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1 Reminders on Measure Theory

1.1 Foundations

Reference: Ambrosio, Fusco, Pallara: Functions of Bounded Variation and Free Discontinuity
Problems, Chapters 1 & 2, [Ambrosio et al., 2000].

Definition 1.1 (σ-algebra). A collection E of subsets of a set X is called σ-algebra if

(i) ∅ ∈ E ; [A ∈ E ]⇒ [X \A ∈ E ];

(ii) for a sequence An ∈ E ⇒
⋃∞
n=0An ∈ E .

Comment: Closed under finite unions, intersections and countable intersections. A ∩ B = X \
((X \A) ∪ (X \B)).

Comment: Elements of E : ‘measurable sets’. Pair (X, E): ‘measure space’.

Example 1.2. Borel algebra: smallest σ algebra containing all open sets of a topological space.
Comment: Intersection of two σ-algebras is again σ-algebra. ‘smallest’ is well-defined.

Definition 1.3 (Positive measure and vector measure). For measure space (X, E) a function
µ : E 7→ [0,+∞] is called ‘positive measure’ if

(i) µ(∅) = 0;

(ii) for pairwise disjoint sequence An ∈ E ⇒ µ (
⋃∞
n=0An) =

∑∞
n=0 µ(An)

For measure space (X, E) and Rm, m ≥ 1, a function µ : E 7→ Rm is called ‘measure’ if µ satisfies
(i) and (ii) with absolute convergence.

Comment: Measures are vector space, measures are finite, positive measures may be infinite.

Example 1.4. Examples for measures:

1. counting measure: #(A) = |A| if A finite, +∞ else.

2. Dirac measure: δx(A) = 1 if x ∈ A, 0 else.

3. Lebesgue measure L([a, b]) = b− a for b ≥ a.

4. Scaled measures: positive measure µ, function f ∈ L1(µ), new measure ν = f · µ. ν(A)
def.
=∫

A f(x) dµ(x).
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5. Weak gradient of discontinuous function f , µ = Df .∫
Ω
ϕ(x) · dµ(x) = −

∫
Ω

divϕ(x) f(x) dx

for ϕ ∈ C1(Ω).

Definition 1.5 (Total variation). For measure µ on (X, E) the total variation |µ| of A ∈ E is

|µ|(A) = sup

{ ∞∑
n=0

|µ(An)|

∣∣∣∣∣An ∈ E , pairwise disjoint,
∞⋃
n=0

An = A

}
.

|µ| is finite, positive measure on (X, E).

Comment: Careful with nomenclature in image analysis.

Definition 1.6. A set N ⊂ X is µ-negligible if ∃ A ∈ E with N ⊂ A and µ(A) = 0. Two
functions f , g : X → Y are identical ‘µ-almost everywhere’ when {x ∈ X|f(x) 6= g(x)} is
µ-negligible.

Example 1.7. Null sets are Lebesgue-negligible sets.

1.2 Measures and maps

Definition 1.8 (Measurable functions, push-forward). Let (X, E), (Y,F) be measurable spaces.
A function f : X → Y is ‘measurable’ if f−1(A) ∈ E for A ∈ F .
For measure µ on (X, E) the ‘push-forward’ of µ under f to (Y,F), we write f]µ, is defined by
f]µ(A) = µ(f−1(A)) for A ∈ F .
Change of variables formula: ∫

X
g(f(x)) dµ(x) =

∫
Y
g(y) df]µ(y)

Sketch: Varying densities.

Example 1.9 (Marginal). Let proji : X ×X → X, proji(x0, x1) = xi. Marginals of measure γ
on X ×X:

proj0 ]γ(A) = γ(A×X) , proj1 ]γ(A) = γ(X ×A) .

Sketch: Discuss pre-images of proji.

1.3 Comparison, decomposition

Definition 1.10 (Absolute continuity, singularity). Let µ be positive measure, ν measure on
measurable space (X, E). ν is ‘absolutely continuous’ w.r.t. µ, we write ν � µ, if [µ(A) = 0]⇒
[ν(A) = 0].
Sketch: Density � Lebesgue, density 6� density when support different, Dirac measures 6�
Lebesgue, mixed measures 6� density, mixed measures� mixed measures when Diracs coincide.
Positive measures µ, ν are ‘mutually singular’, we write µ ⊥ ν, if ∃ A ∈ E such that µ(A) = 0,
µ(X \A) = 0. For general measures replace µ, ν by |µ|, |ν|.
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Definition 1.11 (σ-finite). A positive measure µ is called σ-finite if X =
⋃∞
n=0An for sequence

An ∈ E with µ(An) < +∞.

Example 1.12. Lebesgue measure is not finite but σ-finite.

Theorem 1.13 (Radon–Nikodym, Lebesgue decomposition [Ambrosio et al., 2000, Theorem
1.28]). Let µ be σ-finite positive measure. ν general measure.
Radon–Nikodym: For ν � µ there is a function f ∈ L1(µ) such that ν = f · µ.
Lebesgue decomposition: there exist unique measures νa, νs such that

ν = νa + νs, νa � µ, νs ⊥ µ .

Note: νa = f · µ for some f ∈ L1(µ).

Corollary 1.14. A real-valued measure ν can be decomposed into ν = ν+ − ν− with ν+, ν−
mutually singular positive measures.

Proof. Since ν � |ν| there exists f ∈ L1(|ν|) with ν = f · |ν|. Set A+ = f−1((0,+∞)),
A− = f−1((−∞, 0)) and set ν±(B) = |ν(B ∩A±)|.

Comment: f is only unique |ν|-almost everywhere.

1.4 Duality

References: Kurdila, Zabarankin: Convex functional analysis [Kurdila and Zabarankin, 2005].
For Hilbert spaces: Bauschke, Combettes: Convex Analysis and Monotone Operator Theory in
Hilbert Spaces [Bauschke and Combettes, 2011]

Definition 1.15 (Dual space). For normed vector space (X, ‖ · ‖X) its topological dual space is
given by

X∗ = {y : X → R | y linear, continous, i.e. ∃C <∞, |y(x)| ≤ C ‖x‖X ∀x ∈ X} .

Norm on X∗:

‖y‖X∗ = sup {|y(x)||x ∈ X, ‖x‖X ≤ 1}

(X∗, ‖ · ‖X∗) is Banach space. For y(x) one often writes 〈y, x〉 or 〈y, x〉X∗,X .

Comment: Linear not necessarily continuous in infinite dimensions. Dual norm is operator norm.

Definition 1.16 (Weak convergence). A sequence xn inX converges weakly to x ∈ X if y(xn)→
y(x) for all y ∈ X∗. We write xn ⇀ x.

Definition 1.17 (Weak* convergence). A sequence yn in X∗ converges weakly to y ∈ X∗ if
yn(x)→ y(x) for all x ∈ X. We write yn

∗
⇀ y.

Application to measures:

Definition 1.18 (Radon measures). Let (X, d) be compact metric space, let E be Borel-σ-
algebra. A finite measure (positive or vector valued) is called a ‘Radon measure’. Write:

• M+(X): positive Radon measures,
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• P(X) ⊂M+(X): Radon probability measures (total mass = 1),

• M(X)m: (vector valued) Radon measures.

Theorem 1.19 (Regularity [Ambrosio et al., 2000, Proposition 1.43]). For positive Radon mea-
sures on (X, E) one has for A ∈ E

µ(A) = sup {µ(B) |B ∈ E , B ⊂ A, B compact} = inf {µ(B) |B ∈ E , A ⊂ B, B open} .

Theorem 1.20 (Duality [Ambrosio et al., 2000, Theorem 1.54]). Let (X, d) be compact metric
space. Let C(X)m be space of continuous functions from X to Rm, equipped with sup-norm.
The topological dual of C(X)m can be identified with the spaceM(X)m equipped with the total
variation norm ‖µ‖M

def.
= |µ|(X). Duality pairing for µ ∈M(X)m, f ∈ C(X)m:

µ(f) = 〈µ, f〉M,C =

∫
X
f(x) dµ(x)

Corollary 1.21. Two measures µ, ν ∈M(X)m with µ(f) = ν(f) for all f ∈ C(X)m coincide.

Theorem 1.22 (Banach–Alaoglu [Kurdila and Zabarankin, 2005, Theorem 2.4.4]). Let X be a
separable normed space. Any bounded sequence in X∗ has a weak∗ convergent subsequence.

Comment: Since C(X) is separable, any bounded sequence in M(X) has a weak∗ convergent
subsequence.

2 Monge formulation of optimal transport

Comment: Gaspard Monge: French mathematician and engineer, 18th century. Studied problem
of optimal allocation of resources to minimize transport cost.

Sketch: Bakeries and cafes

Example 2.1 (According to Villani). Every morning in Paris bread must be transported from
bakeries to cafes for consumption. Every bakery produces prescribed amount of bread, every
cafe orders prescribed amount. Assume: total amounts identical. Look for most economical way
to distribute bread.

Mathematical model:

• Ω ⊂ R2: area of Paris

• µ ∈ P(Ω): distribution of bakeries and produced amount of bread,

• ν ∈ P(Ω): distribution of cafes and consumed amount of bread

• Cost function c : Ω × Ω → R+. c(x, y) gives cost of transporting 1 unit of bread from
bakery at x to cafe at y.

• Describe transport by map T : Ω → Ω. Bakery at x will deliver bread to cafe at T (x).
Consistency condition: T]µ = ν.

Comment: Each cafe receives precisely ordered amount of bread.
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• Total cost of transport map

CM (T ) =

∫
Ω
c(x, T (x)) dµ(x)

Comment: For bakery at location x pay c(x, T (x)) · µ(x). Sum (i.e. integrate) over all
bakeries.

Definition 2.2. Monge optimal transport problem: find T that minimizes CM .

Problems:

• Do maps T with T]µ = ν exist? Can not split mass.

Sketch: Splitting of mass.

• Does minimal T exist? Non-linear, non-convex constraint and objective.

Comment: ⇒ problem remained unsolved for long time.

3 Kantorovich formulation of optimal transport

Comment: Leonid Kantorovich: Russian mathematician, 20th century. Founding father of linear
programming, proposed modern formulation of optimal transport. (Nobel prize in economics
1975.)
Do not describe transport by map T , but by positive measure π ∈M+(Ω× Ω).

Definition 3.1 (Coupling / Transport Plan). Let µ, ν ∈ P(Ω). Set of ‘couplings’ or ‘transport
plans’ Π(µ, ν) is given by

Π(µ, ν) =
{
π ∈ P(Ω× Ω)

∣∣ proj0 ]π = µ, proj1 ]π = ν
}
.

Example 3.2. Π(µ, ν) 6= ∅, contains at least product measure µ⊗ν ∈ Π(µ, ν). (µ⊗ν)(A×B) =
µ(A) · ν(B) for measurable A, B ⊂ Ω.

Definition 3.3. For compact metric space (Ω, d), µ, ν ∈ P(Ω), c ∈ C(Ω× Ω) the Kantorovich
optimal transport problem is given by

C(µ, ν) = inf

{∫
Ω×Ω

c(x, y) dπ(x, y)

∣∣∣∣π ∈ Π(µ, ν)

}
(1)

Comment: Linear (continuous) objective, affine constraint set.

Comment: Language of measures covers finite dimensional and infinite dimensional case.

Theorem 3.4. Minimizers of (1) exist.

Proof. • Let πn be minimizing sequence. Since πn ∈ P(Ω×Ω) have ‖πn‖M = 1. By Banach-
Alaoglu (Theorem 1.22) ∃ converging subsequence. After extraction of subsequence have
convergent minimizing sequence πn

∗
⇀ π.

• Positivity: π is a positive measure. Otherwise find function φ ∈ C(Ω×Ω) with
∫

Ω×Ω φ dπ <
0 (use Corollary 1.14 and Theorem 1.19 for construction) which contradicts weak∗ conver-
gence.
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• Unit mass: π(Ω× Ω) =
∫

Ω×Ω 1 dπ = limn→∞
∫

Ω×Ω 1 dπn = πn(Ω× Ω) = 1

• Marginal constraint: For every φ ∈ C(Ω)∫
Ω
φ dproj0 ]π =

∫
Ω×Ω

φ ◦ proj0 dπ

= lim
n→∞

∫
Ω×Ω

φ ◦ proj0 dπn = lim
n→∞

∫
Ω
φ dproj0 ]πn =

∫
Ω
φ dµ

So proj0 ]π = µ. Analogous: proj1 ]π = ν.

• So: π ∈ Π(µ, ν).

• Since c ∈ C(Ω× Ω) and πn
∗
⇀ π have∫

Ω×Ω
c dπ = lim

n→∞

∫
Ω×Ω

c dπn .

Therefore, π is minimizer.

Comment: For proof under more general conditions see for instance [Villani, 2009, Chapter 4]
Proof two additional useful results to get some practice and intuition.

Proposition 3.5 (Restriction [Villani, 2009, Theorem 4.6]). Let µ, ν ∈ P(Ω), c ∈ C(Ω×Ω), let
π be optimizer for C(µ, ν). Let π̃ ∈M+(Ω×Ω), π̃(Ω×Ω) > 0, π̃(A) ≤ π(A) for all measurable
A ⊂ Ω × Ω. Set π′ = π̃

π̃(Ω×Ω) , π
′ ∈ P(Ω × Ω). Let µ′ = proj0 ]π′, ν ′ = proj1 ]π′. Then π′ is

minimal for C(µ′, ν ′).

Example 3.6. π̃(A)
def.
= π(A ∩ (Ω0 × Ω1)) for Ω0, Ω1 ⊂ Ω.

Sketch: Restriction to subset. More general restriction.

Proof. • Assume π′ is not optimal. Then there is a measure π′′ ∈ Π(µ′, ν ′) with strictly
better cost.

• Consider the measure π̂ = π − π̃ + π̃(Ω × Ω) · π′′. π̂ is a positive measure since π̃ ≤ π.
π̂ ∈ P(Ω× Ω) since π′′ ∈ P(Ω× Ω).

proj0 ]π̂ = proj0 ]π − proj0 ]π̃ + π̃(Ω× Ω) · proj0 ]π′′

= µ− π̃(Ω× Ω) ·
(
µ′ − µ′

)
= µ

So π̂ ∈ Π(µ, ν).

• π̂ has lower transport cost than π:∫
Ω×Ω

c dπ̂ =

∫
Ω×Ω

c dπ − π̃(Ω× Ω)

∫
Ω×Ω

c dπ′ + π̃(Ω× Ω)

∫
Ω×Ω

c dπ′′ <
∫

Ω×Ω
c dπ

• So π is not optimal which is a contradiction. Therefore π′ must be optimal.

Proposition 3.7 (Convexity [Villani, 2009, Theorem 4.8]). The function P(Ω)2 → R, (µ, ν) 7→
C(µ, ν) is convex.
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Proof. • Let µ0, µ1, ν0, ν1 ∈ P(Ω). Let πi be corresponding minimizers in C(µi, νi), i ∈
{0, 1}.

• For λ ∈ (0, 1) set

µ̂ = (1− λ)µ0 + λµ1 , ν̂ = (1− λ) ν0 + λ ν1 , π̂ = (1− λ)π0 + λπ1 .

• π̂ ∈ Π(µ̂, ν̂) since

proj0 ]π̂ = (1− λ) proj0 ]π0 + λ proj0 ]π1 = (1− λ)µ0 + λµ1 = µ̂ .

• Convexity:

C(µ̂, ν̂) ≤
∫

Ω×Ω
c dπ̂ = (1− λ)

∫
Ω×Ω

c dπ0 + λ

∫
Ω×Ω

c dπ1 = (1− λ)C(µ0, ν0) + λC(µ1, ν1)

4 Kantorovich duality

4.1 More duality

Definition 4.1 (Topologically paired spaces). Two vector spaces X, X∗ with locally convex
Hausdorff topology are called topologically paired spaces if all continuous linear functionals on
one space can be identified with all elements of the other.

Example 4.2. Let (Ω, d) be a compact metric space. C(X) and M(X) with the sup-norm
topology and the weak-∗ topology are topologically paired spaces.
Any continuous linear functional on C(X) can be identified with an element in M(X) by con-
struction. If Φ is a weak-∗ continuous linear functional on M(X) it can be identified with the
continuous function ϕ : x 7→ Φ(δx).

Definition 4.3 (Fenchel–Legendre conjugates). Let X, X∗ be topologically paired spaces. Let
f : X → R ∪ {∞}. Its Fenchel–Legendre conjugate f∗ : X∗ → R ∪ {∞} is given by

f∗(y) = sup{〈y, x〉 − f(x)|x ∈ X} .

f∗ is convex, lsc on X∗. Likewise, for g : X∗ → R ∪ {∞} define conjugate g∗. If f, g convex, lsc
then f = f∗∗, g = g∗∗.

Comment: Lsc: lower semicontinuous, [xn → x]⇒ [f(x) ≤ lim infn→∞ f(xn)]

Theorem 4.4 (Fenchel–Rockafellar [Rockafellar, 1967]). Let (X,X∗), (Y, Y ∗) be two pairs of
topologically paired spaces. Let f : X → R ∪ {∞}, g : Y → R ∪ {∞}, f, g convex, A : X → Y
linear, continuous. Assume ∃ x ∈ X such that f finite at x, g finite and continuous at Ax. Then

inf {f(x) + g(Ax)|x ∈ X} = max {−f∗(−A∗z)− g∗(z)|z ∈ Y ∗} .

In particular a maximizer of the problem on the right exists. A∗ : Y ∗ → X∗ is adjoint of A
defined by 〈z,Ax〉Y ∗,Y = 〈A∗z, x〉X∗,X .

Comment: Can sometimes be used ‘in both directions’ to establish existence of both primal and
dual problem.
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4.2 Dual Kantorovich problem

Theorem 4.5. Given the setting of Definition 3.3 one finds

C(µ, ν) = sup

{∫
Ω
α dµ+

∫
Ω
β dν

∣∣∣∣α, β ∈ C(Ω), α(x) + β(y) ≤ c(x, y) for all (x, y) ∈ Ω2

}
(2)

Proof. • Problem (2) can be written as

C(µ, ν) = − inf
{
f(α, β) + g(A(α, β))

(
α, β) ∈ C(Ω)2

}
with

f : C(Ω)2 → R, (α, β) 7→ −
∫

Ω
α dµ−

∫
Ω
β dν

g : C(Ω2)→ R ∪ {∞}, ψ 7→

{
0 if ψ(x, y) ≤ c(x, y) for all (x, y) ∈ Ω2

+∞ else.

A : C(Ω)2 → C(Ω2), [A(α, β)](x, y) = α(x) + β(y) .

• f , g are convex, lsc. A is bounded, linear.

• Let (α, β) be two constant, finite functions with α(x) + β(y) < min{c(x′, y′)|(x′, y′) ∈ Ω2}.
Then f(α, β) <∞, g(A(α, β)) <∞ and g is continuous atA(α, β). Thus, with Theorem 4.4
(and Example 4.2)

C(µ, ν) = min
{
f∗(−A∗π) + g∗(π)

∣∣π ∈M(Ω2)
}
.

• One obtains:

f∗(−ρ,−σ) = sup

{
−
∫

Ω
α dρ−

∫
Ω
β dσ +

∫
Ω
α dµ+

∫
Ω
β dν

∣∣∣∣(α, β) ∈ C(Ω)2

}
=

{
0 if ρ = µ, σ = ν ,

+∞ else.

(Reasoning similar than for positivity of limit π in proof of Theorem 3.4.)

g∗(π) = sup

{∫
Ω2

ψ dπ
∣∣∣∣ψ ∈ C(Ω2), ψ(x, y) ≤ c(x, y) for all (x, y) ∈ Ω2

}
=

{∫
Ω2 c dπ if π ∈M+(Ω2),

+∞ else.

So far we have not yet proven existence of dual maximizers. For this we need some additional
arguments. We follow the presentation in [Santambrogio, 2015, Section 1.2].

Definition 4.6 (c-transform). For ψ ∈ C(Ω) define its c-transform ψc ∈ C(Ω) by

ψc(y) = inf {c(x, y)− ψ(x)|x ∈ Ω}
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and its c-transform ψc ∈ C(Ω) by

ψc(x) = inf {c(x, y)− ψ(y)|y ∈ Ω}

A function ψ is called c-concave if it can be written as ψ = φc for some φ ∈ C(Ω). Analogously,
ψ is c-concave if it can be written as ψ = φc.

Comment: Setting β = αc (or α = βc) in (2) corresponds to optimization over β for fixed α
(and vice versa). In general alternating optimization of (2) in α and β does not yield an optimal
solution.

Lemma 4.7. The set of c-concave and c-concave functions are equicontinuous.

Proof. • Since c ∈ C(Ω×Ω) and (Ω, d) compact there is a continuous function ω : R+ → R+

with ω(0) = 0 such that |c(x, y)− c(x, y′)| ≤ ω(d(y, y′)).

• Let ψ = φc. Set φx : y 7→ c(x, y)−φ(x). For every x ∈ Ω have |φx(y)−φx(y′)| ≤ ω(d(y, y′)).
One finds

ψ(y) ≤ φx(y) ≤ φx(y′) + ω(d(y, y′))

for all x, y, y′ ∈ Ω. Taking the infimum over x one gets ψ(y) ≤ ψ(y′) + ω(d(y, y′)) and by
symmetry |ψ(y)− ψ(y′)| ≤ ω(d(y, y′)). This implies equicontinuity of c-concave functions.

• Argument for φc analogous.

Theorem 4.8 (Arzelà-Ascoli [Rudin, 1986, Thm. 11.28]). If (Ω, d) is a compact metric space
and (fn)n is a sequence of uniformly bounded, equicontinuous functions in C(Ω) then (fn)n has
a uniformly converging subsequence.

Theorem 4.9 ([Santambrogio, 2015, Prop. 1.11]). Maximizers of (2) exist.

Proof. • For feasible (α, β) with finite score in (2) one can always replace β by αc and
subsequently α by (αc)c which are still feasible and do not decrease the functional value.
Hence, we may impose the additional constraint that (α, β) in (2) are (c, c)-concave.

• Replacing feasible (α, β) in (2) by

(x 7→ α(x)− C, y 7→ β(y) + C) with C = min
x′∈Ω

α(x′)

does not change the functional value or affect the constraints.

• Arguing as in Lemma 4.7 one finds for c-concave α with minx α(x) = 0 that α(x) ∈
[0, ω(diam Ω)] and for the corresponding β = αc that β(y) ∈ [min c− ω(diam Ω),max c].

• Hence, we may consider maximizing sequences of (2) that are uniformly bounded and
equicontinuous. By the Arzelà-Ascoli Theorem there exists a uniformly converging sub-
sequence. Since the objective (and the constraints) of (2) are upper semicontinuous (see
proof of Theorem 4.5), the limit must be a maximizer.
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Corollary 4.10 (Primal-Dual Optimality Condition). If π solves (1) and (α, β) solve (2) then
α(x) + β(y) = c(x, y) π-almost everywhere.

Proof.∫
Ω×Ω

c(x, y) dπ(x, y) =

∫
Ω
α dµ+

∫
Ω
β dν =

∫
Ω×Ω

[α(x) + β(y)]dπ(x, y) ≤
∫

Ω×Ω
c(x, y) dπ(x, y)

Remark 4.11 (Economic Interpretation of Kantorovich Duality). Bakeries and cafes hire a
third-party company to do the transportation and agree to split the transport cost. When
picking up bread at bakery x in the morning, the company charges an advance payment α(x)
per unit of bread for the transport. Upon delivery at a cafe at y it charges a final payment β(y)
per unit of bread from the cafe.
The total payment to the company will be

∫
Ω α dµ+

∫
Ω β dν. It is left to the company to decide

which bread to deliver where. And they will want to minimize the total transport cost, i.e. to
find the global minimum of

∫
Ω×Ω c dπ.

But it can never charge more than c(x, y)−α(x) when dropping of bread from x at y, otherwise
the cafe y may complain and try to hire another company to get bread from bakery x at a lower
price. When every cafe receives bread from its ‘subjectively cheapest’ bakery (and similarly each
bakery delivers to its ‘subjectively cheapest’ cafe), the transport plan is said to be at equilibrium:
no party will attempt to change its partner in a local attempt to reduce its costs.
Kantorovich duality states that for the optimal transport model the global minimum and equi-
librium coincide.

A useful application of duality is the following result which is also the foundation for the numerical
approximation of the Kantorovich problem.

Proposition 4.12 (Stability of optimal plans). Let (µn)n, (νn)n be sequences in P(Ω) converging
weak∗ to µ and ν respectively. Let (πn)n be a corresponding sequence of optimal plans. Then
any cluster point of (πn)n is an optimal coupling for C(µ, ν).

Comment: (πn)n will always have cluster points due to Theorem 1.22.

Proof. • Let π be a cluster point of (πn)n. Without changing notation let (πn)n be a subse-
quence converging weak∗ to π. Then π ∈ Π(µ, ν) as for any φ ∈ C(Ω):∫

Ω
φd(proj0 ]π) =

∫
Ω×Ω

φ ◦ proj0 dπ = lim
n→∞

∫
Ω×Ω

φ ◦ proj0 dπn = lim
n→∞

∫
Ω
φ dµn =

∫
Ω
φ dµ

• Since π is feasible for C(µ, ν):

C(µ, ν) ≤
∫

Ω×Ω
c dπ = lim

n→∞

∫
Ω×Ω

c dπn = lim
n→∞

C(µn, νn)

• Assume the above inequality is strict with difference ε ≥ 0. Let (α, β) be maximizers for
the dual problem (2) for C(µ, ν) (existing due to Theorem 4.9, but proof also works without
exact optimizers). They are also feasible for the dual of C(µn, νn) so

C(µn, νn) ≥
∫

Ω
α dµn +

∫
Ω
β dνn .
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By weak∗ convergence there is some N such that for n ≥ N∫
Ω
α dµn +

∫
Ω
β dνn ≥

∫
Ω
α dµ+

∫
Ω
β dν − ε/2 = C(µ, ν)− ε/2 .

Consequently ε = 0 and thus π is optimal for C(µ, ν).

Comment: The proof can be extended to cover a sequence of changing cost functions (cn)n in
C(Ω× Ω), where cn is used for C(µn, νn) if (cn)n converges uniformly to a limit c ∈ C(Ω× Ω).
Then one may have to subtract a small constant from the limit optimal potentials (α, β) to make
them feasible for the dual of C(µn, νn).

Comment: For treatment of duality in more general regularity setting see for instance [Villani,
2009, Chapter 5].

4.3 Solution to the Monge problem

We now consider a special case for which the Monge problem has a solution. Duality will be an
important ingredient in the proof.
First we briefly discuss that the Kantorovich formulation of optimal transport, Definition 3.3,
can be interpreted as a relaxation of the Monge formulation, Definition 2.2.

Proposition 4.13 (Kantorovich is a relaxation of the Monge problem). Assume T : Ω → Ω is
a feasible transport map for the Monge problem between µ and ν, Definition 2.2. In particular
T]µ = ν.
Let

(id, T ) : Ω→ Ω× Ω, x 7→ (x, T (x)) .

Then π = (id, T )]µ ∈ Π(µ, ν) and∫
Ω×Ω

c dπ =

∫
Ω
c(x, T (x)) dµ(x) .

Proof. • Clearly π ∈ P(Ω× Ω).

• proj0 ◦ T = id. Hence

proj0 ]π = proj0 ]T]µ = µ .

• Similarly proj1 ◦ T = T . Hence

proj1 ]π = proj1 ]T]µ = T]µ = ν .

• Equality of cost follows from change of variables under (id, T ).

This implies in particular that C(µ, ν) ≤ CM (µ, ν) since every feasible Monge map induces a
Kantorovich coupling of equal cost.
The converse inequality is in general not true but we will now prove it for a special case.

11



Theorem 4.14 (Solution to the Monge problem). Let Ω ⊂ Rd be compact, let the cost function
c be given by c(x, y) = h(x − y) for a strictly convex function h : Rd → R. Let µ be Lebesgue-
absolutely continuous and let ∂Ω be µ-negligible.
Then the optimal transport plan π is supported on the graph of a transport map T : Ω→ Ω.

Proof. • h is convex and finite. Hence it is continuous and locally Lipschitz. Therefore, c is
continuous and Lipschitz (since Ω is compact).

• Therefore Theorem 3.4 and Theorem 4.9 apply and provide existence of primal and dual
optimizers π and (α, β).

• From the proof of Theorem 4.9 know: β = αc, α = βc. Analogous to Lemma 4.7 this
implies that α and β are Lipschitz.

• By Rademacher’s theorem (see e.g. [Ziemer, 1989, Theorem 2.2.1]) α is Lebesgue-almost
everywhere differentiable in int Ω. And consequently µ-almost everywhere on Ω (since ∂Ω
is µ-negligible).

• From Corollary 4.10: α(x)+β(y) = c(x, y) π-almost everywhere. For (x0, y0) with α(x0)+
β(y0) = c(x0, y0) we find

x 7→ c(x, y0)− α(x)

is minimal at x0 (since β(y0) = infx{c(x, y0)− α(x)} = c(x0, y0)− α(x0)). If α is differen-
tiable at x0 (which it is µ-a.e., i.e. for (x, y) π-a.e.), then ∇α(x0) ∈ ∂h(x0 − y0).

• For a strictly convex function ∂h is ‘invertible’. That is, for every v ∈ Rd there is a unique
w ∈ Rd such that v ∈ ∂h(w). We denote this map by ∂h−1 and find

x0 − y0 = ∂h−1(∇α(x0)) .

• This relation is still true π-almost everywhere. Set T (x) = x − ∂h−1(∇α(x)). Then
y = T (x) π-almost everywhere.

• Equality of cost:∫
Ω×Ω

c(x, y) dπ(x, y) =

∫
Ω×Ω

c(x, T (x)) dπ(x, y) =

∫
Ω
c(x, T (x)) dµ(x)

• Push-forward condition:∫
Ω
φ(y) dT]µ(y) =

∫
Ω
φ(T (x)) dµ(x) =

∫
Ω×Ω

φ(T (x)) dπ(x, y)

=

∫
Ω×Ω

φ(y) dπ(x, y) =

∫
Ω
φ(y) dν(y)

Example 4.15 (Quadratic case: c(x, y) = 1
2‖x − y‖2). This corresponds to h(x) = 1

2‖x‖
2.

Consequently, ∂h(x) = {x} and ∂h−1(x) = x. Moreover since α = βc:

α(x) = inf
{

1
2‖x− y‖

2 − β(y)
∣∣y ∈ Ω

}
= 1

2‖x|
2 + inf

{
−〈x, y〉+ 1

2‖y‖
2 − β(y)

∣∣y ∈ Ω
}

=1
2‖x‖

2 − sup
{
〈x, y〉 − g(y)

∣∣∣y ∈ Rd
}

︸ ︷︷ ︸
:=φ(x) : convex
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Therefore,

T (x) = x−∇α(x) = x− (x−∇φ(x)) = ∇φ(x) .

So T is almost everywhere the gradient of a convex function. This is part of the famous polar
factorization theorem by [Brenier, 1991].

5 Wasserstein spaces

Definition 5.1 (Wasserstein distance). Let (Ω, d) be a compact metric space. For p ∈ [1,∞)
let Wp : P(Ω)× P(Ω)→ R,

Wp(µ, ν) =

(
inf

{∫
Ω×Ω

d(x, y)p dπ(x, y)

∣∣∣∣π ∈ Π(µ, ν)

})1/p

Comment: On non-compact spaces one usually restricts the Wasserstein space to measures with
finite moment of order p, i.e.,

∫
Ω d(x, x0)p dµ < +∞ for some arbitrary reference point x0 ∈ Ω.

This is a sufficient condition to keep Wp finite.

Example 5.2. Dirac measures are isometric embedding of Ω into P(Ω): Wp(δx, δy) = d(x, y),
since Π(δx, δy) = {δ(x,y)}.

To prove that Wp is indeed a distance we will rely on the following powerful theorem which is
often useful to dissect and reassemble measures with certain sought-after properties.

Theorem 5.3 (Disintegration [Ambrosio et al., 2005, Theorem 5.3.1]). Let X, Y be compact
metric spaces, let f : X → Y be measurable and µ ∈ P(X). Set ν = f]µ ∈ P(Y ). Then there is
a family (µy)y∈Y in P(X), unique ν-a.e., such that µy(f−1({y})) = 1 and for φ ∈ C(X) one has∫

X
φ dµ =

∫
Y

(∫
X
φ dµy

)
dν(y) .

Sketch: Table, disintegration.

Comment: Disintegration formalizes the notion of conditional probability. It is easiest to visualize
in a discrete case when X = Y × Y and f = proj0. Then µ can be interpreted as table and
any µy will be the restriction of µ to row y, renormalized to mass 1 (if the row is non-empty).
µy gives the probabilities of picking a given column under the condition that row y has already
been selected.

Example 5.4 (Disintegration of transport plan). Let π ∈ Π(µ, ν). Let (γx)x∈Ω be the disinte-
gration of π with respect to proj0. That is, for any φ ∈ C(Ω× Ω) have∫

Ω×Ω
φ(x, y) dπ(x, y) =

∫
Ω

(∫
Ω
φ(x, y) dγx(y)

)
dµ(x) .

γx can be interpreted as describing where mass particles starting in x are going. Note that it is
only uniquely defined µ-a.e..

Comment: By the disintegration theorem γx would be in P(X×X). But since γx(proj−1
0 ({x})) =

γx({x} ×X) = 1 we can interpret γx as element of P(X).

13



Theorem 5.5. Wp is a metric on P(X).

Proof. • Wp is non-negative (since d(x, y)p ≥ 0), symmetric (since d(x, y)p is symmetric) and
finite (since Ω is compact, i.e., d is bounded).

• Let T : Ω→ Ω×Ω, T (x) = (x, x) be the ‘diagonal’ embedding of Ω into Ω×Ω. Wp(µ, µ) =
0, since π = T]µ ∈ Π(µ, µ) and

∫
dp dπ = 0: Note that (proji ◦ T )(x) = x and that

f](g]ρ) = (f ◦ g)]ρ. Hence, proji ]T]µ = µ. Further,∫
Ω×Ω

dp dπ =

∫
Ω×Ω

dp d(T]µ) =

∫
Ω
dp ◦ T dµ = 0 .

• Let Wp(µ, ν) = 0. Then there must be some π ∈ Π(µ, ν) with
∫

Ω×Ω d(x, y)p dπ(x, y) = 0,
which implies d(x, y) = 0 π-a.e., i.e., x = y π-a.e.. So for φ ∈ C(Ω)∫

Ω×Ω
φ(x) dπ(x, y) =

∫
Ω×Ω

φ(y) dπ(x, y)

and thus proj0 ]π = proj1 ]π which implies µ = ν.

• Towards triangle inequality: Let µ, ν, ρ ∈ P(Ω), let π01, π12 be optimal couplings for
Wp(µ, ν) and Wp(ν, ρ). Let (γ01,y)y∈Ω be the disintegration of π01 with respect to proj1.
That is, for any φ ∈ C(Ω× Ω) have∫

Ω×Ω
φ(x, y) dπ01(x, y) =

∫
Ω

(∫
Ω
φ(x, y) dγ01,y(x)

)
dν(y) .

Similarly, let (γ12,y)y∈Ω be the disintegration of π12 with respect to proj0.

• Define a new measure π ∈ P(Ω× Ω) via∫
Ω×Ω

φ(x, z) dπ(x, z) =

∫
Ω

(∫
Ω×Ω

φ(x, z) dγ01,y(x) dγ12,y(z)

)
dν(y) .

Sketch: Some intuition for π.

• Claim: π ∈ Π(µ, ρ). For φ ∈ C(Ω) get∫
Ω×Ω

φ(x) dπ(x, z) =

∫
Ω

(∫
Ω×Ω

φ(x) dγ01,y(x) dγ12,y(z)

)
dν(y)

=

∫
Ω

(∫
Ω
φ(x) dγ01,y(x)

)
dν(y) =

∫
Ω×Ω

φ(x) dπ01(x, y) =

∫
Ω
φ dµ
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• Triangle inequality:

Wp(µ, ρ) ≤
(∫

Ω×Ω
d(x, z)p dπ(x, z)

)1/p

=

(∫
Ω

(∫
Ω×Ω

d(x, z)p dγ01,y(x) dγ12,y(z)

)
dν(y)

)1/p

≤
(∫

Ω

(∫
Ω×Ω

(
d(x, y) + d(y, z)

)p dγ01,y(x) dγ12,y(z)

)
dν(y)

)1/p

Minkowski ineq.
≤

(∫
Ω

(∫
Ω×Ω

d(x, y)p dγ01,y(x) dγ12,y(z)

)
dν(y)

)1/p

+

(∫
Ω

(∫
Ω×Ω

d(y, z)p dγ01,y(x) dγ12,y(z)

)
dν(y)

)1/p

=

(∫
Ω×Ω

d(x, y)p dπ01(x, y)

)1/p

+

(∫
Ω×Ω

d(y, z)p dπ12(x, y)

)1/p

= Wp(µ, ν) +Wp(ν, ρ) .

Theorem 5.6 (Wp metrizes weak∗ convergence). Let (Ω, d) be a compact metric space. Wp

metrizes the weak∗ convergence on P(Ω). That is, for a sequence (µn)n and some µ in P(Ω) one
has:

[Wp(µn, µ)→ 0] ⇔ [µn
∗
⇀ µ]

Proof. • ⇒: assume Wp(µn, µ) → 0. Let (πn)n be a corresponding sequence of optimal
transport plans. Let µ̃ be a cluster point of (µn)n and let π ∈ Π(µ̃, µ) a corresponding
cluster point of (πn)n. As before, denote the converging subsequence also by (πn)n. One
has:

Wp(µ̃, µ) ≤ lim
n→∞

∫
Ω×Ω

dp dπn = lim
n→∞

Wp(µn, µ) = 0

Since Wp is a metric, µ̃ = µ. Hence, µn
∗
⇀ µ.

• ⇐: assume µn
∗
⇀ µ. Let πn be optimal plans for Wp(µn, µ). Extract a converging sub-

sequence, again denoted by (πn)n. By Proposition 4.12 (stability of optimal plans) any
cluster point π of (πn)n is an optimal coupling for Wp(µ, µ). So:

0 = Wp(µ, µ) =

∫
Ω×Ω

dp dπ = lim
n→∞

∫
Ω×Ω

dp dπn = lim
n→∞

Wp(µn, µ)

5.1 Displacement interpolation

An intriguing property of the Wasserstein space (P(Ω),Wp) is that it is a length space if (Ω, d)
is a length space.

Definition 5.7 (Length space). A metric space (Ω, d) is a length space if for every pair (x, y) ∈ Ω
there is a continuous map γx,y ∈ C([0, 1],Ω) with

γx,y(0) = x, γx,y(1) = 1, d
(
γx,y(s), γx,y(t)

)
= d(x, y) · |s− t|

for s, t ∈ [0, 1].
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Theorem 5.8. If (Ω, d) is a length space and the map (x, y) 7→ γx,y that takes start and endpoint
to a shortest path between them is measurable then (P(Ω),Wp) is a length space.

Comment: Sufficient conditions for the measurability of (x, y) 7→ γx,y can be found for instance
in [Villani, 2009, Proposition 7.16].

Proof. • Let (γx,y)(x,y)∈Ω2 be the family of maps for (Ω, d) as given by Definition 5.7. For
fixed s, t ∈ [0, 1] let

Γs : Ω× Ω→ Ω, (x, y) 7→ γx,y(s),

Γs,t : Ω× Ω→ Ω× Ω, (x, y) 7→ (γx,y(s), γx,y(t)).

Comment: Between γ and Γ the roles of ‘index’ and ‘arguments’ of the functions are
exchanged. This is formally helpful to use the push-forward of Γ.

• For given µ, ν ∈ P(Ω) let π be an optimal coupling for Wp(µ, ν). Denote ρs = Γs ]π.

Sketch: Interpretation of ρs.

• Claim: s 7→ ρs is a geodesic in (P(Ω),Wp) between µ and ν. A ‘length space map’ for
(P(Ω),Wp) between µ and ν, γµ,ν : [0, 1] → P(Ω) is given by γµ,ν(s) = ρs. We will now
show this.

• Measurability of Γs: By assumption S : (x, y) 7→ γx,y is measurable. For fixed t ∈ [0, 1] the
map et : C([0, 1],Ω)→ Ω, γ 7→ γ(t) is continuous and thus measurable. We find Γs = es◦S.
Similarly, Γs,t = (Γs,Γt) = (es, et) ◦ S is measurable.

• Claim: Γs,t ]π ∈ Π(ρs, ρt).

proj0 ]Γs,t ]π = (proj0 ◦ Γs,t)]π = Γs ]π = ρs

• Claim: Wp(ρs, ρt) = |s− t| ·Wp(µ, ν).

Wp(ρs, ρt)
p ≤

∫
Ω×Ω

d(x, y)p d(Γs,t ]π)(x, y) =

∫
Ω×Ω

((d ◦ Γs,t)(x, y))p dπ(x, y)

=

∫
Ω×Ω

(d(γx,y(s), γx,y(t)))
p dπ(x, y) = |s− t|p

∫
Ω×Ω

(d(x, y))p dπ(x, y)

Wp(ρs, ρt) ≤ |s− t| ·Wp(µ, ν)

So for 0 ≤ s ≤ t ≤ 1 have

Wp(µ, ρs) ≤ s ·Wp(µ, ν), Wp(ρs, ρt) ≤ (t− s) ·Wp(µ, ν), Wp(ρt, ν) ≤ (1− t) ·Wp(µ, ν)

So

Wp(µ, ρs) +Wp(ρs, ρt) +Wp(ρt, ν) ≤Wp(µ, ν)

and by the triangle inequality

Wp(µ, ρs) +Wp(ρs, ρt) +Wp(ρt, ν) ≥Wp(µ, ν) .

Hence we must have equality and in particular Wp(ρs, ρt) = |s− t| ·Wp(µ, ν).

16



References

L. Ambrosio, N. Fusco, and D. Pallara. Functions of Bounded Variation and Free Discontinuity
Problems. Oxford mathematical monographs. Oxford University Press, 2000.

L. Ambrosio, N. Gigli, and G. Savaré. Gradient Flows in Metric Spaces and in the Space of
Probability Measures. Lectures in Mathematics. Birkhäuser Boston, 2005.

H. H. Bauschke and P. L. Combettes. Convex Analysis and Monotone Operator Theory in Hilbert
Spaces. CMS Books in Mathematics. Springer, 1st edition, 2011.

Y. Brenier. Polar factorization and monotone rearrangement of vector-valued functions. Comm.
Pure Appl. Math., 44(4):375–417, 1991.

A. J. Kurdila and M. Zabarankin. Convex functional analysis, volume 1 of Systems and Control:
Foundations and Applications. Birkhäuser, 2005.

R. T. Rockafellar. Duality and stability in extremum problems involving convex functions. Pacific
J. Math, 21(1):167–187, 1967.

W. Rudin. Real and complex analysis. McGraw-Hill Book Company, 3rd edition, 1986.

F. Santambrogio. Optimal Transport for Applied Mathematicians, volume 87 of Progress in
Nonlinear Differential Equations and Their Applications. Birkhäuser Boston, 2015.

C. Villani. Optimal Transport: Old and New, volume 338 of Grundlehren der mathematischen
Wissenschaften. Springer, 2009.

W. P. Ziemer. Weakly Differentiable Functions, volume 120 of Graduate Texts in Mathematics.
Springer New York, 1989.

17


	Reminders on Measure Theory
	Foundations
	Measures and maps
	Comparison, decomposition
	Duality

	Monge formulation of optimal transport
	Kantorovich formulation of optimal transport
	Kantorovich duality
	More duality
	Dual Kantorovich problem
	Solution to the Monge problem

	Wasserstein spaces
	Displacement interpolation


