
1 Problem description

• Let (V,E) be a graph with vertices V (|V | finite) and directed edges E ⊂ V × V where
(x, y) ∈ E indicates a directed edge from x to y.

• Denote by RV and RE the real vector spaces of functions defined on vertices and edges.
We equip them with the standard Euclidean inner products:

〈f, g〉V =
∑
x∈V

f(x) · g(x) for f, g ∈ RV ,

〈φ, ψ〉E =
∑
e∈E

φ(e) · ψ(e) for φ, ψ ∈ RE .

• A function ω ∈ RE can be interpreted as flow on the edges where for (x, y) ∈ E the value
ω((x, y)) denotes the mass flow from vertex x to y. ω((x, y)) < 0 will be interpreted as
mass flowing from y to x.

• For a given vertex x ∈ V the net amount of mass leaving x by the flow ω can be expressed
as

(divω)(x) =
∑

y∈V :(x,y)∈E

ω((x, y))−
∑

y∈V :(y,x)∈E

ω((y, x))

The first term sums contributions from edges starting at x, the second term sums contri-
butions from edges ending at x.

• We can evaluate this expression for every x, hence the operator div is a linear map from
RE to RV . divω is called the divergence of ω.

• Let P(V ) = {µ ∈ RV+ :
∑

x∈V µ(x) = 1} be the space of discrete probability densities over
V . For two µ, ν ∈ P(V ) a flow ω ∈ RE is said to be a flow from µ to ν if divω = ν − µ. If
the graph (V,E) is connected (ignoring the orientation of edges), such a flow always exists.

• Assume each edge has a positive length, prescribed by a vector L ∈ RE++. The cost of a
flow is defined to be

C(ω) =
∑
e∈E
|ω(e)| · L(e) .

This is the amount of mass flowing along each edge multiplied by the edge length.

• For fixed µ, ν ∈ P(V ) we will study the following optimization problem:

inf
{
C(ω)

∣∣ω ∈ RE ,divω = ν − µ
}
= inf

ω∈RE
C(ω) + θ(divω) (1)

where θ : RV → R ∪ {∞} is given by θ = ι{ν−µ}. We assume that the graph is connected.

2 Preliminaries

(i) Check that C and θ are convex, lower semicontinuous and proper.

(ii) Find the Fenchel–Legendre conjugates C∗ and θ∗.

(iii) Find the subdifferentials of C, θ, C∗ and θ∗.

(iv) Show that the optimization problem (1) has a minimizer.
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3 Duality

We state a variant of the Fenchel–Rockafellar Theorem.

Theorem 3.1. Let X, Y be Hilbert spaces, A : X → Y linear and bounded. Let F : X →
R ∪ {∞}, G : Y → R ∪ {∞} be convex, lower semicontinuous and proper. Assume there is a
point x ∈ X such that F (x) <∞, G(Ax) <∞ and G is continuous at Ax. Then

inf
x∈X

[F (x) +G(Ax)] = −min
y∈Y

[F ∗(−A∗y) +G∗(y)] . (2)

(i) Check that the assumptions for the Fenchel–Rockafellar Theorem are not met when iden-
tifying X = RE , Y = RV , F = C, G = θ, A = div.

(ii) Derive the adjoint operator of div.

(iii) Ignoring that the assumptions are not met, nevertheless state the dual problem to (1).

(iv) Show that the assumptions for the Fenchel–Roackafellar Theorem are met when one con-
siders the dual of (1) as primal in (2).

(v) Show that the dual problem of (1) has a solution.

(vi) Find a sufficient and necessary condition for a pair (x, y) ∈ X × Y to be primal and dual
optimizers of (2).

4 Metric

For given µ, ν ∈ P(V ) denote by D(µ, ν) the corresponding optimal value of (1).

(i) Show that D is non-negative, symmetric and satisfies the triangle inequality. Hint: From
minimal flows for D(µ, ν) and D(ν, ρ) try to construct a feasible flow for D(µ, ρ).

D is called ‘earth mover’s distance’ or Wasserstein-1 distance on P(V ).

5 Optimization

We state a variant of a proximal primal dual algorithm.

Theorem 5.1. Consider the setup of Theorem 3.1. Assume primal and dual problem have
solutions. For τ, σ ∈ R++, τσ < ‖A‖−2 and (x(0), y(0)) ∈ X × Y let

x(`+1) = ProxτF (x
(`) − τA∗y(`)), (3a)

y(`+1) = ProxσG∗(y(`) + σA(2x(`+1) − x(`))). (3b)

Then x(`) ⇀ x, y(`) ⇀ y as `→∞ where (x, y) are a pair of primal and dual solutions.

(i) Show that fixed-points of the iteration (3) are precisely the pairs of primal and dual solutions
to (2).

(ii) Analogous to the Moreau decomposition express Proxγf via Proxηf∗ for a suitable factor
η.

(iii) Find ProxτC , ProxτC∗ , Proxσθ, Proxσθ∗ .
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6 Projection

If we want to solve (1) with the Douglas–Rachford algorithm we need to be able to compute
ProxτH where H(ω) = θ(divω). We find that ProxτH = PS where S = {ω ∈ RE : divω =
ν − µ}.
More generally, let X and Y be two real Hilbert spaces, let A : X → Y be linear and bounded.
For fixed y ∈ Y let S = {x ∈ X : Ax = y}. Assume that S 6= ∅, i.e. y is in the image of A. We
will determine how to compute the projection PS .
The point z = PSx is the solution to

min
z∈X

1
2‖x− z‖

2 + ι{y}(Az) (4)

(i) Use Theorem 2 to derive a dual problem to (4). Is (4) the primal or dual problem?

The problem dual to (4) will have the form

inf
z∈Y

1
2‖A

∗z‖2 + 〈z, b〉 (5)

for some b ∈ Y .

(ii) Find the solution of (5) for the case when AA∗ is invertible.

(iii) Assume dimkerA∗ > 0. Find a necessary and sufficient criterion for b such that (5) has a
solution. What is the interpretation of this criterion in the problem (4)?

(iv) Use the relation 3(vi) to obtain the solution to (4) from the solution of (5).

7 Analysis of a convex function

In a slightly more complicated flow optimization problem the following function plays a central
role:

φ : R2 → R ∪ {∞}, (a, b) 7→


|b|2
a if a > 0,

0 if a = b = 0,

+∞ else.
(6)

(i) Determine the sublevel sets of φ. Use this to show that φ is lower semicontinuous.

(ii) Construct a converging sequence (an, bn)n, (an, bn)→ (a, b) ∈ R2 such that φ(an, bn) <∞
and lim infn→∞ φ(an, bn) > φ(a, b).

(iii) Find φ∗. Show that φ∗∗ = φ.

(iv) Find the subdifferential of φ. Hint: Distinguish the cases a > 0 and (a, b) = (0, 0). Note
that φ is positively 1-homogeneous.

(v) Find Proxτφ for τ > 0. Note: for some cases computing Proxτφ requires finding the root
of a polynomial of degree three. It suffices to state how the root of the polynomial relates
to Proxτφ. An explicit formula for the root need not be given.
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(vi) Since φ is positively 1-homogeneous, φ∗ = ιB for some set B ⊂ R2. Find the normal cone
of B. Use this to find an equation for the projection PB onto B (Similar to above, the
equation does not need to be solved explicitly.)

(vii) Verify the Moreau decomposition for Proxφ and Proxφ∗ = PB.
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