1 Problem description

e Let (V,E) be a graph with vertices V' (|V] finite) and directed edges E C V x V where
(z,y) € E indicates a directed edge from z to y.

Denote by RV and R¥ the real vector spaces of functions defined on vertices and edges.
We equip them with the standard Euclidean inner products:

(f,9)y =Y f(x)-glx) for fgeRY,

eV

()= dle)-v(e) for ¢, € RP.

eckE

A function w € R¥ can be interpreted as flow on the edges where for (z,y) € E the value
w((x,y)) denotes the mass flow from vertex = to y. w((x,y)) < 0 will be interpreted as
mass flowing from y to x.

e For a given vertex z € V' the net amount of mass leaving x by the flow w can be expressed
as

divw)(@) = > wl@y)- Y, =)
yeVi(z,y)eE yeEV:(y,2)EL
The first term sums contributions from edges starting at z, the second term sums contri-

butions from edges ending at x.

e We can evaluate this expression for every x, hence the operator div is a linear map from
RE to RY. divw is called the divergence of w.

Let P(V) ={peRY : ¥ . u(x) =1} be the space of discrete probability densities over
V. For two u,v € P(V) a flow w € R¥ is said to be a flow from p to v if divw = v — p. If
the graph (V, E) is connected (ignoring the orientation of edges), such a flow always exists.

Assume each edge has a positive length, prescribed by a vector L € Rf 4. The cost of a
flow is defined to be

Cw) =Y lw(e)l- L(e).

eck
This is the amount of mass flowing along each edge multiplied by the edge length.

For fixed pu,v € P(V) we will study the following optimization problem:
inf {C(w)’w e RE divw=v — ph = infEC(w) + 6(divw) (1)
weR

where 6 : RV — RU {o0} is given by 0 = L{y—p}- We assume that the graph is connected.

2 Preliminaries

(i) Check that C and € are convex, lower semicontinuous and proper.

)
(ii) Find the Fenchel-Legendre conjugates C* and 6*.
(iii) Find the subdifferentials of C, 8, C* and 6*.

)

(iv) Show that the optimization problem (1) has a minimizer.



3 Duality

We state a variant of the Fenchel-Rockafellar Theorem.

Theorem 3.1. Let X, Y be Hilbert spaces, A : X — Y linear and bounded. Let F': X —
RU{o0}, G: Y — RU {oo} be convex, lower semicontinuous and proper. Assume there is a
point z € X such that F'(z) < oo, G(Az) < oo and G is continuous at Az. Then

inf [F(@) + G(Az)] = —min [F*(=A4"y) + G ()] (2)

(i) Check that the assumptions for the Fenchel-Rockafellar Theorem are not met when iden-
tifying X =RF, Y =RY, F=C, G =6, A =div.

(ii) Derive the adjoint operator of div.
(iii) Ignoring that the assumptions are not met, nevertheless state the dual problem to (1).

(iv) Show that the assumptions for the Fenchel-Roackafellar Theorem are met when one con-
siders the dual of (1) as primal in (2).

(v) Show that the dual problem of (1) has a solution.

(vi) Find a sufficient and necessary condition for a pair (x,y) € X x Y to be primal and dual
optimizers of (2).

4 Metric

For given u,v € P(V) denote by D(u,v) the corresponding optimal value of (1).

(i) Show that D is non-negative, symmetric and satisfies the triangle inequality. Hint: From
minimal flows for D(u,v) and D(v, p) try to construct a feasible flow for D(u, p).

D is called ‘earth mover’s distance’ or Wasserstein-1 distance on P (V).

5 Optimization

We state a variant of a proximal primal dual algorithm.

Theorem 5.1. Consider the setup of Theorem 3.1. Assume primal and dual problem have
solutions. For 7,0 € Ry, 70 < ||A||72 and (z(9,y®)) € X x Y let

2D = Prox,p(a® — 74y 0), (3a)
y Y = Prox,g-(y\ + o A2z — 2z0)). (3b)
Then 2 — 2, y® — y as £ — oo where (z,y) are a pair of primal and dual solutions.

(i) Show that fixed-points of the iteration (3) are precisely the pairs of primal and dual solutions
to (2).

(ii) Analogous to the Moreau decomposition express Prox,s via Prox,s- for a suitable factor
7.

(iii) Find Prox,¢, Prox ¢+, Proxyg, Prox,e-«.



6 Projection

If we want to solve (1) with the Douglas—Rachford algorithm we need to be able to compute
Prox,y where H(w) = 6(divw). We find that Prox,y = Pg where S = {w € R : divw =
v—p}.

More generally, let X and Y be two real Hilbert spaces, let A : X — Y be linear and bounded.
For fixed y € Y let S = {z € X : Az = y}. Assume that S # (), i.e. y is in the image of A. We
will determine how to compute the projection Pg.

The point z = Pgx is the solution to

min 3z — 2|+ 1) (42) ()
Use Theorem 2 to derive a dual problem to (4). Is (4) the primal or dual problem?
The problem dual to (4) will have the form
el 2
g JIA2] + (2,b) )
for some b € Y.

Find the solution of (5) for the case when AA* is invertible.

Assume dimker A* > 0. Find a necessary and sufficient criterion for b such that (5) has a
solution. What is the interpretation of this criterion in the problem (4)?

Use the relation 3(vi) to obtain the solution to (4) from the solution of (5).

7 Analysis of a convex function

In a slightly more complicated flow optimization problem the following function plays a central

role:

% if a > 0,
¢:R? 5 RU {oo}, (a,b) — <0 ifa=b=0, (6)
+o00 else.

Determine the sublevel sets of ¢. Use this to show that ¢ is lower semicontinuous.

Construct a converging sequence (an, bp)n, (an,bn) — (a,b) € R? such that ¢(a,,b,) < 0o
and liminf,, oo @(an, by) > ¢(a,b).

Find ¢*. Show that ¢** = ¢.

Find the subdifferential of ¢. Hint: Distinguish the cases a > 0 and (a,b) = (0,0). Note
that ¢ is positively 1-homogeneous.

Find Prox,4 for 7 > 0. Note: for some cases computing Prox,4 requires finding the root
of a polynomial of degree three. It suffices to state how the root of the polynomial relates
to Prox;4. An explicit formula for the root need not be given.



(vi) Since ¢ is positively 1-homogeneous, ¢* = 1 for some set B C R2. Find the normal cone
of B. Use this to find an equation for the projection Pp onto B (Similar to above, the

equation does not need to be solved explicitly.)

(vii) Verify the Moreau decomposition for Prox4 and Proxg« = Pp.
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