
Preliminaries. Solve the following with Matlab, Python, Mathematica or C/C++ (if you want
to use another language, please check with me first). For the visualizations either use available
functions (Matlab, Python Matplotlib or Mathematica) or write the required information to a
text file which can be visualized e.g. with gnuplot. When you are done, submit the full code (and
plot images) to me via email. We will then meet for a brief discussion of your work. Working in
groups is encouraged.

1 Problem setup

• The graph will be encoded by a matrix A ∈ RV×E with

Ax,e =


1 if e = (x, y) for some y ∈ V,
−1 if e = (y, x) for some y ∈ V,
0 else,

and a vector L ∈ RE+ which gives the length of each edge. Note that A encodes the
divergence operation.

(i) For positive integers m,n ∈ Z2
+ write a function that generates A and L for a m × n

Cartesian grid graph with edge length 1. The ordering of vertices and edges is up to you.

(ii) For a positive integer m ∈ Z+ write a function that generates A and L for a cyclic chain
graph with edge length 1: For i = 1, . . . ,m − 1 there is an edge from vertex i to i + 1.
Finally, there is an edge from m to 1.

2 Implementation

(i) For given A and L implement ProxτC : RE → RE and Proxσθ : RV → RV where τ and σ
can be given as additional parameters.

(ii) Implement iterations (3, first problem sheet) where initial iterates (ω(0), φ(0)), step-sizes σ
and τ and the number of total iterations ` are given as arguments and the final iterates
(ω(`), φ(`)) are returned.

(iii) Since ω(`) will in general not satisfy divω(`) = ν − µ, the primal objective will strictly
always be +∞ during optimization (similarly, the dual score will be −∞ in this problem
instance). So the primal dual gap cannot be used as numerical stopping criterion.

Instead, implement a variant of the above iteration, where some ε > 0 is given as additional
argument and the iterations run until ‖divω(`) − (ν − µ)‖V < ε where ν − µ also given as
parameter and the number of required iterations is returned as additional result. (It may
be prudent to implement a maximal number of allowed iterations after which the algorithm
terminates with an error message.)

3 Numerical experiments

(i) For the graphs constructed in 1(i) with m = n = 10 set µ = δ(1,1) and ν = δ(10,10). For
(ω(0), φ(0)) = (0E , 0V ) generate a plot of C(ω(`)), θ∗(φ(`)) and ‖ divω(`)− (ν−µ)‖V over the

1



number of iterations ` until the algorithm has approximately converged (‘approximately’:
set the error bound ε = 10−3). The plot of the error is probably best displayed in log scale.
Plot the final iterate φ as a 2d function over the Cartesian grid.

(ii) Repeat the above experiment for m = n = 5 and ν = δ(5,5). Compare the required number
of iterations until approximate convergence is achieved.

(iii) For the graph constructed in 1(ii) with m = 10 set µ = δ1 and set ν = δi for every
i = 1, . . . ,m. Each time, run the algorithm until approximate convergence (ε = 10−3).
Plot the values of C(ω) for the final iterate over i. Is this what you expect?

2


	Problem setup
	Implementation
	Numerical experiments

