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Kapitel 0

Einleitung

Die Numerische Mathematik, oder auch Numerik genannt, beschéftigt sich mit der numerischen
Lésung endlichdimensionaler Probleme, sowie mit der Approximation unendlichdimensionaler Pro-
bleme durch endlichdimensionale. Die Numerik ist somit eine mathematische Schliisseldisziplin zur
Behandlung von Anwendungsproblemen mit Hilfe des Computers.

Der Numerik geht stehts die Modellierung voraus, deren Ziel es ist ein Anwendungsproblem in der
mathematischen Sprache zu formulieren. Dieses Prozedere wird in der Abbildung 1 verdeutlicht.

Anwendungsproblem

Modellierung
i Mathematisches Modell

Mathematische Analysis,
Analyse Algebra, etc.

v

Endlichdimensionale Approximation des
mathematischen Modells

Implementierung Analyse der
i Approximation
v

Konstruktion von numerischen Lésungsverfahren

' v

Implementierung Analyse des
Verfahrens
Stimulationsergebnis Numerik

Interpretation und Anwendung der Ergebnisse

Abbildung 1: Illustration der Vorgehensweise zur Losung eines Anwendungsproblems

Im folgenden wollen wir an einem einfachen Anwendungsbeispiel dieses Vorgehen skizzieren.
Beispiel 0.1 (Berechnung des Wirmetransports in einem Draht)

Schritt 1: Modellierung
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Abbildung 2: Koordinatentranformation zur mathematischen Betrachtung des Warmetransports in
einem Draht.

Wir betrachten den Warmetransport in einem Draht. Nach einer Koordinatentransformationen,
wie sie in Abbildung 2 skizziert ist, konnen wir den Draht eindimensional durch ein Intervall I =
[0, L] reprisentieren. Nach dem Fick’schen Gesetz gilt fiir die Warmeleitung, dass der Warmefluf ¢
proportional zum Gradienten der Temperatur T ist, d.h.

q(z,t) = —00,T(x,t),Vo € I,Vt € [0, Tiax)-

Dabei bezeichnet ¢ > 0 die Warmeleitfahigkeit und ist eine Materialkonstante. Aufferdem gilt fiir
jedes Teilintervall [a, b] € I und jeden Zeitabschnitt [t1,t2] € [0, Tinax):

/ T(z,te)dx —/ T(z,t1)dz :/ q(a,t)dt —/ q(b, t)dt.
[a,b] [a,b] [tl,tg] [tl,tg]

Sind die Temperatur und der Warmeflufs geniigend oft differenzierbar, so folgt mit dem Hauptsatz
der Differential- und Integralrechnung

/ / T (z,t)dxdt = —/ / Orq(x, t)dxdt.
[a,b] J[t1,t2] [a,b] J[t1,t2]

Da dies fiir beliebige a, b, t1,ts gilt, folgt mit dem Hauptsatz der Variationsrechnung
T (z,t) = —02q(x,t) = 0 Oy T (1), V(z,t) € I x [0, Tiax]-

Wir erhalten so als mathematisches Modell fiir die Warmeleitung in einem Draht eine partielle Dif-
ferentialgleichung, d.h. eine Gleichung, die die partiellen Ableitungen einer Funktion miteinander in
Beziehung setzt. Eine mathematische Analyse zeigt, dass diese sogenannte Warmeleitungsgleichung
eine eindeutige Losung T besitzt, falls man beispielsweise die Temperatur zum Zeitpunkt ¢ = 0 und
an den Endpunkten z = 0, L vorgibt. Da die gesuchte Temperaturverteilung 7" eine differenzierbare
Funktion in zwei Verdnderlichen darstellt, handelt es sich hierbei um ein unendlichdimensionales
Problem. Im néchsten Schritt wollen wir mit Hilfe von sogenannten Finite Differenzenverfahren eine
endlichdimensionale Approximation angeben.

Schritt 2: Endlichdimensionale Approximation

Zur Approximation der Warmeleitungsgleichungen fithren wir Zerlegungen T}, := {z;|x; = hi,i =
0,...N 4+ 1} und Ji := {tp|t, = kn,n = 0,..., M} des Ortsintervalls [0, L] und des Zeitintervalls
[0, Timax] €in. Dabei ist h := L/(N + 1) die Ortsschrittweite und k := Tiyax/M die Zeitschrittweite
der jeweiligen Zerlegung.

Die Idee der Finite Differenzen besteht darin, alle Ableitungen in der Warmeleitungsgleichungen
durch Differezenquotienten zu ersetzen. Verwenden wir z.B.

0T (x,ty) =~ (T'(x,ty) — T(x,tpn—1))/k



und
OpeT (i, 1) = (T(2i41,t) — 2T (x4, t) + T(zi_1,1))/h>,

so erhalten wir fiir die Approximation 77" von T'(x;,t,) die Gleichung
(T =T Yk =o(Tfy — 2T + T2 ))/h?, Vi=1,...,N,n=1,.., M.

Dies ist eine lineare Gleichung fiir 7}", die jedoch mit den Linearen Gleichungen des selben Typs fiir
die ebenfalls unbekannten Werte Ti”_1 und 77 |, T7* | gekoppelt ist. Fiir die Anfangs- und Randwerte
verwenden wir die vorgegebenen Werte der Temperatur, d.h.

TP == T(2;,0), Ty :=T(0,t,), Thys:=T(L,ty).

Berechnet man sukzessive zunéchst die Losung zu den Zeitpunkten tq,to, ts, ..., so erhdlt man fiir
jeden dieser Zeitschritte t,, ein lineares Gleichungssystem mit N Gleichungen fiir die Unbekannten
T, i =1,..,N. Wir haben das unendlichdimensionale Problem also durch das sukzessive Losen
von linearen Gleichungssystemen approximiert. Verfahren zur Approximation von Differentialglei-
chungen werden in Kapitel 6 vorgestellt und in der Vorlesung Hdéhere Numerische Mathematik im

Wintersemester detailliert analysiert.
Schritt 3: Numerische Lésung des endlichdimensionalen Problems

Im letzten Losungsschritt geht es darum die linearen Gleichungssysteme numerisch zu l6sen. Hierzu
kann z.B. die Gaufelimination verwendet werden. Falls jedoch die Dimension N des Systems sehr
grofs wird, sind andere Verfahren besser geeignet. Im zweiten Kapitel der Vorlesung wenden wir uns
daher der numerischen Lésung von linearen Gleichungssystemen zu.

Wire in unserem Beispiel der Warmeleitfahigkeitskoeffizient temperaturabhéngig, d.h. o = 6(T'(x,t)),
mit einer nichtlinearen Funktion &, so wére das resultierende Gleichungssystem nichtlinear. Solchen
Problemen ist das Kapitel 3 gewidmet.

Wihlt man zur Approximation der Differentialgleichungen andere Verfahren, wie z.B. Finite Ele-
mente Verfahren, so ist auch die numerische Approximation von Funktionen durch Polynome und
die numerische Berechnung von Integralen Bestandteil der Verfahren. Diese Themen werden in der
Vorlesung Hohere Numerische Mathematik im Wintersemester detailliert analysiert.

Das Beispiel der Warmeleitung in einem Draht verdeutlicht die Notwendigkeit von numerischen Me-
thoden, wie z.B. die Losung linearer, oder nichtlinearer Gleichungssysteme, oder die Approximation
von Differentialgleichungen. Bevor wir uns diesen Methoden zuwenden, werden im néchsten Kapitel
jedoch einige Grundlagen dargestellt. Hierbei handelt es sich zum einen um eine Zusammenstellung
wichtiger Begriffe auf der Analysis und Linearen Algebra und zum anderen wird auf die numerische
Approximation reeller Zahlen eingegangen und daraus resultierende Fehlerquellen diskutiert.
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Kapitel 1

Grundlagen

Im folgenden Abschnitt werden wir Definitionen angeben, die wir in den weiteren Kapiteln bendti-
gen.

1.1 Normierte Raume

Seien K = R oder K = C ein Korper und V ein Vektorraum iiber K.

Definition 1.1 (Norm)
FEine Abbildung ||-|| : V' — R heifit Norm, falls gilt

(i) llol > 0 vv € V\{0},
(i) ||| = |A Jv]] YA eK, YvoeV,

(111) |lv+w| < ||v]| + ||w|] Vv,w e V.

Beispiel 1.2
Sei V=R" v=(v1,...,0,) € R". Dann ist

n
[0l = masciign foil, el = 3 foil,
1 l_l 1
n 9 2 n » D
anf(zlrvi\) - ol = (;}m) (1<p< o).
1= 1=

Beispiel 1.3
Sei V = C%I),I = [a,b] C R. Dann ist
Iollog == sup{Jv()] | = € I},

b P
[vll,, == (flv(w)lpdw> :

Definition 1.4 (Normierter Raum)

Ein Vektorraum V' zusammen mit einer Norm ||-||, geschrieben (V. ||-||), heifit normierter
Raum.
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Definition 1.5 (Banachraum)
Eine Folge (uy), .y CV konvergiert gegen u € V. <=
Ve>03aNVn>N:|u,—ul <e.

Eine Folge (uy), .y C V heifft Cauchy Folge <=
Ve>03aINVm,l>N:|u—unl<e.

Ein normierter Raum (V,||-||) heifit vollstindig, falls alle Cauchy-Folgen in V bzgl. ||-|| in V
konvergieren. Ein vollstindiger normierte Raum heifit Banachraum.

Beispiel 1.6
(R™,||-||) ist ein Banachraum fiir alle ||-||,
(C°(1),]]"||) ist ein Banachraum, (CO(I), H||p> ist dagegen nicht vollsténdig

Satz 1.7

Sei dimV < oo, |||, und |||, zwei Normen. Dann existieren m,M € R : m|jv||, < v, <
M ||, Vv eV,dh. ||, und |||, sind &quivalente Normen.

Definition 1.8 (Skalarprodukt)
Fine Abbildung (-,-) : V. x V. — C heifst Skalarprodukt, falls gilt

(i) Vv e V\{0}: (v,v) >0,
(ii) Y u,v €V (u,v) = (v, u),

(11i) ¥ u,v,w € V¥V o € K :
(ou,v) = a(u,v),
(u+v,w) = (u,w) + (v,w).

Folgerung: (u,av) = @ (u,v), (u,v+w) = (u,v) + (u, w).

Satz 1.9 (Induzierte Norm)
Sei (-, -) ein Skalarprodukt, dann wird durch [Jv|| := y/(v,v) eine Norm induziert.

Definition 1.10 (Hilbertraum)
Ein Vektorraum mit Skalarprodukt heifft Prahilbertraum , falls V' mat der induzierten
Norm nicht vollstandig ist, sonst bezeichnet V einen Hilbertraum.

Beispiel 1.11 (Cauchy-Schwarz-Ungleichung)
Vu,ve Vi [(u,v)| < +/(u,u) (v,v), Gleichheit <= w,v linear abhéngig.

Beispiel 1.12



1.2. OPERATOREN

n

Sei V. =R", (u,v) := > w;v; ist ein Skalarprodukt und induziert die euklidische Norm

=1
1
n 2
2
[vlly := (Z |vi ) :
i=1

1.2 Operatoren

Definition 1.13

U,V normierte Vektorraume, D C U. Wir bezeichnen eine Abbildung T : D — V als
Operator. Daber gilt:

(i) T heifit stetig inu € D <
Ve>030>0VveD:|lu—v|y;<éd = ||T(u)—TW)|, <e.

(ii) T heifit stetig in D <=
T st stetig fiir alle w € D.

(111) T heifst Lipschitz-stetig <=
es existiert ein L > 0V u,v € D: ||[T(u) = T()|, <L |lu—vl,.

Bemerkung 1.14
Es ist leicht zu sehen, dass aus (iii) (ii) folgt und aus (ii) folgt (i).

Definition 1.15
T heifst linearer Operator (oder einfach linear), falls V u,v € V,a € K:

(i) T(u+v) = T(w) + T(0),
(ii) T(aw) = aT(v).

Bemerkung 1.16
Ist T linear, so schreibt man haufig Tu statt T'(u).

Beispiel 1.17

V=W=R"AecR"™: Tu= Au ist ein linearer Operator.
b

V =C%I),W =R: Tu:= [u(x)dz ist ein linearer Operator.

a

Definition 1.18

T :U — V sei ein Operator. T heifit beschrankt, falls es ein C' > 0 gibt, so dass
VueU: Ty, <Clully

Satz 1.19
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Fiir einen linearen Operator T': U — V sind dquivalent:
(i) T ist beschrinkt,

(ii) T ist Lipschitz-stetig,

(iii) T ist stetig in 0.

Beweis: Siehe Ubungsblatt 1 O
Bemerkung 1.20
(i) dimU < oo,dim V < oo, dann sind alle linearen Operatoren beschrankt und damit stetig.

(ii) Auf unendlich-dimensionalen Vektorrdumen existieren auch unbeschriankte lineare Operato-
ren.

(iii) Die Aussage von Satz 1.19 (Seite 7) ist nur richtig fiir lineare Operatoren.
Bsp: T:R — R, z — 27 : es existiert keine Konstante C' mit |2?| < C'|z| V z € R.

Definition 1.21
Mit B (U, V) bezeichnen wir den Raum der beschrinkten linearen Operatoren. B (U, V') ist
ein Vektorraum. Durch

[Tl
Ty = sup ——F
ueU\{0} HuHU

wird eine Norm auf B(U,V') definiert. Diese wird als die durch ||-||, .||, induzierte
Operatornorm bezeichnet.

Folgerung 1.22

(i) Ty = sup ||Tu|ly, (wegen Linearitét von T).
’ €U

u
[lullg=1

(ii) [|Tully <17y llully und || Ty, ist die kleinste Konstante mit dieser Eigenschaft fiir alle
u € U (folgt aus der Definition).

(iii) ||id||;;;; = 1, dabei ist id € B (U,U) mit id : u — u.

Beispiel 1.23
U,V =R", dann entspricht B (U, V) dem Raum der n x n Matrizen. Daher wird die Operatornorm
auch héufig Matrixnorm genannt.

Satz 1.24
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Die induzierte (Matrix-) Operatornorm ist submultiplikativ, d.h. ||[A o B < ||A] - || B||

Beweis: (gilt nur fiir die induzierte Matrixnorm)

1.2271 1.2271
I(40 Bz = IAB@)I| < [[All|Bz] < [AlIB] .
Sei z£0 = 1482 < 4 B)

&3

a a

Bemerkung 1.25
Die induzierten Operatornormen ergeben nicht alle Normen auf B (U, V). Sei etwa A € R™*" A =

(aij), dann wird durch [|Afl = | <SiujP<n la;j| eine Norm definiert, die nicht induziert ist.

Beispiel 1.26
Die durch |-||; und |||, induzierte Operatornormen werden in den Ubungen behandelt.

Sei A: (R™[|-ly) — (R, [|-l), dann gilt [|Ally5 = \/Amax(A*A), wobei Amax(B) fiir B € R"™*"
den betragsmékig groften Eigenwert (EW) bezeichnet. Sei A = (a;;), dann ist A* = A" Diese
Norm wird als Spektralnorm bezeichnet. Ist A € R™*", dann ist Al = AT

Beweis: Bemerkungen: (A*A)" = A*A — A*A ist hermitesch = alle Eigenwerte sind

reell.
Es gilt z* (AA*)x = (Ax)" Az = (Ax, Az) > 0. Also ist A*A positiv definitund somit alle EW
positiv.

Da A*A hermitesch ist, existiert ein Matrix U € C™*" mit U*U = id (d.h. U ist unitér) und

Al 0
US(A* AU = diag(Aq, . .., An) = — D (%)
0 An
Sei u; die i-te Spalte von U, d.h. U = (u1,...,u,) und [ju;|, =1 Vi e {1,...,n}, dann ist

A*AU =UD,

da U~! = U* und somit A*Au; = \ju;. Also sind die Vektoren u; Eigenvektoren (EV) von A*A zu
den Eigenwerten \;. Aus (x) folgt dann weiter u!A*Au; = ;.
Sei z € C" mit ||z||, = 1. Setze y = U*z, so folgt wegen x = Uy:
1Az2 = (Az, Az) = (2, A*Az) € (2, UDU*2)
= (z,UDy) = (U*z, Dy) = (y, Dy)
n Ai>0 n
Z; yz)\zyz > 112%}% )\2 Z; Y;

da [ly|l, = [|U*z| = ||z| = 1 (U* unitér).

Also gilt ||Az||y < v/ Amax(A*A) fiir alle 2 mit ||z||, = 1 und somit folgt

[A4ll22 < v/ Amax(A*A).

Sei nun A\; = Amax(A*A) der grofte Eigenwert und u; der zugehérige Eigenvektor mit [ju;|l, = 1.
Da. | Ally, = sup|p,_y | Azlly folgt [[All, > [|Aug]l, und somit
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AN, = [lAwll3 = (Aus, Aug) = (u;, A* Aus)
= (s, M) = N (g, wq) = N i3 = i
Also folgt die Behauptung.

1.3 Banachscher Fixpunktsatz

Definition 1.27 (Kontraktion)

Sei D C X, X normierter Verktorraum, Y normierter Vektorraum. Dann heifit ein Operator
T:D — Y eime Kontraktion, falls T Lipschitz-stetig mit Lipschitz-Konstante 0 < L < 1
ist, d.h. YV u,v € D2 ||T(u) —T()|y < Liju—0v]y.

Definition 1.28 (Fixpunkt)
Sei T : D — D ein Operator, der D auf sich selbst abbildet. Dann heifst uw € D Fixpunkt
von T in D, falls T'(u) = u.

Satz 1.29 (Banachscher Fixpunktsatz)
Sei X ein Banachraum, D C X abgeschlossen, T': D — D eine Kontraktion. Dann gilt:
(i) T hat genau einen Fixpunkt w € D.

(ii) Sei u, € D beliebig und ugyq :=T'(ug), k=0,1,... = u — u.
(iil) ||@ — ug|] < L|ju — ug—1|| (k> 1), d.h. der Fehler nimmt monoton ab.
(iv) ||a —ug| < % | T (up) —uo|| (k>1). (a-priori Abschéitzung)

(v) 1@ —ug| < Z5 ||k — up—1]| (k>1). (a-posteriori Abschétzung)

Beweis: zu a): Wir zeigen zunéchst, dass T' hochstens einen Fixpunkt hat. Dazu nehmen wir
zunéchst an, dass T zwei Fixpunkte u, v hatte. Dann folgt aus T4 = w und Tv = v:

la =2l = ||Tu - Tol| < Lju — ol|.

Da nach Voraussetzung L < 1 ist, folgt ||z — v|| = 0 und somit @ = v.
Um die Existenz eines Fixpunktes zu beweisen, reicht es Teil b) zu zeigen.

zu b): Die Folge (ug)ren sei fiir beliebiges ug € D definiert durch die Fixpunktiteration
Uk4+1 = Tuk.
Wir zeigen, dass (ug)gen Cauchy-Folge ist. Die Konvergenz gegen ein 4 folgt dann aus der Vollstéan-
digkeit von X. Mit vollstdndiger Induktion zeigen wir zunéchts, dass fiir k£ > 1 gilt
k1 — ugl] < L¥|T(uo) — uol|- (%)

Induktionsanfang (k = 1):
Es ist ||uy — uol| = ||Tuo — uo|| = L°||Tuo — uol|.
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Induktionsschritt (k — k + 1):

g2 — gl [T g1 — Tugl|

Ll|ugs1 — ul|

LLM||IT (ug) — uol|

<

Ind. Vor. (%)
<
= L |T (uo) — uol|-

Sei nun m < n so folgt hieraus

n—1
[|tn — Um]| = I Z (Wpr1 — ug)||

k=m

n—1
< 3 [l — )l

k=m

n—1
< S LMIT (o) = uol]

k=m

n—1—-m

< L™||T(uo) —uol| ) L*

k=0
geom. Reihe  pm

< T (o) — woll

Da L < 1 ist, konvergiert die rechte Seite gegen Null fiir m — oo und wir haben somit gezeigt, dass
(uk)gen Cauchy-Folge ist. Dies beweist b) und somit auch a).

Die Teile c)-d) werden in den Ubungen behandelt. .

Bemerkung 1.30
Satz 1.29 (iii) (Seite 10) gibt eine a-priori Schranke, die man nutzen kann, um einen Index k¢ zu
bestimmen mit |7 — ug, || < TOL fiir eine gegebene Toleranz TOL > 0:

Sei TOL gegeben, O.B.d.A TOL < 1

L5 1T (ug) — uol| < TOL

uk, —ll <
— LM <(1-L)=20L
—

1T (uo)—uo]|
kolog L <log(1 — L) +1log TOL — log (||T'(uo) — uol|)
ko > log(1—L)+log TOL—log(||T (uo)—uol|)

log L ’

da 0 < L < 1 und somit log L < 0. Meistens ist dies eine Uberschiitzung des Aufwands.

Satz 1.29 (iv) (Seite 10) kann als Abbruchkriterium wéhrend der Iteration benutzt werden, d.h.
man bricht ab, falls 127 |lug — u_1| < TOL ist.

1.4 Taylorreihe
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Definition 1.31
Sei C°(I),I = (a.b) der Raum der stetigen Funktionen auf I . Mit C™(I) :=

{f L — R £, f" ..., f™ ex. und sind stetig} bezeichnen wir den Raum der m-
mal stetig differenzierbaren Funktionen.

Kurzschreibweise: C™(a,b) statt C™ ((a,b)). Mit der Definition C=(I) := () C™(I) folgt
meN
dann

ce(I)c...cC™I)c...cC().

Satz 1.32 (Taylorreihe mit Lagrange Restglied)
Seien f € C"™*1(a,b) und g € (a,b) fest. Dann existiert fiir jedes = € (a,b) ein & zwischen z¢ und
T mit

NE
| =

f@) = P @o) @ = 0)" + Ra),

i
=)

mit Ry () = gy /() (@ — o)™

Satz 1.33 (Taylorreihe mit Integralrestterm)
Seien f € C™*1(a,b), zo € (a,b) fest. Dann gilt fiir jedes = € (a, b)

fz) =

NE
= -

.f(k)(xo)(x — 20)" + Ry (),

>
Il
o

x
mit R, =L [ FimE( —t)"dt.
Zo

Beweis: Fiir beide Satze siehe Analysis I.

Folgerung 1.34 (H&iufig verwendete Form)
Seien f € C™(xg — ho,z0 + ho), To € R,hg > 0. Sei |h| < hg, dann existiert eine Abbildung
Wit (—=ho, ho) — R mit hlimme(h) = 0, so dass gilt

f(@o+h) = Z

k=1

0) + Wi (R)A™.

Beweis:  Wende Satz 1.32 (Seite 12) an mit © = xg + h, d.h. es existiert ein £ mit |£| < |h| und

f(zo+h) — i )(T“)hk’ — [0t pm

m!

(10""5)} m

m!

(m) (. . (m) (2 ; (m)
_ / m(!lo)hm o f m(!f())hm + f

_ f(m)(l’o) 4 wm(h)hm

T om!l
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mit Wm(h) f(m) (zo+E&)— f(m)(lo)

m!

i . . (m) T _r(m) T
Da [€] < |h| und f0™) stetig, folgt hhmo LA [)+2! () —

Definition 1.35
Die Funktion f € Ct(xg — ho,xo + ho) ist in erster Naherung gleich f(xg) + f'(xo)h in
einer Umgebung um xqy, d.h. es existiert ein @ : (—hg,hg) — R mit |“’|(‘)‘ — 0 und

f(xo + h) = f(xo) + f'(xo)h +wW(h).

Notation: f(zo+ h) = f(zo) + f'(x0)h.

Definition 1.36 (Landau Symbole)
Seien g, h : R — R. Dann schreiben wir:

(i) g(t) = O(h(t)) firt — 0 <= es eine Konstante C' > 0 und ein § > 0 gibt, so
dass |g(t)] < C'|h(t)] ¥V |t] <.
(i1) g(t) = o(h (‘t’)

l9(@)] < e (Jt

) firt — 0 <= eseind >0 undeinc:(0,0) — R gibt, so dass
JIh(t)| V |t] <& und c(t) — O firt — 0.

Beispiel: f € CY(R), dann ist f(z) — (f(z0) + f'(z0)(x — 20)) = o (] — x0|) wegen Folgerung 1.34
(Seite 12) mit h = — o und m = 1.

Ist f € C%(R), dann ist f(z) — (f(xo) + f'(w0)(z — x0)) = O (|x - x0|2> wegen Satz 1.32 (Seite
12), da f” beschrankt in einer Umgebung von zg, d.h. |f”(£)| < C.

1.5 Approximationsfehler und Fehleranalyse

Problem: Ein Stahlseil der Liange L = 1 sei an seinen Endpunkten so befestigt, dass es (fast) straff
gespannt erscheint. Nun soll die Ausleknung des Seils berechnet werden, wenn sich in der Mitte des
Seils ein Seiltdnzer befindet.

1. Modellfehler: Wir gehen davon aus, dass sich das Seil als Graph einer Funktion y : (0,1) —
R beschreiben lédsst, welche die sogenannte potentielle Gesamtenergie:

1 , 1
Y ST

l\D\Q

minimiert.

Dabei ist ¢ eine Materialkonstante und f die Belastungsdichte.

2. Zur Vereinfachung (Abb 1.1) nehmen wir an, dass |y/(t)| < 1. Dann konnen wir das Funktional

FE vereinfachen zu:
B(y) = /y th—/f

M\Q
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A
y(®)

Abbildung 1.1: Modellfehler

Dabei sind eine Reihe von Effekten vernachléssigt worden. Dies fiihrt zu Modellfehlern, die
jedoch in dieser Vorlesung nicht weiter betrachtet werden. Wir nehmen an, dass die Minimie-
rung von E das zu l6ssende Problem sei: Als notwendige und hinreichende Bedingung fiir die
Minimierung von E erhilt man durch Variation

d —
<dE (y + ap) [k=0 = 0 V “zul”assige* go)
a

die Differentialgleichung
—cy’(t) = f(t), Vt € (0,1)
mit Randwerten y(0) = y(1) = 0.

. Datenfehler: c ist eine Materialkonstante, die vom Material des Seils abhéngt (aber auch

von Temperatur und Luftfeuchtigkeit). Der Wert fiir ¢ kann nur durch Experimente bestimmt
werden, und das ist zwangslaufig fehlerbehaftet. Daher muss sichergestellt werden, dass sowohl
y als auch das numerische Verfahren nicht sensitiv vom konkreten Wert fiir ¢ abhéngen.

Beispiel: Betrachten wir die Differentialgleichung /() = (c — u(t))?, u(0) =1 ¢ > 0, so folgt
durch Substitution

c¢>1: v >0, dh. v monoton wachsend und lim wu(t) = c.

t — o0

c<1: u’>0,tlimt u(t) = oo fiir tg = 1+ > 0.
— 1o

Durch Messfehler oder auch Approximationsfehler kann leicht ¢ > 1 oder ¢ < 1 eintreten, und
man erhélt qualitativ unterschiedliche Ergebnisse.
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0 =

Abbildung 1.2: Auswirkung des Datenfehlers.

177w

to

Abbildung 1.3: Auswirkung des Datenfehlers.

4. Diskretisierungsfehler: Zuriick zu unserem Seiltdnzerproblem. In der Numerik miissen wir
Ableitungen durch etwas Berechenbares ersetzen, auch konnen wir y(¢) nicht fiir alle ¢ bestim-

men. Sei N € N,x; :=4h,i=0,...,N+1mit h = ﬁ, so approximieren wir auch hier

' @0) &y (y(isn) — 20(z0) + y(in)

Setze: f; = f(x;) und sei y; ~ y(x;), dann ist eine Finite-Diffenrenzen Approximation von
—cy"(t) = f(t), t € (0,1), y(0) = y(1) = 0 gegeben durch
c .
_ﬁ(yi—i—l =2y +yi-1) =fi, i=1,...,N, yo=ynt1=0.

Die Differenz |y; —y(z;)| ist der Diskretisierungsfehler im Punkt z;. Es muss untersucht werden,

wie sich dieser Fehler verhélt wenn die Gitterweite h gegen 0 geht.

5. Losungsfehler /Abbruchfehler:

2 -1 0
Setze A = Lo € RVN yund F = (f;)), € RY, so ergibt sich aus der
L
0 -1 2

Finite Differenzen Diskretisierung das diskretes Problem: Finde y;, € R mit
c

h2Ayh =F.
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Zur Loésung verwenden wir die Identitét

h2
Dy, = Dy, — Ayp, + —F, mit D = diag(2) =
c

0 2
Sei 49 ein beliebiger Startwert (z.B: y) = 0). Zur Berechnung von y;, betrachten wir folgende

Tterationsvorschrift:

h2
Dyy"*! == Dyj — Ayp + —F
C

bzw.
1 n -1 n h2
yp =y - D Ay +—F )
Es muss gezeigt werden, dass y,"™ — yp, fiir n — oo.
In der Praxis konnen wir nur bis zu einem endlichen Wert ng € N rechnen. Das heifst die
Losung eines Problems wird y;° sein. Der Abbruchfehler in der Norm |[|-|| ist ||y}:° — |-

6. Rundungsfehler: Auf einem Rechner kann nur eine endliche Teilmenge von R bearbeitet
werden. Daher wird nicht 4, berechnet, sondern die Approximation in dieser endlichen Menge.

Definition 1.37 (Gleitkommazahl)
FEine Gleitkommazahl zur Basis b € N ist eine Zahl a € R der Form

a =+ [mlbfl 4+ me*T} bi[5s—1b3*1+~-+@0b0]. <*>

Man schreibt £a = 0,my ... mb*F mit E = [e,_1b571 + ... + eb°] und
m; € {0,...,b—1},FE € N,r, s € N abhingig von der Rechnerarchitektur.

Bemerkung;:

1. Diese Darstellung ermoglicht die gleichzeitige Speicherung sehr unterschiedlich grofser Zahlen,
wie etwa die Lichtgeschwindigkeit ¢ = 0.29998 - 109% oder Elektronenruhemasse mg = 0.911 -
10730 kg.

2. Als Normierung nimmt man fiir a # 0 an, dass m; # 0 ist.

3. Fiir Computer ist b = 2 {iblich, fiir Menschen b = 10.

Definition 1.38 (Maschinenzahlen)
Zu geg. (b,r,s) sei A= A(b,r,s) die Menge der a € R mit einer Darstellung (x).

A(b,r,s) ist endlich mit groftem und kleinstem positiven Element amax = (1 —b7") - 0" 71, amin =
b,

Zur Speicherung einer Zahl a € D = [—amax;, —Amin] U [@min, @max] Wird eine Rundungsfunktion
rd: D — A mit rd(a) = mi;ll |a — a| definiert.
ac
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rd(a) wird gespeichert als:?!

’:l: ‘ mi ‘ ‘ my ‘ + ‘ e ‘ ‘ €s_1 ‘ rd(a) = 0,mq,...,m,,b*F mit E als Exponent.
————

Mantisse M

Die heutigen PC benutzen 52 Bits fiir die Mantisse und 11 Bits fiir den Exponent; die + werden
mit 1 (negativ) und 0 (positiv) dargestellt.

Fiir a € (—amin, @min) wird in der Regel rd(a) = 0 gesetzt (“underflow”).

Fir |a| > amax wird von “overflow” geredet. Viele Compiler setzen a = NaN (not a number) und
die Rechnung muss abgebrochen werden.

Satz 1.39 (Rundungsfehler)
Der absolute Rundungsfehler, der durch Rundung verursacht wird, kann abgeschétzt werden durch

la — rd(a)| < %b”" b

wobei E der Exponent von a ist (in der () Darstellung). Fiir den relativen Rundungsfehler gilt fiir

a#0
|rd(a) — al < 1

b7T+1

N\

|al

Die Zahl eps := $b~"*! heift Maschinengenauigkeit.

Beweis: rd(a) weicht maximal eine halbe Einheit in der letzten Mantissenstelle von a ab.
Also |a — rd(a)| < 2b77bE.

Aufgrund der Normalisierung my # 0 folgt |a| > b~1b" und weiter

|rd(a) — al - o7rbP
|a| - b1

1
_ 1yl
=Sb

rd(a)—a

Setzt man e := , so folgt |e] < eps und rd(a) =ca + a = a(l + ).

Definition 1.40 (Maschinenoperation)
Die Grundoperation x € {+, —, X, /} wird ersetzt durch ®. In der Regel gilt:

a®b=rdlaxb)=(axb)(l+¢)

mit |e| < eps.

Bemerkung: Die Verkniipfungen & erfiillen nicht das Assoziativ- bzw. Distributivgesetz.

Beispiel 1.41
1

Berechne das Integral Ij, := [ mx—;dx.
0

!Jedes Kistchen entspricht einem Bit
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(A) Es gilt
Ip =1n(6) — In(5)

und

I+ 51 1=~ (k>1), da

1 1
k k—1
T T -1 1
5 == k_ld = —.
/a;+5+ z+5 /m Tk
0 0

Bei einer Berechnung mit nur 3 Dezimalstellen (r = 3,b = 10) ergibt sich:

=

I, = 0.182-10°

I, = 0.900-10"!
I, = 0.500-107!
I; = 0.833-107!
I, = —0.166-10°

Dabei bezeichnet Ij, den berechneten Wert unter Beriicksichtigung der Rundungsfehler. Die
Berechnung ist fehlerhaft. Offensichtlich sind die I monoton fallend, da I \, 0 (k — o0),
aber es gibt widerspriichliche Ergebnisse (sieche I3). Auf einem Standard PC ergab: I =
—0.158 - 107! und I39 = 8.960 - 101°.

Dies ist ein Beispiel fiir Fehlerfortpflanzung, da der Fehler in I, _; mit 5 multipliziert wird,
um I zu berechnen.
(B) Berechnet man die Werte I}, exakt, so ergibt sich bei einer Rundung auf drei Dezimalstellen

Iy = Iy und eine Riickwéirtsiteration I,_; = % (% — Ik) ergibt:

I, = 0343-107!

Is = 0.431-107!
I, = 0500-107!
I, = 0.884-1071

I, = 0.182-10°

Hier tritt Fehlerdampfung auf.

Beispiel 1.42
Zu losen ist das LGS

1.2969 0.8648 z1 \ _ [ 0.86419999 _.p
0.2161 0.1441 xe )\ 0.14400001 )

0.9911 )

. Lo (m
Die exakte Losung ist < o > - < —0.4870

Durch Messfehler oder auch Rundung erhalten wir eine rechte Seite

5 ( 0.8642
~\ 0.1440
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Dann ist die Losung < ;1 > = < ; ) , d.h. wir erhalten ca. 100% Abweichung.
5 _

Dies bedeutet, dass kleine Anderungen der Eingabedaten zu groken Anderungen der Losungen fiih-
ren konnen. In diesem Kontext fithren wir den Begriff der Kondition eines Problems ein.

Definition

FEine numerische Aufgabe (z.B. effizientes Lisen eines LGS oder Integrals) heifft gut kon-
ditioniert, falls kleine Anderungen der Eingabedaten zu kleinen Anderungen der Lisung
fiihren; sonst heifit das Problem schlecht konditioniert.

Prézisieren wir: Was ist eine numerische Aufgabe? Was heifst klein?

Die Matrix
A 1.2969 0.8648
“\ 0.2161 0.1441

sollte schlecht konditioniert sein.
Im folgenden 2 Ansétze:

1. Fir einfache Probleme.

2. Fiir etwas komplexere Probleme.

Definition 1.43

Set f: U — R" mit U C R™ und sei xg € U wvorgegeben. Dann versteht man un-
ter der Aufgabe (f,xo) die effektive Berechnung von f an der Stelle xy. Dabei sind xq die
Eingabedaten.

Beispiel: Az =b, (f,b) mit f(b) = A71b

Satz 1.44

Sei gy = (x1,...,%m) und 2o + Ay € U eine Storung der Eingabedaten mit ||Az| < 1. Falls
f:U — R (dh n = 1) cinmal stetig differenzierbar, so ist der Ergebnisfehler Af(zg) =
f(xo) — f(xo + Az) in erster Nahrung gleich

" of
Za— x0)Az; =V f(xg)Az.

Fiir den relativen Fehler gilt in erster Nahrung

:i i\ AT
B 81‘] f(xo)) z;

Jj=1

Definition 1.45 (Konditionszahlen I)

0 z;
Wir nennen den Faktor k; a:f (x0) ien
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Beweis: (Beweis von Satz 1.44)

Wie in der Folgerung 1.34 (Seite 12) kann man hier den Satz von Taylor anwenden:
f(zo + Az) = f(z0) + V f(20)As +w (|Az]])

Inlt w LATH = o(||Az|).. = . Behauptung fiir den absgoluten Fehler.
ung: k; beschreibt, wie der relative Fehler in den Eingabedaten’ x; verstiarkt bzw. abge-

schwacht wird.

Definition 1.46
Wir nennen das Problem (f,z,) gut konditioniert, falls alle k; (j = 1,...,m) klein sind,
sonst schlecht konditioniert.

Beispiel 1.47 (Arithmetische Operationen)

. P
(1) f(x1,22) = 1170, K1 = Tgfl($1a$2)f(szx2) =20 =

Analog fiir k9 ergibt sich ebenfalls 1 = Multiplikation ist gut konditioniert.
(ii) Division ist gut konditioniert.

(iii) Addition f(.’L‘l, xg) =1+ x9:

X5 X5
kj=1—~1—=—2_,
X1 + T2 1 + X2

k; wird beliebig grofs, wenn z122 < 0 und 21 und x2 betragsméfig gleich grof sind. Das heifst,
in diesem Fall ist die Addition schlecht konditioniert, ansonsten ist sie gut konditioniert.

(iv) Subtraktion ist schlecht konditioniert, falls 129 > 0 und 1 und z9 betragsméifig gleich grofs
sind.

Beispiel: (n = 3)z = 0.9995 y = 0.9984 rd(z) = 0.1-10' rd(y) = 0.998 - 10° Dann gilt
fir ® = —
r®y=rdl—0.998) —rd(0.2-107%) = 0.2- 1072

Der absolute Fehler betriagt x ® y — (z — y) = 0.0001

Der relative Fehler betragt x@z(/i(y)) = 0.82

Das Problem wird als Ausloschung bezeichnet.

Bei komplexeren Problemen (etwa n > 1) betrachten wir einen anderen Ansatz:
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Definition 1.48
Das Problem (f,xo) ist wohlgestellt in

Bs(xo) :={z €U | ||z — x| <}
falls es eine Konstante Ly,s > 0 gibt, mit
1f (@) = f(zo)ll < Las [z — w0l (%)
fiir alle x € Bs(xg). Gibt es keine solche Konstante, so heifit das Problem schlecht gestellt.

Sei im folgenden Lays(9) die kleinste Zahl mit der Eigenschaft ().
Analog sei L. (0) die kleinste Zahl mit

1) = Sl
e

[l = ol

2o

Definition 1.49 (Konditionszahlen IT)
Wir definieren K, := %1{% Laps(9) die absolute Konditionszahl und K, = (151{1(1) Lei(0)

die relative Konditionszahl.

Bemerkung: Falls f differenzierbar, so gilt

[E

1f (o)l

Beachte: f/(x() ist eine Matrix und |[|f'(zo)| eine Matrixnorm. K, hdngt von der Wahl der
Normen ab.

Krel = Hf/(xO)H

Beispiel 1.50 (Konditionierung eines LGS)

Zu lésen ist Ax = b, d.h. f(b) = A71b und f'(x) = A~L.

Damit folgt Kgps = HA_1||; und hieraus mit Ax = b und der Submultiplikativitdt der zugeordneten
Norm:

- dl ST [ o o R -1
Ky = 4] 2Ly 4 < — |47 - 1]
Wir definieren entsprechend die Kondition der Matrix A durch
cond(A) := HA_IH || A4]| -
Beachte, dass ein x € R™ existiert mit ||Az|| = [|A||||z||, d.-h. cond(A) ist eine gute Abschétzung

fiir die Konditionierung vom Problem (f,b)

Mit A wie in Beispil 1.42 gilt: cond(A) = HA_IH | All = 10°. Das Problem ist also schlechte kondi-
tioniert.
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Kapitel 2

Lineare Gleichungssysteme

Wir werden in diesem Kapitel Probleme der Form
Ax=1b
betrachten, wobei A € R™*"™ und z,b € R™. Es gibt im Wesentlichen 2 Klassen von Verfahren

1. Direkte Verfahren
2. Iterative Verfahren

Aus der Schule (und den Lineare Algebra-Vorlesungen) ist uns ein direkte Verfahren bekannt, das
Gaufssche Eliminationsverfahren. Fiir kleine Gleichungssysteme eignet sich dieses Verfahren, jedoch
kann das Verfahren fiir n >> 1000 sehr ineffizient werden, da das Verfahren einen Rechenaufwand
der Ordnung n3 hat. Aus diesem Grund werden wir andere Verfahren kennenlernen, mit denen man
schneller ans Ziel kommen kann.

Wir werden Probleme folgender Art behandeln:

(A) Geg: A R™™ beR"

Ges: x € R" mit Az = b (falls eine Losung existiert).

(B) Geg: A€ R"™ ™ by,...,by € R"
Ges: x; € R™ mit Ax; =b; (i =1,...,1) (falls Losungen existieren).

(C) Geg: A € R™™

Ges: A~ (falls die Inverse existiert).

Es sind dquivalent
(i) zeR": Az =0b.
(i) Ar=0 <= z=0.

(iv) 0 ist kein Eigenwert von A.

)
)
(iii) det(A) # 0.
)
)

(v) A ist reguliir, d.h. 3 B € R™" mit AB = BA = E,,. Dabei ist B = A~! und 2 = A~1b ist
die eindeutige Losung von Az = b.

23
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Alle diese Probleme sind dquivalent, aber es existieren Verfahren, die besonders geeignet fiir eines
dieser Probleme sind.

Verfahren

1. Direkte Verfahren liefern die exakte Losung x nach endlich vielen Schritten (bis auf Run-
dungsfehler). Beispiele dafiir sind der Gaufalgorithmus mit Aufwand O(n3) und die Cramer-
sche Regel mit Aufwand O(n!). Der minimale theoretische Aufwand liegt bei O(n?), aber es
existiert kein direktes Verfahren mit dieser Komplexitat.

Der Vorteil direkter Verfahren ist, dass A~! in der Regel mitbestimmt wird und somit der
Aufwand fir (A), (B) und (C) ungefahr gleich grof ist.

Ein Nachteil ist, dass wihrend der laufenden Berechnung keine Naherung vorliegt, d.h. das
Resultat steht erst nach Abarbeitung des Algorithmus, also erst nach n Schritten, fest. Je
nach Anwendung sind diese Verfahren viel zu aufwindig und deshalb besonders ungeeignet
fiir Problem (A), wenn n sehr grof ist.

2. Iterative Verfahren liefern nach endlich vielen Schritten eine beliebig genaue Approximation
der Losung (bis auf Rundungsfehler).

Der Vorteil liegt darin, dass man in der Lage ist, die Losung so genau zu bestimmen, wie es
notig ist. Haufig hat man bereits eine brauchbare Losung nach k < n Schritten

Satz 2.1 (Stoérungssatz fiir lineare Gleichungssysteme)
Sei A € R™™ reguléar und ||-|| die induzierte Matrixnorm. Sei AA € R™*™ gegeben mit [|AA| <

||A AT und sei b € R™ und Ab € R™. Dann ist A + AA regulér und es gilt

[z —z| _ _ cond(A) (HAAH ||N)H>
BT = 1 cona(a) 530 U TAT 0
Dabei ist Az = b und T die Losung des von (A + AA)T = b+ Ab.

Bemerkung: cond(A) := ||A||||[A7!|| ist der entscheidende Verstérkungsfaktor fiir den relativen
Fehler.

2.1 Direkte Verfahren

Idee: Hat A eine einfache Gestalt, so lasst sich x leicht bestimmen.

Beispiel 2.2 (Dreiecksmatrizen)
Sei A € R™" eine obere Dreiecksmatrix (A-Matrix) , d.h. a;; = 0 fiir ¢ > j, oder
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n

Dann gilt det(A) = [] asi, d.h. A ist regular <= a; 0V i€ {1,...,n}. Ist A reguldr, so ist
i=1

Ax = b lésbar. Aus

n n
b; = g Qi Loy = § Qi Loy
u=1 u=t

erhalten wir den Algorithmus:

C_ _ b

i1=n: Tn =

1< n: $i:all< Z azua?n).
u=1+1

Frage: Kann eine beliebige reguldre Matrix A so umgeformt werden, dass sie obere A-Gestalt hat?
D.h gesucht ist A € R™"™ niit oberer /- Gestalt, b € R™, so dass Az = b dieselbe Losung hat wie
Ax =b.

Eine Losung dieses Problems liefert der Gaufalgorithmus:

2.1.1 Gauflalgorithmus/LR-Zerlegung

Der Algorithmus startet mit

a1 a1a -+ aip | b1
(A,b) = (A(O),b(0)> _ asy ase -+ Qo | bo
anl anQ e ann bn

und fiihrt durch sukzessive Manipulation auf (A(p), b(p)) ,p=1,...,n—1, so dass aus AP Vg =
b®P=1 folgt APz = b, Um (A(l),b(l)) zu berechnen, wird zur i-ten Zeile fiir ¢ = 2,...,n das

az(-?) / ag(i)—fache der ersten Zeile hinzuaddiert. Wir erhalten somit

a1 a2 - Qi | b

() N ¢ ) R CY

(A(l)’b(1)>: 0 ay gy, | by
0 ol )| b

|

Q1] e e e ain by

1 1 1
0 .. . - ag;_l) bgl_l)

(o=1) (-1 _ : : : :
) I R A S T
(p—1) (p—1) (p-1)
Cp+1)(p+1) 7 Ypt1)n b(p+1)
0O 0 - 0 aff(;i)l) ) | e
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Wir erhalten schlielich (A("_l), b(”_l)), wobei A1 eine obere A-Matrix ist und Az =b <=
A=) — pln=1),

(

Unsere Rechnung setzt voraus, dass stets gilt apgfl) # 0 gilt, ansonsten miissen zuerst Zeilen
vertauscht werden. Weder das Vertauschen von Zeilen noch der Eliminationsschritt verandern die
Losung. Kann in einem Schritt ag)fl) # 0 nicht erreicht werden, nachdem man sémtliche Zeilen
vertauscht hat, so bedeuted dies, dass A singular ist. Das Zeilenvertauschen wird als Pivotisierung
bezeichnet. Haufig wird die Zeile ausgesucht mit

‘ (p—1) a

a = Imax
kp p<i<n

(p—l))

ip
und wird als Teilpivotisierung oder Spaltenpivotisierung bezeichnet.

Beispiel 2.3

(e 1 (1 N1
SelA—<1 1>undb—<2> = x—<11_255>~<1>fur5<<1.

e ) Doy [ € 1 1
Ohne Pivotisierung folgt: (A( ), b ) = < 0 1 % o % >
Es folgt zo = %:ij ~ 1und 71 = (1 — 23)e”! = 0, da auf einem Computer rd(2 — ™) =
—57177“65(1 - 571) = —&~ ! berechnet werden.

Mit Pivotisierung folgt hingegen nach Zeilentausch:

1 112
e 111

und schlieflich nach der Elimination

1 1 2
0 1—¢e|1—2¢

~1und ;1 =2 — 23 = 1, da auf einem Computer rd(1 — 2¢) = 1 fiir sehr

Hier folgt also xo = 11:258

kleines € gilt.

Das adquivalente Problem

1 et zp\ (et

1 1 x9 ) 2
kann durch Spaltenpivotisierung nicht gelost werden. Hier muss total pivoting benutzt werden, d.h.
sind die Matrixeintrége sehr unterschiedlich grofs, so miissen auch die Spalten vertauscht werden.

Das Vertauschen der Spalten ist jedoch umsténdlich und wird selten angewandt. Man vertauscht
die Spalten nur dann, wenn man keine andere Wahl hat.

Wir fassen das Gauftverfahren, wie folgt zusammen.
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Algorithmus 2.4 (Gaufiverfahren)
Setze ¢; =1 (1=1,...,n).

Fir p=1,...,n—1:

Wahle j € {p,...,n} mit ’aq],p‘ = max |agp] -
=P,

Vertausche die Zeilen ¢; «+— ¢, [Spaltenpivotisierung]
Fir k=p+1,...,n:
Falls a4, =0 = Abbruch.

Setze [ = Z{’—“ [Multiplikationsfaktor]
P

ap
Setze a,, =1 [Speichere | statt a,, = 0]

Fir j=p+1 n:

goeeey

Setze aq; = aq; — |- g, j [Matrix A®]

Setze by, = b, — b, [Vektor b¥)]

Die Losung von Ax = b wird anschliefsend durch Riickwértseinsetzen wie folgt gelost:

Setze x,, = by, /agn-
Firk=n-1,...,1:

n
e = | by = D agti / Agyk-
i=k+1

Bemerkungen:
(i) Der Aufwand des Algorithmus liegt bei $n3 4+ O(n?).

(ii) Anstelle der entstehenden Nullen wird der Multiplikationsfaktor | gespeichert.

(iii) Die Matrix A und der Vektor b werden iiberschrieben. Es ist deshalb ratsam, eine Kopie der
Vektoren zu machen.

(iv) Die Pivotisierung wird als Vektor gespeichert, und die Zeilenvertauschung im Speicher wird
nicht durchgefiihrt.

Formaler Zugang:

1) Uminterpretation der Pivotisierung:
Im i-ten Schritt des Gaufalgorithmus werden Zeilen vertauscht ¢ «—— k, k > i. Zur Umformulierung
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betrachten wir folgende Matrix.

1
1
0 1 — 1
Py =
1 0 — k
1
1

Lemma 2.5
Fiir die Matrizen Pj, gilt:

(i) B = P;; A entspricht der Matrix nach der Vertauschung der i-ten und k-ten Zeile.
(ii) B = APy entspricht der Matrix nach der Vertauschung der i-ten und k-ten Spalte.
(ili) P2 = E,, d.h. P! = Py.

Bewets: Durch nachrechnen.

Definition 2.6
Eine Matrix P € R™"™ heifit Permutationsmatrix, falls P durch Zeilenvertauschungen
aus der Einheitsmatriz E,, entsteht.

Bemerkung: P;; ist eine Permutationsmatrix. Ist P = P 1., ... P, i, eine Permutationsmatrix,
: —1
sogilt P~ =B, kys--- Pk

m*

2) Berechnung im Gauftverfahren:
Wir betrachten die Matrix:

1 0 0
1
Ll’ =
lit1,i
0 i | 0 1
mit [j; == Z—Zz, j=1+1,...,n.
Lemma 2.7
b1
(i) Sei B=L;A = © |, wobei b; € R™ Zeilenvktoren sind. Dann gilt
br,

bj=a; (j=1,...,1) und bj=aj+1la; (j=i+1,...,n).
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(i) L;' =2E, — L;, also

1 0 0
L7t.= !
‘ —liy1
0 s | 01
b1
dh fir B=L'A=| : | gilt
bn,

bj:aj, (]:1772) und bj:aj—ljiai, (j:Z-I-l,,TL)

Beweis: Durch nachrechnen.

Folgerung 2.8
Die Transformation von A auf obere A-Gestalt kann geschrieben werden als

R=L P, 1 - L7'PA

Dabei it P; = P;; fiir ein j > ¢ und R eine obere A-Matrix ist.

Satz 2.9 (LR-Zerlegung)
Sei A € R™™™ eine regulire Matrix. Dann gilt:

e Es existiert eine Permutationsmatrix P, eine untere A-Matrix L mit Diagonalelementen 1
und eine obere A-Matrix R mit
PA=LR.

e Es gilt: Ist A = LR = MS, wobei L, M untere A-Matrizen mit Diagonalelementen 1 sind,
und R, S obere A-Matrizen sind, so folgt L = M, R=S.

Bemerkung: Ist PA = LR gegeben, so kann man Ax = b 16sen, indem man in zwei Schritten
durch Vorwarts-, bzw. Riickwértseinsetzen 16st:

(a) Lose Lz = Pb,
(b) 16se Rx = z.
Dies gilt, da

Ar=b <= PAxz= Pb,
<= LRz = Pb,
<— LRx = Lz,
<~ Rx=z=z.

LLA. wird L in den frei werdenden Stellen von A gespeichert (die 1 auf der Diagonalen muss man

nicht speichern). Also .
R
Aln=1) . — ~ .
(")
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Dabei ist R die obere Dreiecksmatrix von R und L die untere Dreiecksmatrix von L ohne die
Diagonale. L und R benétigen also zusammen n? Speicherstellen.

Beweis: (von 2.9)
Nach dem Gaufalgorithmus gilt: R = L;Ean_l, .. .Ll_lPlA, wobei R obere A-Matrix ist =—
PLy...P,_1L,_1R = A.

Definiere Permutationsmatrix P := P,_1... Py und L := PP/L...P,_1L,_1
— P 'LR=A — LR=PA

Noch zu zeigen: L ist untere A-Matrix mit Diagonaelementen 1.

Es ist:

L = PPLy.. P, Lpn1=P,_1..PPPLL1P... P,_1L,—1
~—~—
:En
= P,1...PBI\Py...P,_1L,_1.
Wir setzen: ) ) )
L1 = P2L1P2 und fflI‘p — 2, ey — 1: Lp = Pp+1Lp,1LpPp+1.
Dann hat Ep die Gestalt:

1 0
*
L,= ‘
0

Auflerdem gilt, dass qu_}qu (mit ¢ > p) ebenfalls diese Gestalt, da P, = Py, ¢ < k.
Also folgt

L = Pui...PsPyL\PyLoPs... Py 1Ln s
<. P3LyLyPy... Py Ly
Py 1...PiLoL3Py... Py 1Ly 1

I
-

= Lp
Somit ist L untere A-Matrix.
Zur Eindeutigkeit:

Es gilt: L™1 hat ebenfalls untere A-Gestalt mit Diagonalelementen 1 (betrachte L™1L = E,,).
Analog folgt, dass S~! eine obere A-Matrix ist.

Also ist L~ M untere A-Matrix mit Diagonalelementen 1 und RS~! hat obere A-Gestalt. Aus LR =
MS folgt RS~ = L='M = E,, und hieraus mit der Eindeutigkeit der Inversen: R =S A L = M.

O
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Weitere Anwendungen der LR-Zerlegung

(a)

Determinantenberechnung einer Matrix A.
Hat R obere/untere A\-Gestalt, so gilt

det(R) = ﬁ Ti5.
=1

Aus der LR Zerlegung folgt
R=L'P,1...L7'PA

und somit

det R = det(L; ") det(P,_1)...det(Ly") det(Pr) det(A).

Weiter gilt:

1 : i=k
det (L7') =1 und det(P;) = det(Py) = .
-1 : i#k
Also folgt:
det(R) : gerade Anzahl von Zeilenvertauschungen
det(4) = —det(R) : ungerade Anzahl von Zeilenvertauschungen
n
[[ 74 : gerade Anzahl von Zeilenvertauschungen
i=1
= n
— [] & : ungerade Anzahl von Zeilenvertauschungen
i=1

Bestimmung von Rang(A) = £ der linear unabhéngigen Zeilenvektoren bei einer nicht unbe-
dingt quadratischen Matrix.

Ist im p. Schritt az(f;) = 0, so miissen Zeilen und eventuell auch Spalten vertauscht werden,
was den Rang der Matrix nicht veriandert. Ist dies nicht moglich, so hat A®) die Gestalt

Dabei sind die ersten p Zeilenvektoren linear unabhéngig, aber alle weiteren Zeilenvektoren
sind linear abhéingig. Es folgt Rang (A) = Rang (A(p)) =p.

Achtung: Aufgrund von Rundungsfehlern kann dieses Verfahren numerisch zu falschen Er-
gebnissen fithren:
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(c) Berechnung der Umkehrmatrix A~! einer Matrix A.

1. Ansatz: Sei e; der i. Einheitsvektor. Lose Az() = ¢; fir i = 1,...,n = A7l =
(z1,...,x,) mittels LR-Zerlegung mit Lz(") = Pe; und Rz = 2()

2. Berechnung durch simultane Elimination

Vorwartselimination
1 0 r11 v+ k| % 0
A — S —
0 1 0 Ton | * *
Riickwartselimination
11 0 1 0
. * —_— . A—l
0 Tnn 0 1

2.1.2 Gauf-Jordan Verfahren

Diese Methode beruht darauf, durch Matrixumformungen von Az = b zu Bb = x mit B = A™!

iiberzugehen. Die Idee des Verfahren ist folgende: Ist a,, # 0, so kann die p-te Gleichung nach z,
aufgelost werden:

apl Apg—1 1 Apg+1 Apn,
xq:—ixl—...— Pa Tg—1+ —bg — Pa xq+1—...—L:cn.
Qpq Apq Apq Pq Apq
Durch Einsetzung von z4 in die anderen Gleichungen (j # p)
iy GigC GigQ
Jjqa%pk Qjq Jjq%jk _

E |:ajk :| L+ 7() + E |: :| Tp = bj.
k=1 k=g+1 pq

Man erhilt also eine Matrix A mit

I bl
A by =1 x4
Tn, b,

Kann dieser Schritt z.B. mit p = ¢ n-mal durchgefiihrt werden, so ergibt sich

bl I

Al | = : — A=A

by, T

Dies entspricht einem Algorithmus ohne Pivotisierung, d.h. a;; # 0, Varianten mit Pivotisierung
sind ebenfalls moglich (siehe z.B. Stoer, Numerische Mathematik I, Springer, 1989, Abschnitt 4.2).
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2.1.3 Cholesky Verfahren fiir SPD-Matrizen

Sei A € R™™ eine symmetrische positive definite Matrix. Dann existiert ein unterer A-Matrix

Q € R™" so dass gilt
A=QQT.
Dabei ist Q = LD/2 mit DY/2 = diag(\/T11, - s \/Tnn)-

Die Existenz einer solchen Zerlegung sieht man wie folgt ein:
A=LR = A=LDR=LDL" = LDV*>(LD'*)T = QQ",

wobei R = LT aus der Symmetrie von A folgt. Die positive Definitheit der Matrix A ist notwendig,
damit D/2 wohldefiniert ist.
Unter Ausnutzung der Symmetrie erhélt man folgenden Algorithmus, der die untere Dreiecksmatrix

von @ anstelle der unteren Dreiecksmatrix von A abspeichert und D~'/2 in einem Vektor d:

Fir i =1,...,n:

Setze u = a;;
Fir k=7—1,...,1:
Setze U = U — QA

Falls 1 =7,
Setze d; :=1/y/u (Abbruch, falls u <0)
Sonst

Setze aj; :=d; u

Dieser Algorithmus hat aufgrund der Symmetrie den halben Aufwand im Vergeleich zum Gauf-
Algorithmus.

2.1.4 LR-Zerlegung fiir Tridiagonalmatrizen

Sei A eine Tridiagonalmatrix

ar M 0
A= 61
s c- Tn—1
0 Brn-1 Qp

A kann mittels LR-Zerlegung zerlegt werden. Diese Zerlegung kann explizit in Abhéngigkeit von
a, # und 7 hingeschrieben werden (sieche Ubungsaufgabe).
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2.2 Uberbestimmte Gleichungssysteme /Ausgleichsrechnung

Problem: Gegeben sind m Messdaten (zum Beispiel Zeit und Konzentration) (z1,y1), .- -, (Tm, Ym)
und Funktionen uq,...,u,, (n,m € N, n <m).

n
Gesucht: Linearkombination u(z) = ) c¢;u;(x), welche die mittlere Abweichung minimier, also:
i=1

. ; m /o 2\ #
Dyo= D (u(zy) —y)? | = . mf o > (Z (ciui(w;)) - yj)
=1 T

j=1 \i=1

Dieses Problem wird als das Gaufssche Ausgleichsproblem oder als die Methode der kleinsten
Quadrate (least squares) bezeichnet.

Bemerkung: Das Tschebyscheffsche Ausgleichsproblem, bei dem beziiglich der Maximums-
norm minimiert wird, d.h.

A = inf () — g
oo i=, Inf g pax le(ws) =yl

ist deutlich schwieriger.

Sei:
c=(c1,...,cp)" € R" (der gesuchte Losungsvektor),
€T = (‘Tla" : a$m)—r € Rma Yy = (yla'-'aym)—r € Rmv
A= (aij) € R™*™ mit ajj = UZ(ZL'])

Dann ist das Ausgleichsproblem dquivalent zur Minimierung des Funktionals

Fe) = [[Ac =yl (AGP)

Bemerkung: Sind m = n, uq,...,u, linear unabhéngig und x4, ..., z,, paarweise verschieden, so
ist A reguldr und ¢ = A~y ist das gesuchte Minimum. Im Allgemeinen ist jedoch n << m, so
dass Rang(A) < n folgt. In solchen Féllen erwarten wir, dass (AGP) einen Minimierer hat, jedoch
Ac = y entweder keine oder sehr viele Losungen hat.

Satz 2.11 (Normalengleichung)

Sei A € R™"™ b € R™ (n < m) gegeben. Dann existiert mindestens eine Losung 7 € R™ des
Ausgleichsproblems (Az = b) mit kleinstem Fehlerquadrat, d.h. Z minimiert F(x) = || Az — b||,.
Dies ist dquvalent dazu, dass T die Normalengleichung

AT Az = ATb

16st. ist Rang(A) = n (d.h. maximal), so ist die Losung eindeutig bestimmt, andernfalls ist jede
weitere Losung von der Form
T=T+Y

mit y € Kern(A). In diesem Fall wird meistens die Losung =4 mit minimaler 2-Norm gesucht, d.h.

|xal|l = inf {||$H2 ’ x L”osung des Ausgleichsproblems} .
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Diese Losung ist eindeutig.

Lemma 2.12
Sei A € R™*" dann gelten fiir AT A € R™*" folgende Eigenschaften:

(i) AT A ist symmetrisch.

(i) AT A ist positiv semidefinit. Falls Rang(A) = n ist, so ist AT A positiv definit.

= Bld(A) @ Kern(A ).

(iv

)
)
(iii) Kern(ATA) = Kern(A).
) R
)

(v) ATA und AAT haben dieselben (positiven, reellen) Eigenwerte und es gilt dimKern(ATA —
M) = dimKern(AAT — AI) fir alle Eigenwerte A > 0.

(vi) r» = Rang(A) = Rang(AT A) = Rang(AAT) = Rang(A")
= [{x> 0| NEW von 4T a}|

Beweis: (Lemma 2.12(iv))
Es gilt R™ = Bld(A) @ Bld(A)*, d.h. es ist zu zeigen: Bld(A)* = Kern(A ")

Sei y € Bld(A)*, d.h. ¥V z € BIA(A) : (y,2) =0
— VzeR": (yAz)=0 < VzeR": (Aly,z)=0
— Aly=0 <= ycKem(A").

Beweis: (Satz 2.11)

Wir zeigen zunéchst die Aquivalenz des Minimierungsproblems mit dem Losen der Normalenglei-
chung. Sei T Losung von AT Az = ATb. Dann folgt

Ib—Azl3 = [b— Az + A - 2)[l3

(b— Az + AT —z),b— AT + A(T — x))

= (b— Az, b— Az)+2(b— Az, A(T — z)) + (A(T — x), A(T — x))
b — AZ|5 + | AT — 2)||5 + 2 (AT (b — AZ),T — z)

I — Az

Also gilt fiir alle x € R : ||b — AZ|, < ||b — Az]],.

AV

Sei nun umgekehrt = eine Losung des Minimierungsproblems, so folgt

m n 2
0 = 2 (F@)s= 72~ (z <z ajpTy — bj) )
|lz=Z

=1 \k=1

n n m n m
= ) a;i2 (Z jkTh — bj) = 2( 2. @i D AjkTh — Z%%)
k=1 =1 " k=1

= 2(ATAz — ATb);.

Also folgt ATAZ = ATb und somit ist T L"osung der Normalengleichung.
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Insbesondere kann also die Existenz einer Losung des AGPs durch das Losen der Normalengleichung
gezeigt werden.

Zur Losung der Normalengleichung: Es ist b € R™ = Bld(A) @ Kern(A"). Also kénnen wir b = s+
zerlegen mit s € Bld(A), r € Kern(AT). Zu s € Bld(A) existiert ein 7 € R” mit AT = s. Es folgt:

ATAZ = ATs + ATr=AT(r+5)=A"b,
d.h. 7 ist Losung der Normalengleichung.

Ist Rang(A) = n, so folgt, dass A" A positiv definit (Lemma 2.12(ii)) und somit auch regulir ist.
Insbesondere folgt daraus, dass 7 = (AT A)~'ATb die eindeutige Losung der Normalengleichung ist.

Ist Rang(A) < n und seien x1, x9 Losungen der Normalengleichung. Dann gilt b = Ax; + (b— Axz;) €
Bld(A) @ Kern(AT).

Da die Zerlegung R™ = Bld(A) @ Kern(A") eindeutig ist, folgt Az; = s = A%, also A(z; — T) = 0,
d.h. z; — T € Kern(A).

Wir definieren die Losungsmenge K durch

K::{xeR”

x L”osung des AGPs und ||z||, < HEHQ} .

Dann ist K kompakt und da die Norm [|-||, stetig ist, nimmt sie ihr Minimun auf K an. Sei also x4
die Losung des AGPs mit

lwally = inf {llzal| | =€ K} = p.

Sind nun z1, 2, € K Lésungen mit |21, = [|z2]l, = p, so folgt ©$%2 € K und daher

xr1 + 29 1
p<| B2 < 3ol + 5ozl = o
Wir erhalten somit H n1taz H2 = p und es folgt
2
p? = Hixrgm H2 = % (x1 + 29,21 + x2)

= 3 (Il +2 (@1, @) + lazll3)
= (P +2(xm) +p7) = 307 + 5 (w1, 29)
= (z1,12) = p*,
= lz1 = @all5 = e[l — 2 (w1, w2) + [[al5 = 20* - 2p* =0,
— X1 = X9.
Beispiel 2.13 (Ausgleichsgerade)
Gegeben: Messdaten:

x| -2 -1 o] 1| 2
yi | 1/2] 12 2] 7/2]7/2

Gesucht: Ausgleichungsgerade (linear fit') u(x) = bx + a mit

1 1
5 2 2

5
Z(b$j ‘f‘a—yi)? = min Z (ij +d—yi)2

2
=1 (a,b)€R =1

Lenglischer Ausdruck der Ausgleichungsgerade
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p(x)=2+0.9x (GauRsche Normalgleichung)
p(x)=2+x (Tschebyscheffsche Normalgleichung

Abbildung 2.1: Ausgleichsgerade

Nach Satz 2.12 ist dann (a,b)" die Losung der Normalengleichung mit

1 -2 1/2
1 -1 1/2
A=11 0 ;= 2
1 1 7/2
1 2 7/2
und folglich AT A = < 3 100 ) und A'¢ = < 190 >

Da Rang(A) = 2 ist, ist die Normalengleichung eindeutig losbar. Aus ATA( Cbl ) = ATc¢ folgt

( Z ) = ( 029 ), d.h. u(z) =24 0.9z ist die Ausgleichsgerade.
Berechnet man die Abweichung, so folgt Ay = v/0.9 < 1, Ay = 0.6.

Die Losung des Tschebyscheffs-Problems ist gegeben durch u(x) = 2 + x. Hier erhélt man Ay =
1, Ao = %

a
1+bx

Bemerkung: Physikalisch konnte z.B. ein nichtlinearer Zusammenhang der Form wu(x) =
sinnvoller sein.

Mithilfe der Transformation u(z) = ﬁ =14 gx = & + ba lassen sich jedoch solche Probleme off

auf die Berechnung der linearen Ausgleichungsgeraden zuriickfiihren.

Bemerkung: Das Ausgleichsproblem kann durch Losen der Normalengleichung (etwa LR-Zelegung)
behandelt werden. Allerdings ist dies numerisch nicht unbedingt der beste Zugang, da cond(AT A)
sehr viel grofer als cond(A) ist. Beispiel: gilt Rang(A) = n, A € R™", dann ist cond(ATA) ~
cond(A)?.
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2.2.1 QR-Zerlegung nach Householder
Idee: Sei Rang(A) =n, A € R™ ™. Anstelle einer LR-Zerlegung sei
A=QR

mit einer oberen A-Matrix R € R™*™ und einer orthogonalen Matrix @ € R™*™ gegeben, d.h.
Q' =Q". Dann folgt

A=QR=Q| o« =Q< )

wobei R eine reguldre obere A-Matrix ist. Durch Einsetzen erhalten wir
ATA=(QR)'QR=R'"Q"QR=R'R,
ATb=R"QTy,

dh.esgilt ATAZ=ATb — R'RT=R'Q'b.

C1
C1
L c ~ .
Definiere ¢ durch ¢ := Qb = " ;¢ = : e R",
Cn+1
. Cn
Cm

- pT=
sofolgtausRT:<RT ’ 0 ): RTc:<ROC>.
me

n n

RT ist reguldr. Sei also T € R™ die Loésung von RT = ¢, so ist T leicht zu berechnen, da R obere
A-Matrix ist.

Da Rz = ) folgt RTRT = RTc = RTQ"b und somit ist Z die Losung der Normalengleichung.
0

Konzentrieren wir uns also auf die Berechnung einer QR Zerlegung.

QR-Zerlegung nach Householder

Sei A € R™*™ (m > n) mit Rang(A) = n.

Ziel: Finde obere A-Matrix R € R™*" und eine orthogonale Matrix @ € R™*™ mit A = QR.
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Definition 2.14 (Dyadisches Produkt)

Seien u,v € R™ (Spaltenvektoren). Dann heifit die Matrix

Uy
A=w' = : (V1 -y Um)
um

das dyadische Produkt von u,v.

Es gilt A € R™™ und a;; = wv; (1 <i,5 <m).
U1
Beachte: (u,v) =u'v = (u1,...,u,) : eR.
Um,

Folgerung 2.15
Seien u,v € R™, A =uv' und w € R™. Dann gilt

(i) Aw = (v,w)w,

(ii) A% = (u,v) A.
Beweis:

(1) (Aw); = > ujvgwg = (v, w) u;.

k=1
(i) (A%);; = (AA)ij = > wivpugvj = <Z Ukuk> wivj = (v,u) (A)ij.
=1 k=1
m}

Definition 2.16 (Householder Matrix)

2
lvll2

Wir setzen H(0) = 1.

Seiv € R™, v #0. Die Matriz H(v) =1 — 22v heift Householder Matrix.

Folgerung 2.17
Sei v € R™, dann gilt:

(i) H(v) ist symmetrisch.

(i) H(v) ist orthogonal, d.h. H(v) = H(v)" = H(v)~%

Beweis:

(1) Es ist H(U)U = 6LJ -2 Uit — 6ji_2 Uit — [‘I(’U)LT

2 2 =
llvll2 [0l J

Dabei bezeichnet d;; das Kronecker Symbol.
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(ii) Wegen (i) bleibt zu zeigen, dass H(v)? =T gilt. Es ist

H(U)Q _ (H _9 vvl) (H _9 U’UTQ) — 71— 41}7}2 4(va4)2
[l ( ”_’?')'22 0]l ]l
o 4 T _ (vv
T (”“ e
o 4 T _ (wv)vv .
=1 ol (vv Tk ) (wegen 2.15(ii))
= L
m}
Satz 2.18
Sei a € R™ und u :=a % ||al|, e, € R™ (1 < k < m). Dann gilt
H(u)a = F [lally ex-
Beweis: Im Fall v = 0 gilt aufgrund der Definition von u a = F |/al|, ex. Also folgt H(u)a =
Ta = F ol ex.
Sei also u # 0, etwa u = a — ||al|, ex. Dann folgt
T
uUU . 1 9
H(u) =1- 5, mit =g [[ull3 -
Und weiter
2 2
ho= Yo lalyera—lalex) = § (lal - 2llall, (a.e) + al)
2
= llallz = llally (a, ex) ,
Hwa = (I-juu')a=a—+(uu')a
= a—3(u,a)u (Folgerung 2.15(i))
= a—yla—llalyer a)u
2
= a— 4 (llal3 = llally {ex @) w
= a—u=|al,ex (Definition von u).
o

Verfahren: QR Zerlegung

Sei A € R™ ™ mit A= (ay,...,ap) = (ago), e ,aﬁf’)) gegeben.
Schritt 1:

Setze u(®) = (ago)) - Ha&o)‘t e1 € R™ und Q = H(u®), dann folgt

Q1A =RWM = mit A e Rm—1xn-1 = (agl), . ,a%l)).

A

Schritt 2:
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10 0

1 — @ _ @ m—1 —

Setze u as Ha2 H e1 €R und @2 : Hu)
0

Dann ist Qy € R™ ™ H(u)) € R™~1Xm=1 ynd es folgt

0 = cee
Q2Q1A=Q:RY = [ 0

DL A®

0 O

Iterativ erhalten wir so nach n Schritten:
* *

Qu--QuA=RM=| | =R

0

0

und @ := Q1 - - - Q, ist orthogonal, da alle @); orthogonal sind. Ausserdem gilt A = QR, da Ql2 =1
und somit QQ, --- Q1 =1.

Wir fassen die bisherigen Ergebnisse zusammen:

Ausgleichsproblem <= Normalengleichung

< Rr=c¢mit A=QR= <§>, R

und R ist regulére obere A-Matrix,
falls Rang(A) = n gilt.

Betrachten wir nun die Kondition der Matrix R. Falls A € R"*" und Rang(A) = n ist, gilt

conda(A) HAHZHA*le
QR [|R~1Q7Y,
= QR ||R'QT|, -
= |IRlly- |R7Y],

Also folgt = conda(A) = condz(R).

2.2.2 Singularwertzerlegung einer Matrix

Die QR-Zerlegung liefert eine Moglichkeit, (AGP) numerisch zu 16sen, falls Rang(A) = n ist. Fiir
Probleme mit Rang(A) < n betrachten wir nun die Singularwertzerlegung einer Matrix.

Satz 2.19 (Singuldrwertzerlegung)
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Sei A € R™" Rang(A) = r, p = min{m,n}. Dann existieren orthogonale Matrizen U =
(U1, ... ) € R™™ und V = (vq,...,v,) € R¥™ mit UTAV = ¥ € R™*" mit
Y =diag(o1,...,0p),

wobei 01 > 00> ... >0, > 041 =... =0, =0.

D. h. ¥ hat die Form

o1
> = R 01,
Or
0 ‘ 0
mit diag(oy,...,0.) € R"™".
Die Werte o1, . .., 0, heiken singuldre Werte von A. Sie entsprechen gerade den Wurzeln aus den

Eigenwerten von A" A bzw. AAT (Bem: nach 2.12(v) haben AT A und AAT dieselben positven und
reellen Eigenwerte).

Beweis: Eindeutigkeit: Seien UT AV = ¥ und U,V orthogonal, dann gelten Av; = oyu;, da
AV =UY und A"w; = ojv;, da ATU = V. Daraus ergibt sich

AT Av; = 0;ATu,; = U?m = 01-2 ist Eigenwert von A" A.
Analog folgt

AATy,; = afui = a? ist Eigenwert von AA".

Da nach 2.12(v) die Eigenwerte von AT A und AA" iibereinstimmen, folgt die Eindeutigkeit.

Existenz: Sei o1 := || 4|, = ”H‘I‘aX |Az|, (Bemerkung: Da ||Ally = \/Amax(ATA), ist o1 ein guter
z||,=1

Kandidat).

Dann existieren 1 € R”,y; € R” mit ||z1]|, =1, |[y1]|, = 1 und Azy = o1y1. Sei V = (z1,...,2y) €

R™™ eine orthonormale Basis (ONB) des R™ und Uy = (y1,...,¥Ym) € R™*™ eine ONB des R™.

Dann folgt:

T g1 '

w

5 ) ., Be Rm—lxn—l’ w E R—1.

Da Uy, Vi orthogonal, gilt:
[A1lly = [IA[ly = o1

Desweiteren gilt
o) ol +ww\ [ ¥+ ||wH§
Wow )™ Bw a Bw

und daher
o} = | A ||2 = <max HAW”Q)Q > 1
1 L2 ezl = |l(o1,w) T3

w
S T (02+|yw\|2)2+||3w\|2
@y \ \7T T 2) T P

2
2 2
L (o3 + lwll3)” = o3 + I3

2
o +wll3
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Insgesamt folgt also

of zot+ul; = [ul;=0 = w=0
und wir erhalten

UlTAV1:<g Jg >

Die Aussage des Satzes folgt nun durch Induktion. O

Losung des Ausgleichsproblems mit Singularwertzerlegung:

Gesucht: z € R" mit ||Az — b||, = irﬁf |Az —blly, AeR™*" beR™, m>n>r=Rang(A).
z€R™

Sei UTAV =% = diag(o1, . ..,0,), so folgt

Az —b|2 = (Az—b Az —b) V= (0T (A — 1), UT (A — b))
WIS UTAV(VT ) —UTh UTAV(V T z) — UTh)
ar UTb SV Ta - UTh)

= |=VTa-UTb|;

= S (@WVTa— )+ Y (b))
=1 1=r+1

> % (ub)
1=r+1

Folgerung 2.20
z € R™ ist genau dann Losung des Ausgleichsproblems, wenn

T T

uq b u, b . A
Vg — (1,...,T,Ozr+1,---,an> , mit a; € Rbeliebig.

o1 oy

T r TN 2 n
Ist = Losung des AGPs, so ist ||z]|3 v orth HVT:L“”; =5 (ug—b> + > o
=1 " i=r+1

Also ist ||z||, minimal, g.d.w. ay.41 = ... = a;, = 0 ist. D.h. die eindeutige Losung des AGPs mit
minimaler 2-Norm ist gegeben durch

T T T ro.T
u; b u,. b u; b
=V |+, ...,/—,0,...,0| = .,
1=

2.2.3 Pseudoinverse einer Matrix

Ziel: Verallgemeinerung der Inversen einer reguldren Matrix auf beliebige Matrizen A € R™*™ mit

Hilfe der Singularwertzerlegung.
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Definition 2.21 (Pseudoinverse)
Zu A € R™™ mit Rang(A) =r sei

Y= U'AV = diag(o1, ..., Omin{mn})
eine Singuldrwertzerlegung von A. Wir definieren die (n x m)-Matriz ¥ durch
]_/0'1
rt = o 0

1/o,
0 0

dann heifit AT = VEtUT € R™™ Pseudoinverse oder Penrose Inverse von A.

Bemerkung: Die singuldren Werte einer Matrix sind eindeutig bestimmt, die orthogonalen Matri-
zen U und V jedoch nicht. Die Eindeutigkeit der Pseudoinversen mufs also noch gezeigt werden.

Satz 2.22
Sei A € R™*™ mit Rang(A) = r gegeben. Dann gilt
(i) Ist AT € R™™™ eine Pseudoinverse zu A, so ist

AAY = (AAN)T, AtA=(AtA)T, AATA=A, ATAA+ = A+

(ii) Durch die “Penrose Bedingung”
AB = (AB)", BA=(BA)", ABA=A, BAB=2B (*)
ist eine Matrix B € R™*™ eindeutig bestimmt.
Insbesondere ist die Pseudoinverse wohldefiniert.

(iii) Sind m > n, b € R™ und x4 die eindeutige 16sung des Ausgleichsproblems, so ist z4 = A™"b.
(iv) Ist m = n und Rang(A) = n, soist AT = A~L.
(v) Ist m > n und Rang(A) = n, so ist AT = (ATA)~1AT,

(vi) Sind o1 > ...0, die singuliren Werte von A, so ist ||A||2 = o1 und ||AT]||2 = U%

Beweis: (siehe Ubungsaufgabe)

Bemerkung: Fiir die Pseudoinverse gilt auch (A1)t = A, sowie (AT)* = (A1)7, jedoch gilt i
Allgemeinen nicht (AB)" = BT A™.

Definition 2.23 (Kondition einer singuldren Matrix)
Fiir eine beliebige Matriz A € R™ ™ definieren wir die Kondition von A beziiglich der Spek-
tralnorm durch

g
condy(4) = [[ Al |A"[ls = 2.

r
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2.3 Iterative Verfahren

Wir wollen uns nun iterativen Verfahren zur Losung linearer Gleichungssysteme zuwenden.

Idee: Formuliere Az = b dquivalent als Fixpunktgleichung, so dass die Kontraktionsbedingung (vgl.
Satz 1.29 auf Seite 10) erfiillt ist.

Ansatz: Wir zerlegen A = M — N mit einer reguldren Matrix M (i.A. ist M vorgegeben und
N := M — A). Wir erhalten:

Ar=b < (M-N)z=b < Mzr—-—Nzx=b < Mz=Nzx+b
— x=M'Nz+M1'b
Wir definieren T := M~IN =1 — M~'A, ¢ := M~'b sowie eine Abbildung F : R” — R" durch
F(z)=Tz+c.

Dann gilt: x ist die Losung von Az = b, g.d.w. z ein Fixpunkt von F' ist, d.h. wenn gilt z = F(z) =
Tx +c.

Iterationsverfahren: Sei ein Startwert z° € R gegeben, dann definieren wir die Iteration fiir
k € N durch
xk:Jrl — F($k),

d.h. 21 wird berechnet durch folgende Schritte:

1) My* =7*  mit dem Residuum ¥ := b — Az*,
2) bt =gk 4k

Bemerkung: Aus den Losungsschritten erkennt man, dass solche Iterationsverfahren nur dann von
Interesse sind, wenn die Defektgleichung My* = r* leicht zu 16sen ist. Dies ist z.B. der Fall, falls
M eine Diagonalmatrix oder eine obere A-Matrix ist.

Satz 2.24
Die Folge (2¥)ren sei durch eine Fixpunktiteration zu x = F(x) = T + ¢ gegeben. Sei ||-|| eine
Norm auf dem R"™, so dass fiir die induzierte Matrixnorm gilt

¢:=|T] < 1.

Dann konvergiert z* gegen ein = mit Az = b und es gelten die Fehlerabschiitzungen

qk
foka < — Hxl fxOH,
1-¢q

bzw.
_7

k
z—x| <
H H_l—q

=1

Beweis: Der Beweis folgt mit dem Banachschen Fixpunktsatz 1.29 da gilt

1Ey) = Fy)ll = [Ty +c— (Ty2 + ) .
= T —y2)ll < TN [lyr — vall = qlly1 — vzl
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Aus g < 1 folgt also, dass F' eine Kontraktion ist.

Problem: Die Kontraktionsbedingung ist abhéingig von der Norm, die Konvergenz nicht, da alle
Normen auf R™ dquivalent sind.
Gesucht: Notwendige und hinreichende Bedingung fiir die Konvergenz.

Definition 2.25 (Spektralradius)
Fiir eine Matriz B € R™™ definieren wir den Spektralradius p(B) durch

p(B) :=max{|A| | A € C ist Eigenwert von B} .

Bemerkung: Eine Matrix B hat in C die Eigenwerte A1, ..., A\, (falls Vielfachheit zugelassen wird).
Es existiert eine regulare Matrix U € C™*™ mit

A1 *
U-'BU = ,
0 An

also eine Ahnlichkeitstransformation (Jordansche Normalform).

Lemma 2.26
Fiir B € R™" gilt
(i) p(B) <||B] fiir jede induzierte Matrixnorm.

(ii) ¥V e > 0 gibt es eine induzierte Norm ||-|| auf C"*" mit || B|| < p(B) + &.

Beweis:

(i) Seien A ein Eigenwert von B, u € C"\{0} der zugehorige Eigenvektor und ||-|| eine Norm auf
C™. Dann folgt

Bu=Xu = [Aull = [|Aul| = | Bul| < [ B] ||ull
— |\ < |BJ fiir alle EWe = p(B) <|B].

/\1 Tij
(ii) Sei U € C™*" regulir mit U 'BU = ,
0 An

Fiir 6 > 0 sei D5 = diag(6°,...,6" ). Fiir G € C™ " gilt dann (D(;]GD(;) = g;;077%. Also

folgt
A1 0719 (527”13 oo 5"_17”171
0 A2 57’23 s 5n727‘2n
(UDs)"' B(UDs) = Dy* (U™ BU) D; =
5TTL—1,TI/

O cor e A
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n .
Sei e > 0 vorgegeben. Dann existiert ein § > 0mit Y. 67 |ry| < efiiralled € {1,...,n—1}.
k=i41

Setze ||z||; = H(UD(;)_1 xH . Diese ist eine Norm auf C", da (UDs) " regulir. Es gilt:
o0

Bz |wo™ 52|
IBls= s Tl = 2, |wDia]

o0

Mit w := (UD;) "' 2 bzw. = (UDs) w gilt:

Wenn z tiber C" lduft, dann l&uft auch w iiber den ganzen C", da (U D(;)f1 regulér, d.h.

sup--- =sup---. Also folgt
x#0 w#0
IBl, = su |(UDs) "' BUDs)w||
o Mol

< H(UDa)fl B (UDa)HOO

= m_ax{ |Ai| + Z F o rak } (Zeilensummennorm)
7

k=1+1

<e

= max|\|+e=p(B)+¢
(2
Aus Lemma 2.26 folgt folgender Satz iiber die Konvergenz geometrischer Matrixfolgen.

Satz 2.27
Sei T' € C™ " eine reguldre Matrix. Dann sind dquivalent

(i

(ii) Fir v e C" gilt: Ty — 0 fir v — 0.

)
)
)
)

TV — 0 firv — oo.

(iii) p(T) <

(iv) Es existiert eine Norm auf C", so dass fiir die induzierte Matrixnorm ||7']| < 1 gilt.

Beweis:
(1) = (i9): Es gilt [|[T"u| < ||| ||u|]] — 0, da T — 0. Also folgt T"u — 0 (fiir
v — 00).

(id) = (i4i): Annahme: p(T) > 1, d.h. es existiert ein EW A € C mit |A] > 1. Sei u € C™"\{0}
der zugehorige EV, dann gilt T%u = TV 1(Tu) = T""'(\u) = ATV tu = --- = \u. Weiter folgt
T u|| = ||\ ul| = [A]” |Jul| 4 0, da |A| > 1. Dies ist ein Widerspruch zu (ii).

(7i1) = (iv): Lemma 2.26.

Submultipl.
(W) = (i) Bsgilt |77 <  |IT|" — 0,da|T| < 1.

Folgerung 2.28
Das Iterationsverfahren konvergiert genau dann wenn p(7') < 1.
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Bemerkung: (Ohne Beweis)

Aus den bisher gezeigten Satzen folgt:

Um eine Dezimalstelle im Fehler zu gewinnen, miissen K ~ —% Schritte durchgefiihrt werden.

Das heifst fiir p(T') ~ 1 ist —In(p(T")) ~ 0 und K sehr grofs. Somit muk das Ziel bei der Wahl der
regularen Matrix M sein:

(a) p(T) = p(I — M~ A) moglichst klein.

k

(b) Das Gleichungssystem My* = ¥ muss leicht zu l6sen sein.

Dies sind widerspriichliche Forderungen: Optimal fiir Bedingung (a) wire M = A = p(T') =0,
aber dann ist die Bediengung (b) nicht erfiillt.

Auf der anderen Seite ist (b) erfiillt, falls M eine Diagonalmatrix ist. Dies fithrt uns zu folgendem
Verfahren.

2.3.1 Gesamtschritt Verfahren (GSV)/ Jacobi Verfahren

Sei A regular und a;; # 0 fiir alle ¢ = 1,...,n. Setze

M := D = diag(ay, ... ,an) = T =1-D'A

Dies fiihrt zu folgender Iterationsvorschrift:

Sei ein Startvektor z° € R™ gegeben.
Iteration:

1 = (I-D 'A)z* + Db
= DY (Da¥ — AzF + ),
— xf—i_l = al“<b2_2a7'lxé€ ,izl,...,n.
i

Satz 2.29 (Hinreichende Bediengung fiir die Konvergenz des Jacobi-Verfahrens)
Falls entweder

(a) max | Y E—’“) <1 (starkes Zeilensummenkriterium)
g ki

oder

(b) max (Z %) <1 (starkes Spaltensummenkriterium)

ki
gilt, so konvergiert das Jacobi-Verfahren.

Falls (a) oder (b) erfiillt ist, heifst die Matrix A stark diagonal dominant, da in diesem Fall die
Betrédge der Diagonaleintrage grofer sind als die Summe der Zeilen bzw. Spalten der Matrix.

Beweis: Gelte (a), so folgt
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p(T) < Tl = [I-D7"A|
= max(Z 5Lk—(;">
g k=1 v

= max ge: % < 1 (wegen (a)).
CF 1T

(2

Gelte (b), so folgt

p(T) < |[T||; = max (@z h) <1 (wegen (b)). :

Die starke Diagonaldo inanz ist nur eine hinreichende Bedingung. Betrachten wir folgendes Beispiel.

Beispiel 2.30
Bei der Diskretisierung —d,,u = f in §1.5 musste ein LGS Ax = b gelost werden mit

Fiir A gilt > ikl — 1 fijy § = 2,...,n—1und fiir i = 1,n gilt > 4l 1 Fiir dieses Beispiel ist
A liFi

|aiil lais |
also die starke Diagonaldominanz nicht erfiillt. Wir wollen nun eine schwiichere Bedingung herleiten,
die auch Matrizen eines solchen Typs mit beinhaltet.

Definition 2.31 (Zerlegbare Matrizen)

FEine Matriz A = (a;;) heifst zerlegbar, falls es eine Zerleqgung von N :={1,...,n} in zwei
Teilmengen Ny, No C N gibt mit a;, = 0 ¥(i,k) € Ny x Nj.

(Zerlegung heifit: Ny £ (0, Ny £ 0, N = Ny U Ny, NyN Ny =10).

Lemma 2.32
Fiir A € R™*™ gind dquivalent

(i) A ist zerlegbar.

(ii) Der zugehorige gerichtete Graph
G(A) = (Knoten Py, ..., P,, gerichtete Kanten P;P, <= aj; # O)
ist nicht zusammenhangend, d.h. es existieren Knoten P; und Py, so dass kein Pfad zwischen
ihnen existiert. Es gibt also keine Folge lo, ..., Iy € {1,..., N} mitly = j,iy = kund a;,, , # 0
fir allet=0,..., L.

iii) Es existiert eine Permutationsmatrix P € R®*" mit
(iif)

A 0
PAPT — 11 >
( Ay Ago

mit Aj; € RPXP Aoy € RI%9 Ay € RT*P und p + ¢ = n.
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Beweis: Wir zeigen (i) <= (ii). Die Aquivalenz mit (iii) wird in den Ubungen behandelt.

(1) = (i1): Sei A zerlegbar, d.h. es existieren Ny # (), Ny # (), N = N3 U N, Ny N N2 = () und
es gilt a;x =0 V(i, k) € Ny X Na. Sei (i,k) € N1 x Ny. Annahme: G(A) ist zusammenhé&ngend.
Dann existiert eine Folge ly,...,Ir € {1,...,N} mit lp = ¢ und I, = k und a,,,, # O fiir alle
t = 0,...,L. Nach Voraussetzung ist lp =i € Ni. Da a;,;, # 0,ist 1 € No = {1 € Ny und
induktiv folgt somit [;, = k € Ny. Dies ist ein Widerspruch zur Annahme k € Ns.

(14) = (7): Sei nun G(A) nicht zusammenhéngend, existiere etwa kein Pfad zwischen P; und Pj.
Setze Ny := {l| es existiert ein Pfad zwischen P; und P} U {j}, Ny := N \ Ny. Dann gilt £ € No.
Also folgt Ny # @, Ny #£ @, N = N1 UNy, NyN Ny = (0. Sei (Z,l) € N1 x No. Wére a; # 0, so wiirde
ein Pfad von P; zu P, existieren und somit wére [ € Np. Dies ist ein Widerspruch und folglich gilt
a;; = 0 fiir alle (i,1) € N1 x Na.

Beispiel 2.33
Wir betrachten die Matrix

2 0 2
A=1 2 2 1
0 01

Dann ist der Graph G(A) wie in Abb. 2.2 gegeben. Es gelten:

Abbildung 2.2: Graph, Beispiel 2.33

(i) N1 ={1,3}, Ny = {2} ist eine geeignete Zerlegung.

(ii) G(A) nicht zusammenhéngend, da es keine Verbindung zwischen P; und P» existiert. (Siehe
Abbildung 2.2).

(iii)

. PAPT =

>

Il
= o O
O = O
S O =
DN N
S N|O
N NO

Beispiel 2.34
Sei A eine Tridiagonalmatrix ohne Nullen auf der Diagonalen und den Nebendiagonalen, d.h.
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Dann ist A unzerlegbar, da der Graph zusammenhéngend ist. (Man kommt von jedem inneren Kno-
ten zu den Nachbarn rechts und links. Siehe Ubungsaufgabe)

Satz 2.35 (Schwaches Zeilensummenkriterium)
Sei A € R™™ unzerlegbar und erfiille das schwache Zeilensummenkriterium, d.h.

|aix|

max <1
o\ sl
und es existiert ein r € {1,...,n} mit
okl .
st lar:|

Dann kann das Jacobi-Verfahren angewendet werden und es konvergiert fiir alle Startvektoren
0 n
z’ € R™

Beweis: Wir zeigen zunéchst, dass gilt |a;;| > 0. Dazu nehmen wir an, dass gilt ) |a;,| < |a;i|. Da A
kZi
unzerlegbar ist, folgt > |a;x| > 0, und somit |a;| > 0. Insbesondere kann also das Jacobi-Verfahren
ki
angewendet werden.

Analog zum Beweis von Satz 2.29 koénnen wir zeigen: p(T') < 1 mit 7= M ~'N. Wir miissen also
noch zeigen, dass p(T') # 1 ist.

Annahme: Es existiert ein Eigenwert A € C mit |A| = 1. Sei v € C™ der zugehérige Eigenvektor mit
|v]l =1, dh. s e {1,...,n} mit |vs| = 1. Aus Tv = I folgt fiir i =1,...,n:

n n
a;k Q;f
)\U- = E tkvk‘ = E 5’{‘ —_ 71 ’Uk, = E 7”’4"
(2 kil (2 9 1R Qi 9 B 9

el it P Qi
Also folgt
1
vil = Al |vil < o] > lail for] . (%)
0 kti
Da G(A) zusammenhéngend ist, existiert ein Pfad zwischen Py und P,, d.h. lp = s,...,lp = r und

aj 1, 70 (i =0,...,L —1). Mit () folgt also:

1 v
orl < 2 S lanal on] < 105 S ] < ol

T k£r T k£r

* 1

‘Ullﬁl‘ < T/ Z ‘a’l],flyk}|Uk'|+‘al]<717lh“/ull/’

‘MZL—LIL—II k’#lLfl;k#lL

< e S ey ] | < Il
alL71»lL71’ k#lp_1

[0]loo = lvs] = Jug| < [Jv]lo -

Dies ist ein Widerspruch und somit muss p(7") < 1 sein. Mit Folgerung 2.28 folgt dann die Behaup-
tung.
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Als néchstes Tterationsverfahren wihlen wir M als die untere Dreiecksmatrix von A. Wir erhalten
das Einzelschritt Verfahren.

2.3.2 Einzelschritt Verfahren (ESV) / Gaufi-Seidel-Verfahren
Sei A regular mit a;; # 0. Wir zerlegen A additivin A = L + D 4+ R und setzen
all 0
M=L+D=

Alnp  °° Ann

Da a;; # 0 ist, ist M regular und N =M — A = —R.
Dies fiihrt zu folgender Iterationsvorschrift:

Sei ein Startvektor #° € R™ gegeben.
Iteration (ESV):
gl = (L+ D)™ (b— Ra™)

i—1 n
E+1 _ 1 (k+1) (k) C
= = %<bi—§ a;|r; - a;x, ,t=1,...,n.
=1 I=i+1

Vergleiche mit (GSV):
i—1 n
k .
:Iré€+1 = a% (bz‘ - Zailxl( - Z az‘zl‘z(k)> s i=1...,n.
=1 l=i+1

Satz 2.36
Die Matrix A erfiille das starkes Zeilensummenkriterium. Dann konvergiert das Einzelschrittverfah-
ren.

Beweis: Setze T := M~'N und ¢ = max (Z ||Z“> < 1.
7 . 11

Wir zeigen: ||T||,, < ¢ < 1 und folglich ist 7" Kontraktion.

Esist |7 = sup [|Tx| . Seialso z € R" mit ||z, = 1. Setze y := T'z. Zu zeigen ||y||, < ¢,
llo]l =1

d.h. |y <q (1 <i<n).

Induktion:
n
LAy = f% <k§2 alkxk>

n
1 1
= |l < G kgz\alﬂ k] < iy 3 lakl < g

k#£1
<1 ’

k=i+1 k=1

n i—1
LS. v = —% < Yo aipTE— aikyk>

n

i—1
= il < gl X lawd 2l + X lawl Juel | <4
k=i+1 \5/ k=1 \</

= q

Wie fiir das Gesamtschrittverfahren erhalten wir auch hier folgenden Konvergenzsatz.
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Satz 2.37 (Ohne Beweis)
Sei A € R™"™ unzerlegbar und erfiille das schwache Zeilensummenkriterium, dann konvergiert das
Gaufs-Seidel-Verfahren.

Dariiberhinaus kénnen wir fiir das Gaufs-Seidel-Verfahren auch folgenden Satz zeigen, der fiir das
Jacobi-Verfahren nicht gilt.

Satz 2.38
A sei symmetrisch und positiv definit, dann konvergiert das Gaufk-Seidel-Verfahren.

Beweis: Sei A= L+ D+ R. Da A symmetrisch ist gilt: R=L" bzw. R' =L, M =L+ D, N =
~R, T=M"'N=—(L+D)"'R.

Sei A # 0 ein Eigenwert von T' in C. Sei € C" der zugehorige Eigenvektor mit ||z|l, = 1. Dann
gilt: —(L + D)™'Rx = Az, bzw. —Rx = ADx + ALz = ADx + AR z. Es folgt

D=A-L-R=A-R'"—-R — —Rzx=XMA-R' —R)z+AR"z = Mz — \Rz.
Setze a := (Ax,x) > 0, da A positiv definit, 0 := (Rz,x) = 01 +io2 € C, ¢ := (Dx,x). Dann folgt
—o=Xa— Ao =Aa—o0)

Hieraus folgt o — o # 0, da sonst —¢ = 0 und somit o« = o = 0 wére. Dies ist ein Widerspruch zur
positiven Definitheit. Also folgt

_ 2 2

“+o . .

A= -2 — = g = J1i1% daa€ Rund o« — 0 = o« — 01 — 109. Weiter
a—o ‘ ’ (a—0)(a—0) (a—01)?403’ < 1 2

haben wir

a=(Az,z) = (R'z,z)+ (Dz,z)+ (Ra,x)
= 0+200 = 6=a— 20,

(a—a1)? = (§+01)%=62+2001 + 02 =(a—201) + 2001 + 0?
= da+o? > ud+ o7,

wobei p > 0 der kleinste Eigenwert von A ist.

n
0 = (Dzx,z) = Z@u‘l’ifi > min a;; ||x||§ =mina;; =: §
K] (]
=1

J%+0§ O'%JFO'%

< 1.
(a—01)2+05 _M§+U%+U%

— WQ:

da po > 0. Also folgt insgesamt || < 1 und somit p(7T) < 1.

2.4 Gradientenverfahren

Generalvereinbarung 2.39
In diesem Abschnitt gelte stets
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1) Ac R™™ mit A= AT,
2) A sei positiv definit und

3) be R™.
Ziel: Lose das lineare Gleichungssystem Az = b.

Dazu wollen wir das Problem zunéchst in ein Minimierungsproblem tiberfiihren.

Definition 2.40 (Minimierungsaufgabe)
Sei F(x) := (A" (Az — b), Az — b), z € R™.
x heifit Losung der Minimierungsaufgabe (M), g.d.w.
(M) F(z) = min F(y).

yeR™

Lemma 2.41
A, b seineen mit den Eigenschaften der Generalvereinbarung 2.39 gegeben. Dann sind dquivalent:
1) z € R™ 16st Az = b,

9) o € R™ lost (M).

Beweis: A positiv definit == A~! positiv definit. Also gilt F(y) >0 Vy € R™.

1) = 2): Gilt Az = b, so folgt F(z) = (4710,0) = 0.
Folglich 16st = die Minimierungsaufgabe (M ).

2) = 1)z lost (M) = VF(z)=0 < 24z —-0)=0 < Az—-b=0 = 1).

Idee der Gradientenverfahren 2.42
Aus Lemma 2.41 folgt: Az =b <<=  F(z)=0.

Idee: Sei (zp)nen eine Folge im R™ definiert durch
Zntl = 2p tapty, n=12 ...
mit Koeffizienten «,, € R und Richtungsvektoren ¢,, € R™ \ {0}.
Wiéhle ay, ty, so, dass F(z,) — 0 (n — 00).
Ansatz fiir die Wahl von «,,:
(tn,7n)

Qn := Fp

<Atn, tn>
mit 5, € R und r, := b — Az, der "Residuenvektor”.

Dann gilt:
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F(zp) — F(zn+1) = <A*1rn,rn> — <A*1(rn — Aapty),
= 20y (tn, ) — a2 (Aty, ty)

tnﬂ"n) tn 77"71

(*) - Qﬁn Atn tn /Bn Atn,tn

. tn77"n>2 0<ﬂn§2
- ( ﬂn)ﬂn <Atn, tn> > 0.

>0

= Fir0<g8, <2ist F(z,) < F(2n41)-
= (F(zn))nen ist monoton fallend.

Also folgt: lim F(z,) = A > 0 existiert.
n tooo

= (F(zn) — F(2n—1))nen ist Nullfolge.

Man nennt 3, den Relaxationsparameter der Gradientenverfahren.
Die Gleichung (*) zeigt:

Fir 8, = 1 wird F(z,) — F(2p+1) maximal und F' nimmt auf der Geraden z,, + apt, ein Minimum

al.

Ty — Aantn>

95

Definition 2.43 (Allgemeines Gradientenverfahren)

leb—Azl

und firn=1,2,... gt
(tn,Tn)
(At t,)’

Zngl = Zn + Oéntru

an:ﬁn

T'ny1 = b— AZnJrl =Tn — OénAtn

Seien (Bn)nen und (tp)nen gegeben mit 3, € [0,2] und t, € R™. Dann heifst die Folge
(zn)nen, zn € R™ Lésung des Gradientenverfahren mit Startwert zy € R™ wenn gilt:

Definition 2.44 (Konvergenz)
Ein Gradientenverfahren heif$t konvergent, falls gilt

Dies st aquivalent zu

2.4.1 Eigentliches Gradientenverfahren
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Definition 2.45 (Eigentliches Gradientenverfahren)
Das Gradientenverfahren 2.43 mit t,, = r, und (3, = 1 heifit eigentliches Gradientenverfah-
ren. Die Richtungsvektoren werden in Richtung des Gradienten von F gewdhlt:

r,=b— Az, = —%VF(ZH).

Satz 2.46 (Konvergenz)
Das eigentliche Gradientenverfahren 2.45 ist konvergent.

1
Schwarzsche Ungleichung m 2
Beweis: Es gilt Vo € R™ : (Az, z) < > a?j (x, )
ij=1
1
m 2
Setze k := ( > a%) . Dann gilt Yz € R™ \ {0}:
ij=1
(Az, z) <k.
o) =
Mit (x) aus 2.42 folgt:
(rp,ma)? 1
F TL_F n :727 ny!'n) -
(20) = Floust) = s > 2 ()
Aus 2.42 wissen wir, dass F'(z,) — F(zp+1) — 0 fiir (n — 00). Also folgt fiir k # 0: 7, — 0 (n — 00).

O

Bemerkung 2.47
Je zwei aufeinanderfolgende Residuenvektoren des eigentlichen Gradientenverfahrens stehen senk-
recht aufeinander:
<Tna Tn—‘rl) = <T7L7 Tn — anAtn>
= <rn, T — 7<X;LZ;L2>ATH>

= (rp,mn) — (rn,mn) = 0.

Definition 2.48 (Gradientenverfahren beziiglich der kanonischen ON-Basis des R")
Wiahle 8, = 1 und tiyj,, = € firi =1,....,m; j = 0,1,2,..., wobei e; € R™ der i-te
Einheitsvektor ist. Dann folgt mit n =1+ jm:

{eirn) (ei,b— Az,)

. 1
(Aej,ei) — ai
m

= (%(bz - 1:231 ailZn,l)

ay =

m
1
= Zny1 = Zp T+ a_(bi - E Qi1 %n,1)€;-
i
=1

D.h. z,y1 und z, unterscheiden sich nur in der i-ten Komponente.

Das ist das Einschrittverfahren (siehe Numerik ).
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Satz 2.49 (Konvergenz)
Das Gradientenverfahren 2.48 ist konvergent.

Beweis: Setze v := max a;. Dann ist mit (x) aus 2.4
i=1,....m

n=itjm <€z‘~, T’n>2

2
e > (0.
(Aej, e;) (rai)” 2 0

F(zn) — Fzn11) >

1
Y
Da nach 2.4 F(z,)— F(z — 0, folgt r,;, — QV¥i=1,...,m und somit r,, — 0 (n — o00).
2.4. Cony(uz)ate 7zlf"relc)tion Verfafiren (CD " ( ) o

Definition 2.50 (A-orthogonal)
FEin System von k Vektoren qi,...,qx € R™ (k < m) heifit A-orthogonal oder A-konjugiert,
wenn gilt:

Fir k = m bilden A-orthogonale Systeme eine Basis des R™. Wir setzen (x,y) , = (Ax,y),

]l 4 = /(z, 2), = V/{Az, 2).

Definition 2.51 (cd-Verfahren) conjugate direction”
Sei {q;}", A-orthogonal. Wihle im allgemeinen Gradientenverfahren 2.43:

th =qn und B, =1 firm=1,...,m.

Satz 2.52 (Konvergenz der cd-Methode)
Das cd-Verfahren ist fiir beliebige Startvektoren z; € R™ ein endliches Verfahren. Es gilt:

Tm+1 = 0

und somit

Zmtl = A = 2.

Beweis: Laut Gradientenverfahren folgt induktiv fiir 1 <n < m + 1:

n—1
Tn =Tn-1— Op_1Aly_1 =Tpn_2 — p 2Aly o —an_ 1Aty 1 = ... =7y — § a; At;.

i=n—I

Firl=n—7j,1<j <n folgt

n—1
Tn =T — § a;Ag;.
=]
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A-orthogonal
= (@, r5) — @ (Agj, q5)

(j,75) — (g, r5) = 0.

= <Qj7 rn>
Def. von a;

== <Qj;7“m+1> =0Vy=1,...,m.
= 7Ty =0, da {¢;}]2, Basis des R™.
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2.4.3 Conjugate Gradient Verfahren (CG)

Definition 2.53 (cg-Verfahren) “conjugate gradient”
Wihle 6, =1 VYn=1,...,m+1, t; =ry und

Z‘/-'n, =r,+ f}/n—ltn—l

mit Y1 1= —% firn =2,3,.... Idee: Das A-orthogonale System wird mit Hilfe des

Schmitd’schen Orthogonalisierungsverfahrens bzgl. (-,-) 4 schrittweise aufgebaut.

Satz 2.54 (Konvergenz des cg-Verfahrens)
Sei z1 € R™ und t; = r1 = b — Az;. Dann lautet das cg-Verfahrenfir n =1,...,] mit [ < m:

_ (tnyTn)
Un = TAtp tn)

Zn4l = Zn + Qply
Tpt1 = b — Azn—i-l

— <A’I”n+1,tn>
= T At )

tpr1 = Tnt1 + Yntn

Es erfiillt die Gleichungen
a) <Atz‘,tj>=0 1<5<i—-1

b) <Ti,rj>:O 1§]§’L*1
¢) (ti,ry) = (rj,ry) 1<j<i

und ! < m ist so gewahlt, dass gilt r;11 = 0.

Beweis: Folgt aus linearer Algebra und Satz 2.52.

Bemerkung 2.55

Fiir Gleichungssysteme resultierend aus Diskretisierungsverfahren, wie z.B. der Finit Elemente Me-
thode, ist m so grofs, dass man in der Praxis weniger als m Schritte iterieren wird. Dass dies Sinn
mach zeigt die folgende Fehlerabschatzung.

Satz 2.56
Sei k(A) = Amax(4) die Kondition von A € R™™ Dann gilt fiir das cg-Verfahren fiir Az = b:

)\min(A)
k(A) —1 "
Hzn—wllA§2< 4) ) o1 — el

VEA)+1
wobei ||y|| 4 := /(Ay, y) definiert ist.

(ohne Beweis)

Bemerkung 2.57



60 KAPITEL 2. LINEARE GLEICHUNGSSYSTEME

1) Vorkonditionierung: Anstelle von Az = b 16st man C~1A(C~1)Ty = C~1b, wobei y = CTx ist
und C auch folgende Anforderungen erfiillt

1) C € R™™ regular.
2) Gleichungsysteme mit C sollen einfach zu lsen sein.
3) k(C7TA(C™H)T sollt méglich nahe an 1 liegen.

2) Ist A nicht symmetrisch und positiv definit, so kann man z.B. AT Az = ATb anstelle von Az = b
16sen, denn AT A ist positiv definit und symmetrisch.
Dieser Ansatz fiihrt auf das bicg-Verfahren.

3) Fiir eine gegbene Toleranz TOL, kann
(rn,rn) <TOL

als Abbruchbedingung verwendet werden.

2.5 Zusammenfassung

Wir haben in diesem Kapitel verschiedene Methoden zur Losung linearer Gleichungssysteme der
Form
Ax =b

kennengelernt und naher betrachtet,
(a) fir A € R™*" regular

(b) fur A € R™ ™ mit m > n (d.h. iiberstimmt)

Verfahren:

(a) Direkte Verfahren oder Direktloser (LR~, Cholesky, QR-Zerlegung)

(b) Iterative Verfahren oder Iterativenloser (Jacobi-, Gauf-Seidel-Verfahren)

Vor- /Nachteile

e Direkte Verfahren: Die Lésung wird bis auf Rundungsfehler exakt berechnet. Sie sind fiir
grofe Gleichungssysteme sehr langsam (die Anzahl der arithmetischen Operationen liegen in
O(n3)); es tritt ein fill-in Problem auf: In Anwendungen ist A hiufig diinn besetzt, d.h. pro
Zeile sind nur k viele Eintrége ungleich Null, wobei k£ unabhéngig von n, und diese Eintrége
sind unstrukturiert verteilt. Eine typische Zeile sieht dann so aus:

Bei Zerlegungsverfahren werden Nulleintrdge u.a. durch Eintrdge ungleich Null ersetzt, der
Speicheraufwand zum Speichern von A liegt in der Regel bei O(NK) = O(N); nach der
Zerlegung wiichst der Speicheraufwand bis auf O(N?).
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e Iterative Verfahren: Die Losung wird nur ndherungsweise bestimmt und die Geschwindig-
keit der Konvergenz héngt von p(7T') (Spektralradius) ab.

Allerdings ist der zusétzliche Speicheraufwand sehr klein (das Gaufs-Seidel-Verfahren hat gar
kein zusétzlicher Speicheraufwand). Iterative Verfahren benétigen ein gutes Abbruchkriterium,
z.B. || Az —b|| < TOL.

Beschleunigung/Stabilisierung

Das Hauptproblem: Einfluss durch Rundungsfehler und ihre Reduzierung.

Beispiel: Die Pivotisierung bei der LR-Zerlegung. Die Kondition des Problems ist proportional zur
Kondition von A: cond(A) = ||A||||[A~!||. Durch Vorkonditionierung kann versucht werden, die
Kondition des Problems zu verkleinern.

Beispiel: Wihle C1, C5 reguldre Matrizen. Dann gilt:

Az =b <= C1AC,Cylz = Cib
N =

=A =T =b
mit A := C1ACs, 7 := C;la:, b:= Cyb und Cy,Cy so gewahlt, dass cond(fl) < cond(A) gilt.

Beschleunigung durch Relaxation:

Ein Iterationsverfahren hat die Gestalt
PR =b— Ax® MyF =k P =gk gk
Statt 4* zu korrigieren, wihlt man einen Relaxationsparameter w > 0 und setzt
k+1

x :xk+wyk.

Dies fiihrt auf das SOR~Verfahren 2.

2Succesive Over Relaxation.
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Kapitel 3

Nichtlineare Gleichungen/
Nullstellensuche

In diesem Kapitel wollen wir uns mit der Berechnung von Nullstellen einer gegebenen Funktion
f:R* — R

beschéftigen. Da man die Losung linearer und nichtlinearer Gleichungen auch als Nullstellensuche
einer geeigneten Funktion f auffassen kann, ist diese Fragestellung eine direkte Verallgemeinerung
der Losung linearer Gleichungsprobleme, die in Kapitel 2 behandelt wurde. Bei der Bestimmung
von Nullstellen unterscheiden wir zwei Problemstellungen.

Problem A: Gesucht ist ein z* € R”™ mit f(z*) = 0.
Problem B: Gesucht sind alle (groftes, kleinstes) z* € R™ mit f(z*) = 0.

Beispiel:

f(z) = Az —b, Aec R™" (siehe Kap. 2).

f(x) = az? + bz + c. Hier sind alle Nullstellen explizit berechenbar.

f(x) = cos(x). Gesucht z* € [1,2] = 2" = 7.

Wir beschéftigen uns im wesentlichen mit Verfahren zur Losung vom Problem A fiir n = 1 und
fila,b] — R

glatt.

Wir nehmen an, dass es ein 2* € [a,b] gibt mit f(z*) = 0, etwa f € C%a,b) und f(a)f(b) < 0.
Alle Verfahren konstruieren eine Folge (x(k))k oy it ) — z* f(z*) = 0. Direkte Verfahren
existieren nur in Spezialfillen.

3.1 Verfahren in einer Raumdimension

3.1.1 Intervallschachtelungsverfahren (ISV)

Voraussetzungen: Sei f € C°(a,b) mit a < b und f(a)f(b) < 0.

Verfahren: Setze ag := a, by := b und 2 = %(ao + bp).

63
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Firn=20,...,N:
Falls f(ay,)f(z™) =0, dann Abbruch.
Falls f(an)f(z™) <0 = ani1 = an; bpy1 =™
Falls f(a,)f(z™) >0 = apyp1:=2"; byp = by,
Setze 2"t = L(as 11 + botr).
Satz 3.1 (Konvergenz von ISV)
Seien (an)pens (On)pen s (x(”))n oy durch das Intervallschachtelungsverfahren definiert. Dann gilt
lim a,= lim b,= lim =™ =z* und f(z*) = 0.

n — o0 n — oo n — o0

Es gilt die Fehlerabschétzung:

‘x(") — x| <27 |p—qf.

Beweis: Es gilt (an), .y monoton wachsend und (by,),,cy monoton fallend und
0 < b, —a, =2"b—a), a, < b,a < b,. Daraus folgt (an),cr, (bn),cy konvergieren und
lim a,= lim b,=:2%Da f € CY folgt weiter f(z*) = lim f(a,)= lim f(b,).
n — oo n —— o0 n — oo

n —— oo

Nach Konstruktion gilt stets f(ay)f(b,) < 0, also folgt

fa)?= lim (f(an)f(ba)) <O = f(a*)=0.

n — oo

Da z* € (x('”‘),bn) oder x* € (an,x(”)) folgt auch

o) — g

1 ,
} = 3 lba—an| <277 (b—a).

< min{‘x(”) - bn‘ : ‘{L’(n) — ay

Bemerkung: Das Verfahren ist sehr robust aber auch sehr langsam: Man benétigt etwa 3 Schritte,
um eine Dezimalzahlstelle Genauigkeit zu gewinnen.

Aufwand: Eine Auswertung von f pro Schritt.

Das Verfahren wird in der Regel eingesetzt, um grob ein Intervall [a, b] zu bestimmen, in dem eine
Nullstelle liegt. Zur genaueren Berechnung der Nullstellen werden dann effizientere Verfahren ein-
gesetzt.

3.1.2 Newton Verfahren

Idee: Sei 2(%) eine gegebene Approximation von z*, d.h. h := z* — 2(¥) £ 0 ist klein. Dann gilt mit
der Taylorentwicklung:

0= f(&*) = f(@® +h) = f(a®) + f'(z")h + OR?).
Unter Vernachlassigung der Terme hoherer Ordnung folgt

f (@)
 f'(2®)

B =
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Daher sollte z(#t1) = (k) 4 p = z(k) — Jf,((a;((z)))) eine bessere Approximierung von z* sein als z(*).

Verfahren: Sie Startwert 2(°) gegeben. Setze iterativ:

(k)
L) o f@)
f(a®)

Aufwand: Eine Auswertung von f und f’ pro Schritt, d.h. es mu$ gelten f € C! und f’ muss
bekannt sein.

Geometrische Interpretation

Sei I(z) die Linearisierung von f an der Stelle z(®), d.h. [(z®)) = f(z®), I'(z®)) = f(z*)) und
I(x) = az + b. Dann folgt aus der Taylorentwicklung I(z) = f(z®)) + f/ (™) (z — z(*)).

Statt Nullstellen von f zu suchen, definieren wir 21 Nullstelle von
0= Fa®) + /(@) (@D - 4¥),

Dies ist gerade das Newton Verfahren.

f(x)

(%)

I X(k+l) X(k) X

Abbildung 3.1: Newton Verfahren, Beispiel 1

Abbildung 3.1 veranschaulischt das Newton Verfahren. Mit dieser Anschauung sehen wir direkt ein,
dass das Newton Verfahren nicht fiir alle Startwerte 2(?) konvergieren wird. Abbildung 3.2 zeigt
eine solche Situation. Hier gilt }x(k)‘ — 00. In Abbildung 3.3 gibt es zwei Nullstellen, aber es ist
nicht klar, welche der beiden Nullstellen gefunden wird.

Satz 3.2 (Konvergenz des Newton-Verfahrens)
Sei f € C?(a,b) und es es existiere ein z* € (a,b) mit f(z*) = 0. Sei m = r<nir<1b\f’(x)| > 0
a<z<

und M := rgai(b]f”(xﬂ. Sei p > 0 so gewahlt, dass B,(z*) = {z | |z — z| <p} C [a,b] und
a<z<

q:= %p < 1. Dann konvergiert das Newton-Verfahren fiir jeden Startwert z(9) e B,(x*). Es gilt
die a-priori Fehlerschranke

@ o < et o) < R
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y

o

f(x) 1(x)
/

X 1) X

Abbildung 3.2: Newton Verfahren, Beispiel 2

y
()
1)
—
: VAL
N2
© X x

Abbildung 3.3: Newton Verfahren, Beispiel 3

und die a-posteriori Fehlerschranke

(b) |2®) — 2| < L | p@®)] < 2L |0 —:E(k_l)‘Z

— 2m

Bemerkung Aus dem Mittelwertsatz folgt ’f 2)- f(y) =|f'(§)| >mVa,yeBy(a*); x#y =

|z —y| < L|f(z) = f(y)|. Folglich ist z* ist die elnmge Nullstelle in B,(z*) und z* ist einfache
Nullstelle, d.h. f(z*) = 0 und f’(2*) # 0.

Beweis: Nach Taylorentwicklung (Satz 1.33) gilt

(1) fy) = f(@) + f'(2)(y — ) + R(y, x) mit

1
Riya) = [ £ = dE = (g =) [ £+ sly = 2)(1 - ).
0

x
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Also folgt fiir alle x,y € B,(z*)

1
(2) [R(y,2)| < |y —a|* M [(1 = s)ds = ¥ |y — «f
0

Fir o € B,(z*) setze ®(x) := ]'f,(é)). Dann folgt
@) 2" = |@-a7) - 5| = (—% /(@) + (2* = 2)f'(@)]
1) *
2 LR ,;c)’ iy R, )] =N,

Also folgt fiir v € B,(z")

|®(z) — 27| o |z — "%,
]\4 2 __

3) _
amP” =1qp < p, dag=g0p<1.

INIA

Insbesondere folgt (%) € B,(z*), falls (¥ € B,(x*).

Sei pk) = % ’:E(k) —x*

, so gilt wegen (3)

— * _ w12
P = B e (oY) —a| < 2L (3 [a0D — a7
= ()<< (o)
= [a® -2 < o < 32 (40)” = 3 (3% o0 —a])”
M \2* "
= 21TT[n<2mp) 2M .

Dies ist die a-priori Abschédtzung. Da ¢ < 1 ist, folgt q(Qk) — 0 = 2z — g*
Fiir die a-posteriori Abschéatzung benutzen wir nochmal (1) mit y = Zy und x = PGV O

folgt
f(x(k)) = f(a;(k—l)) + (a;(k) — x(k—l)) f'( ) R(x (k)7$(k—1))
z(k—1)
= R(x(k)’x(kfl)), da x(k) = x(k 1) ]{.’((m(k+1)))
und somit
MWS
2™ —z*| < LfE®) - f(z)] =

m [ F@)],
|

R(z®), p=1)) < M |;(k) _xuf—l)ﬁ

m

D!

O

Bemerkung Falls z© € B »(x*), so konvergiert das Newton-Verfahren sehr schnell. Sei zum Bei-
spiel ¢ = 3, so gilt nach 10 Iterationen |:c(10 — :z*| < QquIOM ~ %10—303.

Vergleichen Wir dies mit dem Intervallschachtelungsverfahren so folgt mit dem selben Startintervall:
b—a| =p=q2m o = 1 fallsg =3 1 gilt. Nach 10 Schritten gilt also

}m(lo)—x| 271 p—al =2~ 11]\”}[ 10~ 42]\7.
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Folgerung 3.3
Fiir f € C?(R) existiert fiir jede einfache Nullstelle z* eine Umgebung U um den Wert z*, so dass
das Newton-Verfahren fiir alle (¥ € U konvergiert und }x(k) — x*! < qzk flir g < 1.

Beweis: Ubungsaufgabe.
Offene Fragen:

(a) Wie kann p effektiv bestimmt werden?
(

)

b) Kann die Berechnung von f’ umgangen werden?

(c) Was passiert, falls f'(z*) = 0 ist, d.h falls 2* mehrfache Nullstelle ist?
)

(d) Gibt es noch schnellere Verfahren?

Kombination von Newton Verfahren und Intervallschachtelung

Idee: ISV einsetzen, um ausreichend nahe an eine Nullstelle £* zu kommen, so dass das Newton
Verfahren schnell konvergiert.

Verfahren: Seien a < b gegeben mit f(a)f(b) < 0.
Setze x 1= %(a-i— b), a:=a, bi=b, fo:=f(x), fo:= f(a).

Solange |fo| > TOL:
Falls f,fo <0, dann b := z, sonst (a:=z; f, := fo)
€=z —
f'(@)
fri=f(z)
Falls (|fi] > |fo| oder = & (a,b)), dann
a:=a, bi=b, x:= a+b), fr:= f(az)}

fo:=h

3.1.3 Sekantenverfahren

Ein Nachteil des Newton-Verfahrens ist die Auswertung von f/(z(*)).

Idee: Ersetze die Ableitung durch einen Differenzenquotient

=
X
=
~—
|
~

(k—1)
10 (k)Y (z )
F @) 2B _ ph—1)

Sekantenverfahren:
x(k) — [B(kf 1)

fa®)) — fz=1)

2B — (k) _ f(x(k))
Geometrische Interpretation:

Die Sekante an f durch die Punkte ), 2(:=1) ist gegeben durch

y—fa®) _ faV) — fW)

x —xk) pk=1) _ p(k) 7’
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wobei y = y(z) die Gerade durch die Punkte (x(k_l), f(x(k_l))) , (x(k), f($(k))) ist, d.h.

L1 _ f(p09)
() = f( ) — f(@™) (x_x(k)> + fa®).

x(k=1) — (k)

2**1) wird also als Nullstelle der Sekante withlen.

_jé/x* 7 ) w0 X

Abbildung 3.4: Sekantenverfahren, geometrische Interpretation
Bemerkung: Das Verfahren erfordert 2 Startwerte (9, z(!) (siche Abb. 3.4). Das Verfahren er-
fordert eine Auswertung von f pro Iterationschritt (speichern von f(z(*~1).

Satz 3.4 (Konvergenz des Sekantenverfahrens)
Sei f € C?*(a,b) mit z* € [a,b], f(z*) = 0 und m := min |f'(z)] > 0, M := max |f"(x)]. Sei

a<x<b <b
q:= 2L p < 1 fiir p > 0. Seien 2@, 2 € B (z*), 20 # 2
und (x(k))k cy die Folge definiert durch das Sekantenverfahren.

Dann gilt (%) ¢ B,(z*) und z®) — z* fiir k — oco. Es gelten folgende Fehlerabschétzungen.

(a) A-priori Fehlerschranke:

2m
(k) _ o*| <« 222
‘1‘ T Mq ,

wobei (1) ey die Folge der Fibonacci-Zahlen ist, d.h. vo = v1 = 15 Ygq1 = Y + Vh—1-
(b) A-posteriori Fehlerschranke:

< % ‘f(w(m)‘ <M ‘x(m _ x(k—l)‘ . ‘xw) _ k2|

(k) _ %
‘x . — 2m

Beweis: Ubungsaufgabe.

Folgerung 3.5 (Konvergenz des Sekantenverfahrens)
Fiir f € C%(R) existiert eine Umgebung U um jede einfache Nullstelle, so dass z®) 2 fir
2@, (1) e U und es gilt ‘:c(k) — x*} < %”(?‘k mit ¢ <1 und o = %(1 +/5) =~ 1.618.
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Beweis: Zunichst zeigt man analog zu Satz 3.3, dass es ein p > 0 gibt, so dass die Voraussetzungen
von Satz 3.4 auf U = B,(z*) erfiillt sind. Mit der A-priori-Abschétzung von Satz 3.4 ist noch zu

zeigen, dass gilt ¢7F < ?j‘*k mit ¢ < 1 geeignet gewahlt.
Ansatz: v, = AF mit A > 0. Aus Ve — Ve—1 — Ve—o = 0 folgt

: 1
M2 —A-1)=0 <= N -A-1=0 = A= 5(1i\@).
D.h. die allgemeine Losung der Differenzengleichung ¢ — yx—1 — yx—2 = 0 ist
e = A + eoAs

fir ¢1,c0 € R.

Mit v = 71 = 1 folgt ¢1 = %7 co = —%. Also v, = % ()\]f*'l — /\g+1>. Aus |A2| < |A1] folgt

Ve = %)\]i und somit

k
q’Yk < q2\/g(>\l)7 daq<1

mit q := q% <1 und a = A;.

3.1.4 Zusammenfassung

Fiir die betrachteten Verfahren gilt:

ISV: ‘a:(k) — x*} < @ (%)k, eine Auswertung von f pro Schritt.
Newton: |:v(k) — x*’ < 2ﬁmq2k, je eine Auswertung von f und f’ pro Schritt.
Sekanten: }:L"(k) — x*| < %ql'ﬁlsk, eine Auswertung von f pro Schritt.

Annahme: Die Auswertungen von f und f’ seien gleich aufwéindig. Dann hat das Newton-Verfahren
pro Schritt den doppelten Aufwand.

Vergleich der Verfahren:
Definiere z(%) := 22¥ beim ISV und Sekanten-Verfahren. Dann ist auch hier der Aufwand in einem
Schritt durch zwei Auswertung von f gegeben. Es gilt:

* —a 2k —a k
ISV: o) —a| < B39 (3)" < 52 (1)

Sekanten: }z(k) — x*‘ < QWW[](A?“) — 2%&'(2.618’“)'

Bei gleichen Aufwand konvergiert das Sekanten-Verfahren also schneller als das Newton- oder IS-
Verfahren.

Problem beim Sekanten-Verfahren

k) .(k—1)

Die Fehleranalyse wurde ohne Beriicksichtigung von Rundungsfehlern gemacht. Seien z(*), 2!
sehr nah an z*, dann liegen auch f(z®), f(z(*=1)) nahe zusammen und haben gleiches Vorzeichen.
Da die Differenz in diesem Fall schlecht konditioniert ist, kann es hier zu Ausléschungen kommen.
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3.2 Konvergenzordnung von Iterationsverfahren

Wir betrachten allgemeine Iterationsverfahren auf einem Banach-Raum X der Form

2D = ¢ (az(k), e ,x(k_j)) ,k>5>0 (1)

mit Startwerten (@, ..., 2() und Iterationsfunktion ® : X9 — X.

Definition 3.6 Lokale Konvergenz
Das Iterationsverfahren (1) konvergiert lokal gegen ein x* € X, falls es eine Umgebung
U von z* gibt, so dass fiir alle 20, ... 2V € U die Folge () en gegen x* konvergiert.

Definition 3.7 (Konvergenzordnung)
Sei X ein Banach-Raum und (x(k))keN Folge in X, die gegen ein x* € X konvergiert. Die
Folge hat mindestens die Konvergenzordnung p > 1 falls

s+ — o

Je® — 2P

lim sup

k — oo

=C

mit c <1 firp=1undc < oo firp>1.

Die Ordnung ist genau p, falls ¢ # 0.
Der Fall p =1 heifit lineare Konvergenz und falls fir ein p > 1 qult

H.Q’J(kJrl) — ¥

[l — ="

lim sup =0,

k — o0

so spricht man von superlinearer Konvergenz.

Beispiel: Das Newton-Verfahren konvergiert quadratisch (p = 2), da ‘x(kﬂ) — :1:*‘ <ec- |x(k) —z* ‘2.
Das ISV Verfahren konvergiert linear, da |x(k+1) — x*’ < % ’x(k) — 93*’

Satz 3.8 (Konvergenzordnung von Iterationsverfahren)
Sei I = [a,b], ®: 1 — I, ® € CP(I). Sei 20 ¢ I, 2D = &(z®) k& > 0 und es gelte
z®) — 2* mit z* = ®(2*). Dann gilt:

(i) p=1: 2® — 2* mind. linear <= |®'(z*)| < 1.

(i) p>2: z® — 2* mind. mit der Ordnung p, g.d.w.
M (z") =0, 1<v<p-1).
Beweis: (i) Es existiert eine Zwischenstelle &, zwischen 2% und z*, so dass gilt
o eE®) —ar oo
i e A [ = [

Also folgt die Behauptung.
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(ii) “=": Annahme: 3 j < p mit ®U)(2*) # 0 (j minimal gewihlt). Dann folgt mit Taylorentwick-
lung:

oD g = P(a®)) — B(a¥)
p—1 @(”)(!E*) (k?) \V (p) (1‘“"')7:1?*)7’
= S 0y g e

p!

mit &, zwischen 2 und z*. Mit der Annahme folgt

p

k41 x (I’(’>(T*) L «\J k) % (k) s\ v—J—1
gkt _ g —T(:p()—x) . 1+(x( —x) Z a,,(x —I)
v=j+1
b
mit a, = %. Fiir grofse k gilt |b| > %, da 2z® — 2* und a, unabhingig von k beschriinkt.
Wir erhalten also
i) (*
2 4!
Da z®) — 2* mit Ordnung p, gilt
’ (k+1) _ *‘ 1 ' i
x x J=p
N >7>7‘q)(ﬂ) * ’ (k) _ .
o0 c > ‘l(k) _x*‘p = 2]' (35 ) x x — 00

Dies ist ein Widerspruch, da nach Annahme j — p < 0.

“«<=": Es gilt
pil v * v (
gt g = 2 55 ) (2® — 2*)" + % (2 — )"
= % (;(;(k) _ l’*)p, da CI)(V)(I*) -0 (1 <v< p)
pF D) g k—o0 *
= |\<>| = G®P(&) =7 o) (a),

k) k) k=00 4

da &; zwischen ) und z* und z®) "=

3.2.1 Verfahren héher Ordnung (p = 3)

1. Idee: Konstruiere Verfahren 3. Ordnung aus einer Linearkombination von 2 Verfahren zweiter
Ordnung. Seien ®g, ®; Iterationsverfahren, die quadratisch konvergieren. Betrachte

B,(z) = (1 — 8)Bo(z) + 5P ().

Dann gilt ®(z*) = (1 — s)®((z*) 4+ s®}(2*) = 0, da nach Satz 3.7 ®((z*) = | (z*) = 0.

Bestimmt man s so, dass ®”(z*) = 0 gilt, so konvergiert nach Satz 3.7 ®; mindestens mit Ordnung
3. (Beispiel: siehe Ubungsblatt).

2. Idee: (Verbessertes Newton-Verfahren)
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Ansatz: ®(z) =z — g(z) f(z) — h(z) f(x)? mit g(z) # 0, h(x) # 0 in einer Umgebung von z*. Dann
gilt ®(z*) =2* <= f(z*)=0.

Idee: Bestimme g, h, so dass ®'(z*) = ®”(2*) = 0 fiir eine einfache Nullstelle z*.
Sei z* einfache Nullstelle, so gilt

®'(2) =1~ f'(2)9(x) — f(z)g'(z) — 2f(x) f'(x)h(z) — W' (2) f*(2).
Also folgt ®'(z*) =0 TS0y _ flx9)g(z*) =0 = g(z) = 7

Analog folgt fiir ®” mit dieser Wahl von g:
(x) = —f'(2) (g (&) + h(@)f(@) + 2h(2) f'()) = f(2)(--) = (g(@) [ (x))

N——
—
= D6 oh(@) (@)~ fa)(-)
Aus
0= (I)//(.’E*) — -;/((j*)) o 2h($*)f/($*)2

folgt also fiir die Wahl von h:

L@ W)
" =5 ) 2P

Folgerung 3.9 (Verbessertes Newton-Verfahren)
Das Verfahren, definiert durch

fl@) 1f(@)*f"(=)
fll@) 2 f(z)?

konvergiert in der Umgebung einer einfachen Nullstelle z* von f mit mindestens dritter Ordnung.

O(x) =2 —

3.2.2 Newton-Verfahren fiir mehrfache Nullstellen

Definition 3.10 (Ordnung und Vielfachheit einer Nullstelle)
Sei f € C™(I) (n > 1). f hat eine Nullstelle z* der Ordnung (n— 1) bzw. der Vielfach
heit n gdw. f¥)(2*) =0, 0 <v <n—1 und f™(z*) #0.

Satz 3.11

Sei f € C"(a,b), n > 1 und z* € (a,b) eine n-fache Nullstelle von f mit f)(z) # 0 (z #
2*) 0 <k <n—1und f™(z) # 0 fiir € (a,b). Dann existiert eine Umgebung von z*, so dass das
Newton-Verfahren mindestens linear konvergiert.

Beweis: Setze ®(x) = { Ty ¥ +x ’

T : x=21x"
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Zu zeigen: ® € Cl(a,b) und |®(x)| < 1. Zusammen mit Satz 3.8 folgt dann die Behauptung des
Satzes. Es gilt

. I f(z) L'Hopital . .. O V@) w0 ok
llzm ®(z)=a” = lm gy = @7 = m Tmny = e =

Weiter folgt mit L’Hopital und ®'(z) =1 — f,(w)QJ;{T(/;L'Q)f//(w) = f(;f/)(];l;gw)

lim ®'(z) =1-21 = [®/(z*)] < 1.
Idée: Modifiziere das Verfahren je nach Vielfachheit:

Wiéhle @, (z) =z — oaf,((x) a € R fest

x)’

— (") =1-92=0 <= a=n

Folgerung 3.12
Sei f € C"(a,b), n > 1 und x* eine n-fache Nullstelle, dann konvergiert das Verfahren

w )

k+1)
" ®)

2

quadratisch gegen x*.
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3.3 Nichtlineare Gleichungssysteme

~—

Problem: D C R" abgeschlossen und konvex (n >
f:D — R", dh f(x) = (fi(x),..., fu(2))", @

Gesucht: z* € D mit f(z*) =0, d.h. fi(z*) =0 (G =1,...,n).
Annahme: Es existiere ein z* € D mit f(z*) = 0.

2
eD.

3.3.1 Newton-Verfahren fiir nichtlineare Systeme

Idee: Iteriere analog zum skalaren Fall mit

2" =z — D fa®)~1 (0.
Dabei ist Df(x) die Jaccobi-Matrix von f und Df(z)~! die Inverse.

Algorithmus: (Newton-Verfahren fiir Systeme)
Sei z(0) € R™ gegeben. Fiir k >0 iteriere
1) Lose Defektgleichung: Df(z®) y®) = —f(z(k)

2) Setze neu Iterierte: 2B+ — (k) y(k)

Problem: In jedem Schritt muss ein n x n LGS gelost werden. Haufig wird D f auch fiir einige
Schritte festgehalten. Mit der LR-~Zerlegung kénnen diese Schritte dann sehr effizient gelost werden.

Satz 3.13
Sei f; € C*(R) und Df(z*) reguliir (d.h. * einfache Nullstelle).
Dann existiert ein p > 0, so dass fiir alle (0 € B,(z*) := {z | ||z — 2*|| < p} gilt: ¥ € B,(z*)

und z®) *Z% 2% mindestens quadratisch.

Beweis: Analog zum Satz 3.2
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Kapitel 4

Eigenwertprobleme

Definition 4.1 (Eigenwertproblem)
Sei A € K™ mit K € {R,C}. Dann heifit A € K Eigenwert von A, wenn ein Eigenvektor
x € K" mit x # 0 existiert mit der Figenschaft Ar = \x.

Vollstindiges Eigenwertproblem: Finde alle EW (und EV) von A

Partielles Eigenwertproblem: Finde einzelne EW (und EV) von A (2.B. den gréfiten und
kleinsten EW)

4.1 Grundbegriffe der linearen Algebra und theoretische Grundla-
gen

Notation und Grundlagen 4.2
1) Fiir 2,y € K" bezeichne (z,y) und ||z|| das euklidische Skalarprodukt und die euklidische Norm.

2) ||Al| bezeichnet die Spektralnorm von A. Bemerke: p(A) < ||A]|, fiir alle Normen ||-|,.
3) Fiir K = C ist A7 := AT. A heift hermitesch, falls A? = A.
4) Die EWe von A sind die Nullstellen des charakteristischen Polynoms

pa(A) :=det(A — \I).

5) Ist ein EW A bekannt, so findet man alle EVen zu A durch Losung des singuldren homogenen
Gleichungssystems

(A=X)z =0
Umgekehrt bestimmt ein EV x # 0 den zugehorigen EW A durch den Rayleigh Quotienten

(Ax, z)

B =

d.h. A = R(z).

6) o(A) :={A| A EW von A} heift Spektrum von A.

7
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7) Das charakteristische Polynom besitzt die Darstellung

s

pa(z) = [ [z =),

=1

wobei \; die paarweise verschiedenen Eigenwerte von A sind. Es gilt Y7, 0; = n und o; heifit
algebraische Vielfachheit von A;.

Die Eigenvektoren zu \; (Vereinigt mit dem Nullvektor) bilden den sogenannten Eigenraum
E; := Kern(A — \;I). Ist p; := dim(E;), so heifst p; geometrische Vielfachheit von A;.

Ahnlichkeitstransformationen 4.3
Ist T € K™*™ reguliir, so heifte B := T~ ' AT Ahnlichkeitstransformation und B #hnlich zu A.

1) Ahnliche Matrizen besitzen dieselben EWe ), denn mit y := T~ folgt:
TYATy =T YAz = \XT7 'z = \y.
D.h. X ist EW zu B mit EV y = T~ 'z.
2) Ahnliche Matrizen besitzen dasselbe char. Polynom, denn
det(T™YAT —AI) = det(T"(A—-\)T)

= det(T71)det(A — AI) det(T)
= det(A— \I).

Idee einer numerischen Methode 4.4
Wende eine Folge von Ahnlichkeitstransformationenen an, um A in einfachen Gestalt zu transfor-
mieren, d.h.

A0 = 4,
AW = AT =123,

und geeignete Matrizen T;.

Satz 4.5 (Satz von Schur)
Zu jeder Matrix A € C™*" existiert eine unitire Matrix U € C**" (d.h. UHU = I) mit

A1 *
U AU = ,
0 h

Beweis: (Induktion iiber n)
Ind. Anf: n=1,/
Ind. Vor: Fiir A € C*=D)x(=1) gilt die Behauptung.
/\1 *

Ind. Beh: Sei A € C"*". Zeige: U unitéir mit U AU =
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Sei A € C EW von A und z € C™\ {0} ein EV mit ||z|| = 1.
Wir kénnen z zu einer Orthonormalbasis auf C" ergénzen, d.h. wir kdnnen eine unitdre Matrix V
finden, so dass

V =(zV)mit VIV =1TI.

Sei B=VH"AV. Wegen VBe; = AVe; = Az = Az = \Vey
— Bey = A\eq, d.h. die erste Spalte von B ist ein A-faches des ersten Einheitsvektors.

Also B=VHAY = (%%)

Nach Ind. Vor. ex. eine unitire Matrix W mit W”CW = T und T hat obere Dreiecksgestalt.
A b 110 Alb 1] 0 i
= A= H— .
V(o WHCW>V V<OW><OT><OWH v
—————

=U —UH
Daraus folgt die Behauptung. .

Folgerung 4.6 (Schur fiir hermitesche Matrix)
Sei A € C™*"™ hermitesch. Dann ex. eine unitidre Matrix U = (u1, ..., uy) mit

U AU = diag( M1, ..., ).

A, ..., Ay sind EW von A, die reell sind und u; die EVen zu \;.

Insbesondere ist A eine Matrix mit n linear unabhéngigen zu einander orthogonalen Eigenvektoren.

Beweis: A hermitesch =— AH = A und somit
(UHADE = U AU = U AU.

— UH AU ist selbst wieder hermitesch.
— Beh. mit 4.5. o
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4.2 Kondition des Eigenwertproblems

Satz 4.7 (Gerschgorinscher Kreissatz)

Sei A € C"*™. Fiir ¢ = 1,...,n definiere die sogenannten Gerschgorin Kreise
n
Gi:={2€C| |z —au| <ri}, ri:= Z |aij| -
=Ly
Dann gilt:
(i) Ist A EW von A, so ist A € Lnjl Gi, d.h. o(A) C Lnjl Gi.
i= =

(ii) Hat die Vereinigung G von m Kreisen G einen leeren Schnitt mit den restlichen n—m Kreisen,
so enthélt G genau m EWe von A (geziahlt mit ihren algebraischen Vielfachheiten).

Bewezs:
zu (i): Sei A EW von A mit EV z # 0.
Aus Ax = Az folgt:
()\ - a“):rz = Z aijxj Vi = 17 Loy n.
=1

Firi e {1,...,n}mit |z;| = max;—1,. , |z;| folgt:

n

n
Qi35
A—aal=| D> < > ayl
I

J=Lj#1
= AeG; CUj, G
zu (ii): Wir setzen D = (a4i0i5)i j=1,..,m und betrachten
B(t):=D+t(A-D), 0<t<1
mit Gerschgorin Kreisen

n
Gi(t)={z€C||z—au| <t- Y laglp i=1,...,n
J=1,j#i

Es ist B(0) = D und B(1) = A. Die EW von B(t) sind die Nullstellen von pp(;) und héingen
daher stetig von ¢ ab. Wende (i) auf B(¢) an und lasse ¢ von 0 nach 1 laufen.

Dabei wird der Radius der Kreise bei festem Mittelpunkt immer grofser.

Die Anzahl der EWe in einem Kreis G;(t) kann sich erst dann &ndern, wenn dieser einen
anderen Kreis trifft. Daraus folgt die Beh.

Folgerung 4.8
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Da A und A" dieseleben Eigenwerte besitzen, gilt der Satz 4.7 auch mit

n

Gi={z€C||z—ay| < Z |ajil
J=Lj#i

— o)c ((j Gi> . ((j a;> .
i=1 i=1

Lemma 4.9
Seien A, B € C"*". Ist A ein Eigenwert von A, aber kein Eigenwert von B, so gilt

1<||(AM-B)""(4-B)|.

Beweis: Sei Ar =Mx, t#0 = A — Bz =(A—-B)x
= 2= —-B)"YA- B)z.
Also ist 1 ein EW von (A — B)"1(A — B), d.h.
1< p((M -B)""(A-B)) < ||\ - B)""(A-B)|.

Folgerung 4.10
Lemma 4.9 gilt insbesondere fiir B = D = (a4;0;;); ;. Da die Spektralnorm kleiner als z.B. die
Zeilensummennorm ist, folgt dann

=1,...,n

il
1< J

- i*laX Z A — ay

k#j
= Jj mit |\ — ajj| = Zk?éj |ajk| = e C U?:l G;
Satz 4.11 (Kondition des Eigenwertproblems)

Sei B € C™*N diagonalisierbar, d.h. es ex eine regulire Matrix P € C™*" mit
P™'BP = D = diag(\(B),..., \u(B)).
Dann gibt es zu jedem EW \;(B) einen EW \;(A) von A € C™*" mit

A (A) = A (B)| < w(P) [|A = BJ|.

Dabei ist k(P) = im‘f"‘((ﬁ)) die Kondition von P.

Beweus:
(A =B)7Y| = [[P\—D)"'P7Y| <||(AM = D)7 | (P)
1
S l'Ilja,X m/ﬂ/(P)
_ ! w(P).

min; A — \j(B)|
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Aus Lemma 4.7 folgt:
<[l — B[ A- B
Also folgt: .
= it A — A, (B)]
= min; |A — \;(B)| < k(P)||A - B
— 30— Ay (4) mit [\ (4) = A (B) < A(P)[|A - B.

K(P)[|A = Bl

O

Fiir unitdre Matrizen U gilt x(U) = 1. Also ist nach Folgerung 4.6 das Eigenwertproblem fiir
hermitesche Matrizen gut konitioniert.

Beispiel 4.12 (Anwendung der Gerschgorin-Kreise)

0,9 0 0,1 0,4 —0,2
A= 0 04 0 |+10°| —0,1 0,5 0,1
0 0 0,2 0,2 0,1 0,3

Nach Satz 4.11 erwartet man, dass die EW einer Matrix A mit kleinen Aufendiagonalelementen
ungefdhr mit dem Diagonalelementen iibereinstimmen.
Die 3 Gerschgorinkreise sind disjunkt, daher besitzt A die EW Ay, Ao, A3 mit

A —(0,9+0,1-107%)] <0,6-107?,
A2 —(0,4+0,5-107%)| <0,2-107?,
A3 —(0,2+0,3-107°)| <0,3-107°.

Diese Abschétzungen kénnen noch wesentlich verbessert werden.
Sei P := diag(10°,1,1). Dann ist

0,9 0 O 0,1-107® 0,1-10719 —0,2.10710
PlAP = 0 0,4 0 |+ -0,1 0,5-10° 0,1-107°
0 0 0,2 0,2 0,1-107° 0,3-107°

Der erste Gerschgorin Kreis ist noch disjunkt zu den beiden anderen, die nicht mehr disjunkt sind.
Also Folgt fiir Aq:
A1 —(0,940,1-107°)[ <0,6-107"°.

Entsprechend kann die Abschétzung fiir Ay, A3 verbessert werden (siche Abbildung 4.1).
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irh

schwarze Kreise: urspriingliche Gerschgorinkreist
rote Kreise: verbesserte Kries fiir \lambda_3

Abbildung 4.1: Gerschgorinkreise: Beispiel, Radien nicht mafstabsgetreu!!

4.3 Variationsprinzip fiir Eigenwerte hermitescher Matrizen

Satz 4.13 (Rayleighsches Maximumsprinzip)

Sei A € K™*™ hermitesch. Die EW von A seien \; > ... > \,,. Sei U = (uq, ..., u,) unitire Matrix
mit U AU = diag(A1, ..., \n) =: A.

Fir j =1,...,n definiere den (n + 1 — j)-dimensionalen Teilraum

M; = {x € K"| (uj,x) =0Vi=1,...,j — 1} = (span(u1, ..., u,))".

Dann gilt:
A = max R(zx
7 zeM;\{o} (@)
mit dem Rayleigh-Quotienten R(x) := %

Beweis: Sei j € {1,...,n} und x € M; \ {0} beliebig.
setze i := UM 2. Dann folgt:

yi = (u,x) =0, i=1,...,7—1.
Wegen \; < \; fiir ¢ = j,...,n gilt:

(A (UAUTen) (AU UTE)  (Ap) SR Ml
R =n = s wma  ww . s wlE

und somit

sup  R(z) < \j.
2eM;\{0}

Andererseits ist u; € M; \ {0} und R(u;) = ;.
= IaXgep;\{0} R(z) = A;.

Bemerkung 4.14
Definiert man f: R — R bei festem z € K" \ {0} durch

1 1 1
FO) = 5 14z = X2 = 532 jal]® = A Az, 2) + 5 || Az
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so nimmt f in A = R(z) sein Minimum an.
Ist daher x néhreungsweise ein EV von A, so ist R(x) eine gute Néherung des zugehorigen Eigen-
wertes.

Satz 4.15 (Courantsches Minimum-Maximum Prinzip)
Sei A € K™*™ hermitesch mit EWen Ay > ... > \,. Fiir j = 1,...,n definiere

N; :={N; Cc K" | Nj ist linearer Teilraum der Dimension n + 1 — j}

Dann gilt:
Aj = min max R(z), j=1,...,n.
NjE./\/:j xENj\{O}
Beweis: Sei U = (uy,...,u,) die unitdre Matrix von EVen zu den EWen Aq,..., A, von A. Sei

j €{1,...,n}. Definiere L; = span(u,...,u;) und wihle N; € N beliebig.
Wegen

diIH(Lj N NJ) = dlm(LJ> + dlm(NJ) — dlm(LJ U NJ)
= 7”L—|—1—d1m(LJUNJ)21
—_—

<n

existiert ein x € L; N N; mit x # 0.
Da z € Lj, folgt: © = >_71_, aju.
o EZ: Niloi |2 Lo .
= min max R(x)> )
NjeN; zeN;\{0}
Wiahlt man andererseits N; = M;, so gilt nach Satz 4.15

R(z) = ;.
M\ (0} (@) =4

Folgerung 4.16
Seien A, B € K™*™ hermitesch und gelte A\1(A) > ... > A\, (A) sowie A\ (B) > ... > A\ (B).
Dann gilt die Abschétzung:

A(A) = A(B) < [[A=Bl, j=1,....,n.

Beweis: A, B hermitesch = FE = A — B hermitesch. Sei x € K" \ {0}.
Dann gilt:
<(A — B).CL‘7 J’]>

Rp(r) = (x, )

<|[lA-B].

Somit folgt
(%) Ra(x) < Rp(x) + A - BJ|.
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Sei j € {1,...,n} und N; € Nj (vgl. 4.15), so folgt aus (*):

i R < mi R A-DB|.
L R L

Mit dem Courantschen Min-Max Prinzip folgt A\;(A) < X\;(B) + ||A — B||.
Vertauscht man die Rollen von A und B, so folgt auch

Aj(B) < Aj(4) +[|A - Bl

= N(B) = A(A) < (A= B
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4.4 Transformation auf Hessenberg-Form

Definition 4.17 (Hessenberg-Matrizen)
Eine Matriv A = (a;;);; € R™™ heifit eine (obere) Hessenberg-Matrix, wenn a;; = 0 fir
1<j<i—2, dh.

A=| *
0 % ok

Eine Hessenberg-Matriz heifit unreduziert, falls simtliche Subdiagonalelemente a;y14, © =
1,...,n — 1 ungleich 0 sind.
FEine symmetrische Hessenberg-Matriz ist somit eine symmetrische Tridiagonalmatrix.

Erinnerung an die Numerik I 4.18 (Householder-Matrix)
Ist z € R™\{0} und definiert man u := x+sign(z) |||l e1 € R™, soist durch P = I— 2uu — 1 Gy T

(u,u)

. 2 1 . . . . _
mit 3 := 755 = ey ¢ine Householder Matrix definiert mit Pz = sgn(z1) ||z|| e1.

Satz 4.19 (Householder-Transformationen auf Hessenberg-Form)
Zu einer Matrix A € R™ " existieren n — 2 Hoseholder-Matrizen Py, ..., P, o, so dass

P,_o...PlAP, ... P,

eine zu A orthogonal-dhnliche Hessenberg-Matrix ist.

Beweis: (Induktion tiber k =1,...,n —2)

Angenommen es seien schon k — 1 Householder-Matrizen Pi, ..., P,_1 bestimmt, so dass
Hy | Bg k
P._1...PLAP, ... P._1 = < ) ,
0 [ak | Ck n—k

wobei H € RF*¥ ¢ine Hessenberg-Matrix, By € RF*F ¢ e R("F)*(—k) ynd q;, € R"* ist.

Fiir P, machen wir folgenden Ansatz:

Py = ding(Iy, By) = 5
k= dlagllg, I'g) = ~
0| B

mit der Identitét I, € R¥** und einer (n — k) x (n — k) Householder-Matrix P;. Dann folgt:

PuPes. AP Poape = (210 e | By ) (L) 0
kbk—1.. . PLAP . Db = O‘Pk 0 |ay| Cy 0‘]5’“

B Hy | Bib, - Hy1 | Bis k
0 | Pray, . PyCy Py 0 | arq1 . Cri1 n—k
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mit einer Hessenberg-Matrix Hy,1 € RE+Dx(k+1)  wenn die Householder-Matrix P, so gewahlt

wird, dass Pyay, ein Vielfaches des ersten Einheitsvektors in R ¥ ist (siehe 4.18). O

Algorithmus 4.20 (Householder-Transformation auf Hessenberg-Form)
Input: A € R™"
Fir k=1,...,.n—2

Falls ay = (Qpiips- - ang)T #0

dann Berechne Householder Matrix ]5k durch
Uy = (ak+1:’§ + sign(arir llarl] arsops - ang)”
B = llaxll ™ (larll + larrixl) ™
Py = I, — Brup(ugp)’ und berechne A := P, AP,

sonst setze P, :=1

Output: Die Ausgangsmatrix A wird in n—2 Schritten mit orthogonal-&hnlichen
Transformationen in eine Hessenberg-Matrix PTAP,P=P,-...-P,_, iiberfiihrt.

Bemerkung:
Da orthogonale Ahnlichkeitstransformationen die Symmetrie erhalten, wird eine symmetrische Ma-
trix A durch n — 2 Schritte auf eine Tridiagonalmatrix transformiert.
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4.5 Eigenwertbestimmung fiir Hessenberg-Matrizen

Grundlegende Idee 4.21

Bestimme das charakteristische Polynom p(\) einer Hessenberg-Matrix A, sowie die Ableitung
p's(X), so dass man die Eigenwerte durch Nullstellensuchen, etwa mit dem Newtonverfahren, be-
rechnen kann.

Satz 4.22 (Berechnung von pa(\), p/4(A) fiir Tridiagonalmatrizen)
Sei T' € R™ "™ eine symmetrische Tridiagonalmatrix, d.h.

b1 C1 0
C1 '
T —
. Cn—1
0 Cn—1 bn

und pa(A) = det(T — \I).
Fir k =n,...,0 seien fi(\), grx(\) definiert durch:

fn( ) =1, gn()‘> =0,
fn 1( ): >\ In— l()‘) = _17
Frzict(AN) = (big1 — A frei(N) = il famiv1(N),
In—i—1(N) = —fazi(A) + (i1 — Ngn—i(N) — |cil* gnois1 (V).

Dann gilt:

Beweis: Wir zeigen durch vollst. Induktion tiber i, dass f,—;(A) die Determinate des i-ten Haupt-
minors von 1" — A\ ist:

Fiir ¢ = 0,1 ist dei Aussage richtig.
Sei die Aussage richtig fiir alle j mit 1 < j <4, 2 <1.
Dann folgt mit Determinanten-Entwicklungssatz

b1 - A C1 0
C1
dCt : c. ’ c. ’ . —
' ' Ci—1
Ci—1 b, - A C;
0 ¢ | biy1— A

(7+1 )fn 7( ) C’L’Cifnf(ifl)(A)
- f’nf’ifl( )

Da f!_.(\) = gn—i(}) fiir i = 0,...,n, folgt die Behauptung.

Bemerkung 4.23



4.5. EIGENWERTBESTIMMUNG FUR HESSENBERG-MATRIZEN 89

Das Verfahren lésst sich einfach erweitern auf allgemeine Tridiagonalmatrizen T = tridiag(a, b, ¢),
falls im Algorithmus |c;|? durch a;c; ersetzt wird.

Beispiel 4.24
Sei T' gegeben durch

N
Il
SN =
ISNGNJCIN V)
gt O

Dann ist

A =1, o(N) =1—=X, fi(A) =22 —4X — 1, fo(A) = =A% + 922 — 3\ — 21.
Aus fo(M\) = 0 ergeben sich die Eigenwerte.

Weiter ist g3(A\) = 0, g2(A\) = —1, g1(\) = 2X — 4, go(\) = —3)\2 + 18\ — 3.

Bemerkung 4.25

Gilt ¢, # 0 fiir 1 < k < n — 1, so haben die Polynome f,,_; i reelle einfache Nullstellen )\;Z), j =
1,...,7 und die Nullstellen von f,_; trennen die Nullstellen von f,_;_1. Daher bilden die Polynome
(fn,---, fo) eine Sturmsche Kette.

Dadurch gilt fiir ein beliebiges Intervall [a, b] mit fy(a)fo(b) # O:

Ist ng die Anzahl von Vorzeichenwechsel der Sequenz

(fn(a),..., fola)

und ny die Anzahl von Vorzeichenwechsel der Sequenz

(fn(b)a ce vf()(b)a

so besitzt fy auf [a,b] genau n, — np Nullstellen. Mit Intervallhalbierung kann man dann alle Null-
stellen in [a, b] finden.

Motivaton 4.26 (Bestimmung von p4()) fiir unreduzierte Hessenberg-Matrizen)
Sei H = (hij)i,; € K™ unreduzierte Hessenberg-Matrix, d.h. hiy1; #0Vi=1,...,n — 1.

Vorschlag von Hyman (1957)
Betrachte das lineare Gleichnugssystem

(H—- M)z =—cej,ceK.

Setzte man z, = 1, so kann man durch Riickwértseinsetzen nacheinander x,_1,Z,_2,...,21 be-
rechnen und schlieklich ¢ bestimmen.

Andererseits kann x, mit der Cramerschen Regel berechnet werden durch:

(—1)n6h2’1h3,2 N hn,nfl
det(H — \I)

1=z, =

Also folgt
pH()\) = det(H - )\I) = (—1)nch2’1h3,2 cee hn,nfl-

Mit diesem Vorgehen erhalten wir folgenden Algorithmus.
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Satz 4.27 (Verfahren nach Hyman)
Sei H € K™*" unreduzierte Hessenberg-Matrix. Fiir H mit charakteristischem Polynom

pH()\) = (—1)nh2,1h3,2 cee hn,nflw(A)

liefert der Algorithmus

Input: A € C
hip=1,2p, =1y, =0

)

n
1
Tp—i = hi()\wn—i—&-l - > hn—i+1,j96j>

n—i+1l,n—1 ]:n—z+1

n
Yn—i = — <$n—i+1 + NYn—it1 — ). hn—l—l—i,jyj)

hn_' —4q
i+1,n—1 j n—z—i—

zo = @A) (=0,
o = &'(A).

T

Ist A ein Eigenwert von H, so ist x = (x1,...,x,)" ein zugehoriger Eigenvektor.

Beweis: Folgt aus 4.26 und y,,—; = =/, .. O
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4.6 Vektoriteration fiir partielle Eigenwertprobleme

Definition 4.28 (Vektoriteration nach von Mises)
Sei A € C™™ eine diagonalisierbare Matrix mit dominaten Figenwert \i, d.h.

(D—EW) [\l > Al =002 .

Dann erhdlt man eine Folge von Approximationen A\p, k = 1,2,... von Ay durch folgenden
Algorithmus:

Input: 2 € C" mit [|2°||=1 und [ € {1,...,n}

Fiir £k =1,2,... berechne

k= AZF!
k 1 sk
27 = R
1]
2\ = (Az"),

Satz 4.29 (Konvergenz der Vektoriteration nach von Mises)

Sei A € C™*™ diagonalisierbar mit einer Basis {uy,...,u,} von normierten Eigenvektoren zu den
Eigenwerten Aq,...,A,. Sei A; ein dominanter Eigenwert von A, d.h. es gelte (D — EW). Der
Startwert 2% € C habe eine nichttriviale Komponente in Richtung uy, d.h.

n
20 = E o;u;  mit ap # 0.
i=1

Dann gilt fiir 28, \* aus der Vektoriteration nach von Mises (Def. 4.28), falls u1; # 0 ist:

k
D) |2 = o] = 0|32

k
) (k — 00) mit oy := |:\\%21|’ also |og| = 1.

2) M\ — 0(\% k) (k — o0).

Beweis: Fiir die Iterierten z* zeigt man durch vollstindige Induktion, dass

Ak: ZO

1A=

n
Mit 29 = 3" oyu; folgt weiter
i=1

‘ n ‘ n o )\L k

AR0 = Z ai)\f’ui = )\Ifozl (u1 + Z 071 <)\—1> ui).
i=1 =2

Wegen (D — EW) folgt dann

Ak0 — /\’fa1<u1 + (9( ;\\j’k) (k — o0).
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und hieraus

)\’fal (’11,1 + O(‘% k) Ao K
* Slfarop] G

1

Also ist 1) gezeigt. Weiter gilt

- k
“l
B (Ak,—i-lZO)l HAkZOH
a [AR20]] (AF20),
n \ k1
/\]fjLl (CY]UL[ + Z Oéi(%) Ui,l)
B i=2
- n k
)\If (Oélul,l + E O/L</>\\*i) u“)
=2
uli;é(]

/\1+(’)<‘i\? k) (k = o).

Bemerkung 4.30

1) Die Konvergenz der Vektoriteration nach von Mises ist also umso besser, je weiter der domi-
nante Eigenwert A; von den anderen Figenwerten entfernt ist.

2) Varainte fiir A € C™*" hermitesch:
Ist A hermitesch, so erhilt man eine bessere Naherung von A;, wenn man zur Berechnung von
¢ den Rayleigh-Quotienten verwendet, d.h.

M= Ra(2F).
In diesem Fall gilt:
o 12k
ko, — 2
p Al_(’)< A1’ ) (k — o0).

Definition 4.31 (Inverse Iteration nach Wielandt)
Sei A € C™" eine diagonalisierbare Matriz mit

|>\1| > |)\2| > 0> ‘)\n|>

so erhdlt man eine Ndherung des Kehrwertes /\i des kleinsten Eigenwertes von A, indem

man in der Vektoriteration nach von Mises A dJrch A~ ersetzt.

Bemerkung 4.32 (Inverse Iteration mit Diagonal-Shift)
Ist A € C™*™ diagonalisierbar und p # \; fiir alle i = 1,...,n eine gute Ndherung eines Eigenwertes
)‘j mit

[Aj = ul << A =y Vi # j,
so kann die Ndherung p durch inverse Iteration fiir die Matrix B := A — ul verbessert werden
(Diagonal-Shift).
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4.7 Das QR-Verfahren

Ziel: Verwende Ahnlichkeitstransformationen, um A sukzessive auf obere Dreiecksform zu transfor-
mieren:

AV = A,
AY = TPATIT, i=1,2,1dots

Beim @ R-Verfahren wird T; unitar gewéahlt!

Definition 4.33 (QR-Verfahren)
Sei A € C™". Dann ist das QR-Verfahren definiert durch:

AV = A,
At = Q'R (QR-Zerlegung von A)
AiJrl — Rz@z

Hierbei ist Q" unitir und R® obere Dreiecksmatriz (siche Numerik I, Kapitel 2.2). Wegen
Ai-i—l — RiQi — (Qz)HAzQz

sind alle Iterierten A* dhnlich zu A.

Satz 4.34 (Konvergenz des QR-Verfahrens)
Die Eigenwerte von A € C™*™ seien betragsméfig getrennt, d.h.

A1l > A2 > ... > M-

Dann gilt fiir die Diagonalelemente ag-j der Matrizen A® des QR-Verfahrens 4.33:

{ilgroloaéj\j: L...,n} ={A,.... \ ]
Weiter gilt
lim af;, = 0 fiir j > k.

1—00

Beweis: Siehe z.B. Stoer, Bulirsch [? |. .

Bemerkung 4.35

Da die Berechnung der @)QR-Zerlegung fiir allgemeine Matrizen A sehr aufwendig ist, bringt man
in den Anwendungen A zunéchst durch Housholder-Transformation auf Hessenberg-Form. Die Be-
rechnung der Q) R-Zerlegung einer Hessenberg-Matrix kann dann mit Hilfe der sogenannten Givens-
Rotation durchgefiihrt werden.
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Algorithmus 4.36 (QR-Verfahren fiir Hessenberg-Matrizen)

Sei A € R"" eine Hessenberg-Matrix. Der folgende Algorithmus bestimmt in
Schritt 1 (implizit) die (QR-Zerlegung A = QR und iiberschreibt in Schritt 2
A mit A= RQ.

1. Fir k=1,...,n—1:

Bestimme ¢, = cos P, und s, = sin ®, mit

Cx, —Sk Qg k o *
Sk Ck Ak41,k 0 /)"
Fir j=Fk,...,n setze
Ak, — [ % TSk Ak,
apt1j ) Sk Ck apg1j )
2. Fir k=1,...,n—1:

Fiir j=k,...,n setze

Cr Si.
(@, @jey1) = (ks Qi) ( Sk ) :

Sk Ck

Bemerkung 4.37 (LR-Verfahren)
Ersetzt man in Definition 4.33 die QQ R-Zerlegung durch die L R-Zerlegung, so erhdlt man das LR-
Verfahren. Unter geeigneten Vorausetzungen gilt

A1 *
lim A" = lim R' =
11— 00 71— 00
0 An
und ‘
lim L' =1.
71— 00
Nachteil:

1) Eventuell ist Pivotisierung notwendig und gilt nur P’A* = L! R’ mit einer Permutationsmatrix
Pi, so ist die Konvergenz nicht gesichert.

2) L' ist nicht unitdr und das Verfahren konvergiert schlechter als das Q R-Verfahren.
Voteil:

Fiir Hessenberg-Matrizen A € R™ " ist die Berechnung der LR-Zerlegung mit dem Gaufs-
Algorithmus etwa doppelt so schnell wie die Berechnung der Q) R-Zerlegung.



Kapitel 5

Approximation

5.1 Allgemeine Approximation in normierten Raumen

Definition 5.1 (Beste Approximation/Proximum)
Sei (X, |||l) ein normierter Raum und T" C X eine beliebige Teilmenge. Zu einem v € X
definiere

Jp(u) == v —ull.

Dann heifst ein u € T beste Approximation oder Proximum von v in T, g.d.w.

Jy(u) = inf J,(w).

weT

Die Zahl E,(T) = inf,er J,(w) heifft Minimalabstand von v € X zur Teilmenge T

X A

o ViinX

=y

Abbildung 5.1: Proximum: Beispiel

Beispiel 5.2

1) Sei X = R? und |||| = ||-||, die euklidische Norm. Sei T := {z € R?| ||z|| < 1}. Dann existiert
zu jedem v € X eine beste Approximation u € T"
— Hier existiert zu jedem v € X genau ein Proximum.

95
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XA

v
u=\lambda v, mit |jul=1

L X

Abbildung 5.2: Proximum: Beispiel 1)

2) Sei X =R2 ||| = |||, und T := {x € R?| ||z|| < 1}.
Ist v € X \ T, so existiert keine beste Approximation v € T von V', denn E,(T) = |jv|| — 1
und fiir alle w € T gilt ||w —v|| > ||v]| — 1
— Hier existiert fiir z € X \ T kein Proximum.

3) Sei X = R% ||| = |||, d-b. ||lz]ly = max{|z1],|22|} und T := {(21,0) |21 € R}. Sei v =
(0,1) € X. Dann gilt uw € [-1,1] x {0} == w ist Proximum, da J,(u) =1 = E,(T)
= Hier existieren unendlich viele beste Approximationen.

>S_A

Abbildung 5.3: Proximum: Beispiel 3)

Satz 5.3 (Existenz eines Proximums)
Sei T' C X eine kompakte Teilmenge. Dann existiert zu jedem v € X ein Proximum u € T'.

Beweis:  Sei (up)nen eine Minimalfolge in 7" fiir v € X, d.h. lim,, . « Jy(up) = E,(T). Da T
kompakt ist, enthélt (uy,),en eine Teilfolge, die in T konvergiert, d.h. Ju € T mit

lim Up; = U.
j— 00

Zu zeigen: u ist Proximum, d.h. J,(u) = E,(T).
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Es gilt:
ol < o=+ Jun, ]

LG—o0) | (j—00)

E,(T) 0
= v —u| < E(T).

Da E,(T) = infer Jp(w) = infyer ||v — w||, folgt:

Jo(u) = [lv = ul| = Ey(T).

97

Definition 5.4 (Konvexe Teilmengen)
T C X heifst konvex, g.d.w.

Ky, ={ i+ (1= Nux| A€ (0,1)}CT

fur alle uy,uy € T.
T C X heifsit streng konvex, g.d.w.

Ky, us C T Yui,up €T

mit uy # ug (vgl. Abbildung 5.4).

Abbildung 5.4: Konvexe und streng konvexe Mengen.
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Satz 5.5 (Eindeutigkeit von Proxima)
Sei T' C X kompakt und streng konvexe Teilmenge des normierten Raumes X. Dann gibt es zu
jedem v € X genau ein Proximum u € T.

Beweis: Die Existenz ist klar nach Satz 5.3.

Eindeutigkeit: Seien wy,uo mit u; # uo Proxima von v € X in 7. Dann gilt:
1
§(u1 +ug) —v

T konvex =— H%(ul + ug) — v|| = Ey(T).

Da T streng konvex ist, folgt %(ul +ug) € T. Also existiert ein \ € (0,1), so dass

ist. Dann gilt:

la—ol =[50 = X +us) - 1= X
= (1—%)“%(111-}—1@)—0”
= (1 7)\)EU(T)
< Eu(T)

Dies ist ein Widerspruch zur Definition von E,(T) = u; = us. .

Fiir Anwendungen ist vor allem der Fall wichtig, dass T ein endlich dimensionaler Teilraum von X
ist.

Satz 5.6 (Fundamentalsatz der Approximationstheorie in normierten Rdumen)
Sei T' C X ein endlichdimensionaler linearer Teilraum des normierten Vektorraums X. Dann exi-
stiert zu jedem v € X ein Proximum u € T.

Beweis: Sei (up)nen Minimalfolge fiir v € X.
Wir zeigen zunéchst: (uy)nen ist beschrankt.

Es gilt:
E,(T) <|v—uy|| < E,(T)+1 ¥Vn> N.

Also ist |lup]| < |lv = un| + ||v|| < Eu(T) + 14 ||v]| =: K1 ¥n > N.
Sei nun Ky > |Juy,|| fiir n < N und setzte K = max{Ki, Ka}, so folgt ||u,|| < K Vn € N.

Da T endlich dimensionaler linearer Teilraum ist, existiert also eine Teilfolge (uy,);en, die gegen
ein u € T konvergiert.
Analog zum Beweis von Satz 5.3 zeigt man, dass u ein Proximum ist.

Definition 5.7 (Streng normierter Raum)
Sei (X, ||-||) ein normierter Raum. ||-|| heifit strenge Norm und X streng normiert, g.d.w.

(Lf + gl =111 + llgll fir f,g € X mit f,g #0) = (A€ Cmitg=A\f).




5.1. ALLGEMEINE APPROXIMATION IN NORMIERTEN RAUMEN 99

Satz 5.8 (Eindeutigkeit in streng normierten Riumen)
Ist (X,||-]|) ein streng normierter Raum und 7" C X ein endlichdimensionaler linearer Teilraum, so
existiert zu jedem v € X genau ein Proximum v € T.

Beweis: Ist v € T, so ist u = v das eindeutige Proximum.

Sei also v € X \ T. Sind w1, us verschiedene Proxima zu v, so gilt wie in Beweis von Satz 5.5:

1 1 1
E(T) < ||o = 51 +wa)|| < 5o =l + 5 v = wall = Bu(T)

also (v — 1) + (v — w2) | = v — | + o — us]
Da |[|-|| strenge Norm ist, 3IA € C mit v — u; = A(v — ug)

= (1 —=X)v=u; — Aue.

Da v ¢ T, folgt A =1 und somit 0 = u; — ug. Dies ist ein Widerspruch zur Annahme.
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5.2 Der Satz von Weierstrali: Approximation durch Polynome

Motivation 5.9

Bei der Approximation durch Polynome wurde in der Analysis immer von der Regularitdt der
Funktion f gebrauch gemacht. So z.B. bei der Approximation von f durch die Taylorreihe.

In diesem Kapitel stellen wir uns die Frage, ob eine beliebig gute Polynomapproximation auch fiir
Funktiontn f € C([a,b]) moglich ist.

Satz 5.10 (Approximationssatz von Weierstraf?)
Sei X = C([a, b]) und ||-[| = ||| fiir |af , [b] < oo.
Dann gibt es zu jedem f € X und € > 0 ein n € N und ein p € P,,, so dass || f — p||, < € ist.

Beweis: (Konstruktiv!)
Ohne Einschrénkung sei [a, b] = [0,1] (sonst Transformation).
Wir zeigen, dass die Folge der Bernstein-Polynome

n .
Q n 7 o n—u
=70 ()
1=0
fir n — oo auf [0,1] gleichméfig gegen f konvergieren.

Definiere ¢p; := () #'(1 — )", dann ist

7

n n

t=@+-a)" =3 (")a'0-2"" =3 g

i=0 =0
Also folgt: |
@) = (Baf)(@) = Y (f(x) — F(2))ani(z)
=0
= 1) ~ (BaH)@)| < S| @) ~ £ guite) o € 0,1).
=0

Da f gleichméfig stetig ist, existiert zu jedem € > 0 ein 9, so dass Vz, 1

{ { €

Sei x € [0,1]. Setze
No:={ie{0,...,n}| x—% <5},
N> <:={ie€/{0,.. >5}.

Wir erhalten: '
flx) = f (

>

i€N<

(J’m = 2 Z qﬂl

Z€N<

w\m
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und
) 7 r— )2
> 1@ - 1) awe) < 3 (5@ - 1 gt T2
iEN> iEN>
9 )
< ||5f2”oo i§> qm(r)(x - %)2
2 ||f”oo it
S Z nz _2xﬁ+(5)2>
Es ist
1) Z%qu-(x)x2 = z2,

= l’Z(l—g)—F*:l‘Q—l—*(l—f)
Mit 1), 2) und 3) folgt:
] 2
@ - sty < Al —ar i 24 202
ZGNZ —0
<tn
20l 1
- 62 4dn
€ M
< = f"urn > 520
Insgesamt folgt also
: e €
f(2) = (Buf)(@)] < 5 + 5 =¢ Yz €0,1]

Bemerkung 5.11
Satz 5.10 zeigt, dass sich f € C([a,b]) in folgender Weise entwickeln lasst:

f(@) = (Buf)(2) + [(B2f)(2) = (Bif)(@)] + ... + [(Baf) () = (Ba-1f)(2)] +

Die Reihe konvergiert gleichméfig, 1asst sich aber im allgemeinen nicht zu einer Potenzreihe um-
ordnen!
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Satz 5.12 (Fehlerabschétzung fiir die Approximation mit Bernsteinpolynomen)
Seien die Voraussetzungen von Satz 5.10 erfiillt und sei

wy(0) = sup |f(a”) = f(=")]

|z’ —x'| <8,z ,x" €[a,b]

das Stetigkeitsmodul von f bezgl. §. Dann gilt die Abschatung:
1

@) = (Baf)@)| < Fur(52).

Beweis: Sei A = \(2/,2",0) := {M—‘ das grofite Ganze.
Mit der Definition von wg(9) folgt:

51 < 52 — wf(51) < wf(ég).

Damit folgt:
&) — £ < wp(fa’ = 2"]) < wi((A+ 1)),
Aus wy(po) < pwye(0) fir p € N folgt:
|f(2") = F(z")] < (A + 1wy (9).

Setze N> := {i € {0,...,n}|A(z,%,6) > 1} und N entsprechend. Jetzt gehen wir analog zum
Beweis von Satz 5.10 vor:

- i
£@) - Bup)@)] < 3|1~ £ g
=0
n Z
< 1) 14+ Mz, —,0))qni(x).
< wpl0) 1+ X 1 D)oo
Da \(z, %, 9) = 0 fiir alle i € N gilt, folgt weiter:
i
(@) = (Buf) (@) < wy (@) | 1+ D A, 0)ani(w)
’L'ENZ
1 7
< wy(9) 1+5 x — —| qni(z)
iENZ
‘17%121 VieNs 1 i
< wy(9) 1+? (x — —)"qni(x)
A n
ZENZ
Analog zum
Beweis von 5.10
1
< — .
< wp(6) (14 .55
Wihlen wir 6 = —=, so folgt die Abschiitzung des Satzes. .

NGE

Bemerkung 5.13
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1) Abhéngig vom Stetigkeitsmodul kann die Schranke in Satz 5.12 beliebig langsam konvergieren.
Bei hoheren Anforderungen an die Stetigkeit von f kann andererseits eine schnellere Konver-
genz erwartet werden.

2) In der Praxis ist die Approximation durch Bernstein-Polynome nicht von Bedeutung. Im néch-
sten Abschnitt werden wir wirkungsvollere Verfahren kennen lernen!
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5.3 Gleichmifige Approximation / Tschebyschev Approximation

Motivation 5.14

In §5.2 haben wir gesehen, dass sich jede stetige Funktion f € C°([a,b]) durch Polynome p, € P,
approximieren lassen. Die Frage, welches Polynom p € P,, das Proximum zu f in T = P, ist, wurde
jedoch nicht beantwortet. Ist ||-|| = |||/, so beantworten wir diese Frage in diesem Abschnitt. |-||
wird auch Tschebyschev-Norm genannt.

Definition 5.15 (Best Approximating Polynomial (BAP)
Sei X = C°(I), I C R beschrinktes Intervall ausgestattet mit der oo-Norm ||| = ||| .. -

Dann heifst p, € P,, Best Approximating Polynomial (BAP) vom Grad < n von f € C°(I),
g.d.w. p, Proximum von f in P, ist.

Bemerkung 5.16
1) Der Fundamentalsatz der Approximationstheorie 5.6 liefert die Existenz eines (BAP), da [P, ein
endlichdimensionaler linearer Teilraum von CY(I) ist.

2) Eindeutigkeit des (BAP) konnen wir zunéchst nicht erwarten, da ||-||, keine strenge Norm ist.

Satz 5.17 (Charakterisierung von BAP)
Sei f € C°(I),I = [a,b] beschrinkt und p € P,,. Es gebe n +2 Punkte a < zg < 21 < ... < z, <
Tpt1 < b, so dass

D) [f(zi) — p(zi)| = J5(p) = [If = pllo fir i =0,...,n+1,

2) f(wit1) — p(xiv1) = —(f(z) — p(zy)) fir i = 0,...,n.
Dann ist p BAP vom Grad < n an f.

Beweis: Seip* € P, und M :={z e I||f(x)—p*(x)| = J¢(p*)}.
Ist p* kein BAP, so existiert ein p € P,,p # 0, so dass p* + p BAP ist (nach Satz 5.6). Dann gilt:

(f (@) —p"(2)) = p(@)] = [f(z) = (p"(2) + ()| < |f(z) —p"(x)] YoeM
— (f(z) =p"(2))p(z) >0 Ve e M (%)

Sei nun p € P, und es gelten die Voraussetzungen 1) und 2).

Dann kann es kein p # 0, p € P, geben, so dass (x) erfiillt ist. Denn dazu miisste p in [a, b] mindestens
(n + 1)-mal das Vorzeichen wechseln (wegen 2)), also mindestens n + 1 Nullstellen besitzen. Nach
dem Fundamentalsatz der Algebra ist das nicht moglich.

Da es zu p kein p gibt, so dass (x) gilt, muf p bereits BAP sein.

Satz 5.18 (Eindeutigkeit eines Proximums in P))
Sei U := P,, Unterraum von C?([a, b]). Dann ist das Proximum p € U an ein f € C%([a, b]) eindeutig
bestimmt.
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Beweis: Seien p; und py Proxima aus U an f € C°([a, b]).
Dann ist auch 3(p1 + p2) Proximum (Satz 5.5) und nach dem Characterisierungssatz 5.17 exisitert
eine sogenannte Alternante der Lange n + 2, , d.h.

£(0) = 5 1(0) + pala)) = o (~1) B4 (V)

Also ist 1(f(zi) — p1(x:)) + 2 (f(zi) — pa(;)) = o(=1)'E4(U).
Da p1, po Proxima sind, gilt |f(z;) — pr(xi)| < Ef(U)

f(x) —pr(xz) = fs) —po(w) Vi=0,....,n+1

= pi(z;) = pa(x;) Vi=0,...,n+ 1.

Da U Polynome vom maximalen Grad n sind, folgt hieraus p; — ps = 0, da p; — p2 mindestens n + 2
Nullstellen hat.

O

Der Charakterisierungssatz 5.17 bildet die Grundlage fiir ein Verfahren zur Approximation des BAP
zu einem f € C%([a, b]).

(Austauschalgorithmus von Remez) 5.19

Sei f € C%Ja,b]). Dann erzeugt der folgende Algorithmus von Remez eine Folge von Polynomen
p*) € P, mit

lim Hp(k) —an =0,

k — oo

wobei p,, das eindeutig bestimmte BAP von f in P, ist.
Als Abbruchktiterium kann die Bedingung

A—-§<e
gewihlt werden, wobei 8, A beziiglich p®*) wie folgt definiert sind

0:= min |f(x;) —p(a;)|,

i=0,....,n+1

A:= max |f(z;)— p(z;)].

1=0,...,n+1

(Tatséchlich kann gezeigt werden, dass gilt 6 < E¢(U) < A.)

Remez-Algorithmus:

Input: Startzerlegung I(°) von [a,b], d.h.

I(O) = {x07 s 7$7L+1}

mit a <zp <21 <...< Ty <b.
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Iteration fir £=0,1,2,...
1. Schritt: Zu I®) bestimme Polynom p*) € P,, so dass I®¥) Alternante fiir f — pk)
ist und fiir alle z; € I%) gilt:

-] e

mit einer Konstante &) ¢ R.

Setze man p*)(z) = > 70 a§k)xj, so fiihren diese Forderungen auf das
Gleichungssystem:
n .
(=1)%e® + agk):r:g =f(z;), i=0,...,n+1
7=0
fiir die Unbekannten &) a(()k), e ,aﬁf) .

2. Schritt: Setze r¥(z):= f(z)—p®*(z) und bestimme y € [a,b] mit der Eigenschaft:

r®)(y) = max r®(z).
z€la,b]

Ersetze einen Punkt uz; € I®) dqurch y und erhalte Ik+1) gemaff folgender
Austauschvorschrift:

1. Fall: z; <y < x4 fir eine j € {0,...,n}.
Falls sign(r®(z;)) = sign(r®)(y)), ersetze z; durch y, sonst erzetze z;4i
durch y.

2. Fall: y<uxg.
Falls sign(r®(z)) = sign(r®)(y)), ersetze x( durch y, sonst ersetze x,;;
durch y.

3. Fall: y > xp41.
Falls sign(r®®(z,,1)) = sign(r®(y)), ersetze z,,; durch y, sonst ersetze z
durch y.

Bemerkung: Gilt y = z; fiir ein 2; € I®) | so ist p*) bereits BAP. (Charakterisierungssatz 5.17)

Beweis: Skizze: Man zeigt:
1) Das Gleichungssystem in Schritt 1 ist stets eindeutig l6sbar.
2) Es gilt £F+D) > ¢®) vE=0,1,2,.. ..

3) lim I%m) ={Zg, ..., Ty} fiir eine Teilfolge.

m — OO

4) lim pm) = p fiir diese Teilfolge.

m

5) p ist BAP an f.

O

Im folgenden wollen wir der Frage nachgehen, wie fiir f(x) = 2™ in [-1, 1] das BAP in P,,_; aussieht.
Dies fiithrt uns zu den Tschebyschev Polynomen 1. Art.
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Definition 5.20 (Tschebyschev Polynome 1. Art)

Durch die Rekursion
To(z) =1,T1(z) = x

ﬂl+1(x) - QITn(JJ) - jjnfl(x)y n=>1

werden die sogenannten Tschebyschev Polynome 1. Art definiert.

Satz 5.21
Die Tschebyschev-Polynome 1. Art haben die Darstellung 7;,(x) = cos(n arccos(z)), z € [-1,1],n €
N. Es gelten die Eigenschaften

1) |Th(x)] <1 Va e [-1,1],

2) T, (z) hat in [—1,1] die Extrempunkte

2™ = COS(E%Tn(m(n)) =(=1)" i=0,...,n,
n

)

3) T, hat n einfache Nullstellen in [—1, 1]

4) Zwischen je zwei Nullstellen von T}, ;1 liegt eine Nullstelle von T,.

Beweis: (ohne Beweis) 5

Satz 5.22
Sei f(x) = 2™ € C°([—1,1]). Dann ist

BAP zu fin P, _1.

Beweis: 1.) Zeige pp—1 € Pp_1.
Unter Verwendung der Rekursionsformel zeigt man induktiv, dass T},(z) die Form

n—1
T, (z) = 2" 12" + g oz’
i=1

hat. Dann folgt:

—1

, 1 15 ,

Pn—1 = " — 2n711ﬂ77,(l‘) - _anl E O‘iwl = pp—1 € Pp_1.
=1
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2.) Zeige pp—1 ist BAP zu f.
Es gilt 2" — pp_1(x) = 55T, (). Nach Satz 5.21 (2) ist {%En) = cos(Z)|i = 0,...,n} eine
Alternante der Lange (n — 1) + 2 fiir p,—1(z) und es gilt nach 5.21 1), 2)

1
2n—1

1

Tn(m%i)) FTn(

= = max x)|.

o=l e

Nach dem Charakterisierungssatz 5.17 muft p,—1 BAP zu f sein.

Satz 5.23

Die Tschebyschev-Polynome bilden beziiglich der Gewichtsfunktion w(zx) := —-=

Wi ein Orthogonal-

system. Es gilt:

1 7w ffur n=m=0
/ To(z) T (z)w(z)de = ¢ 5 n=m#0 .
-1 0 n#m

(ohne Beweis)

Definition 5.24 (Tschebyschev-Entwicklung)
Sei [ stetig in [—1,1]. Dann heifen

2 [ 1
ap(f) :== 7T/lf(x)Tk(x)\/mdx, k=0,1,2,...

Tschebyschev-Koeffizienten von f und die formal gebildete Reihe

Qo

sp(e) = Y 4 S o) Ti(o)

2

heifst Tschebyschev-Entwicklung von f.

Entwicklungssatz 5.25
Sei f € C?([-1,1]). Dann konvergiert die Tschebyscheventwicklung fiir € [—1,1] gleichmiifig
gegen f, d.h.

S¥ = lim S} =J.

n — oo

Fiir die Tschebyschev-Koeffinzienten gilt die Abschétzung:

Cc
’a’k(f)‘ S ﬁ: k:172737""

Beweis: (ohne Beweis)

Folgerung 5.26

Die Koeffizientenabschiitzung in Satz 5.25 zeigt, dass fiir f € C?([—1,1]) eine gute N durch St
gegeben ist.

Diese Moglichkeit der Approximation bietet sich dann an, wenn die Koeffizienten ay(f) einfach zu
berechnen sind.
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total pivoting, 24
Gaufssches Ausgleichsproblem, 32
Gaufsverfahren, 25
Gerschgorin Kreise, 76
Gerschgorinscher Kreissatz, 76
Gesamtschritt Verfahren, 46
gestortes AWP, 117
gewohnlicher Differentialgleichungen, 115
Gitter, 119
Gleitkommagzahl, 15

eps, 16

Exponent, 16

Mantisse, 16

Maschinenoperation, 16

overflow, 16

Rundungsfehler, 16

underflow, 16
Globaler Fehler, 119
Gradientenverfahren, 51
Grounwalls Lemma, 118

diskrete Version, 118

Haarscher Raum, 103
hermitesch, 9, 75
Hessenberg-Matrizen, 84
Heun-Verfahren, 122
Hilbertraum, 6
Householder Matrix, 37
Householder-Matrix, 84

Implizites Euler Verfahren, 121, 122
Intervallschachtelung, 61

Inverse Iteration mit Diagonal-Shift, 90
Inverse Iteration nach Wielandt, 90

Jaccobi-Matrix, 73
Jacobi Verfahren, 46
Diagonaldominanz, 46
starkes Spaltensummenkriterium, 46

starkes Zeilensummenkriterium, 46
Jacobi-Verfahren, 49

Kondition, 57

Konditioniert, 18
gut konditioniert, 18, 19
schlecht konditioniert, 18, 19

Konditionszahlen, 18, 20
absolute Konditionszahl, 20
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relative Konditionszahl, 18, 20
Kontraktion, 10
Konvegenzordnung

lineare Konvergenz, 69

super lineare Konvergenz, 69
Konvergenz

lokale Konvergenz, 69
Konvergenzordnung, 69, 119
Konvexe Teilmengen, 95
Kronecker Symbol, 37

Landau Symbole, 12
O(n), 12
o(n), 12
least squares, 32
Legendre Polynome, 113
linear abhéngig, 6
Lineare Gleichungssysteme, 21
lineare Konvergenz, 69
linearer Operator, 7
Lipschitz-stetig, 7
LR-Zerlegung, 27, 28

Maschinenoperation, 16
Maschinenzahlen, 15
Matrix

Householder Matrix, 37

obere Dreiecksmatrix, 22

orthogonal, 35

regular, 21, 23

singular, 24

unitar, 9

zerlegbar, 47
Matrixnorm, 8
Mehrschrittverfahren, 119, 122
Minimierungsaufgabe, 52
Mittelpunktregel, 123
mittlere Abweichung, 32
Mittwersatz, 64

Newton Verfahren, 62

fir n > 2, 73

fiir mehrfache Nullstellen, 71
Newton-Verfahren fiir mehrfache Nullstellen, 71
nicht zusammenhéangend, 47
Nichtlineare Gleichungen, 61
Nichtlineare Gleichungssysteme, 73
Norm, 5

aquivalente Normen, 6

euklidische Norm, 7

induzierte Norm, 6
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Matrixnorm, 8

Operatornorm, 8

Spektralnorm, 9
Normalengleichung, 32, 112
normierter Raum

Hilbertraum, 6

Prahilbertraum, 6
Nullstelle

Vielfachheit, 71
Nullstellensuche, 61

Operator, 7
beschrankt, 7
linear, 7
Lipschitz-stetig, 7
Matrixnorm, 8
Operatornorm, 8
Raum der beschrankten linearen, 8
Stetigkeit, 7
Operatornorm, 8
Ordnung der Nullstelle, 71
Orthonormalsysteme, 112

Peano

Peanoscher Satz, 117
Penrose Inverse, 41
Permutationsmatrix, 26
Picard-Lindelof, 117

lokale Version, 116
Pivotisierung, 24
positiv definit, 9
Pra-Hilbertraum, 111
Préhilbertraum, 6
Proximum, 93

QR-Zerlegung, 35
QR-Zerlegung nach Householder, 36

Raum, 5

normierter Raum, 5
Rayleigh Quotienten, 75
Rayleighsches Maximumsprinzip, 82
Relaxation, 59
Relaxationsparameter, 53
Residuenvektor, 52
Rundungsfehler

abosluter Rundungsfehler, 16

relativer Rundungsfehler, 16
Runge-Kutta-Verfahren, 122

Satz von Bauer-Fike, 79
Satz von Schur, 80
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schlecht gestellt, 20
Schrittweitenvektor, 119

schwache Zeilensummenkriterium, 50
Schwaches Zeilensummenkriterium, 48
Sekantenverfahren, 66
Shooting-Verfahren, 125

singulare Werte, 39

Skalarprodukt, 6

SOR-Verfahren, 59
Spaltenpivotisierung, 24
Spektralnorm, 75

Spektralradius, 44

Storungssatz, 22

starkes Spaltensummenkriterium, 46
starkes Zeilensummenkriterium, 46
Streng normierter Raum, 96
submultiplikativ, 9

superlineare Konvergenz, 69

Taylorreihe, 11
Raum der stetigen diferenzierbaren Funktio-

nen, 11
Taylorreihe mit Integralrestterm, 11
Taylorreihe mit Lagrange Restglied, 11
Teilpivotisierung, 24
Tridiagonalmatrix, 31, 48
Tschebyscheffsches Ausgleichsproblem, 32
Tschebyschev Polynome 1. Art, 108
Tschebyschev Systeme, 103
Tschebyschev-Entwicklung, 109
Tschebyschev-Koeflizienten, 109
Tschebyschev-Norm, 102

Vektoriteration nach von Mises, 89
Verfahren héher Ordnung, 70
Verfahren in einer Raumdimension, 61
Verfahren nach Hyman, 88
Vollstandiges ONS, 112
Vollstandigkeitsrelation, 113
Vorkonditionierung, 59

wohlgestellt, 20

zerlegbar, 47
zuléssig, 117



