Preliminaries. Solve the following with Matlab, Python, Mathematica or C/C++ (if you want
to use another language, please check with me first). For the visualizations either use available
functions (Matlab, Python Matplotlib or Mathematica) or write the required information to a
text file which can be visualized e.g. with gnuplot. When you are done, submit the full code (and
plot images) to me via email. We will then meet for a brief discussion of your work. Working in
groups is encouraged.

1 Problem setup

e The graph will be encoded by a matrix A € RV>*¥ with

(i)

(i)

(iii)

3

1 ife=(z,y) for some y € V,
Aze =< —1 ife=(y,z) for some y € V,

)

0 else,

and a vector L € Rf which gives the length of each edge. Note that A encodes the
divergence operation.

For positive integers m,n & Zi write a function that generates A and L for a m x n
Cartesian grid graph with edge length 1. The ordering of vertices and edges is up to you.

For a positive integer m € Z, write a function that generates A and L for a cyclic chain
graph with edge length 1: For ¢ = 1,...,m — 1 there is an edge from vertex 7 to i + 1.
Finally, there is an edge from m to 1.

Implementation

For given A and L implement Prox,c : RF — R¥ and Prox,g : RY — RY where 7 and o
can be given as additional parameters.

Implement iterations (3, first problem sheet) where initial iterates (w(o), gf)(o)), step-sizes o
and 7 and the number of total iterations ¢ are given as arguments and the final iterates
(w®, ¢®) are returned.

Since w® will in general not satisfy divw® = v — p, the primal objective will strictly
always be +oo during optimization (similarly, the dual score will be —oo in this problem

instance). So the primal dual gap cannot be used as numerical stopping criterion.

Instead, implement a variant of the above iteration, where some € > 0 is given as additional
argument and the iterations run until || divw® — (v — p)|v < € where v —  also given as
parameter and the number of required iterations is returned as additional result. (It may
be prudent to implement a maximal number of allowed iterations after which the algorithm
terminates with an error message.)

Numerical experiments

(i) For the graphs constructed in 1(i) with m = n = 10 set p = d(1,1) and v = J(19,19). For

(W, () = (0F,0") generate a plot of C(w®), #*(¢¥) and || divw® — (v — ||y over the



number of iterations ¢ until the algorithm has approximately converged (‘approximately’:
set the error bound € = 1073). The plot of the error is probably best displayed in log scale.
Plot the final iterate ¢ as a 2d function over the Cartesian grid.

Repeat the above experiment for m =n =5 and v = §(5 5). Compare the required number
of iterations until approximate convergence is achieved.

For the graph constructed in 1(ii) with m = 10 set u = 01 and set v = ¢; for every
i = 1,...,m. Each time, run the algorithm until approximate convergence (¢ = 1073).
Plot the values of C(w) for the final iterate over 7. Is this what you expect?



	Problem setup
	Implementation
	Numerical experiments

