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� Introduction

In mathematics� �tomography� denotes the solution of the so�called �Radon
Inversion Problem�� which means the reconstruction of a function from its
integrals along lines or planes�

The most famous application is computerized tomography� In this medical
use� you always have more then 
�� measurements� i�e� lines for which the
integral of the function to be reconstructed is measured� In case of acoustic
pyrometry the problem is di�erent� The number of data is only ���

� Measurement technique

Acoustic pyrometry is a technique for measuring the temperature of a gas� In
this case� we are interested in the temperature distribution in one horizontal
plane in the combustion chamber of a brown coal �red power station�

Eight transceivers� each consisting of a loudspeaker and a microphon� are
distributed at the walls of the combustion chamber in the way shown in
�gure 
�
� During the measurement one transceiver after the other works
as a transmitter� while the others are receiving� The time of �ight of the
acoustic signal is measured to compute the average speed of sound along
the �� lines between the transceivers�
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Fig� 
�
 Scanning geometry with eight transceivers

Knowing the average speed of sound �c�� we can calculate a good ap�
proximation to the average temperature �T� for each line using Laplace�
equation�

T �
M

�R
c��

M denotes the molecular weight� � � cp�cv is the quotient of speci�c heats
and R is just the universal gas constant�

There are some inaccuracies in this way of modeling the problem�

� The gas in the chamber is not an ideal gas� but because of high tem�
perature and low pressure this is a good assumption�

� M and � are not known exactly�

� The relation of T and c is not linear� but as the temperatures we deal
with lie in an interval much higher than zero Kelvin we get a good
approximation to the mean temperature on each line� The appropriate
way is to reconstruct the values of c�x� �rst and make use of the
Laplace equation afterwards� Tests with realistic examples have shown
that the di�erence in the �nal reconstructions is less then �oC and
therefore much smaller then the expected accuracy�

� Because of bending phenomena the acustical signal does not travel
along the straight line� This is seen as a source of a systematic error at
the moment and will be taken into account by the algorithm in future�
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� The gas in the combustion chamber is rotating and rising� so the �ame
is going spiralwise to the top of the furnace� The horizontal part of
the movement of gas makes the speed of sound direction�dependend�
This is essentially equalized by measuring the speed of sound in both
directions for each path and taking the mean value as �true� velocity�

The measurement errors add up to less then one percent as shown in ���� In
addition the error caused by high frequency events in the furnace leads to
an overall error of �����

Two ways for preparing data are implemented� It is possible to take the
mean value for each line from 
� successive measurements or for each line and
each direction a spline can be computed modeling the value for this speci�c
measurement� Using these splines a reconstruction can be calculated for any
given point of time� This is utilised to present the situation in the furnace
in a �lm consisting of consecutive reconstructions�

The �rst way of exploiting the data leads to an additional error as slow
changes in the furnace cannot be modelled appropriate� In this case the
overall error is about ���

� Collocation methods

Let f � � �� IR denote the temperature at each point of the reconstruction
area �� As we know the length of the lines� the values

gl ��

Z
Ll

f�x� ds� l � 
� � � � � �� �
�
�

can be computed for the �� Lines Ll from the measured data�

The simple idea of a collocation method is to build up the reconstruction
in the form �n � IN�

f�x� �
nX

k��

�k�k�x� �
���

We chose �k�x� � e��jx�xk j� The reconstruction region is devided into

�� 
� pixels and the xk are the midpoints of these pixels� So we have
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n � 
�� and a clearly underdetermined problem� To get a system of equa�
tions for the coe cients �k� we combine �
�
� and �
����

� gl �

Z
Ll

nX
k��

�k�k�x� ds

�
nX

k��

�k

Z
Ll

�k�x� ds� �z �
��alk

� l � 
� � � � � ��

� gl �
nX

k��

alk�k � l � 
� � � � � ��

With the de�nitions

m �� ��
A �� �alk� l�������m

k�������n

� IRm�n

g �� �g�� ���� gm�
t � IRm

� �� ���� ���� �n�
t � IRn

we arrive at the problem to �nd a vector � which solves

A� � g � �
���

The matrix A is ill�conditioned� so we are solving this equation by means
of the Singular Value Decomposition �SVD� and digital �ltering �Tikhonov!
Phillips method��

The idea of the method of Tikhonov!Phillips is to minimize

kA� � gk� " �k�k� �
���

The real number � serves as a parameter� Using the SVD of A we can
compute this minimizer directly� The proof for the following theorem can be
found in ����

Theorem �� Let A � IRm�n� Then there are orthogonal matrices
U � �u�� ���� um� � IRm�m and V � �v�� ���� vn� � IRn�n with�

A � U#V T

and #ik �

�
	k � i � k
� � otherwise

� # � IRm�n� 	� � 	� � ��� � 	min�m�n� � ��
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With this decomposition� the Moore!Penrose generalized solution to
A� � g can be written in the following form� Let p� denote the number
of 	k �� ��

�MP �
p�X
k��




	k
�g� uk�vk

The symbol ���� ��� denotes the standard inner product between vectors in
IRm� The terms belonging to a high index k �and to a small number 	k� are
more sensitive to measurement errors because of the factor �

�k
� To increase

stability these terms are weighted using a �lter F� �

� �
p�X
k��

F��	k�



	k
�g� uk�vk

The method of Tikhonov!Phillips leads to the �lter F��	� �
��

����
�see �����

so

�TP �
p�X
k��

	�k
	�k " �




	k
�g� uk�vk

is a minimizer of �
����

� Singular Value Decomposition of the

discrete Radon Transform

To get a deeper understanding of the described method we now examine
the singular value decomposition of the discrete radon transform� Radon�s
Transform is a mapping between �weighted� L��Spaces�

R � L����W
��� �� L��S

n�� � IR� w���

Rf�
� r� �

Z
x���r

f�x� ds

We consider a discrete version�

Rd � span���� ���� �n� �� IRm

�Rdf�l �

Z
Ll

f�x� ds � l � 
� ����m�
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This is a linear mapping between �nite�dimensional hilbert spaces� As we
know the SVD for matrices� we can compute the singular value decomposi�
tion of Rd as well� Here is a more general de�nition of the SVD� taken from
����

De�nition� Let R be a linear operator between �separable� Hilbert spaces
X� Y � R � X �� Y

The triple fuk� vk� 	kgk�� is called a Singular Value Decomposition of the
operator R if
fukgk�� is a complete orthonormal system in X�
fvkgk�� is an orthonormal system in Y �
f	kgk�� is a set of non�negative real numbers�

Auk � 	kvk and A�vk � 	kuk �

The singular values 	k are usually ordered such that 	� � 	� � ��� � ��

The SVD of the matrix A in �
��� now gives us the singular value decom�
position of Rd�

Theorem �� Let H be a 	nite dimensional subspace of L� and f��� ���� �ng
an orthonormal basis of H� De	ne A � �alk� � IRm�n by

alk �� �Rd�k�l � l � 
� ����m� k � 
� ���� n�

Let A � U#V T denote the SVD of A� notations as in Theorem 
� V � �vkj�
and

�j �
nX

k��

vkj�k � j � 
� ���� n�

Then
f��j�j�������n� �uk�k�������m� �	k�k�������min�m�n�g

is a singular value decomposition of Rd� The functions �j are called singular
functions of Rd�

The proof is a straight forward utilization of linearity and orthogonality
and can be found in ����

Using the singular functions of Rd as ansatzfunctions of the collocation
method� we get

$f�x� �
p�X
k��

F��	k�



	k
�g� uk��k�x� �
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The formula for the coe cients is much simpler now and we can give a
simple interpretation of regularisation� The Filter F� directly weights the
coe cients of the ansatzfunctions� If we decide to use a truncated singular
value decomposition for example� we only drop out some of the ansatzfunc�
tions and solve an overdetermined system� Why is it a form of regularisation
to leave out the last 
� singular functions& We can �nd the answer if we take
a look at the singular functions�

Figure 
�� shows the singular functions for the choice �k�x� � e��jx�xk j�
They are ordered in usual reading�order according to decreasing singular
values� As the functions �k are not orthonormal with respect to the usual
scalar product in L�� same holds for the singular functions in �gure 
���
The shown scale is valid only for the �rst singular function� To show the
structures� each picture �lls the full greyscale range from black to white�
With decreasing singular values the singular functions become high frequent�
The computation of the coe cient for a high�frequent singular function is
less stable then in the low�frequent case� of course� That is why regularisation
can be done by reducing the coe cients for singular functions belonging to
small singular values�

� Numerical results

The algorithm will be tested using two phantoms� By �phantoms� we denote
arti�cial temperature distributions produced on a computer for testing the
methods� From these phantoms we compute the tomographic data ' exact
and with simulated measurement errors ' and reconstruct the phantoms
from these data using the descriped collocation methods�

Figure 
�� shows the �rst phantom� the data� and reconstructions� The
greyscale lies within 	�� and 
���� This is a realistic interval for the tem�
perature in a furnace measured in oC� In the �rst row the phantom itself
is shown as well as the tomographic data� The data are shown by simply
drawing the lines in a greyscale corresponding to the mean temperature on
the line� Both� eight and sixteen transceivers are simulated resulting in ��
respectively �� lines� From these data the phantom is to be reconstructed�

The second row shows reconstructions from the set of �� lines using
� � ��
� The pictures are very rough because of the low number of lines� For
the second and the third reconstruction the data are corrupted by adding
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normally distributed noise with a standard deviation of 
� and ���� re�
spectively� Although even the reconstruction from badly perturbed data is
quite smooth� it has big errors as the right �arm� of the hot part in the
phantom is missing completly�

With �� �
� transceivers� lines we can get much better pictures of course�
Here two di�erent regularisations have been used to show their e�ects� The
pictures in the last row full�ll the data in a better way resulting in a slight�
ly better reconstruction from exact data but in serious artefacts with big
measurement errors� For the reconstructions in the last two rows the same
sets of data have been used� They show that smoothing with this way of
regularising is a good way to lower the e�ects of measurement errors� How�
ever� adding normally distributed noise is not the perfect way to model the
real measurement error of ���� as this error mainly consists of systematic
errors� For example errors in � and M and bending phenomena to not lead
to normally distributed noise�

Bad values for � and M would have serious e�ects on the absolute values
of the �nal temperature reconstruction but not on structures that can be
seen in them� We hope to be able to compensate the e�ect of bending phe�
nomena in future by using a better model for �travel�paths� of sound� This
encourages to use a regularisation for 
��transceivers�measurements that al�
so allows us to reconstruct smaller details� The second phantom �Fig� 
���
has such details� The blow�in of cold air is simulated by small regions with
a lower temperature near the walls of the furnace� These cannot be recon�
structed from only �� lines �	 transceivers� but are clearly found in low�
regularised reconstructions using �� lines �
� transceivers� as can be seen in
the last row�

No measurements have been made with �� lines �
� transceivers�� yet� So
we can only show a reconstruction from �� lines �	 transceivers� here �Fig�

���� The measured data are taken from �
� and the reconstruction is shown
in the way� the �lm is presented�
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Fig� 
�� Singular functions for �k � e
��jx�xkj�
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Fig� 
�� Reconstructions of a non�komplex phantom
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Fig� 
�� Reconstruction from measured data taken from �
�� On the right hand side the
measured data are shown�


