NIM

Numerische und
instrumentelle Mathematik
Universität Münster


Dierkes/Dorn/Natterer/Palamodov/Sielschott: Frechet Derivatives for some Bilinear Inverse Problems

Corresponding Author: Oliver Dorn

Titel: Frechet Derivatives for some Bilinear Inverse Problems

Stand: März 2002

Preprint

Abstract:

In many inverse problems a functional of u is given by measurements where u solves a partial differential equation of the type L(p)u+Su=Q. Here, Q is a known source term and L(p), S are operators with p as unknown parameter of the inverse problem. For the numerical reconstruction of p often the heuristically derived Frechet derivative R' of the mapping R:p -> 'measurement functional of u' is used. We show for three problems --- a transport problem in optical tomography, an elliptic equation governing near infrared tomography, and the wave equation in moving media --- that R' is the derivative in the strict sense. Our method is applicable in more general problems than established methods for similar inverse problems.


Der Text ist in verschiedenen Formaten zugänglich. Auf Windows-Systemen sollten Sie das pdf-Format benutzen, falls Sie den Acrobat-Reader installiert haben. Unter UNIX sollten Sie compressed Postscript oder DVI benutzen und ausdrucken koennen.

-bild- The text is available in several formats. Most common is PDF on Windows (with the Acrobat reader by Adobe installed) and compressed DVI or PostScript on UNIX.


The article in PDF-Format (for the Adobe Acrobat Reader)
The article in DVI-Format (for TeX-Viewers)
Mathe WWU


Frank Wübbeling (frank.wuebbeling@math.uni-muenster.de)