Übungen zur Vorlesung "Numerik partieller Differentialgleichungen"

Übungsblatt 10, Abgabe: Do, 16.1.08, 12.00 Uhr, Übungskasten 84

Aufgabe 1: (4 Punkte)

Sei E ein Dreieck. Eine Quadraturformel $\tilde{I} = \alpha \sum_{k=1}^{n} a_k f(x_k)$ für das Integral $I = \int_E f(x) dx$ heißt von der Klasse \mathcal{P}_k , wenn die Polynome vom Grad $\leq k$ durch die Formel exakt integriert werden. Bestätigen Sie die folgenden Aussagen über Quadraturformeln. Hinweis: Es reicht, wenn Sie die Aussage für das Einheitsdreieck beweisen (alle anderen Dreiecke lassen sich durch affine Abbildungen erzeugen).

- 1. $n=1, a_1=1, \alpha=|E|, x_1$ ist Mittelpunkt von E: Klasse \mathcal{P}_1
- 2. $n=3, a_1=a_2=a_3=1, \alpha=|E|/3, x_k$ ist Seitenmittelpunkt von E: Klasse \mathcal{P}_2
- 3. $n=7, a_1=27, a_2=a_3=a_4=3, a_5=a_6=a_7=8, \alpha=|E|/60, x_1$ ist Mittelpunkt von E, x_2, x_3, x_4 sind Ecken von E, x_5, x_6, x_7 sind Seitenmittelpunkte von E: Klasse \mathcal{P}_3

Aufgabe 2: (4 Punkte)

Lösen Sie $-\Delta u = 1$, u = 0 auf $\partial\Omega$, für $\Omega = (0,1)^2$ und der in der Vorlesung angegebenen Triangulierung mit $2n^2$ Dreiecken. Verwenden Sie dreieckig-Lagrangesche Elemente.

Zeigen Sie: In diesem Spezialfall ist die Finite Elemente–Lösung äquivalent zu diskreten Differenzen. Vergleichen Sie die Konvergenzaussagen.

Aufgabe 3: (4 Punkte)

Lösen Sie Aufgabe 2 mit bilinearen Lagrangeschen viereckigen Elementen und einer Pixel-Diskretisierung.

Aufgabe 4: (4 Punkte)

Machen Sie sich mit der Software FEMLAB vertraut. Aufruf auf den Rechnern der Mathematik:

environ numeric
matlab-class
femlab

Lösen Sie als Beispiel die Poissongleichung $-\Delta u = 1$ auf dem Gebiet $(-1,1)^2 - K_{1/2}(0)$ mit verschiedenen Elementen.

Achtung: Es steht lediglich eine Einzellizenz von FEMLAB zur Verfügung. Sie können im Menüpunkt About feststellen, ob Sie eine Lizenz haben.