Preliminaries. Solve the following with Matlab, Python, Mathematica or C/C++ (if you want to use another language, please check with me first). For the visualizations either use available functions (Matlab, Python Matplotlib or Mathematica) or write the required information to a text file which can be visualized e.g. with gnuplot. When you are done, submit the full code (and plot images) to me via email. We will then meet for a brief discussion of your work. Working in groups is encouraged.

1 Problem setup

• The graph will be encoded by a matrix $A \in \mathbb{R}^{V \times E}$ with

$$A_{x,e} = \begin{cases} 1 & \text{if } e = (x,y) \text{ for some } y \in V, \\ -1 & \text{if } e = (y,x) \text{ for some } y \in V, \\ 0 & \text{else,} \end{cases}$$

and a vector $L \in \mathbb{R}_+^E$ which gives the length of each edge. Note that A encodes the divergence operation.

- (i) For positive integers $m, n \in \mathbb{Z}_+^2$ write a function that generates A and L for a $m \times n$ Cartesian grid graph with edge length 1. The ordering of vertices and edges is up to you.
- (ii) For a positive integer $m \in \mathbb{Z}_+$ write a function that generates A and L for a cyclic chain graph with edge length 1: For $i = 1, \ldots, m-1$ there is an edge from vertex i to i+1. Finally, there is an edge from m to 1.

2 Implementation

- (i) For given A and L implement $\operatorname{Prox}_{\tau C} : \mathbb{R}^E \to \mathbb{R}^E$ and $\operatorname{Prox}_{\sigma \theta} : \mathbb{R}^V \to \mathbb{R}^V$ where τ and σ can be given as additional parameters.
- (ii) Implement iterations (3, first problem sheet) where initial iterates $(\omega^{(0)}, \phi^{(0)})$, step-sizes σ and τ and the number of total iterations ℓ are given as arguments and the final iterates $(\omega^{(\ell)}, \phi^{(\ell)})$ are returned.
- (iii) Since $\omega^{(\ell)}$ will in general not satisfy div $\omega^{(\ell)} = \nu \mu$, the primal objective will strictly always be $+\infty$ during optimization (similarly, the dual score will be $-\infty$ in this problem instance). So the primal dual gap cannot be used as numerical stopping criterion.

Instead, implement a variant of the above iteration, where some $\varepsilon > 0$ is given as additional argument and the iterations run until $\|\operatorname{div}\omega^{(\ell)} - (\nu - \mu)\|_V < \varepsilon$ where $\nu - \mu$ also given as parameter and the number of required iterations is returned as additional result. (It may be prudent to implement a maximal number of allowed iterations after which the algorithm terminates with an error message.)

3 Numerical experiments

(i) For the graphs constructed in 1(i) with m=n=10 set $\mu=\delta_{(1,1)}$ and $\nu=\delta_{(10,10)}$. For $(\omega^{(0)},\phi^{(0)})=(0^E,0^V)$ generate a plot of $\mathcal{C}(\omega^{(\ell)})$, $\theta^*(\phi^{(\ell)})$ and $\|\operatorname{div}\omega^{(\ell)}-(\nu-\mu)\|_V$ over the

- number of iterations ℓ until the algorithm has approximately converged ('approximately': set the error bound $\varepsilon = 10^{-3}$). The plot of the error is probably best displayed in log scale. Plot the final iterate ϕ as a 2d function over the Cartesian grid.
- (ii) Repeat the above experiment for m=n=5 and $\nu=\delta_{(5,5)}$. Compare the required number of iterations until approximate convergence is achieved.
- (iii) For the graph constructed in 1(ii) with m=10 set $\mu=\delta_1$ and set $\nu=\delta_i$ for every $i=1,\ldots,m$. Each time, run the algorithm until approximate convergence ($\varepsilon=10^{-3}$). Plot the values of $\mathcal{C}(\omega)$ for the final iterate over i. Is this what you expect?