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1 Introduction

The purpose of this note is to study a reconstruction algorithm for an acoustic
breast scanner as described in [2]. Its essential features are that it is two-
dimensional, and that it has a ring geometry. The essential features of our
reconstruction algorithm are that it is in time domain and that it makes use
of the Kaczmarz method. Algorithms of this type have been described for
a variety of imaging problems in chapter 7 of [3]. They are versions of the
widely used adjoint methods. In the context of breast screening frequency
domain versions of this algorithm were described and tested in [1] and [5].

2 The mathematical model

We consider a plane domain Ω with boundary Γ. Ideally Ω is a circle, but
its exact shape is not relevant as long as it is sufficiently regular. On Γ
acoustic transducers (typically 256) are placed which can act as sources and
as receivers. The object to be imaged is situated in Ω. It is defined by its
speed of sound c(x), x ∈ Ω. We assume c to be the ambient sound speed
c0 outside a compact subset of Ω. We put c2(x) = c2

0/(1 + f(x)). Hence
f = 0 outside a compact subset of Ω. The pressure u(x, t) at x ∈ Ω at time
t, 0 < t < T is assumed to satisfy

∂2u

∂t2
(x, t) = c2(x) (∆u(x, t) + q(t)p(x− s)) , (1)

x ∈ Ω, 0 < t < T. (2)
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and u = 0, t < 0. Here, s ∈ Γ is a transducer that acts as source, q is
the source wavelet, and p is the intensity profile of the source. For a finite
number of sources (typically 256), the function gs(r, t) = u(r, t) is measured
at r ∈ Γ by means of the transducers that act as receivers. From all these
measurements the function c, i.e. the function f , has to be reconstructed.
We consider gs as a function of f , writing gs = Rs(f) with the nonlinear
operator Rs : L2(Ω) −→ L2(Γ × (0, T )). Then the reconstruction problem
amounts to solving the nonlinear system Rs(f) = gs for all sources s.

3 The Kaczmarz method

The Kaczmarz method is an iterative procedure for solving systems such as
Rs(f) = gs for some set of sources s. The update is given by

f ← f − α(R′s(f))∗(Rs(f)− gs). (3)

This is done for all sources s. Once all sources have been used the process is
started again. One pass through all the sources is called a sweep.

The derivative R′s is easily computed in the following way; see chapter 7
of [3]: In order to evaluate (R′s(f))(h) for some h ∈ L2(Ω) solve

c−2∂
2w

∂t2
= ∆w − h

c2
0

∂2u

∂t2
, (4)

x ∈ Ω, 0 < t < T (5)

with w = 0, t < 0 and with u the solution of (1,2). Then R′s(f) = w|Γ.
Computing the adjoint operator R′s(f) : L2(Γ× (0, T )) −→ L2(Ω) is more

tricky. We follow the procedure in [6]. For functions w, z in R2× (0, T ) that
decay sufficiently fast as |x| tends to infinity we have by integration by parts

∫ T

0

∫
R2

(c−2∂
2w

∂t2
−∆w)zdxdt =

∫ T

0

∫
R2
w(c−2∂

2z

∂t2
−∆z)dxdt

+

[∫
R2
c−2(

∂w

∂t
z − w∂z

∂t
)dx

]T
0

.

Let gΓ be the distribution defined for g ∈ L2(Γ× (0, T )) by∫ T

0

∫
R2
gΓφdxdt =

∫ T

0

∫
Γ
gφdxdt. (6)
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Choosing w as in (4,5) and z as the solution of the final value problem

∂2z

∂t2
= c2(∆z + gΓ) (7)

with z = 0, t > T we obtain

−
∫ T

0

∫
R2

h

c2
0

∂2u

∂t2
zdxdt =

∫ T

0

∫
R2
wgΓdxdt =

∫
Γ
(R′s(f)h)gdx.

This means that for any g ∈ L2(Γ× (0, T ))

(R′s(f))?g = − 1

c2
0

∫ T

0
z
∂2u

∂t2
dt.

Thus each step of the Kaczmarz method requires the solution of one initial
value problem (1,2) and one final value problem (7), and this has to be done
for each source. Thus the numerical effort is considerable but manageable.

4 Finding an initial approximation

The Kazmarz method starts out from an initial approximation f0 that has
to be chosen. It has been shown heuristically in [7] that a condition for f0

that implies convergence is

|
∫

(f − f0)ds| ≤ λ (8)

where the integration is along the geodesics of the background medium f0

and λ is the largest wavelength in the source wavelet q.
With the typical wavelengths in medical imaging being in the order of

mm, (8) is difficult to satisfy. A simple trick helps: One does a first recon-
struction with a wavelet that has a wavelength big enough to satisfy (8) for
f0 = 0, say. It turns out that the result of this first reconstruction is a low
pass filtered version of f . This low pass filtered version is used as the initial
approximation f0. Often this initial approximation satisfies (8) and hence
leads to a convergent process.

Another possibility is to extract travel time information from the scat-
tering data g. This assumes that the paths are essentially straight. Let Tr,s
be the travel time from source s to receiver r. Tr,s can be easily found by
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searching for the maximum of gs(r, t) as a function of t. We have approxi-
mately

Tr,s =
∫ r

s

dx

c
dx =

1

c0

∫ r

s

√
1 + fdx =

1

c0

∫ r

s
(1 + f/2)dx

hence ∫ r

s
fdx = 2c0(Tr,s − |r − s|). (9)

Thus we get an approximation for the fan beam transform of f . With the
help of Radon’s inversion formula we obtain an approximation for f which
we in turn use as an initial approximation for the Kaczmarz method.

5 Finite difference methods

The initial and final value problems are solved numerically by finite difference
methods which can be found in every text on numerical analysis. The only
point that needs attention is the discretisation of the distribution gΓ in (7).
Viewing gΓ as a function and discretizing the left hand side of (6) on a grid
with step size h in space and δt in time, the right hand side by means of a
quadrature rule with the receivers rl as nodes and weights Wl we obtain

h2δt
∑
j,k,n

gΓ,j,k,nΦj,k,n = δt
∑
l,n

Wlgl,nΦl,n.

Hence gΓ,j,k,n = Wlgl,n/h
2 if j, k point to a receiver rl and zero otherwise. For

Γ a circle of radius ρ0 and 2P receivers uniformly distributed on Γ we have
Wl = ρ0π/P.

6 Numerical experiments

We created a breast phantom patterned after the one in [1]. We omitted
the attenuation (see the next section) but made it more realistic by making
it more inhomogeneous; see Fig. 1. The breast is imbedded in a square of
side length 20 cm. The four tumors have diameters 2, 4, 6 and 10 mm. The
function f assumes the values around 0.08 in the tumors and oscillates

4



Fig.1: Left: Breast phantom. Reconstructions with 250 kHz and 500 kHz
middle and right, respectively.

around the values -0.03 and 0.06 in the glandular tissue and in the fat, re-
spectively. The transducers are sitting on a circle with diameter 16 cm. The
wavelet q is

q(t) = e−t
2/(2τ2) cosωct, τ = π/ωc.

According to the 1/e convention (bandwidth defined as decay of |q̂| to 1/e
of the central value) the bandwidth of q is 2

√
2ωc/π, which corresponds to

a bandwidth of 90% of the central frequency. We worked with a central
frequency of f=500 kHz, i. e. ωc = 2πf. Assuming the ambient speed of
sound c0 to be 1500 m/s this corresponds to a wavelength of 3 mm. Hence
we expect a resolution of 1.5 mm. We chose a pixel size of 1 mm, i. e. we
discretized f on a 200 × 200 grid.

For f0 = 0 the condition (8) reads |Rf | ≤ λ with R the Radon transform.
We have max |Rf | = 5.4 mm and, for 500 kHz, λ =3 mm. Hence (8) is not
satisfied, and we don’t expect convergence. In fact the iteration gets stuck
in an object far away from the true f . However for 250 kHz, the wavelength
is 6 mm, and (8) is satisfied. The reconstruction with f0 = 0 and 250 kHz
converges and is displayed in Fig. 1. It is completely useless for diagnostic
purposes. However it gives a rough estimate for the geometry and the velocity
of the breast. We use it as initial approximation f0 for the reconstruction
with the correct frequency of 500 kHz. The result is also shown in Fig. 1.
We see that the smallest tumor is clearly resolved. Since the theoretical
resolution, as shown above, is 1.5 mm, this is what we expect.

In both computations it turned out to be advantages to let the parameter
α in (3) vary with depth. With r0 = 0.08 the radius of the circle of sources
we put α = α(x) = α0(ρ2

0 − |x|2) with α0 = 2× 103. We did 3 sweeps.
At a first glance it looks odd to do do the preliminary reconstruction

with the false frequency. However, this is very similar to regularization: In
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regularization we replace an operator which we can’t invert (because of lack
of stability) by one that is stably invertible and apply this false operator
to the measured data. Here we replace an operator which we can’t invert
(because of lack of an initial approximation) by one for which we can find an
initial approximation and apply this false operator to the measured data.

Alternatively one can find the initial approximation by extracting travel
times from the data as described in (9). We did not get useful results in this
way.

The central wavelength in this example is 3 mm, while the step size in
the spatial discretisation is 1 mm. It is clear that for larger frequencies, e. g.
1.5 MHz with a wavelength of 1 mm, a much smaller step size is needed.

7 Attenuation

Including attenuation is easy. The wave equation including attenuation reads

c−2∂
2u

∂t
+ a

∂u

∂t
= ∆u+ q(t)p(x− s). (10)

The solution operator R now maps the pair (f, a) to the boundary values of
u on Γ: R(f, a) = u|Γ. Its derivative is given by R′(f, a)(h, k) = w|Γ where
w is the solution of

c−2∂
2w

∂t2
+ a

∂w

∂t
= ∆w − h

c2
0

∂2u

∂t2
− k∂u

∂t
.

The adjoint is now an operator from L2(Γ× (0, T )) into L2(Ω)×L2(Ω). For
g ∈ L2(Γ× (0, T )) it is given by

R′(f, a)∗g = −
∫ T

0

(
1

c2
0

∂2u

∂t2
,
∂u

∂t

)
zdt

where z is the solution of the final value problem

c−2∂
2z

∂t2
− a∂z

∂t
= ∆z + gΓ.

The Kaczmarz method can now be done exactly as in (3) with simultaneous
updates for f, a.
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Doing a Fourier transform with respect to time we get from (10)

∆û+
ω2

c2
0

(1 + f − iac2
0/ω)û = −q̂p

with ω the frequency variable. This is the starting point for frequency domain
methods such as the ones in [1], [5].
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