections with ‘soft
walls’: instead of paying an infinite penalty when we leave C, the penalty is now controlled by
a more general function f .

A few more examples, that are not projections

Example 1.110. Let λ > 0.

(i) f(y) = λ
2‖y‖

2: [p = Proxf (x)] ⇔ [x − p ∈ ∂f(p) = {λ · p}] ⇔ [p = x/(1 + λ)]. So
Proxf (x) = x/(1 + λ).

(ii) f(y) = λ · ‖y‖: Recall:

∂f(y) = λ ·

{
y
‖y‖ if y 6= 0,

B(0, 1) if y = 0 .
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If x ∈ λ · B(0, 1) we find that p = 0 is a solution to x ∈ p+ ∂f(p). Otherwise, we need to
solve x = p + λ·p

‖p‖ for some p 6= 0. We deduce that p = ρ · x for some ρ ∈ R \ {0} (since p
and x must be linearly dependent) and get:

[x = ρ · x+ λ·ρ·x
‖ρ·x‖ ]⇔ [1 = ρ+ λ

‖x‖ ]⇔ [ρ = 1− λ
‖x‖ ]⇔ [p = x− λx

‖x‖ ]

We summarize:

Proxf (x) =

{
0 if x ∈ B(0, λ)

x− λx
‖x‖ else.

Interpretation: if ‖x‖ > λ we move towards the origin with stepsize λ, otherwise, go directly
to origin.

Example 1.111 (Comparison with explicit gradient descent). Assume f is Gâteaux differen-
tiable. Then ∂f(x) = {∇f(x)}. Consider a naive discrete gradient descent with stepsize λ > 0
for some initial x(0) ∈ H:

x(`+1) def.
= x(`) − λ∇f(x(`))

For comparison consider repeated application of the proximal operator on some initial y(0) ∈ H:

y(`+1) def.
= Proxλf (y(`))

We find y(`) ∈ y(`+1) + λ∂f(y(`+1)) = {y(`+1) + λ∇f(y(`+1))}, so

y(`+1) = y(`) − λ∇f(y(`+1)) .

This is called an implicit gradient descent, since the new iterate depends on the gradient at the
position of the new iterate, and it is thus only implicitly defined. For comparison, the above rule
for x(`+1) is called explicit.
Usually, the explicit gradient scheme is much easier to implement, but the proximal operator has
several important advantages:

• The proximal scheme also works, when f is not differentiable. (But it must be convex.)

• The proximal scheme can be started from any point in H, even from outside of dom f .

• The proximal scheme tends to converge more robustly.

As an illustration of the latter point return to two previous examples:

(i) f(x) = 1
2‖x‖

2. Then ∇f(x) = x and we get

x(`+1) = x(`) − λx(`) = x(0) (1− λ)` .

This converges geometrically to x(`) → 0 for |1 − λ| < 1 ⇔ λ ∈ (0, 2). For λ > 1 the
solution oscillates around the minimizer, for λ > 2 the sequence diverges.

For comparison we get

y(`+1) = y(`)/(1 + λ) = y(0)(1 + λ)−`

This converges geometrically for all λ > 0. For very small positive λ we have (1+λ)−1 ≈ 1−
λ and the implicit and explicit scheme act similarly (for the first few iterations). Intuitively,
this stems from the fact that if f is continuously differentiable and the stepsize is small,
then ∇f(x(`)) ≈ ∇f(x(`+1)).
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(ii) f(x) = ‖x‖. Then ∇f(x) = x/‖x‖ for x 6= 0 and we obtain

x(`+1) = x(`) − λx(`)

‖x(`)‖

For ‖x‖ > λ this is the same effect as the proximal operator, but for ‖x‖ < λ it does not
jump to the origin and terminate, but oscillates around the minimizer.

The examples indicate that Proxf (x) moves from x towards a minimum of f . We also observe
that a prefactor λ acts like a stepsize. We establish a few corresponding results.

Proposition 1.112. Let f : H → R ∪ {∞} be convex, lsc, proper. Let λ ∈ R++.

(i) [x ∈ argmin f ] ⇔ [x = Proxf (x)].

(ii) [x /∈ argmin f ] ⇒ [f(Proxf (x)) < f(x)].

(iii) Let p = Proxf (x), C = Sf(p)(f). Then p = PCx.

(iv) The function λ 7→ ‖x− Proxλf (x)‖ is increasing.

(v) The function λ 7→ f(Proxf (x)) is decreasing.

Proof. • (i): Assume x ∈ argmin f . Then for all p ∈ H

f(x) = 1
2‖x− x‖

2 + f(x) ≤ 1
2‖x− p‖

2 + f(p)

Therefore, x = Proxf (x).

• Conversely, assume x = Proxf (x). ⇒ [x ∈ x + ∂f(x)] ⇒ [0 ∈ ∂f(x)] ⇒ (Fermat’s rule,
Prop. 1.26) [x ∈ argmin f ].

• (ii): By assumption x /∈ argmin f . Let p = Proxf (x). By (i) p 6= x and then

1
2‖x− p‖

2 + f(p) < 1
2‖x− x‖

2 + f(x) = f(x)

which implies f(x)− f(p) > 1
2‖x− p‖

2 > 0.

• (iii): By construction p ∈ C. Let p′ = PCx. So p′ ∈ C = Sf(p) ⇒ f(p′) ≤ f(p). Assume
p′ 6= p. Then ‖x− p‖ > ‖x− p′‖ (p′ is point that minimizes distance to x among all points
in C). Then

1
2‖x− p

′‖2 + f(p′) < 1
2‖x− p‖

2 + f(p)

and therefore p′ is a better candidate for Proxf (x) than p. Therefore we must have p′ = p.

• (iv): We use the monotonicity of the subdifferential for this (Prop. 1.29). Let 0 < λ1 ≤ λ2.
Let pi = Proxλif (x) and set ui = x− pi for i = 1, 2.

• Let ∆u = u2 − u1, ∆p = p2 − p1. From x = pi + ui we get ∆u = −∆p.

• By characterization of the proximal operator we find: ui ∈ λi ∂f(pi).

Sketch: x, p1, u1, then transition from p1 to p2 ‘towards’ x and change of u1 to u2 as
dictated by λ2 ≥ λ1 and monotonicity of subdifferential.
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• By monotonicity of the subdifferential:

0 ≤
〈
u2
λ2
− u1

λ1
, p2 − p1

〉
0 ≤

〈
u2 − λ2

λ1
u1,∆p

〉
=
〈

∆u− λ2−λ1
λ1

u1,∆p
〉

= −‖∆p‖2 − λ2−λ1
λ1
〈u1,∆p〉

We deduce 〈u1,∆p〉 ≤ 0. Then

‖x− p2‖2 = ‖x− p1 − (p2 − p1)‖2 = ‖x− p1 −∆p‖2

= ‖x− p1‖2 − 2 〈u1,∆p〉+ ‖∆p‖2 ≥ ‖x− p1‖2 .

• (v): Use notation from previous point. Assume f(p2) > f(p1), let C = Sf(p2)(f). Then
p1 6= p2 and p1 ∈ C. By (iii) have p2 = PCx, therefore ‖x − p2‖ < ‖x − p1‖, which
contradicts (iv). Therefore we must have f(p2) ≤ f(p1).

It turns out that there is a surprisingly simple relation between the proximal operators for f and
f∗. This can be used to compute one via the other, in case one seems easier to implement.

Proposition 1.113 (Moreau decomposition). Let f : H → R∪ {∞} be convex, lsc and proper,
x ∈ H. Then Proxf (x) + Proxf∗(x) = x.

Proof. Let p ∈ H. Then:

[p = Proxf (x)]⇔ [x− p ∈ ∂f(p)]⇔ (Prop. 1.81) [p ∈ ∂f∗(x− p)]
⇔ [x− (x− p) ∈ ∂f∗(x− p)]⇔ [x− p = Proxf∗(x)]

Example 1.114 (Moreau decomposition for projections). Let C be a closed subspace of H.
Then ιC is convex, lsc. Consider the conjugate

ι∗C(x) = sup
y∈H
〈x, y〉 − ιC(y) = sup

y∈C
〈x, y〉 =

{
0 if x ⊥ y for all y ∈ C,
+∞ else

= ιC⊥(x)

So ι∗C is the indicator of the orthogonal complement of C. Then ProxιC = PC and Proxι∗C = PC⊥
and the Moreau decomposition yields:

x = PCx+ PC⊥x

which is the orthogonal decomposition of x. So we may interpret the Moreau decomposition as
a generalization in the same sense that the proximal operator generalizes the projection.

Example 1.115. In an implicit descent scheme x(`+1) = Proxf (x(`)) we now find that x(`+1) +
Proxf∗(x

(`)) = x(`), ⇒ x(`+1) = x(`) − Proxf∗(x
(`)), so Proxf∗ gives the ‘implicit gradient steps’

∆x(`+1).
Let f(x) = ‖x‖. Then f∗ = ι

B(0,1)
and

Proxf (x) =

{
0 = x− x if x ∈ B(0, 1),

x− x
‖x‖ else.

Proxf∗(x) =

{
x if x ∈ B(0, 1),
x
‖x‖ else.

Interpretation: if x(`) ∈ B(0, 1) then ∆x(`+1) = −x(`) (i.e. we jump directly to the origin).
Otherwise we move by − x(`)

‖x(`)‖ .
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