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Aufgabe 1 (Eigenwerte einer transponierten Matrix) (4 Punkte)
Beweisen Sie, dass die Eigenwerte von A ∈ Rn×n und AT identisch sind. Stimmt diese
Aussage auch für die Eigenvektoren? Bitte begründen Sie Ihre Antwort.

Aufgabe 2 (Gerschgorin-Kreise) (4 Punkte)
Sei A ∈ Rn×n und D = diag(d1, . . . , dn) eine Diagonalmatrix. Zeigen Sie, dass durch die
Ähnlichkeitstransformation A 7→ D−1AD die Gerschgorin-Kreise die Form
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haben.
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einen Kreis, in dem genau ein Eigenwert von A liegt.

Aufgabe 3 (Hessenberg-Matrix) (4 Punkte)
Bringen Sie die Matrix
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mittels Householder-Transformation auf Hessenberg-Form.



Aufgabe 4 (Programmieraufgabe: Mehrdim. Newton-Verfahren) (4 Punkte)
Die eindimensionale Wärmeleitungsgleichung lautet
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= f(x),

wobei σ : R → R die gegebene (temperaturabhängige) Wärmeleitfähigkeit, f : [0, 1] → R

die gegebene Wärmequelle und u : [0, 1] → R die gesuchte Lösungsfunktion ist. Diese
Gleichung beschreibt die Temperaturverteilung entlang eines dünnen Stabes der Länge
1. Die Lösungsfunktion u gibt die Temperatur im Punkt x ∈ [0, 1] an und soll den
Randbedingungen u(0) = u(1) = 0 genügen. Zur numerischen Lösung dieses Problems
kann man wie folgt vorgehen: Zunächst diskretisiert man das Einheitsintervall durch N+2
äquidistante Stützstellen xi := i · h (i = 0, . . . , N + 1) mit der Schrittweite h = 1

N+1
und

erhält die Unterteilung

0 = x0 < x1 < . . . < xN < xN+1 = 1.

Die Näherungslösung im Punkt xi bezeichne man mit ui, d.h. ui ≈ u(xi), i = 1, . . . , N .
Gemäß der Randbedingungen setze man u0 = uN+1 = 0. Für das Intervall [xi, xi+1] lässt
sich die Ortsableitung von u approximieren durch

∂

∂x
u(x) =

ui+1 − ui

h
. (1)

Zur Näherung der Wärmeleitfähigkeit σ auf dem Intervall [xi, xi+1] benutze man den
Mittelwert der Ränder, d.h.

σ(u(x)) ≈
σ(ui+1) + σ(ui)

2
für x ∈ [xi, xi+1]. (2)

Durch Kombination von (1) und (2) und erneute Anwendung des Differenzenquotienten
gelangt man zur diskreten Wärmeleitungsgleichung
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= f(xi) für i = 1, . . . , N.

a) Die Lösung ū := (u1, . . . , uN)
T der diskreten Wärmeleitungsgleichung lässt sich

durch das Lösen einer geeigneten nichtlinearen Gleichung F (u) = 0 bestimmen.
Geben Sie die Funktion F : RN → RN an und berechnen Sie die Jacobi-Matrix

DF (u) =

(

∂Fi

∂uj

)

1≤i,j≤N

.

b) Schreiben Sie eine MATLAB-Routine, welche das mehrdimensionale Newton-Verfahren

u(k+1) = u(k) −
(

DF (u(k))
)−1

F (u(k))



implementiert. Statt die Jacobi-Matrix zu invertieren, soll in jedem Schritt das LGS

DF (u(k))(u(k+1) − u(k)) = −F (u(k))

gelöst werden. Hierzu dürfen Sie eine vorgefertigte MATLAB-Funktion verwenden.
Testen Sie Ihr Newton-Verfahren mit dem Lösen der diskreten Wärmeleitungsglei-
chung. Benutzen Sie folgende Daten: N = 100, f(x) = 1, Startvektor ui = 0.5,
i = 1, . . . N , Abbruchkriterium ||F (u)||∞ ≤ 10−8, σ(u) = σ0 + σ1u, wobei

(i) σ0 = 0.1, σ1 = 0

(ii) σ0 = 0.1, σ1 = 100.

Wieviele Newton-Iterationen werden zur Lösung der Fälle (i) bzw. (ii) benötigt?
Erklären Sie dieses Verhalten. Plotten Sie die beiden Lösungskurven.


