Coverage for src/pymor/analyticalproblems/advection : 100%
Hot-keys on this page
r m x p toggle line displays
j k next/prev highlighted chunk
0 (zero) top of page
1 (one) first highlighted chunk
|
# -*- coding: utf-8 -*- # This file is part of the pyMOR project (http://www.pymor.org). # Copyright Holders: Rene Milk, Stephan Rave, Felix Schindler # License: BSD 2-Clause License (http://opensource.org/licenses/BSD-2-Clause)
'''Instationary advection problem.
The problem is to solve ::
∂_t u(x, t, μ) + ∇ ⋅ f(u(x, t, μ), t, μ) = s(x, t, μ) u(x, 0, μ) = u_0(x, μ)
for u with t in [0, T], x in Ω.
Parameters ---------- domain A |DomainDescription| of the domain Ω the problem is posed on. flux_function The |Function| f. The current time is provided by adding the key `'_t'` to the |Parameter| `mu`. flux_function_derivative The derivative of f with respect to u. rhs The |Function| s. The current time is provided by adding the key `'_t'` to the |Parameter| `mu`. dirichlet_data |Function| providing the Dirichlet boundary values in global coordinates. initial_data |Function| providing the initial values in global coordinates. T The end time T. name Name of the problem.
Attributes ---------- domain rhs flux_function flux_function_derivative initial_data dirichlet_data T '''
flux_function=ConstantFunction(value=np.array([0, 0]), dim_domain=2), flux_function_derivative=ConstantFunction(value=np.array([0, 0]), dim_domain=2), dirichlet_data=ConstantFunction(value=0, dim_domain=2), initial_data=ConstantFunction(value=1, dim_domain=2), T=1, name=None): |