1 Problem description

- Let (V, E) be a graph with vertices V (|V| finite) and directed edges $E \subset V \times V$ where $(x, y) \in E$ indicates a directed edge from x to y.
- Denote by \mathbb{R}^V and \mathbb{R}^E the real vector spaces of functions defined on vertices and edges. We equip them with the standard Euclidean inner products:

$$\begin{split} \langle f,g\rangle_V &= \sum_{x\in V} f(x)\cdot g(x) \quad \text{for} \quad f,g\in \mathbb{R}^V, \\ \langle \phi,\psi\rangle_E &= \sum_{e\in E} \phi(e)\cdot \psi(e) \quad \text{for} \quad \phi,\psi\in \mathbb{R}^E. \end{split}$$

- A function $\omega \in \mathbb{R}^E$ can be interpreted as flow on the edges where for $(x,y) \in E$ the value $\omega((x,y))$ denotes the mass flow from vertex x to y. $\omega((x,y)) < 0$ will be interpreted as mass flowing from y to x.
- For a given vertex $x \in V$ the net amount of mass leaving x by the flow ω can be expressed as

$$(\operatorname{div}\omega)(x) = \sum_{y \in V: (x,y) \in E} \omega((x,y)) - \sum_{y \in V: (y,x) \in E} \omega((y,x))$$

The first term sums contributions from edges starting at x, the second term sums contributions from edges ending at x.

- We can evaluate this expression for every x, hence the operator div is a linear map from \mathbb{R}^E to \mathbb{R}^V . div ω is called the *divergence* of ω .
- Let $\mathcal{P}(V) = \{ \mu \in \mathbb{R}_+^V : \sum_{x \in V} \mu(x) = 1 \}$ be the space of discrete probability densities over V. For two $\mu, \nu \in \mathcal{P}(V)$ a flow $\omega \in \mathbb{R}^E$ is said to be a flow from μ to ν if div $\omega = \nu \mu$. If the graph (V, E) is connected (ignoring the orientation of edges), such a flow always exists.
- Assume each edge has a positive length, prescribed by a vector $L \in \mathbb{R}_{++}^E$. The cost of a flow is defined to be

$$\mathcal{C}(\omega) = \sum_{e \in E} |\omega(e)| \cdot L(e).$$

This is the amount of mass flowing along each edge multiplied by the edge length.

• For fixed $\mu, \nu \in \mathcal{P}(V)$ we will study the following optimization problem:

$$\inf \left\{ \mathcal{C}(\omega) \middle| \omega \in \mathbb{R}^E, \operatorname{div} \omega = \nu - \mu \right\} = \inf_{\omega \in \mathbb{R}^E} \mathcal{C}(\omega) + \theta(\operatorname{div} \omega) \tag{1}$$

where $\theta: \mathbb{R}^V \to \mathbb{R} \cup \{\infty\}$ is given by $\theta = \iota_{\{\nu - \mu\}}$. We assume that the graph is connected.

2 Preliminaries

- (i) Check that \mathcal{C} and θ are convex, lower semicontinuous and proper.
- (ii) Find the Fenchel-Legendre conjugates C^* and θ^* .
- (iii) Find the subdifferentials of C, θ , C^* and θ^* .
- (iv) Show that the optimization problem (1) has a minimizer.

3 Duality

We state a variant of the Fenchel–Rockafellar Theorem.

Theorem 3.1. Let X, Y be Hilbert spaces, $A: X \to Y$ linear and bounded. Let $F: X \to \mathbb{R} \cup \{\infty\}$, $G: Y \to \mathbb{R} \cup \{\infty\}$ be convex, lower semicontinuous and proper. Assume there is a point $x \in X$ such that $F(x) < \infty$, $G(Ax) < \infty$ and G is continuous at Ax. Then

$$\inf_{x \in X} \left[F(x) + G(Ax) \right] = -\min_{y \in Y} \left[F^*(-A^*y) + G^*(y) \right]. \tag{2}$$

- (i) Check that the assumptions for the Fenchel–Rockafellar Theorem are *not* met when identifying $X = \mathbb{R}^E$, $Y = \mathbb{R}^V$, $F = \mathcal{C}$, $G = \theta$, A = div.
- (ii) Derive the adjoint operator of div.
- (iii) Ignoring that the assumptions are not met, nevertheless state the dual problem to (1).
- (iv) Show that the assumptions for the Fenchel–Roackafellar Theorem are met when one considers the dual of (1) as primal in (2).
- (v) Show that the dual problem of (1) has a solution.
- (vi) Find a sufficient and necessary condition for a pair $(x, y) \in X \times Y$ to be primal and dual optimizers of (2).

4 Metric

For given $\mu, \nu \in \mathcal{P}(V)$ denote by $D(\mu, \nu)$ the corresponding optimal value of (1).

(i) Show that D is non-negative, symmetric and satisfies the triangle inequality. *Hint:* From minimal flows for $D(\mu, \nu)$ and $D(\nu, \rho)$ try to construct a feasible flow for $D(\mu, \rho)$.

D is called 'earth mover's distance' or Wasserstein-1 distance on $\mathcal{P}(V)$.

5 Optimization

We state a variant of a proximal primal dual algorithm.

Theorem 5.1. Consider the setup of Theorem 3.1. Assume primal and dual problem have solutions. For $\tau, \sigma \in \mathbb{R}_{++}$, $\tau \sigma < \|A\|^{-2}$ and $(x^{(0)}, y^{(0)}) \in X \times Y$ let

$$x^{(\ell+1)} = \text{Prox}_{\tau F}(x^{(\ell)} - \tau A^* y^{(\ell)}), \tag{3a}$$

$$y^{(\ell+1)} = \text{Prox}_{\sigma G^*}(y^{(\ell)} + \sigma A(2x^{(\ell+1)} - x^{(\ell)})).$$
 (3b)

Then $x^{(\ell)} \rightharpoonup x, y^{(\ell)} \rightharpoonup y$ as $\ell \to \infty$ where (x,y) are a pair of primal and dual solutions.

- (i) Show that fixed-points of the iteration (3) are precisely the pairs of primal and dual solutions to (2).
- (ii) Analogous to the Moreau decomposition express $\operatorname{Prox}_{\gamma f}$ via $\operatorname{Prox}_{\eta f^*}$ for a suitable factor η .
- (iii) Find $Prox_{\tau C}$, $Prox_{\tau C^*}$, $Prox_{\sigma \theta}$, $Prox_{\sigma \theta^*}$.

6 Projection

If we want to solve (1) with the Douglas–Rachford algorithm we need to be able to compute $\operatorname{Prox}_{\tau H}$ where $H(\omega) = \theta(\operatorname{div}\omega)$. We find that $\operatorname{Prox}_{\tau H} = P_S$ where $S = \{\omega \in \mathbb{R}^E : \operatorname{div}\omega = \nu - \mu\}$.

More generally, let X and Y be two real Hilbert spaces, let $A: X \to Y$ be linear and bounded. For fixed $y \in Y$ let $S = \{x \in X : Ax = y\}$. Assume that $S \neq \emptyset$, i.e. y is in the image of A. We will determine how to compute the projection P_S .

The point $z = P_S x$ is the solution to

$$\min_{z \in X} \frac{1}{2} ||x - z||^2 + \iota_{\{y\}}(Az) \tag{4}$$

(i) Use Theorem 2 to derive a dual problem to (4). Is (4) the primal or dual problem? The problem dual to (4) will have the form

$$\inf_{z \in V} \frac{1}{2} ||A^*z||^2 + \langle z, b \rangle \tag{5}$$

for some $b \in Y$.

- (ii) Find the solution of (5) for the case when AA^* is invertible.
- (iii) Assume dim ker $A^* > 0$. Find a necessary and sufficient criterion for b such that (5) has a solution. What is the interpretation of this criterion in the problem (4)?
- (iv) Use the relation 3(vi) to obtain the solution to (4) from the solution of (5).

7 Analysis of a convex function

In a slightly more complicated flow optimization problem the following function plays a central role:

$$\phi: \mathbb{R}^2 \to \mathbb{R} \cup \{\infty\}, \qquad (a,b) \mapsto \begin{cases} \frac{|b|^2}{a} & \text{if } a > 0, \\ 0 & \text{if } a = b = 0, \\ +\infty & \text{else.} \end{cases}$$
 (6)

- (i) Determine the sublevel sets of ϕ . Use this to show that ϕ is lower semicontinuous.
- (ii) Construct a converging sequence $(a_n, b_n)_n$, $(a_n, b_n) \to (a, b) \in \mathbb{R}^2$ such that $\phi(a_n, b_n) < \infty$ and $\liminf_{n \to \infty} \phi(a_n, b_n) > \phi(a, b)$.
- (iii) Find ϕ^* . Show that $\phi^{**} = \phi$.
- (iv) Find the subdifferential of ϕ . Hint: Distinguish the cases a > 0 and (a, b) = (0, 0). Note that ϕ is positively 1-homogeneous.
- (v) Find $\operatorname{Prox}_{\tau\phi}$ for $\tau > 0$. Note: for some cases computing $\operatorname{Prox}_{\tau\phi}$ requires finding the root of a polynomial of degree three. It suffices to state how the root of the polynomial relates to $\operatorname{Prox}_{\tau\phi}$. An explicit formula for the root need *not* be given.

- (vi) Since ϕ is positively 1-homogeneous, $\phi^* = \iota_B$ for some set $B \subset \mathbb{R}^2$. Find the normal cone of B. Use this to find an equation for the projection P_B onto B (Similar to above, the equation does not need to be solved explicitly.)
- (vii) Verify the Moreau decomposition for Prox_{ϕ} and $\text{Prox}_{\phi^*}=P_B.$