Coverage for src/pymor/analyticalproblems/elliptic : 100%
Hot-keys on this page
r m x p toggle line displays
j k next/prev highlighted chunk
0 (zero) top of page
1 (one) first highlighted chunk
|
# -*- coding: utf-8 -*- # This file is part of the pyMOR project (http://www.pymor.org). # Copyright Holders: Rene Milk, Stephan Rave, Felix Schindler # License: BSD 2-Clause License (http://opensource.org/licenses/BSD-2-Clause)
'''Linear elliptic analytical problem.
The problem consists in solving ::
| K | - ∇ ⋅ ∑ θ_k(μ) ⋅ d_k(x) ∇ u(x, μ) = f(x, μ) | k=0
for u.
Parameters ---------- domain A |DomainDescription| of the domain the problem is posed on. rhs The |Function| f(x, μ). diffusion_functions List of the |functions| d_k(x). diffusion_functionals List of the |ParameterFunctionals| θ_k(μ). If None, and `len(diffusion_functions) > 1` let θ_k be the kth projection of the coefficient part of μ. If None and `len(diffusion_functions) == 1`, no parameter dependence is assumed. dirichlet_data |Function| providing the Dirichlet boundary values in global coordinates. name Name of the problem.
Attributes ---------- domain rhs diffusion_functions diffusion_functionals dirichlet_data '''
diffusion_functions=(ConstantFunction(dim_domain=2),), diffusion_functionals=None, dirichlet_data=ConstantFunction(value=0, dim_domain=2), name=None): |