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1. Einleitung

Das Modell

Bei der Betrachtung von Systemen von Partikeln unterscheidet man drei 
verschiedene Modelle. Zum einen das mikroskopische Modell, bei welchem 
jeder Partikel durch eine Evolutionsgleichung ausgewertet wird. Bei dem 
makroskopischen Modell werden Durchschnitte über lokale Gruppen von 
Partikeln betrachtet. Bei dem statistischen Modell wird das gesamte System 
von Partikeln ausgewertet. Im Folgenden wird ausschließlich das 
mikroskopische Modell gezeigt.

Voraussetzungen an die Partikel

Das Ziel ist es, ein System von N Partikeln in Form von kleinen harten Kugeln 
zu beschreiben. Es wird angenommen, dass nur inelastische Stöße zwischen 
den kugelsymetrischen Partikeln bei Kollisionen miteinander stattfinden. Alle 
Partikel können sich frei in alle Richtungen bewegen. Die Position eines 
Partikels wird durch die Position seines Masseschwerpunktes bestimmt.
Sei nun ∈ℝ

3 der Raum in dem sich die Partikel ( xk∈: k=1,... ,N ) mit 
Radius  befinden. Desweiteren stelle man sich die Partikel nummeriert vor.
Physikalisch soll der Raum ein Vakuum sein, so dass keine Kräfte wie 
beispielsweise Luftreibung auftreten. So ist den Partikeln eine geradlinig 
gleichförmige Bewegung möglich nur mit ihrer Startgeschwindigkeit.

Ableitungen nach der Zeit

Ableitungen nach der Zeit (für gewöhnlich durch t symbolisiert), also
d
dt

, 

werden an den differenzierten Funktionen durch einen Punkt über Funktion 
gekennzeichnet, im Gegensatz zu dem in der Mathematik üblichen Strich ( ' ).

Ein Beispiel: 
df
dt
=ḟ . Ebenso werden höhere Zeitableitungen durch die 

entsprechende Punktanzahl kenntlich gemacht.

Die Newtonschen Axiome

Die Grundlage der klassischen Mechanik bilden die Newtonschen Axiome. 
Diese sind die Voraussetzung an die kommenden Modelle, insbesondere an 
das der Newtonschen Bewegungsgleichungen.

1. Galileische Trägheitsgesetz  
Ein Koordinatensystem, in dem sich ein oder mehrere Körper geradlinig 
gleichförmig bewegen (das schließt die Ruheposition ein), heißt 
Inertialsystem.

2. Bewegungsgesetz  
Eine Kraft verhält sich proportional zu der zeitlichen Änderung des 
Impulses, also: F=ṗ=d mt∗v/dt . Für nicht zeitabhängige Masse 
ergibt sich: F=m0∗ẍ=m0∗a .



3. Reaktionsprinzip  
Die Kraft, die Körper A auf Körper B ausübt, ist gleich der negativen, 
Kraft, die Körper B auf Körper A ausübt. FAB=−FBA

Evolutionsgleichung

Der Begriff Evolutionsgleichung, der im Folgenden verwendet wird, ist nicht 
klar definiert. Hier soll er für eine (gewöhnliche oder partielle) 
Differentialgleichung stehen, die die zeitliche Veränderung des Systems von 
Partikeln beschreibt.

Vorgehen

Zuerst wird die Lösung mittels klassischer Mechanik betrachtet, danach die 
Liouville Gleichung und daraus folgend die BBGKY-Hierarchie. Dann die 
Vlasov-Gleichung für stoßfreie Systeme und die Boltzmann-Gleichung für 
Systeme mit Kollisionen.



2. Die Newtonschen Bewegungsgleichungen

Newtonsche Bewegungsgleichung für 1 Teilchen

Für ein System mit einem Partikel gilt:

ẍ= F
m
=

f ex

m
⇒ {

ẋ=v

v̇=
F
m

(2.1)

Um die Bewegung dieses trivialen Systems zu lösen, muss man eine 
Differentialgleichung 2.ter Ordnung bzw ein System aus zwei 
Differentialgleichungen 1.ter Ordnung lösen. Angenommen, es wirken keine 
äußeren Kräfte auf das System, also f ex=0 , dann bewegt sich dieser 
Partikel, entsprechend seiner Anfangsbedingungen, vom Startpunkt x0∈ℝ

3

in Richtung ẋ0=v0∈ℝ
3 mit der Geschwindigkeit ∣v0∣ .

Newtonsche Bewegungsgleichung für 2 Teilchen

Für ein System mit zwei Partikeln kann man nun ebenso ein System von 
gewöhnlichen Differentialgleichungen schreiben:

{
ẋ1=v1

v̇1=
f ex

m1


f 21

m1

ẋ2=v2

v̇2=
f ex

m2


f 12

m2

(2.2)

mit den entsprechenden Anfangsbedingungen für x10
, v10

,x20
,v20

. Man kann 
bei einem solchen System aber auch anders vorgehen. Dann führt man zuerst 
eine

Schwerpunktkoordinate: R=
m1∗x1m2∗x2

m1m2

 (2.3) ein, sowie eine

Relativkoordinate:    r=x1−x2 (2.4)

Damit gilt zunächst (nach dem Schwerpunktsatz) R̈=
fex

m1∗m2
(2.5)

und für die Relativkoordinate: r̈=r̈1−r̈2=
f1ex

m1

−
f2ex

m2


f 12

m1

−
f 21

m2

(2.6)



Nun definiert man sich eine reduzierte Masse: :=
m1∗m2

m1m2

(2.7)

Man erhält so eine Relativbeschleunigung: r̈=
f 1ex

m1

−
f 2ex

m2


f12


(2.8)

Ist dieses System abgeschlossen, wirken also keine äußeren Kräfte (
F1ex
=F2ex

=0 ), dann sind die Gleichungen (2.5 und 2.8) entkoppelt. Die 
Relativbewegung erscheint nun wie ein einziges Teilchen im Kraftfeld f 12 .  
Man hat also ein 2- Partikel System auf ein effektives 1- Partikel System 
reduziert.

Newtonsche Bewegungsgleichung für N Teilchen

Für ein System mit N Partikeln gilt folgendes System gewöhnlicher 
Differentialgleichungen:

{
ẋk=vk

v̇k=
Fk

mk

=
fk ex

mk


1
mk
∑
l=1

N

f lk

(2.9)

mit den Anfangsbedingungen

xk 0=xk 0
(2.10)

vk0=vk 0
(2.11)

wobei zu beachten ist

f lk=fkl und fkk=0 (2.12)

Dies ist ein sehr großes System von Differentialgleichungen (2N Gleichungen) 
und daher in der Praxis sehr aufwendig zu berechnen. Desweiteren ist es 
sehr schwierig, hinterher von diesem mikroskopischen Modell auf ein 
makroskopischen Modell zu schließen. Dies ist leicht zu zeigen am Beispiel 
der durchschnittlichen Dichte =m∗n /x , wenn hier n∞ (viele Partikel) 
und x0 (kleine Partikel) ist das Problem offensichtlich.

Beispiel: Restringierte 3-Körper Problem



3. Die Liouville Gleichung

Der 6N- dimensionale Phasenraum

Ausgehend von dem N-Partikel System xk∈; k=1,... ,N führt man 

Z=ℝ3
×ℝ

3
1××ℝ

3
×ℝ

3
N (3.1)

mit ℝ
3
×ℝ

3
i=xi1

,x i2
,xi3

, ẋ i1
, ẋ i2

, ẋi3
=x i1

,xi2
,xi3

, vi1
,v i2

,v i3


ein, es ist also dim(Z)=6N.
Ein z∈Z gibt nun einen Zustand des Systems von Partikeln wieder. Wegen 
der nur inelastischen Stöße zwischen den Partikeln entfernt man alle Teile des 
Phasenraums, in dem sich zwei Partikel überlappen. Desweiteren schließt man 
alle Kollisionen von 3 oder mehr Partikel aus.

Beispiel: Zwei 1-dimensionale Teilchen.

Herleitung der Liouville Gleichung

Zumeist kennt man den Zustand des Systems von Partikeln nicht oder nur 
ungenau, daher führt man eine Wahrscheinlichkeitsdichte P(z,t) = P(x,v,t) ein.
Beschreibt man ein System zum Zeitpunkt t + dt, so erhält man:

Px ,v, tdt =Px−vdt ,v−v̇dt , t  (3.2)

Wendet man die Taylor Entwicklung (1.Ordnung) auf die linke und rechte 
Seite an, erhält man:

Px ,v, tdt =Px, v, t dt∗∂P
∂ t
Odt2

 (3.3)

Px−vdt ,v−v̇ dt, t =Px,v ,t−dt∗v∗∂P
∂x
−dt∗v̇∗∂P

∂v
Odt2

 (3.4)

⇒
∂P
∂t
=−v∗∂P

∂x
−v̇∗∂P

∂v
⇒
∂P
∂t
v∗∂P

∂x
v̇∗∂P

∂v
=0 (3.5)

die Liouville Gleichung.
Mit einem Anfangszustand P0x0 ,v0 und der Annahme, dass P konstant 
entlang der Kurve (x(t),v(t)) ist, gilt:

Px t  ,v t , t =P0x0 ,v0 (3.6)

Satz: Wenn ∑
i=1

N


∂ ẋ
∂x

∂ v̇
∂v
=0∀ t0 dann ist (3.6) erfüllt.



Beweis:

Die Anzahl der Partikel im (infinitesimalen) Volumenelement dxdv zur Zeit t ist 
gegeben durch

Px t  ,v t , t dxdv t  (3.7)

Da keine Partikel verloren gehen gilt auch:

Px t  ,v t, t dxdv t =P0x0 ,v0dx0dv0 (3.8)

Deshalb reicht es aus zu zeigen, dass:

dxdv=dx0dv0 (3.9)

Nach dem Transformationssatz gilt:

dxdv= J t∗dx0dv0 (3.10)

mit: J t =∣det 
∂x t ,v t 
∂x0 ,v0

∣=∣det 
∂x t 
∂x0

∂x t 
∂v0

∂v t 
∂x0

∂v  t
∂v0

∣
Jetzt zeigt man, dass ∂t J t=0 . Zuerst macht man folgende Taylor-
Entwicklungen:

x t=x t  ẋ t O2
 (3.11)

v t=v t v̇ tO 2
 (3.12)

Das heißt einerseits:

∂x t
∂x t 

=I∗
∂ ẋt 
∂xt 

O2
 (3.13)

∂v t
∂v t 

=I∗
∂ v̇ t 
∂v t 

O2 (3.14)

Und da x(t) und v(t) unabhängig, sind gilt:

∂x t
∂v t 

=
∂v t
∂x t

=0 (3.15)

Andererseits:

∂xt
∂v t 

=∗
∂ ẋ t 
∂v t 

O2
 (3.16)



∂v t
∂x t 

=∗
∂ v̇ t
∂xt 

O2
 (3.17)

Damit kann man folgende Determinante berechnen:

det ∂x, vt
∂v t 

=det 
∂x t
∂x t

∂x t
∂v t 

∂v t
∂x t

∂v  t
∂v t 

=det 1∗
∂ ẋ t 
∂x t 

∗
∂ ẋ t 
∂v t 

∗
∂ v̇ t
∂xt 

1∗
∂ v̇ t 
∂v t 

O2

=1∗∑
i

∂ ẋi t 
∂xi t 


∂ v̇ i t 
∂v i t 

O2 (3.18)

Unter der Annahme des zu beweisenden Satzes wird aus (3.18):

=1O2
 (3.19)

Und:

Jt=∣det 
∂x,v t
∂x ,vt 

∗
∂x,v t 
∂x0 ,v0

∣=∣det
∂x, vt
∂x,v t 

∗det 
∂x, vt 
∂x0 , v0

∣

=∣det
∂x ,v t
∂x0 ,v0 ∣O2

= J tO2
 (3.20)

Dann kann man endlich eine Aussage über ∂t J t machen:

∂t J t=lim
0

1

∗ J t− J t −lim

0
O=0 (3.21)

Die Transformation x0, v0xt  ,v t  ist die Identität für t=0, so dass 
J(0)=1. Daraus folgt J(t) = 1 für alle t>0, und somit ist der Satz bewiesen.

Ist P differenzierbar in 
z∈={⊂ℝ3


N
×ℝ

3N
∖ {∣xi−x j∣ : i , j∈{1,2,,N i≠ j}}} und t∈ℝ , t0 , so 

erhält man die Liouville-Gleichung

∂P
∂ t
∑

i=1

N

v∗∂P
∂xi

∑
i=1

N

v̇ i∗
∂P
∂v i

=0 z∈ (3.22)

Bewegen sich die Partikel geradlinig gleichförmig, erfahren also keine 
Beschleunigung, und wirkt keine äußere Kraft auf das System, so fällt die 
zweite Summe weg.
Die Liouville-Gleichung ist eine partielle Differentialgleichung. Die Randwerte 
sind von zwei Faktoren abhängig, zum einen der Form von  , zum anderen 
von den Rändern, die in der Menge  in Abhängigkeit vom Partikelradius 
 entstanden sind. Da an den letzteren Rändern die Geschwindigkeit von 

vor einer Kollision in die nach einer Kollision unstetig überführt wird, legt 



man für z (vor der Kollision) und z' (nach der Kollision) fest:

Pz,t =Pz', t  z ∈ ∂∖∂ (3.23)

Zuletzt sei noch angemerkt, dass die Startwerte symmetrisch sind bezüglich 
des Vertauschens, da alle Partikel identisch sind.

 P0x1,v1,,x i ,v i , ,x j , v j, ,xN , vN=P0x1, v1, ,x j, v j,,x i ,v i ,,xN ,vN (3.24)

Auch dieser Ansatz ist in der Praxis sehr kompliziert zu benutzen, da man eine 
partielle Differentialgleichung mit sehr vielen (sich verändernden) Rändern 
und eine gesuchte Funktion mit sehr vielen Variablen hat. 



4. Die BBGKY- Hierarchie

Die Ein-Teilchen Distribution

Aus der Liouville Gleichung lässt sich aus der Wahrscheinlichkeitsdichte P(z,t) 
eine Wahrscheinlichkeitsdichte für den als ersten markierten Partikel 

herleiten, P1x1 ,v1 , t = ∫
×ℝ

3N−3

Px1, v1, x2, v2,,xN ,vN , tdx2dv2dxNdvN  (4.1)

P1 gibt die Wahrscheinlichkeit an, den ersten Partikel in einem gewissen 
Zustand zu finden, unabhängig von den Zuständen von den Partikeln 2...N.
Vernachlässigt man Kollisionen, so entspricht P=P1 mit N=1.
Allgemein gilt aber für glattes P, für eine s-Teilchen Distribution:

  Psx1 ,v1 ,x2 , v2 , ,xs ,vs ,t = ∫
s×ℝ3s

Px1 , v1 ,x2, v2, ,xN , vN , t ∏
j=s1

N

dx jdv j (4.2)

Herleitung der BBGKY- Hierarchie
 
Oftmals ist die spezifische Verteilung der Partikel (also die Verteilung 
markierter Partikel) uninteressant, in der Praxis ist allgemeine Verteilung 
(also die Verteilung irgendwelcher Partikel) wichtiger. Die Wahrscheinlichkeit, 
irgendwelche s Partikel des Systems von N Partikeln zu finden, wird gegeben 
durch:

ps = N!
N−s

∗Ps
 (4.3)

Nun teilt man v̇i aus der Liouville Gleichung in einen Anteil, der von einer 
externen Kraft stammt, und einen Anteil, der von der Interaktion der Partikel 
stammt, auf.

v̇i=k iex
∑

i≠ j

kij (4.4)

und definiert:

k i
s :=k iex

 ∑
j=1 i≠ j

s

kij (4.5)

Daraus folgt für die letzte Summe der Liouville Gleichung:

∑
i=1

N

v̇ i∗
∂P
∂ vi

=∑
i=1

N−1

kiex
k i ,N∗

∂P
∂v i

 ∑
j=1 i≠ j

N−1

k i , j∗
∂P
∂v i

∑j=1

N−1

kN, j∗
∂P
∂vN

kNex
∗
∂P
∂v j

(4.6)

Integriert man nun die Liouville Gleichung über die Orts- und 
Geschwindigkeitskoordinaten nach der obigen Aufspaltung der Summe, erhält 
man die BBGKY-Hierarchie von Verteilungen:



∂Ps

∂ t
∑

i=1

s

v∗∂Ps 

∂x i

∑
i=1

s

ki
s
∗
∂Ps 

∂v i

N−s∫∑
i=1

s

ki ,s1∗
∂Ps1

∂vi

dxs1dvs1=0 (4.7)

oder als allgemeine Verteilung (mit 4.3):

 
∂ps

∂ t
∑

i=1

s

v∗∂ps

∂xi

∑
i=1

s

k i
s
∗
∂ps

∂v i

∫∑
i=1

s

ki ,s1∗
∂ps1 

∂vi

dxs1dvs1=0        (4.8)

Zur Bestimmung der s-Teilchendichte benötigt man also nicht nur die s-
Teilchen-Distribution, sondern auch die (s+1)-Teilchen-Distribution. Diese 
Hierarchie von Gleichungen für die zeitliche Entwickelung des Systems heißt, 
nach Bogolyubov– Born– Green– Kirkwood– Yvon, die BBGKY Hierarchie.



5. Die Vlasov Gleichung

Molekulares Chaos

Da die Partikel im Verhältnis zu dem Gebiet, in dem sie sich befinden, sehr 
klein sein sollen, wird es sehr selten sein, dass 2 ausgesuchte Partikel 
miteinander kollidieren. Daher kann man die Teilnehmer an einer Kollision 
oder Interaktion als rein zufällig betrachten. Es soll also molekulares Chaos 
herrschen; diese Annahme bedeutet, dass die Geschwindigkeiten der 
kollidierenden Partikel unkorreliert und unabhängig von der Position der 
Partikel sind. Deshalb ist die Wahrscheinlichkeit P2 das Produkt:

P2x1 ,v1 ,x2 , v2 , t =P1x1 ,v1 , t∗P1x2 ,v2 ,t  (5.1)

Herleitung der Vlasov Gleichung

Will man nun die Ein-Teilchen-Verteilungsfunktion mithilfe der BBGKY-
Hierarchie bestimmen, müsste man auch die gesamte Hierarchie von 
Gleichungen lösen. Dieses Problem wäre äquivalent zum Lösen der Liouville 
Gleichung. Mit geeigneten Zusatzannahmen kann man den Aufwand erheblich 
reduzieren, indem man das Abarbeiten der Gleichungen der Hierarchie nach 
wenigen Schritten abbricht. Eine Möglichkeit besteht darin, auszuschließen, 
dass die Partikel miteinander durch Stöße interagieren. Das bedeutet für die 
Ein-Teilchen-Verteilungsfunktion:
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mit obigen molekularem Chaos wird aus (5.2):
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So erhält man die so genannte Vlasov-Gleichung (auch: Wlassow-Gleichung 
oder stoßfreie Boltzmann-Gleichung):
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Eigenschaften der Vlasov-Gleichung

Die Verteilungsfunktionen p1 bzw. P1 sind an einem Ort jeweils stets 
gleich. Sind die Partikel in dem System stationär, so ist p1 bzw. P1

konstant. Die Vlasov-Gleichung ist zudem zeitlich umkehrbar, das heißt, man 
kann von einem Zeitpunkt tz an durch das Ersetzen von t durch -t und v 
durch -v vorherige Zustände wiederherstellen.

Die Vlasov-Gleichung ist zwar vergleichsweise einfach zu lösen, sie beschreibt 
das System aber auch nicht (physikalisch) vollständig. Das Weglassen von 
Kollisionen ist auch nur sinnvoll, wenn der dem System zugrunde liegende 
Raum  sehr viel größer ist als das Volumen der Partikel, oder dass nur 
wenige Partikel im System sind. Beides bedeutet, das Kollisionen seltener 
vorkommen.



6. Die Boltzmann-Gleichung

Lässt man wieder Kollisionen zu (zumindest zwischen jeweils zwei Partikeln), 
braucht man ebenso eine Vereinfachung der Liouville-Gleichung, die aus 
numerischen Gründen zu komplex zu lösen wäre.

Herleitung

Die Wahrscheinlichkeit für eine Zweier-Kollision ist gleich der 
Wahrscheinlichkeit, zwei Partikel zu finden dessen Zentren einen Partikel-
Durchmesser Abstand haben. Um nun eine Evolutionsgleichung für P1 zu 
finden, braucht man also P2=P2

x1 ,v1 ,x2 ,v2 , t  , welche die 
Wahrscheinlichkeit angibt, zu einer Zeit t einen Partikel bei x1 mit 
Geschwindigkeit v1 , sowie einen Partikel bei x2 mit Geschwindigkeit v2

zu finden. Ausgehend von der Vlasov-Gleichung (5.2) setzt man den Anteil der 
externen Kräfte (wenn gewünscht) gleich Null, und ersetzt den 
Korrelationsterm durch eine Differenz von L (für das Verlassen von Partikeln 
aus dem Gebiet) und G (für das Eintreten in das Gebiet). Das heißt:
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Die Gleichung (6.1) kann nur gelten, wenn das Boltzmann-Grad Limit erfüllt 
ist, welches besagt: für N∞ und 0 muss N∗2

∞ .
Wie in Kapitel 5 im Abschnitt 1 beschrieben, gilt auch hier molekulares Chaos.
Daher gilt auch hier:

P2x1 ,v1 ,x2 , v2 , t =P1x1 ,v1 , t∗P1x2 ,v2 ,t  (6.4)

Dies kann man nun in L direkt einsetzen. Für das Einsetzen in G muss vorher 
noch vi durch vi=v i−nn∗V ; i=1,2 ersetzt werden.
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Damit erhält man die Boltzmann-Gleichung in folgender Form:
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In dieser Gleichung kommt nur noch ein unabhängiges P1 vor, kein P2 .
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