 
  
  
   
 Next:   About this document 
Up: Algorithms in Tomography
 Previous: Algorithm for more general 
 
 
References
- 1
-  Aben, H.K.: Integrated Photoelasticity, Valgus, 
         Talin 1975 (Russian).
- 2
-  Allesandrini, G.: Stable Determination of
         Conductivity by Boundary Mesurements, Appl. Analysis, 
         27, 153-172, (1988).
- 3
-  Anikonov, D.S. - Prokhorov, I.V. - Kovtanyuk,
         E.E.:
         Investigation of Scattering and Absorbing Media by the Methods of
         X-ray Tomography, J. Inv. Ill-Posed Problems, 1,
         259-281; (1993).
- 4
-  Anikonov, D.S.: Uniqueness of Simultaneous Determination
         of two Coefficients of the Transport Equation, Soviet Math.
         Dokl. 30, 149-151, (1984).
- 5
-  Arridge, S.R. - Van der Zee, P. - Cope,
         M. - Delpy,
         D.T.:
         Reconstruction Methods for Infrared Absorption Imaging, Poc.
         SPIE 1431, 204-215, (1991).
- 6
-  Barrett, H.H. - Swindell, S.: 
         Radiological Imaging, Vol. I, II,  
         Academic Press 1981.
- 7
-  Bondarenko, A.- Antyufeev, V.: X-Ray
         Tomography in Scattering Media, Institute of Mathematics,
         Novosibirsk, Russia (1990).
- 8
-  Bronnikov, A.V.: Degration Transform in Tomography,
         Pattern Recognition Letters 15, 527-592, (1994).
- 9
-  Bui, H.D.: Inverse Problems in the Mechanics of Materials. 
         CRC Press 1994.
- 10
-  Censor, Y.: Finite Series-Expansion Reconstruction
         Methods, Proc. IEEE 71, 409-419, (1983).
- 11
-  Defrise, M. et.al.:Performance Study of 3D Reconstruction
         Algorithms for Positron Emission Tomography, International Meeting
         on Fully Three-Dimensional Image Reconstsruction in Radiology
         and Nuclear Medicine, June 23-25, 1993, Snowbird, Utah, USA.
- 12
-  Defrise, M. - Clack, R.: A Cone-Beam Reconstruction 
         Algorithm Using Shift-Variant Filtering and Cone-Beam Backprojection, 
         IEEE Transactions on Medical Imaging 13, 186-195 (1995).
- 13
-  Devaney, A.J.: A Filtered Backpropagation algorithm for
         Diffraction Tomography, Ultrasonic Imaging, 4, 336-350,
         (1982).
- 14
-  Elving, T.: Block-iterative methods for consistent and 
         inconsistent linear equations, Numer. Math. 35, 1-12 (1980).
- 15
-  Faridani, A.: Reconstructing From Efficiently Sampled
         Data in Parallel-Beam Computed Tomography, in: Inverse Problems and
         Imaging,
         G.F. Roach, ed., Pitman Res. Notes Math. Ser. 245,
         68-102,
         (1991). 
- 16
-  Finch, D.V.: Cone Beam Reconstruction with Sources on a
         Curve. SIAM J. Appl. Math., 45, 665-673,(1985).
- 17
-  Gelfand, I.M. -  Goncharov, A.B.: Recovery of a
         Compactly Supported Function Starting from Its Integrals over Lines
         Intersecting a Given Set of Points in Space, Doklady 290
         (1986), English Translation in Soviet Math.. Doklady 34,
         373-376 (1987).
- 18
-  Geman, S. - McClure, D.: Statistical Methods for
         Tomographic Image Reconstruction, ISI Tokio session, Bull. Int.
         Statist. Inst., LII(4), 5-21, 1987.          
- 19
-  Grangeat, P.: Mathematical Framework of Cone Beam 3D
         Reconstruction via the First Derivative of Radon Transform, in:
         Herman et al. (eds.): Mathematical methods in tomography,
         Springer 1991.
- 20
-  Gratton, E. et al.: A novel approach to laser tomography, 
         Bioimaging, 1, 40-46 (1993).
- 21
-  Green, P.J.: Bayesian Reconstructions from Emission
         Tomography Data Using a Modified EM Algorithm, IEEE
         Transactions on Medical Imaging, 9(1), 84-93, März 1990.
- 22
-  Grünbaum, F.A. - Kohn, P.D. -
         Latham, G.A. - Singer, J.R. - Zubelli, J.P.: Diffuse Tomography,
         Proc. SPIE, 1431, 232-238 (1991).
- 23
-  Gutman, S. - Klibanov, M.V.: Regularized
         Quasi-Newton Method for Inverse Scattering Problems, Mathl.
         Comput. Modelling 18, No. 1, 5-31, Pergamon Press Ltd.
         (1993).
- 24
-  Herman, G.T. - Lent, A.: Iterative Reconstruction
         Algorithms, Comput. Biol. Med. 6, 273-294, (1976). 
- 25
-  Herman, G.: Image Reconstruction From Projections. 
         The Fundamentals of Computerized Tomography.
         Academic Press 1980.
- 26
-  Hertle, A.: The Identification Problem for the Constantly
         Attenuation Radon Transform, Math. Z. 197, 13-9, (1988).
- 27
-  Hinshaw, W.S. - Lent, A.H.: An Introduction 
         to NMR Imaging: From the Bloch Equation to the
         Imaging Equation, Proc. IEEE 71, 338-350 (1983).
- 28
-  Kak, A.C. - Slaney, M.: Principle of Computerized 
         Tomography Imaging. IEEE Press 1987.
- 29
-  Kaltenbach, J.-M. - Kaschke, M.: Frequency- and time-domain
         modelling of light transport in random media, Technical Report, Carl Zeiss, PF
         1980, Oberkochen, Germany, 1992.
- 30
-  Kleinman, R.E. - van den Berg, P.M.: A
         Modified Gradient Method for Two-Dimensional Problems in Tomography,
         J. Comp. Appl. Math., 42, 17-35, (1992).
- 31
-  Klibanov, M.V. - Gutman,
         S. - Barbour, R. - Chang, J. - Malinsky, J. - Alfano, R.R.:
         Consideration of Solutions to the Inverse Scattering Problem for
         Biomedical Applications, Proc. SPIE 1887, (1993).
- 32
-  Krestel, E. (ed.): Imaging Systems for Medical 
         Diagonostics, Siemens Aktiengesellschaft, 1990. 
- 33
-  Lai, C-M.: Reconstructing NMR Images from Projections Under
         Inhomogeneous Magnetic Field and Non-Linear Field Gradient, 
         Phys. Med. Biol. 8, 925-938, (1983).
- 34
-  Liang, Z.-P. - Boada,
         F.E. - Constable, R.T. - Haacke, E.M. - Lauterbur, P.C. - Smith,
         M.R.: Constrained Reconstruction Methods in MR Imaging, Rev Magn.
         Reson. Med. 4, 67-185, (1992).
- 35
-  Louis, A.K.: Medical Imaging: State of the Art and 
         Future Development, Inverse Problems
         8, 709-738 (1992).
- 36
-  Nachman, A.I.: Global Uniqueness for a Two-Dimensional
         Inverse Boundary Value Problem, Department of Mathematics,
         Preprint Series, Number 19, University of Rochester (1993).
- 37
-  Natterer, F.: Determination of Tissue Attenuation in
         Emission Tomography of Optically Dense Media, Inverse Problems
         9, 731-736 (1993).
- 38
-  Natterer, F.: Sampling in Fan Beam Tomography, SIAM J. Appl.
         Mathematics 53, 358-380 (1993).
- 39
-  Natterer, F.: The Mathematics of Computerized Tomography. 
         Wiley-Teubner 1986.
- 40
-  Natterer, F. - Wübbeling, F.: A 
         propagation-backpropapagation method for ultrasound tomography, 
         Inverse Problems 11, 1225-1232 (1995).
- 41
-  Orlov, S.S.: Theory of Three Dimensional Reconstruction. II. 
        The Recovery Operator, Sov. Phys. Crystallogr. 20, 429-433 (1976).
- 42
-  Palamodov, V.: An Inversion Method for Attenuated
        X-Ray Transform in Space, submitted to SIAM J. Appl. Math..
- 43
-  Romanov, V.G.: Conditional Stability Estimates for the
        Problem of Recovering of Absorption Coefficients and Right Hand Side
        of Transport Equations (Russian), to appear in Siberia Math. J.
- 44
-  Sanchez, R. - McCormick, N.J.: General Solutions
        to Inverse Transport Problems, J. Math. Phys. 22,
        847-855, (1981).
- 45
-  Schomberg, H. - Timmer, J.: The Gridding Method for 
        Image Reconstruction by Fourier Transformation, IEEE Transactions 
        on Medical Imaging 14, 596-607 (1995).
- 46
-  Setzepfandt, B.: ESNM: Ein rauschunterdrückendes
        EM - Verfahren für die Emissionstomographie. Thesis, Fachbereich
        Mathematik der Universität Münster, Germany 1992.
- 47
-  Sharafutdinov, V.A.: Integral Geometry of Tensor
        Fields. Nauka, Novosibirsk 1993 (Russian).
- 48
-  Shepp, L.A. - Vardi, Y.: Maximum Liklihood
        Reconstruction for Emission Tomography, IEEE Trans. Med. Imag.
        1, 113-121, (1982). 
- 49
-  Smith, K.T. - Solmon, D.C. - Wagner, S.L.: 
        Practical and Mathematical Aspects of the Problem
        of Reconstructing Objects From Radiographs, Bull AMS 83, 1227-1270 (1977).
- 50
-  Smith, B.D.: Image Reconstruction from Cone-Beam Projections: 
        Necessary and Sufficient Conditions and Reconstruction Methods, 
        IEEE Transactions on Medical Imaging 4, 14-25 (1985).
- 51
-  Sparr, G. - Stråklén, K. - Lindström, K. - Persson, W.: 
        Doppler tomography for vector fields, Inverse Problems, 
        11, 1051-1061 (1995).
        1, 113-121, (1982).
- 52
-  Tretiak, O.J. - Metz, C.: The Exponential Radon
        Transform, SIAM J. Appl. Math., 39, 341-354, (1980). 
- 53
-  Tuy, H.K.: An Inversion Formula for Cone-Beam reconstruction,
        SIAM J. Appl. Math. 43, 546-552 (1983).
 
Frank Wuebbeling 
Fri Jun 28 16:25:38 MET DST 1996