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1. Einleitung

Das Modell

Bei der Betrachtung von Systemen von Partikeln unterscheidet man drei
verschiedene Modelle. Zum einen das mikroskopische Modell, bei welchem
jeder Partikel durch eine Evolutionsgleichung ausgewertet wird. Bei dem
makroskopischen Modell werden Durchschnitte uber lokale Gruppen von
Partikeln betrachtet. Bei dem statistischen Modell wird das gesamte System
von Partikeln ausgewertet. Im Folgenden wird ausschliefSlich das
mikroskopische Modell gezeigt.

Voraussetzungen an die Partikel

Das Ziel ist es, ein System von N Partikeln in Form von kleinen harten Kugeln
zu beschreiben. Es wird angenommen, dass nur inelastische StofSse zwischen
den kugelsymetrischen Partikeln bei Kollisionen miteinander stattfinden. Alle
Partikel konnen sich frei in alle Richtungen bewegen. Die Position eines
Partikels wird durch die Position seines Masseschwerpunktes bestimmt.
Seinun QeR® der Raum in dem sich die Partikel ( x,€Q:k=1,..., N ) mit
Radius o befinden. Desweiteren stelle man sich die Partikel nummeriert vor.
Physikalisch soll der Raum ein Vakuum sein, so dass keine Krafte wie
beispielsweise Luftreibung auftreten. So ist den Partikeln eine geradlinig
gleichformige Bewegung moglich nur mit ihrer Startgeschwindigkeit.

Ableitungen nach der Zeit

Ableitungen nach der Zeit (fur gewohnlich durch t symbolisiert), also % ,

werden an den differenzierten Funktionen durch einen Punkt iber Funktion
gekennzeichnet, im Gegensatz zu dem in der Mathematik tiblichen Strich ( ').
Ein Beispiel: %Zf . Ebenso werden hohere Zeitableitungen durch die
entsprechende Punktanzahl kenntlich gemacht.

Die Newtonschen Axiome

Die Grundlage der klassischen Mechanik bilden die Newtonschen Axiome.
Diese sind die Voraussetzung an die kommenden Modelle, insbesondere an
das der Newtonschen Bewegungsgleichungen.

1. Galileische Tragheitsgesetz
Ein Koordinatensystem, in dem sich ein oder mehrere Korper geradlinig
gleichformig bewegen (das schliel5st die Ruheposition ein), heilst
Inertialsystem.

2. Bewegungsgesetz )
Eine Kraft verhalt sich proportional zu der zeitlichen Anderung des
Impulses, also: F=p=d(mxv)/dt . Fur nicht zeitabhangige Masse
ergibt sich: F=mg*xx=m xa .




3. Reaktionsprinzip
Die Kraft, die Korper A auf Korper B ausubt, ist gleich der negativen,

Kraft, die Korper B auf Korper A ausiibt. F,z=—Fp,
Evolutionsgleichung

Der Begriff Evolutionsgleichung, der im Folgenden verwendet wird, ist nicht
klar definiert. Hier soll er fur eine (gewohnliche oder partielle)
Differentialgleichung stehen, die die zeitliche Veranderung des Systems von
Partikeln beschreibt.

Vorgehen

Zuerst wird die Losung mittels klassischer Mechanik betrachtet, danach die
Liouville Gleichung und daraus folgend die BBGKY-Hierarchie. Dann die
Vlasov-Gleichung fur stof3freie Systeme und die Boltzmann-Gleichung fiir
Systeme mit Kollisionen.



2. Die Newtonschen Bewegungsgleichungen

Newtonsche Bewegungsgleichung fiir 1 Teilchen

Fur ein System mit einem Partikel gilt:
_F (2.1)
m

Um die Bewegung dieses trivialen Systems zu l0sen, muss man eine
Differentialgleichung 2.ter Ordnung bzw ein System aus zwei
Differentialgleichungen 1.ter Ordnung losen. Angenommen, es wirken keine
aulBeren Krafte auf das System, also f,,=0 , dann bewegt sich dieser
Partikel, entsprechend seiner Anfangsbedingungen, vom Startpunkt x,eR®

in Richtung X,= V0€|R3 mit der Geschwindigkeit |v,| .

Newtonsche Bewegungsgleichung fiir 2 Teilchen

Fiir ein System mit zwei Partikeln kann man nun ebenso ein System von
gewohnlichen Differentialgleichungen schreiben:

X, =V,
f6X+ ‘f21
X,=V,

. f_ f
V2: eX+ 12
m, m,

V=
(2.2)

mit den entsprechenden Anfangsbedingungen fir X, ,V, ,X,,V, . Man kann

bei einem solchen System aber auch anders vorgehen. Dann fiihrt man zuerst
eine

Schwerpunktkoordinate: R= (2.3) ein, sowie eine
m,+m,
Relativkoordinate: r=x,—Xx, (2.4)
Y . . £,
Damit gilt zunachst (nach dem Schwerpunktsatz) R=——— (2.5)

<m1*m2)

.. . . . o . flex fzex f12 f21
und fur die Relativkoordinate: I=r,-r, = _E+E_ — (2.6)
1 2 1 2



Nun definiert man sich eine reduzierte Masse: p:=——— (2.7)
m,+m,
f, F.
Man erhélt so eine Relativbeschleunigung: f:f—ﬁ+% (2.8)
1 2

Ist dieses System abgeschlossen, wirken also keine dulSeren Krafte (

F, =F, =0 ), dann sind die Gleichungen (2.5 und 2.8) entkoppelt. Die
Relativbewegung erscheint nun wie ein einziges Teilchen im Kraftfeld f,, .
Man hat also ein 2- Partikel System auf ein effektives 1- Partikel System
reduziert.

Newtonsche Bewegungsgleichung fiir N Teilchen

Fur ein System mit N Partikeln gilt folgendes System gewohnlicher
Differentialgleichungen:

N
: u (2.9)
V=t f)

mit den Anfangsbedingungen

Xk(o):Xko (210)

Vi (0)=v,, (2.11)
wobei zu beachten ist

f,=f,undf,,=0 (2.12)
Dies ist ein sehr grofSes System von Differentialgleichungen (2N Gleichungen)
und daher in der Praxis sehr aufwendig zu berechnen. Desweiteren ist es
sehr schwierig, hinterher von diesem mikroskopischen Modell auf ein
makroskopischen Modell zu schliefSen. Dies ist leicht zu zeigen am Beispiel
der durchschnittlichen Dichte p=mx*n/x , wenn hier n—« (viele Partikel)

und x—0 (kleine Partikel) ist das Problem offensichtlich.

Beispiel: Restringierte 3-Korper Problem



3. Die Liouville Gleichung
Der 6N- dimensionale Phasenraum

Ausgehend von dem N-Partikel System x,€Q;k=1,...,N fiihrt man
Z=(R*xR®),; x...x(R*xR®), (3.1)

mit  (RPXR’)=(x,,x,, X, %, X, , % )=(X,, X, , X,, V,, V,, V,)

ein, es ist also dim(Z)=6N.

Ein zeZ gibt nun einen Zustand des Systems von Partikeln wieder. Wegen
der nur inelastischen Stolse zwischen den Partikeln entfernt man alle Teile des
Phasenraums, in dem sich zwei Partikel uberlappen. Desweiteren schlielst man
alle Kollisionen von 3 oder mehr Partikel aus.

Beispiel: Zwei 1-dimensionale Teilchen.

Herleitung der Liouville Gleichung

Zumeist kennt man den Zustand des Systems von Partikeln nicht oder nur
ungenau, daher fuhrt man eine Wahrscheinlichkeitsdichte P(z,t) = P(x,v,t) ein.
Beschreibt man ein System zum Zeitpunkt t + dt, so erhalt man:

P(x,v,t+dt)=P(x—vdt, v—vdt, t) (3.2)

Wendet man die Taylor Entwicklung (1.0rdnung) auf die linke und rechte
Seite an, erhalt man:

P(x,v, t+dt)=P(x, v, t)+dt*ﬁ+0(dt2) (3.3)
P(x—vdt,v—vdt, t)=P(x, v, t)—dtx V*g—l;—dt* V %4— o(dr’) (3.4)
ot 8X av ot 6X ov

die Liouville Gleichung.
Mit einem Anfangszustand FP,(x,,V,) und der Annahme, dass P konstant
entlang der Kurve (x(t),v(t)) ist, gilt:

P(x(t), v(1), £)=Py(x,, v,) (3.6)

Satz: Wenn Z a—X+%) 0V >0 dann ist (3.6) erfiillt.

o0x



Beweis:

Die Anzahl der Partikel im (infinitesimalen) Volumenelement dxdv zur Zeit t ist
gegeben durch

P(x(t), v(t), t)dxdv(t) (3.7)
Da keine Partikel verloren gehen gilt auch:

P(x(t),v(t), t)dxdv(t)=P,(x,, v,) dx, dv, (3.8)
Deshalb reicht es aus zu zeigen, dass:

dxdv=dx,dv, (3.9)

Nach dem Transformationssatz gilt:

dxdv=J( t)x dx, dv, (3.10)
ox(t) o0x(t)
- _ o(x(t),v(t))_ ox, oV,
mit: - Ji=|dett 0(X,, Vo) |=|et av(ot) 6V(Ot)
0 X, o0V,

Jetzt zeigt man, dass 0,/J(£)=0 . Zuerst macht man folgende Taylor-
Entwicklungen:

x(t+e)=x(t)+ex(t)+O(e?) (3.11)
v(t+e)=v(O+e ¥ )+ O(e?) (3.12)
Das heildt einerseits:

0 x(t)

8X(t+€)_ 2
ox(0) _I+€*6X(t)+0(€) (3.13)
ov(t+e) ov(t) 2
v —I+e*av(t)+0(e) (3.14)

Und da x(t) und v(t) unabhangig, sind gilt:

SR (3.15)

Andererseits:

ox(t+e)  o0x(t) 2
V(D) _E*av(t)+0(€ ) (3.16)




ov(tt+e) *8 V()
ox(t) < ox(t)

+0(e?) (3.17)

Damit kann man folgende Determinante berechnen:

0x(t+e) o0x(t+e) 1 0x(t) 0x(t)
+ex*x €*
deta(x, v)(t+e) _ ox(t) ov(t) |_ got Qx( t) 0 V('t) LO(e)
ov(t) ov(t+e) Ov(t+e) *8 v( t) 1+€>|<av(t)
ox(t)  ov(D) “*ox(t) ov(t)
. ox,(t) ov(t), .,
_1+€*Zj:(axj(t)+avj(t))+0(€ ) (3.18)
Unter der Annahme des zu beweisenden Satzes wird aus (3.18):
=1+0(€?) (3.19)
Und:
_ o(x,v)(t+e) o(x,v)(L)| o(x, v)(t+e) d(x, v)(¢t)
JUtre)=\det =S o o0k, vo) )Hdet( olx D M o v
:‘det%JrO(ez):](t)Jr O(e?) (3.20)
Dann kann man endlich eine Aussage iiber 9,/(f) machen:
0, J(B)=1im Lx(J(t+¢)- J(£)~1lim O(c)=0 (3.21)

e-0 € e—0

Die Transformation (x,, vy)—(x(t), v(t)) ist die Identitat fiir t=0, so dass
J(0)=1. Daraus folgt J(t) = 1 fur alle t>0, und somit ist der Satz bewiesen.

Ist P differenzierbar in
ze A={((QeR* "R\ (|x,—x |<o :1, je[1,2,...,N(i#j)}}} und teR,¢>0 , so
erhalt man die Liouville-Gleichung

0P <~ 0P <~. 0P
6t+1§ V*anJr; Vj*avj 0 zeA (3.22)
Bewegen sich die Partikel geradlinig gleichformig, erfahren also keine
Beschleunigung, und wirkt keine aulSere Kraft auf das System, so fallt die
zweite Summe weg.
Die Liouville-Gleichung ist eine partielle Differentialgleichung. Die Randwerte
sind von zwei Faktoren abhangig, zum einen der Form von Q , zum anderen
von den Randern, die in der Menge A in Abhangigkeit vom Partikelradius

o entstanden sind. Da an den letzteren Randern die Geschwindigkeit von
vor einer Kollision in die nach einer Kollision unstetig uberfuhrt wird, legt



man fur z (vor der Kollision) und z' (nach der Kollision) fest:
Pz, t)=P(z',t) (ze 0A\O Q) (3.23)

Zuletzt sei noch angemerkt, dass die Startwerte symmetrisch sind bezuglich
des Vertauschens, da alle Partikel identisch sind.

Po(Xy Vi oo, Xy Vi, X, Voo, X, V) =By (X VX, Vo, X, VG, Xy, V) (3.24)
Auch dieser Ansatz ist in der Praxis sehr kompliziert zu benutzen, da man eine
partielle Differentialgleichung mit sehr vielen (sich verandernden) Randern
und eine gesuchte Funktion mit sehr vielen Variablen hat.



4. Die BBGKY- Hierarchie

Die Ein-Teilchen Distribution

Aus der Liouville Gleichung lasst sich aus der Wahrscheinlichkeitsdichte P(z,t)

eine Wahrscheinlichkeitsdichte fur den als ersten markierten Partikel

p! )(X v, b)= ) {m 3P X, V, X, V,..., Xy, Vy, t)dx,dv,...dx,dv, 4.1)
PY gibt die Wahrscheinlichkeit an, den ersten Partikel in einem gewissen

Zustand zu finden, unabhangig von den Zustanden von den Partikeln 2...N.

Vernachlassigt man Kollisionen, so entspricht P=pP" mit N=1.

Allgemein gilt aber fur glattes P, fur eine s-Teilchen Distribution:

herleiten,

)
PY(x,,v,,X,,Vy,...,X,, V)= _f P(x,,V,,X,, V.., X0, Vi, B) 1 dxdv; (4.2)
QXR> J=s+1

Herleitung der BBGKY- Hierarchie

Oftmals ist die spezifische Verteilung der Partikel (also die Verteilung
markierter Partikel) uninteressant, in der Praxis ist allgemeine Verteilung
(also die Verteilung irgendwelcher Partikel) wichtiger. Die Wahrscheinlichkeit,
irgendwelche s Partikel des Systems von N Partikeln zu finden, wird gegeben
durch:

N, po (4.3)

P’ N—

Nun teilt man V; aus der Liouville Gleichung in einen Anteil, der von einer
externen Kraft stammt, und einen Anteil, der von der Interaktion der Partikel
stammt, auf.

v=k, +2 k; (4.4)

I#j

und definiert:

K=k + Y k(4.5

y

Daraus folgt fur die letzte Summe der Liouville Gleichung:

N N-1 N-1
. 0P _ oP aP
;V’ av;_; (k; +k; ) V1+J ;ijk”*a ZkN thy x> (4.6)

Integriert man nun die Liouville Gleichung uber die Orts- und
Geschwindigkeitskoordinaten nach der obigen Aufspaltung der Summe, erhalt
man die BBGKY-Hierarchie von Verteilungen:



oPY & oPY &,y 0P opsY
+ +3 k9% +(N-5s) 9~ _dx,,dv,, =0
a t ; vk an ; 1 a J‘ Z i, s+1 8 V. Xs+1 V (47)

1

oder als allgemeine Verteilung (mit 4.3):

(
6;9 +Z V*aap +Zys ap +jz " aav dx,.,dv,.,=0 (4.8)

1' i

Zur Bestimmung der s-Teilchendichte benotigt man also nicht nur die s-
Teilchen-Distribution, sondern auch die (s+1)-Teilchen-Distribution. Diese
Hierarchie von Gleichungen fur die zeitliche Entwickelung des Systems heilst,

nach Bogolyubov- Born- Green— Kirkwood- Yvon, die BBGKY Hierarchie.



5. Die Vlasov Gleichung

Molekulares Chaos

Da die Partikel im Verhaltnis zu dem Gebiet, in dem sie sich befinden, sehr
klein sein sollen, wird es sehr selten sein, dass 2 ausgesuchte Partikel
miteinander kollidieren. Daher kann man die Teilnehmer an einer Kollision
oder Interaktion als rein zufallig betrachten. Es soll also molekulares Chaos_
herrschen; diese Annahme bedeutet, dass die Geschwindigkeiten der
kollidierenden Partikel unkorreliert und unabhangig von der Position der
Partikel sind. Deshalb ist die Wahrscheinlichkeit P? das Produkt:

PZ)(Xl, v, X, V,, t):Pl)(Xl, vy, t)*P”(XZ, v,,t) (5.1)

Herleitung der Vlasov Gleichung

Will man nun die Ein-Teilchen-Verteilungsfunktion mithilfe der BBGKY-
Hierarchie bestimmen, musste man auch die gesamte Hierarchie von
Gleichungen losen. Dieses Problem ware aquivalent zum Losen der Liouville
Gleichung. Mit geeigneten Zusatzannahmen kann man den Aufwand erheblich
reduzieren, indem man das Abarbeiten der Gleichungen der Hierarchie nach
wenigen Schritten abbricht. Eine Moglichkeit besteht darin, auszuschlief3en,
dass die Partikel miteinander durch StofSe interagieren. Das bedeutet fir die
Ein-Teilchen-Verteilungsfunktion:

(1) (2)
) ) AT IN) AN Y S LU
ot axl 6 2] — ' ov,
=0
Gp(l) 1) 1d 8p<2)
=P 0 +k‘ (N—l)f K% dx,dv,
ot 6X1 a v, 27 oy,

(1) (1) (1) a (2)
R S P
1 1 1

mit obigen molekularem Chaos wird aus (5.2):

(1) o
0P | 42 +1s‘1

(1)
(N 1) J‘Z N*]{Fz]d*ﬁl)*ap dX2dV2:0
’ oV

ot ax L av1 (5.3)
~1
op” op" . op! eld . (1), 0p" B
+ +k‘ + 2x k- dx,dv,=0
ot ox ov [ 2+ ki xp Fov, Y (5.4)

So erhalt man die so genannte Vlasov-Gleichung (auch: Wlassow-Gleichung
oder stolsfreie Boltzmann-Gleichung):




(1) (1) (1)
0P, , 9P +V1*8p =0 (5.5)
ot 0Xx, ov,

Eigenschaften der Vlasov-Gleichung

Die Verteilungsfunktionen p' bzw. P" sind an einem Ort jeweils stets
gleich. Sind die Partikel in dem System stationéar, so ist p!’ bzw. PV
konstant. Die Vlasov-Gleichung ist zudem zeitlich umkehrbar, das heilst, man
kann von einem Zeitpunkt £, an durch das Ersetzen von t durch -t und v
durch -v vorherige Zustande wiederherstellen.

Die Vlasov-Gleichung ist zwar vergleichsweise einfach zu losen, sie beschreibt
das System aber auch nicht (physikalisch) vollstandig. Das Weglassen von
Kollisionen ist auch nur sinnvoll, wenn der dem System zugrunde liegende
Raum Q sehr viel grofSer ist als das Volumen der Partikel, oder dass nur
wenige Partikel im System sind. Beides bedeutet, das Kollisionen seltener
vorkommen.



6. Die Boltzmann-Gleichung

Lasst man wieder Kollisionen zu (zumindest zwischen jeweils zwei Partikeln),
braucht man ebenso eine Vereinfachung der Liouville-Gleichung, die aus
numerischen Grunden zu komplex zu losen ware.

Herleitung

Die Wahrscheinlichkeit fur eine Zweier-Kollision ist gleich der
Wahrscheinlichkeit, zwei Partikel zu finden dessen Zentren einen Partikel-
Durchmesser Abstand haben. Um nun eine Evolutionsgleichung fur P zu
finden, braucht man also P*=P?(x,,v,,x,,v,,t) , welche die
Wahrscheinlichkeit angibt, zu einer Zeit t einen Partikel bei x; mit
Geschwindigkeit v; , sowie einen Partikel bei X, mit Geschwindigkeit V,

zu finden. Ausgehend von der Vlasov-Gleichung (5.2) setzt man den Anteil der
externen Krafte (wenn gewiinscht) gleich Null, und ersetzt den
Korrelationsterm durch eine Differenz von L (fur das Verlassen von Partikeln
aus dem Gebiet) und G (fur das Eintreten in das Gebiet). Das heilst:

opY opY
Y —-G-L
ot T 0 X, (6.1)

mit:
~1)o*[ [ PY(x,,v,,x,+0n,v,, t)*|(v,— v,)xn|dv,dn (6.2)

17 V1~
R® S,

G=(N-1 ZJ"J"PZ X,,V., X, +on, v, t)* ‘(VZ_Vl)*H|dV2dH (6.3)

17 717771 7 727
R® S,

Die Gleichung (6.1) kann nur gelten, wenn das Boltzmann-Grad Limit erfullt
ist, welches besagt: fir N—« und oc—0 muss Nxo’<w .

Wie in Kapitel 5 im Abschnitt 1 beschrieben, gilt auch hier molekulares Chaos.
Daher gilt auch hier:

PY(x,,v,,x,, v,, t)=P"(x,,v,, )*P"(x,,v,,t) (6.4)

Dies kann man nun in L direkt einsetzen. Fiur das Einsetzen in G muss vorher
noch v; durch Vv,=v—n(nxV);i=1,2 ersetzt werden.

2ffP1 x,,v,, t)PY(x,+0n,v,, t)x|v,— v,)xn|dv,dn (6.5)

17 717
R S,

G=(N-1)* [ [ P'(x,, v, ) P (x,+0 0, 7, )| v,~ vi)x1idv,dn (g g

R? S,
Damit erhalt man die Boltzmann-Gleichung in folgender Form:

o P! op N
o ¥ ——N ZR‘[! [PY(x,, v, ) PY(x,+0n,7,,t)-P"(x,, v, t) P (x+0n, v, 1) v,vy)xnldv,dn (6.7)

In dieser Gleichung kommt nur noch ein unabhéngiges P! vor, kein P?
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