Source code for pymor.operators.constructions

# -*- coding: utf-8 -*-
# This file is part of the pyMOR project (http://www.pymor.org).
# Copyright 2013-2017 pyMOR developers and contributors. All rights reserved.
# License: BSD 2-Clause License (http://opensource.org/licenses/BSD-2-Clause)

"""Module containing some constructions to obtain new operators from old ones."""

from functools import reduce
from itertools import chain

import numpy as np

from pymor.core.defaults import defaults
from pymor.core.exceptions import InversionError
from pymor.core.interfaces import ImmutableInterface
from pymor.operators.basic import OperatorBase
from pymor.operators.interfaces import OperatorInterface
from pymor.parameters.base import Parametric
from pymor.parameters.interfaces import ParameterFunctionalInterface
from pymor.vectorarrays.interfaces import VectorArrayInterface, VectorSpaceInterface, _INDEXTYPES
from pymor.vectorarrays.numpy import NumpyVectorSpace


[docs]class LincombOperator(OperatorBase): """Linear combination of arbitrary |Operators|. This |Operator| represents a (possibly |Parameter| dependent) linear combination of a given list of |Operators|. Parameters ---------- operators List of |Operators| whose linear combination is formed. coefficients A list of linear coefficients. A linear coefficient can either be a fixed number or a |ParameterFunctional|. name Name of the operator. """ def __init__(self, operators, coefficients, solver_options=None, name=None): assert len(operators) > 0 assert len(operators) == len(coefficients) assert all(isinstance(op, OperatorInterface) for op in operators) assert all(isinstance(c, (ParameterFunctionalInterface, _INDEXTYPES)) for c in coefficients) assert all(op.source == operators[0].source for op in operators[1:]) assert all(op.range == operators[0].range for op in operators[1:]) self.source = operators[0].source self.range = operators[0].range self.operators = tuple(operators) self.linear = all(op.linear for op in operators) self.coefficients = tuple(coefficients) self.solver_options = solver_options self.name = name self.build_parameter_type(*chain(operators, (f for f in coefficients if isinstance(f, ParameterFunctionalInterface)))) @property def T(self): options = {'inverse': self.solver_options.get('inverse_transpose'), 'inverse_transpose': self.solver_options.get('inverse')} if self.solver_options else None return self.with_(operators=[op.T for op in self.operators], solver_options=options, name=self.name + '_transposed')
[docs] def evaluate_coefficients(self, mu): """Compute the linear coefficients for a given |Parameter|. Parameters ---------- mu |Parameter| for which to compute the linear coefficients. Returns ------- List of linear coefficients. """ mu = self.parse_parameter(mu) return [c.evaluate(mu) if hasattr(c, 'evaluate') else c for c in self.coefficients]
def apply(self, U, mu=None): coeffs = self.evaluate_coefficients(mu) R = self.operators[0].apply(U, mu=mu) R.scal(coeffs[0]) for op, c in zip(self.operators[1:], coeffs[1:]): R.axpy(c, op.apply(U, mu=mu)) return R def apply2(self, V, U, mu=None): coeffs = self.evaluate_coefficients(mu) matrices = [op.apply2(V, U, mu=mu) for op in self.operators] coeffs_dtype = reduce(np.promote_types, (type(c) for c in coeffs)) matrices_dtype = reduce(np.promote_types, (m.dtype for m in matrices)) common_dtype = np.promote_types(coeffs_dtype, matrices_dtype) R = coeffs[0] * matrices[0] if R.dtype != common_dtype: R = R.astype(common_dtype) for m, c in zip(matrices[1:], coeffs[1:]): R += c * m return R def pairwise_apply2(self, V, U, mu=None): coeffs = self.evaluate_coefficients(mu) vectors = [op.pairwise_apply2(V, U, mu=mu) for op in self.operators] coeffs_dtype = reduce(np.promote_types, (type(c) for c in coeffs)) vectors_dtype = reduce(np.promote_types, (v.dtype for v in vectors)) common_dtype = np.promote_types(coeffs_dtype, vectors_dtype) R = coeffs[0] * vectors[0] if R.dtype != common_dtype: R = R.astype(common_dtype) for v, c in zip(vectors[1:], coeffs[1:]): R += c * v return R def apply_transpose(self, V, mu=None): coeffs = self.evaluate_coefficients(mu) R = self.operators[0].apply_transpose(V, mu=mu) R.scal(coeffs[0]) for op, c in zip(self.operators[1:], coeffs[1:]): R.axpy(c, op.apply_transpose(V, mu=mu)) return R def assemble(self, mu=None): operators = [op.assemble(mu) for op in self.operators] coefficients = self.evaluate_coefficients(mu) op = operators[0].assemble_lincomb(operators, coefficients, solver_options=self.solver_options, name=self.name + '_assembled') if op: return op else: return LincombOperator(operators, coefficients, solver_options=self.solver_options, name=self.name + '_assembled') def jacobian(self, U, mu=None): if self.linear: return self.assemble(mu) jacobians = [op.jacobian(U, mu) for op in self.operators] coefficients = self.evaluate_coefficients(mu) options = self.solver_options.get('jacobian') if self.solver_options else None jac = jacobians[0].assemble_lincomb(jacobians, coefficients, solver_options=options, name=self.name + '_jacobian') if jac is None: return LincombOperator(jacobians, coefficients, solver_options=options, name=self.name + '_jacobian') else: return jac def _as_array(self, source, mu): coefficients = np.array(self.evaluate_coefficients(mu)) arrays = [op.as_source_array(mu) if source else op.as_range_array(mu) for op in self.operators] R = arrays[0] R.scal(coefficients[0]) for c, v in zip(coefficients[1:], arrays[1:]): R.axpy(c, v) return R def as_range_array(self, mu=None): return self._as_array(False, mu) def as_source_array(self, mu=None): return self._as_array(True, mu)
[docs]class Concatenation(OperatorBase): """|Operator| representing the concatenation of two |Operators|. Parameters ---------- second The |Operator| which is applied as second operator. first The |Operator| which is applied as first operator. name Name of the operator. """ def __init__(self, second, first, solver_options=None, name=None): assert isinstance(second, OperatorInterface) assert isinstance(first, OperatorInterface) assert first.range == second.source self.first = first self.second = second self.build_parameter_type(second, first) self.source = first.source self.range = second.range self.linear = second.linear and first.linear self.solver_options = solver_options self.name = name @property def T(self): options = {'inverse': self.solver_options.get('inverse_transpose'), 'inverse_transpose': self.solver_options.get('inverse')} if self.solver_options else None return type(self)(self.first.T, self.second.T, solver_options=options, name=self.name + '_transposed') def apply(self, U, mu=None): mu = self.parse_parameter(mu) return self.second.apply(self.first.apply(U, mu=mu), mu=mu) def apply_transpose(self, V, mu=None): mu = self.parse_parameter(mu) return self.first.apply_transpose(self.second.apply_transpose(V, mu=mu), mu=mu) def jacobian(self, U, mu=None): assert len(U) == 1 V = self.first.apply(U, mu=mu) options = self.solver_options.get('jacobian') if self.solver_options else None return Concatenation(self.second.jacobian(V, mu=mu), self.first.jacobian(U, mu=mu), solver_options=options, name=self.name + '_jacobian') def restricted(self, dofs): restricted_second, second_source_dofs = self.second.restricted(dofs) restricted_first, first_source_dofs = self.first.restricted(second_source_dofs) if isinstance(restricted_second, IdentityOperator): return restricted_first, first_source_dofs elif isinstance(restricted_first, IdentityOperator): return restricted_second, first_source_dofs else: return Concatenation(restricted_second, restricted_first), first_source_dofs
[docs]class ComponentProjection(OperatorBase): """|Operator| representing the projection of a |VectorArray| on some of its components. Parameters ---------- components List or 1D |NumPy array| of the indices of the vector :meth:`~pymor.vectorarrays.interfaces.VectorArrayInterface.components` that ar to be extracted by the operator. source Source |VectorSpace| of the operator. name Name of the operator. """ linear = True def __init__(self, components, source, name=None): assert all(0 <= c < source.dim for c in components) self.components = np.array(components, dtype=np.int32) self.range = NumpyVectorSpace(len(components)) self.source = source self.name = name def apply(self, U, mu=None): assert U in self.source return self.range.make_array(U.components(self.components)) def restricted(self, dofs): assert all(0 <= c < self.range.dim for c in dofs) source_dofs = self.components[dofs] return IdentityOperator(NumpyVectorSpace(len(source_dofs))), source_dofs
[docs]class IdentityOperator(OperatorBase): """The identity |Operator|. In other words:: op.apply(U) == U Parameters ---------- space The |VectorSpace| the operator acts on. name Name of the operator. """ linear = True def __init__(self, space, name=None): self.source = self.range = space self.name = name @property def T(self): return self def apply(self, U, mu=None): assert U in self.source return U.copy() def apply_transpose(self, V, mu=None): assert V in self.range return V.copy() def apply_inverse(self, V, mu=None, least_squares=False): assert V in self.range return V.copy() def apply_inverse_transpose(self, U, mu=None, least_squares=False): assert U in self.source return U.copy() def assemble(self, mu=None): return self def assemble_lincomb(self, operators, coefficients, solver_options=None, name=None): if all(isinstance(op, IdentityOperator) for op in operators): if len(operators) == 1: # avoid infinite recursion return None assert all(op.source == operators[0].source for op in operators) return IdentityOperator(operators[0].source, name=name) * sum(coefficients) else: return operators[1].assemble_lincomb(operators[1:] + [operators[0]], coefficients[1:] + [coefficients[0]], solver_options=solver_options, name=name) def restricted(self, dofs): assert all(0 <= c < self.range.dim for c in dofs) return IdentityOperator(NumpyVectorSpace(len(dofs))), dofs
[docs]class ConstantOperator(OperatorBase): """A constant |Operator| always returning the same vector. Parameters ---------- value A |VectorArray| of length 1 containing the vector which is returned by the operator. source Source |VectorSpace| of the operator. name Name of the operator. """ linear = False def __init__(self, value, source, name=None): assert isinstance(value, VectorArrayInterface) assert len(value) == 1 self.source = source self.range = value.space self.name = name self._value = value.copy() def apply(self, U, mu=None): assert U in self.source return self._value[[0] * len(U)].copy() def jacobian(self, U, mu=None): assert U in self.source assert len(U) == 1 return ZeroOperator(self.source, self.range, name=self.name + '_jacobian') def restricted(self, dofs): assert all(0 <= c < self.range.dim for c in dofs) restricted_value = NumpyVectorSpace.make_array(self._value.components(dofs)) return ConstantOperator(restricted_value, NumpyVectorSpace(len(dofs))), dofs
[docs]class ZeroOperator(OperatorBase): """The |Operator| which maps every vector to zero. Parameters ---------- source Source |VectorSpace| of the operator. range Range |VectorSpace| of the operator. name Name of the operator. """ linear = True def __init__(self, source, range, name=None): assert isinstance(source, VectorSpaceInterface) assert isinstance(range, VectorSpaceInterface) self.source = source self.range = range self.name = name @property def T(self): return type(self)(self.range, self.source, name=self.name + '_transposed') def apply(self, U, mu=None): assert U in self.source return self.range.zeros(len(U)) def apply_transpose(self, V, mu=None): assert V in self.range return self.source.zeros(len(V)) def apply_inverse(self, V, mu=None, least_squares=False): assert V in self.range if not least_squares: raise InversionError return self.source.zeros(len(V)) def apply_inverse_transpose(self, U, mu=None, least_squares=False): assert U in self.source if not least_squares: raise InversionError return self.range.zeros(len(U)) def assemble_lincomb(self, operators, coefficients, solver_options=None, name=None): assert operators[0] is self if len(operators) > 1: return operators[1].assemble_lincomb(operators[1:], coefficients[1:], solver_options=solver_options, name=name) else: return self def restricted(self, dofs): assert all(0 <= c < self.range.dim for c in dofs) return ZeroOperator(NumpyVectorSpace(0), NumpyVectorSpace(len(dofs))), np.array([], dtype=np.int32)
[docs]class VectorArrayOperator(OperatorBase): """Wraps a |VectorArray| as an |Operator|. If `transposed` is `False`, the operator maps from `NumpyVectorSpace(len(array))` to `array.space` by forming linear combinations of the vectors in the array with given coefficient arrays. If `transposed == True`, the operator maps from `array.space` to `NumpyVectorSpace(len(array))` by forming the inner products of the argument with the vectors in the given array. Parameters ---------- array The |VectorArray| which is to be treated as an operator. transposed See description above. name The name of the operator. """ linear = True def __init__(self, array, transposed=False, space_id=None, name=None): self._array = array.copy() if transposed: self.source = array.space self.range = NumpyVectorSpace(len(array), space_id) else: self.source = NumpyVectorSpace(len(array), space_id) self.range = array.space self.transposed = transposed self.space_id = space_id self.name = name @property def T(self): return VectorArrayOperator(self._array, not self.transposed, self.space_id, self.name + '_transposed') def apply(self, U, mu=None): assert U in self.source if not self.transposed: return self._array.lincomb(U.data) else: return self.range.make_array(U.dot(self._array)) def apply_transpose(self, V, mu=None): assert V in self.range if not self.transposed: return self.source.make_array(self._array.dot(V).T) else: return self._array.lincomb(V.data) def apply_inverse_transpose(self, U, mu=None, least_squares=False): transpose_op = VectorArrayOperator(self._array, transposed=not self.transposed) return transpose_op.apply_inverse(U, mu=mu, least_squares=least_squares) def assemble_lincomb(self, operators, coefficients, solver_options=None, name=None): transposed = operators[0].transposed if not all(isinstance(op, VectorArrayOperator) and op.transposed == transposed for op in operators): return None assert not solver_options if coefficients[0] == 1: array = operators[0]._array.copy() else: array = operators[0]._array * coefficients[0] for op, c in zip(operators[1:], coefficients[1:]): array.axpy(c, op._array) return VectorArrayOperator(array, transposed=transposed, name=name) def as_range_array(self, mu=None): if not self.transposed: return self._array.copy() else: super().as_range_array(mu) def as_source_array(self, mu=None): if self.transposed: return self._array.copy() else: super().as_source_array(mu) def restricted(self, dofs): assert all(0 <= c < self.range.dim for c in dofs) if not self.transposed: restricted_value = NumpyVectorSpace.make_array(self._array.components(dofs)) return VectorArrayOperator(restricted_value, False), np.arange(self.source.dim, dtype=np.int32) else: raise NotImplementedError
[docs]class VectorOperator(VectorArrayOperator): """Wrap a vector as a vector-like |Operator|. Given a vector `v` of dimension `d`, this class represents the operator :: op: R^1 ----> R^d x |---> xâ‹…v In particular:: VectorOperator(vector).as_range_array() == vector Parameters ---------- vector |VectorArray| of length 1 containing the vector `v`. name Name of the operator. """ linear = True source = NumpyVectorSpace(1) def __init__(self, vector, name=None): assert isinstance(vector, VectorArrayInterface) assert len(vector) == 1 super().__init__(vector, transposed=False, name=name)
[docs]class VectorFunctional(VectorArrayOperator): """Wrap a vector as a linear |Functional|. Given a vector `v` of dimension `d`, this class represents the functional :: f: R^d ----> R^1 u |---> (u, v) where `( , )` denotes the inner product given by `product`. In particular, if `product` is `None` :: VectorFunctional(vector).as_source_array() == vector. If `product` is not none, we obtain :: VectorFunctional(vector).as_source_array() == product.apply(vector). Parameters ---------- vector |VectorArray| of length 1 containing the vector `v`. product |Operator| representing the scalar product to use. name Name of the operator. """ linear = True range = NumpyVectorSpace(1) def __init__(self, vector, product=None, name=None): assert isinstance(vector, VectorArrayInterface) assert len(vector) == 1 assert product is None or isinstance(product, OperatorInterface) and vector in product.source if product is None: super().__init__(vector, transposed=True, name=name) else: super().__init__(product.apply(vector), transposed=True, name=name)
[docs]class ProxyOperator(OperatorBase): """Forwards all interface calls to given |Operator|. Mainly useful as base class for other |Operator| implementations. Parameters ---------- operator The |Operator| to wrap. name Name of the wrapping operator. """ def __init__(self, operator, name=None): assert isinstance(operator, OperatorInterface) self.source = operator.source self.range = operator.range self.operator = operator self.linear = operator.linear self.name = name self.build_parameter_type(operator) @property def T(self): return self.with_(operator=self.operator.T, name=self.name + '_transposed') def apply(self, U, mu=None): return self.operator.apply(U, mu=mu) def apply_transpose(self, V, mu=None): return self.operator.apply_transpose(V, mu=mu) def apply_inverse(self, V, mu=None, least_squares=False): return self.operator.apply_inverse(V, mu=mu, least_squares=least_squares) def apply_inverse_transpose(self, U, mu=None, least_squares=False): return self.operator.apply_inverse_transpose(U, mu=mu, least_squares=least_squares) def jacobian(self, U, mu=None): return self.operator.jacobian(U, mu=mu) def restricted(self, dofs): op, source_dofs = self.operator.restricted(dofs) return self.with_(operator=op), source_dofs
[docs]class FixedParameterOperator(ProxyOperator): """Makes an |Operator| |Parameter|-independent by setting a fixed |Parameter|. Parameters ---------- operator The |Operator| to wrap. mu The fixed |Parameter| that will be fed to the :meth:`~pymor.operators.interfaces.OperatorInterface.apply` method of `operator`. """ def __init__(self, operator, mu=None, name=None): super().__init__(operator, name) assert operator.parse_parameter(mu) or True self.mu = mu.copy() self.build_parameter_type() def apply(self, U, mu=None): return self.operator.apply(U, mu=self.mu) def apply_transpose(self, V, mu=None): return self.operator.apply_transpose(V, mu=self.mu) def apply_inverse(self, V, mu=None, least_squares=False): return self.operator.apply_inverse(V, mu=self.mu, least_squares=least_squares) def apply_inverse_transpose(self, U, mu=None, least_squares=False): return self.operator.apply_inverse_transpose(U, mu=self.mu, least_squares=least_squares) def jacobian(self, U, mu=None): return self.operator.jacobian(U, mu=self.mu)
[docs]class LinearOperator(ProxyOperator): """Mark the wrapped |Operator| to be linear.""" def __init__(self, operator, name=None): super().__init__(operator, name) self.linear = True
[docs]class AffineOperator(ProxyOperator): """Decompose an affine |Operator| into affine_shift and linear_part. """ def __init__(self, operator, name=None): if operator.parametric: raise NotImplementedError super().__init__(operator, name) self.affine_shift = ConstantOperator(operator.apply(operator.source.zeros()), source=operator.source) self.linear_part = LinearOperator(operator - self.affine_shift, name=operator.name + '_linear_part') def jacobian(self, U, mu=None): return self.linear_part.jacobian(U, mu)
[docs]class InverseOperator(OperatorBase): """Represents the inverse of a given |Operator|. Parameters ---------- operator The |Operator| of which the inverse is formed. name If not `None`, name of the operator. """ def __init__(self, operator, name=None): assert isinstance(operator, OperatorInterface) self.build_parameter_type(operator) self.source = operator.range self.range = operator.source self.operator = operator self.linear = operator.linear self.name = name or operator.name + '_inverse' @property def T(self): return InverseTransposeOperator(self.operator) def apply(self, U, mu=None): assert U in self.source return self.operator.apply_inverse(U, mu=mu) def apply_transpose(self, V, mu=None): assert V in self.range return self.operator.apply_inverse_transpose(V, mu=mu) def apply_inverse(self, V, mu=None, least_squares=False): assert V in self.range return self.operator.apply(V, mu=mu) def apply_inverse_transpose(self, U, mu=None, least_squares=False): assert U in self.source return self.operator.apply_transpose(U, mu=mu)
[docs]class InverseTransposeOperator(OperatorBase): """Represents the inverse transpose of a given |Operator|. Parameters ---------- operator The |Operator| of which the inverse transpose is formed. name If not `None`, name of the operator. """ linear = True def __init__(self, operator, name=None): assert isinstance(operator, OperatorInterface) assert operator.linear self.build_parameter_type(operator) self.source = operator.source self.range = operator.range self.operator = operator self.name = name or operator.name + '_inverse_transpose' @property def T(self): return InverseOperator(self.operator) def apply(self, U, mu=None): assert U in self.source return self.operator.apply_inverse_transpose(U, mu=mu) def apply_transpose(self, V, mu=None): assert V in self.range return self.operator.apply_inverse(V, mu=mu) def apply_inverse(self, V, mu=None, least_squares=False): assert V in self.range return self.operator.apply_transpose(V, mu=mu) def apply_inverse_transpose(self, U, mu=None, least_squares=False): assert U in self.source return self.operator.apply(U, mu=mu)
[docs]class AdjointOperator(OperatorBase): """Represents the adjoint of a given linear |Operator|. For a linear |Operator| `op` the adjoint `op^*` of `op` is given by:: (op^*(v), u)_s = (v, op(u))_r, where `( , )_s` and `( , )_r` denote the inner products on the source and range space of `op`. If two products are given by `P_s` and `P_r`, then:: op^*(v) = P_s^(-1) o op.T o P_r, Thus, if `( , )_s` and `( , )_r` are the Euclidean inner products, `op^*v` is simply given by applycation of the :attr:transpose <pymor.operators.interface.OperatorInterface.T>` |Operator|. Parameters ---------- operator The |Operator| of which the adjoint is formed. source_product If not `None`, inner product |Operator| for the source |VectorSpace| w.r.t. which to take the adjoint. range_product If not `None`, inner product |Operator| for the range |VectorSpace| w.r.t. which to take the adjoint. name If not `None`, name of the operator. with_apply_inverse If `True`, provide own :meth:`~pymor.operators.interfaces.OperatorInterface.apply_inverse` and :meth:`~pymor.operators.interfaces.OperatorInterface.apply_inverse_transpose` implementations by calling these methods on the given `operator`. (Is set to `False` in the default implementation of and :meth:`~pymor.operators.interfaces.OperatorInterface.apply_inverse_transpose`.) solver_options When `with_apply_inverse` is `False`, the |solver_options| to use for the `apply_inverse` default implementation. """ linear = True def __init__(self, operator, source_product=None, range_product=None, name=None, with_apply_inverse=True, solver_options=None): assert isinstance(operator, OperatorInterface) assert operator.linear assert not with_apply_inverse or solver_options is None self.build_parameter_type(operator) self.source = operator.range self.range = operator.source self.operator = operator self.source_product = source_product self.range_product = range_product self.name = name or operator.name + '_adjoint' self.with_apply_inverse = with_apply_inverse self.solver_options = solver_options @property def T(self): if not self.source_product and not self.range_product: return self.operator else: options = {'inverse': self.solver_options.get('inverse_transpose'), 'inverse_transpose': self.solver_options.get('inverse')} if self.solver_options else None return AdjointOperator(self.operator.T, source_product=self.range_product, range_product=self.source_product, solver_options=options) def apply(self, U, mu=None): assert U in self.source if self.range_product: U = self.range_product.apply(U) V = self.operator.apply_transpose(U, mu=mu) if self.source_product: V = self.source_product.apply_inverse(V) return V def apply_transpose(self, V, mu=None): assert V in self.range if self.source_product: V = self.source_product.apply_inverse(V) U = self.operator.apply(V, mu=mu) if self.range_product: U = self.range_product.apply(U) return U def apply_inverse(self, V, mu=None, least_squares=False): if not self.with_apply_inverse: return super().apply_inverse(V, mu=mu, least_squares=least_squares) assert V in self.range if self.source_product: V = self.source_product(V) U = self.operator.apply_inverse_transpose(V, mu=mu, least_squares=least_squares) if self.range_product: U = self.range_product.apply_inverse(U) return U def apply_inverse_transpose(self, U, mu=None, least_squares=False): if not self.with_apply_inverse: return super().apply_inverse_transpose(U, mu=mu, least_squares=least_squares) assert U in self.source if self.range_product: U = self.range_product.apply_inverse(U) V = self.operator.apply_inverse(U, mu=mu, least_squares=least_squares) if self.source_product: V = self.source_product.apply(V) return V
[docs]class SelectionOperator(OperatorBase): """An |Operator| selected from a list of |Operators|. `operators[i]` is used if `parameter_functional(mu)` is less or equal than `boundaries[i]` and greater than `boundaries[i-1]`:: -infty ------- boundaries[i] ---------- boundaries[i+1] ------- infty | | --- operators[i] ---|---- operators[i+1] ----|---- operators[i+2] | | Parameters ---------- operators List of |Operators| from which one |Operator| is selected based on the given |Parameter|. parameter_functional The |ParameterFunctional| used for the selection of one |Operator|. boundaries The interval boundaries as defined above. name Name of the operator. """ def __init__(self, operators, parameter_functional, boundaries, name=None): assert len(operators) > 0 assert len(boundaries) == len(operators) - 1 # check that boundaries are ascending: for i in range(len(boundaries)-1): assert boundaries[i] <= boundaries[i+1] assert all(isinstance(op, OperatorInterface) for op in operators) assert all(op.source == operators[0].source for op in operators[1:]) assert all(op.range == operators[0].range for op in operators[1:]) self.source = operators[0].source self.range = operators[0].range self.operators = tuple(operators) self.linear = all(op.linear for op in operators) self.name = name self.build_parameter_type(parameter_functional, *operators) self.boundaries = tuple(boundaries) self.parameter_functional = parameter_functional @property def T(self): return self.with_(operators=[op.T for op in self.operators], name=self.name + '_transposed') def _get_operator_number(self, mu): value = self.parameter_functional.evaluate(mu) for i in range(len(self.boundaries)): if self.boundaries[i] >= value: return i return len(self.boundaries) def assemble(self, mu=None): mu = self.parse_parameter(mu) op = self.operators[self._get_operator_number(mu)] return op.assemble(mu) def apply(self, U, mu=None): mu = self.parse_parameter(mu) operator_number = self._get_operator_number(mu) return self.operators[operator_number].apply(U, mu=mu) def apply_transpose(self, V, mu=None): mu = self.parse_parameter(mu) op = self.operators[self._get_operator_number(mu)] return op.apply_transpose(V, mu=mu) def as_range_array(self, mu=None): mu = self.parse_parameter(mu) operator_number = self._get_operator_number(mu) return self.operators[operator_number].as_range_array(mu=mu) def as_source_array(self, mu=None): mu = self.parse_parameter(mu) operator_number = self._get_operator_number(mu) return self.operators[operator_number].as_source_array(mu=mu)
@defaults('raise_negative', 'tol')
[docs]def induced_norm(product, raise_negative=True, tol=1e-10, name=None): """Obtain induced norm of an inner product. The norm of the vectors in a |VectorArray| U is calculated by calling :: product.pairwise_apply2(U, U, mu=mu). In addition, negative norm squares of absolute value smaller than `tol` are clipped to `0`. If `raise_negative` is `True`, a :exc:`ValueError` exception is raised if there are negative norm squares of absolute value larger than `tol`. Parameters ---------- product The inner product |Operator| for which the norm is to be calculated. raise_negative If `True`, raise an exception if calculated norm is negative. tol See above. name optional, if None product's name is used Returns ------- norm A function `norm(U, mu=None)` taking a |VectorArray| `U` as input together with the |Parameter| `mu` which is passed to the product. """ return InducedNorm(product, raise_negative, tol, name)
[docs]class InducedNorm(ImmutableInterface, Parametric): """Instantiated by :func:`induced_norm`. Do not use directly.""" def __init__(self, product, raise_negative, tol, name): self.product = product self.raise_negative = raise_negative self.tol = tol self.name = name or product.name self.build_parameter_type(product) def __call__(self, U, mu=None): norm_squared = self.product.pairwise_apply2(U, U, mu=mu).real if self.tol > 0: norm_squared = np.where(np.logical_and(0 > norm_squared, norm_squared > - self.tol), 0, norm_squared) if self.raise_negative and np.any(norm_squared < 0): raise ValueError('norm is negative (square = {})'.format(norm_squared)) return np.sqrt(norm_squared)