Tomography with few data: Use of
collocation methods in acoustic pyrometry

Helmut Sielschott? Willy Derichs?
University of Miinster RWE Energie AG

Published in:

ECMI ’94: Student Proceedings
Kaiserslautern 1996
pages 251-263

Unstitut fiir Numerische und instrumentelle Mathematik, Einsteinstr. 62,
D-48149 Miinster. E-mail: helmut.sielschott@uni-muenster.de
2Kraftwerk NiederauBiem, Abt. KF-F, Postfach 1461, D-50104 Bergheim



Tomography with few data: Use of
collocation methods in acoustic
pyrometry

Helmut Sielschott, University of Miinster*
Willy Derichs, RWE Energie AG**

1 Introduction

In mathematics, “tomography” denotes the solution of the so-called “Radon
Inversion Problem”, which means the reconstruction of a function from its
integrals along lines or planes.

The most famous application is computerized tomography. In this medical
use, you always have more then 10° measurements, i.e. lines for which the
integral of the function to be reconstructed is measured. In case of acoustic
pyrometry the problem is different. The number of data is only 24!

2 Measurement technique

Acoustic pyrometry is a technique for measuring the temperature of a gas. In
this case, we are interested in the temperature distribution in one horizontal
plane in the combustion chamber of a brown coal fired power station.

Eight transceivers, each consisting of a loudspeaker and a microphon, are
distributed at the walls of the combustion chamber in the way shown in
figure 1.1. During the measurement one transceiver after the other works
as a transmitter, while the others are receiving. The time of flight of the
acoustic signal is measured to compute the average speed of sound along
the 24 lines between the transceivers.
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Fig. 1.1 Scanning geometry with eight transceivers

Knowing the average speed of sound (c), we can calculate a good ap-
proximation to the average temperature (T) for each line using Laplace’
equation:

M 2
= —c".

kR
M denotes the molecular weight, x = ¢,/c, is the quotient of specific heats
and R is just the universal gas constant.

T

There are some inaccuracies in this way of modeling the problem:

e The gas in the chamber is not an ideal gas, but because of high tem-
perature and low pressure this is a good assumption.

e M and x are not known exactly.

e The relation of T" and ¢ is not linear, but as the temperatures we deal
with lie in an interval much higher than zero Kelvin we get a good
approximation to the mean temperature on each line. The appropriate
way is to reconstruct the values of ¢(z) first and make use of the
Laplace equation afterwards. Tests with realistic examples have shown
that the difference in the final reconstructions is less then 3°C and
therefore much smaller then the expected accuracy.

e Because of bending phenomena the acustical signal does not travel
along the straight line. This is seen as a source of a systematic error at
the moment and will be taken into account by the algorithm in future.
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e The gas in the combustion chamber is rotating and rising, so the flame
is going spiralwise to the top of the furnace. The horizontal part of
the movement of gas makes the speed of sound direction-dependend.
This is essentially equalized by measuring the speed of sound in both
directions for each path and taking the mean value as “true” velocity.

The measurement errors add up to less then one percent as shown in [2]. In
addition the error caused by high frequency events in the furnace leads to
an overall error of 2.5%.

Two ways for preparing data are implemented: It is possible to take the
mean value for each line from 10 successive measurements or for each line and
each direction a spline can be computed modeling the value for this specific
measurement. Using these splines a reconstruction can be calculated for any
given point of time. This is utilised to present the situation in the furnace
in a film consisting of consecutive reconstructions.

The first way of exploiting the data leads to an additional error as slow
changes in the furnace cannot be modelled appropriate. In this case the
overall error is about 4%.

3 Collocation methods

Let f: Q — IR denote the temperature at each point of the reconstruction
area 2. As we know the length of the lines, the values

gl::/L‘f(:c)ds, I=1,...,24 (1.1)

can be computed for the 24 Lines L; from the measured data.

The simple idea of a collocation method is to build up the reconstruction
in the form (n € IN)

fo) = (o) (1.2)
k=1

We chose ¢p(x) = e M*=#| The reconstruction region is devided into

10 x 10 pixels and the zj, are the midpoints of these pixels. So we have
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n = 100 and a clearly underdetermined problem. To get a system of equa-
tions for the coefficients &, we combine (1.1) and (1.2):

~ g = / Zﬁwk

Li k=1

=Z§k/ or(z)ds , 1=1,...,24
=1 I
N—

=:arg

n
~ g =Y aé , 1=1,...,24

With the definitions

m = 24

A ( ) 1,...,m [ ]R‘"LX'/L
g:

=

(917 . agm) e R™
(fla 7671) eR"

we arrive at the problem to find a vector £ which solves

A =g . (1.3)

The matrix A is ill-conditioned, so we are solving this equation by means
of the Singular Value Decomposition (SVD) and digital filtering (Tikhonov—
Phillips method).

The idea of the method of Tikhonov—Phillips is to minimize

1A€ = glI* + ~7II€]I? (1.4)

The real number v serves as a parameter. Using the SVD of A we can
compute this minimizer directly. The proof for the following theorem can be
found in [3].

Theorem 1: Let A € R™*". Then there are orthogonal matrices

U= (uty.o,ttyy) € R™*™ and V = (v1,...,v,) € R"*" with:

A=UxvT

o ,i=k
0 , otherwise

and ¥, = { , WER™™", 012022 ... 2 Omingma > 0.
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With this decomposition, the Moore—Penrose generalized solution to
A¢ = g can be written in the following form. Let p’ denote the number
of oy, # 0:

|
Emp =Y, —(g,ur)vi
k=1 Tk
The symbol ”(-,-)” denotes the standard inner product between vectors in
IR"™. The terms belonging to a high index k (and to a small number o},) are
more sensitive to measurement errors because of the factor % To increase
stability these terms are weighted using a filter F,:

v 1
£=Y Fy(or)—(g,ur)v
k=1 Tk

The method of Tikhonov-Phillips leads to the filter F (o) = Uf—; (see [5]),

SO

v J,QC 1
= , Uk)U
{rp ;02+70 (g, wr) vk
is a minimizer of (1.4).
4 Singular Value Decomposition of the

discrete Radon Transform

To get a deeper understanding of the described method we now examine
the singular value decomposition of the discrete radon transform. Radon’s
Transform is a mapping between (weighted) Lo-Spaces:

R:Lo(QW 1 — La(S" ' x R,w™ )

Ri0.0) = [ f(@)ds

We consider a discrete version:

Ry : span(1, ..., ) — R™

(Rdf)lz/L flz)ds , 1=1,..m.
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This is a linear mapping between finite-dimensional hilbert spaces. As we
know the SVD for matrices, we can compute the singular value decomposi-
tion of Ry as well. Here is a more general definition of the SVD, taken from

[4]:
Definition: Let R be a linear operator between (separable) Hilbert spaces
X, Y;R: X —Y

The triple {uy, vy, o }r>1 is called a Singular Value Decomposition of the
operator R if

{up}r>1 is a complete orthonormal system in X,

{vk}r>1 is an orthonormal system in'Y',

{0k }r>1 is a set of non-negative real numbers,

Aup = opvy,  and  A*v, = opug

The singular values oy, are usually ordered such that o1 > 02 > ... > 0.

The SVD of the matrix A in (1.3) now gives us the singular value decom-
position of Rg:

Theorem 2: Let H be a finite dimensional subspace of La and {¢1,...,on}
an orthonormal basis of H. Define A = (aj;) € R™"" by

aip == (Rger)1 , l=1,...,m, k=1,..,n.

Let A=UXVT denote the SVD of A, notations as in Theorem 1, V = (uvy;)
and

n
d)] = kaj(pk s ] = 1,...,n.
k=1

Then
{("/)J')j:l,...,'ln (uk)k’:1 ..... m» (Uk)k:1 ..... min(m,n)}

is a singular value decomposition of R;. The functions 1); are called singular
functions of Ry.

The proof is a straight forward utilization of linearity and orthogonality
and can be found in [6].

Using the singular functions of Ry as ansatzfunctions of the collocation
method, we get

F(2) = 3 Fy(or)— (g, we)u ()
=1 Tk
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The formula for the coeflicients is much simpler now and we can give a
simple interpretation of regularisation: The Filter F, directly weights the
coefficients of the ansatzfunctions. If we decide to use a truncated singular
value decomposition for example, we only drop out some of the ansatzfunc-
tions and solve an overdetermined system. Why is it a form of regularisation
to leave out the last 10 singular functions? We can find the answer if we take
a look at the singular functions.

Figure 1.2 shows the singular functions for the choice ¢ (z) = e Alr—w],

They are ordered in usual reading-order according to decreasing singular
values. As the functions ¢ are not orthonormal with respect to the usual
scalar product in Lo, same holds for the singular functions in figure 1.2.
The shown scale is valid only for the first singular function. To show the
structures, each picture fills the full greyscale range from black to white.
With decreasing singular values the singular functions become high frequent.
The computation of the coefficient for a high-frequent singular function is
less stable then in the low-frequent case, of course. That is why regularisation
can be done by reducing the coefficients for singular functions belonging to
small singular values.

5 Numerical results

The algorithm will be tested using two phantoms. By “phantoms” we denote
artificial temperature distributions produced on a computer for testing the
methods. From these phantoms we compute the tomographic data — exact
and with simulated measurement errors — and reconstruct the phantoms
from these data using the descriped collocation methods.

Figure 1.3 shows the first phantom, the data, and reconstructions. The
greyscale lies within 850 and 1250. This is a realistic interval for the tem-
perature in a furnace measured in °C. In the first row the phantom itself
is shown as well as the tomographic data. The data are shown by simply
drawing the lines in a greyscale corresponding to the mean temperature on
the line. Both, eight and sixteen transceivers are simulated resulting in 24
respectively 96 lines. From these data the phantom is to be reconstructed.

The second row shows reconstructions from the set of 24 lines using
v = 0.1. The pictures are very rough because of the low number of lines. For
the second and the third reconstruction the data are corrupted by adding
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normally distributed noise with a standard deviation of 1% and 2.5% re-
spectively. Although even the reconstruction from badly perturbed data is
quite smooth, it has big errors as the right “arm” of the hot part in the
phantom is missing completly.

With 96 (16 transceivers) lines we can get much better pictures of course.
Here two different regularisations have been used to show their effects. The
pictures in the last row fullfill the data in a better way resulting in a slight-
ly better reconstruction from exact data but in serious artefacts with big
measurement errors. For the reconstructions in the last two rows the same
sets of data have been used. They show that smoothing with this way of
regularising is a good way to lower the effects of measurement errors. How-
ever, adding normally distributed noise is not the perfect way to model the
real measurement error of 2.5% as this error mainly consists of systematic
errors. For example errors in k and M and bending phenomena to not lead
to normally distributed noise.

Bad values for k and M would have serious effects on the absolute values
of the final temperature reconstruction but not on structures that can be
seen in them. We hope to be able to compensate the effect of bending phe-
nomena in future by using a better model for “travel-paths” of sound. This
encourages to use a regularisation for 16-transceivers-measurements that al-
so allows us to reconstruct smaller details. The second phantom (Fig. 1.4)
has such details: The blow-in of cold air is simulated by small regions with
a lower temperature near the walls of the furnace. These cannot be recon-
structed from only 24 lines (8 transceivers) but are clearly found in low-
regularised reconstructions using 96 lines (16 transceivers) as can be seen in
the last row.

No measurements have been made with 96 lines (16 transceivers), yet. So
we can only show a reconstruction from 24 lines (8 transceivers) here (Fig.

1.5). The measured data are taken from [1] and the reconstruction is shown
in the way, the film is presented.
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Fig. 1.3 Reconstructions of a non-komplex phantom
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Fig. 1.4 Reconstructions of a komplex phantom
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D-Fehler 5, max. Fehler: 149
Daten: 1050 < 1194 < 1241
Temp : 957 < 1187 ¢ 1288

0: 0, Figure 3, EWE Energie AG

Fig. 1.5 Reconstruction from measured data taken from [1]. On the right hand side the
measured data are shown.



