Übungen zur Vorlesung "Numerik partieller Differentialgleichungen"

Übungsblatt 7, Abgabe: Do, 6.12.07, 12.00 Uhr, Übungskasten 84

Aufgabe 1: (4 Punkte)

Sei $\Omega = \{||x||_2 < 1/2\}$. Zeigen Sie: $f(x) := \log \log 1/||x||_2$ ist in $H^1(\Omega)$. Hinweis: Benutzen Sie Polarkoordinaten und zeigen Sie, dass die Ableitungen nach r und φ existieren.

Aufgabe 2: (4 Punkte)

Für genau welche k sind die folgenden Funktionen in $H^k(\Omega)$?

- 1. $\Omega = (-1, 1), f_1(x) = \operatorname{sgn}(x)x^2$.
- 2. $\Omega = (-1, 1), f_2(x) = |x|^{1/2}.$
- 3. $\Omega = (-2, 2)^2$, $f_3(x) = \max(0, 1 ||x||^2)$.

Aufgabe 3: (4 Punkte)

Sei $\Omega \subset \mathbb{R}^d$ Lipschitz–Gebiet. Zeigen Sie:

- 1. Seien $f, g \in H^k(\Omega)$. Dann ist $D^{\alpha}(f+g) = D^{\alpha}f + D^{\alpha}g, |\alpha| \leq k$.
- 2. Seien $f\in H^1(\Omega),\,g\in C^\infty(\Omega).$ Dann ist $D^\alpha(fg)=gD^\alpha f+fD^\alpha g$ für $|\alpha|=1.$
- 3. Seien $f,g \in H^1(\Omega)$. Dann ist $D^{\alpha}(fg) = gD^{\alpha}f + fD^{\alpha}g$ für $|\alpha| = 1$.

Aufgabe 4: (4 Punkte)

Sei Ω ein Lipschitzgebiet und zusammenhängend. Sei $f \in H^k(\Omega)$ und $D^{\alpha}f = 0$ für alle α mit $|\alpha| = k$. Zeigen Sie: Dann ist α ein Polynom vom Grad $\leq \alpha - 1$.

Hinweis: Zeigen Sie den Satz zunächst für $f \in C^{\infty}(\Omega)$.