

Regularity and existence of solutions for a Neumann p -Laplacian problem in the metric setting

Antonella Nastasi

Dipartimento di Matematica e Informatica - Università degli Studi di Palermo - Via Archirafi, 34 - 90123 Palermo, Italy. Email address: antonella.nastasi@unipa.it

Overview of the results obtained

- Existence of a solution and a weaker uniqueness property.
- Minimizers of the Neumann p -Laplacian problem satisfy a De Giorgi type inequality and consequently we give boundedness properties for them.

Hypotheses on the metric measure space X

Let (X, d, μ) be a metric measure space, where μ is a Borel regular measure. Let $B(x, \rho) \subset X$ be a ball with the center $x \in X$ and the radius $\rho > 0$.

- Doubling measure.** A measure μ on X is said to be doubling if there exists a constant K , called the doubling constant, such that

$$0 < \mu(B(x, 2\rho)) \leq K\mu(B(x, \rho)) < +\infty,$$

for all $x \in X$ and $\rho > 0$.

- $(1, p)$ -Poincaré inequality.** Let $p \in [1, +\infty]$. A metric measure space X supports a $(1, p)$ -Poincaré inequality if there exist $K > 0$ and $\lambda \geq 1$ such that

$$\frac{1}{\mu(B(x, r))} \int_{B(x, r)} |u - u_{B(x, r)}| d\mu \leq Kr \left(\frac{1}{\mu(B(x, \lambda r))} \int_{B(x, \lambda r)} g_u^p d\mu \right)^{\frac{1}{p}}$$

for all $B(x, r) \subset X$, $u \in L_{loc}^1(X)$, where $u_{B(x, r)} = \frac{1}{\mu(B(x, r))} \int_{B(x, r)} u d\mu$.

Hypotheses on $\Omega \subset X$

H_1) There exists a constant $K \geq 1$ such that for all $y \in \Omega$ and $0 < \rho \leq \text{diam}(\Omega)$, we have

$$\mu(B(y, \rho) \cap \Omega) \geq \frac{1}{K} \mu(B(y, \rho)).$$

H_2) (Ahlfors codimension 1 regularity of P_Ω) For all $y \in \partial\Omega$ we have that

$$\frac{1}{K\rho} \mu(B(y, \rho)) \leq P_\Omega(B(y, \rho)) \leq \frac{K}{\rho} \mu(B(y, \rho)),$$

where K and ρ are as in (H_1) .

H_3) $(\Omega, d|_\Omega, \mu|_\Omega)$ admits a $(1, p)$ -Poincaré inequality with $\lambda = 1$, where $p \in]1, +\infty[$.

Upper gradients

- A non negative Borel measurable function g is said to be an **upper gradient** of function $u : X \rightarrow [-\infty, +\infty]$ if, for all compact rectifiable arc length parametrized paths γ connecting x and y , we have

$$|u(x) - u(y)| \leq \int_\gamma g ds \quad (1)$$

whenever $u(x)$ and $u(y)$ are both finite and $\int_\gamma g ds = +\infty$ otherwise.

The minimal p -weak upper gradient

- Let $p \in [1, +\infty]$. Let Γ be a family of paths in X . We say that

$$\inf_\phi \int_X \phi^p d\mu$$

is the **p -modulus** of Γ , where the infimum is taken among all non negative Borel measurable functions ϕ satisfying $\int_\gamma \phi ds \geq 1$, for all rectifiable paths $\gamma \in \Gamma$.

- If (1) is satisfied for **p -almost all paths** γ in X , that is the set of non constant paths that do not satisfy (1) is of zero p -modulus, then g is said a **p -weak upper gradient of u** .
- The family of weak upper gradients has a minimal element g_u , that is called the **minimal p -weak upper gradient of u** .

The Newtonian space

The Newtonian space $N^{1,p}(X)$ is defined by

$$N^{1,p}(X) = V^{1,p}(X) \cap L^p(X), \quad p \in [1, +\infty],$$

where $V^{1,p}(X) = \{u : u \text{ is measurable and } g_u \in L^p(X)\}$. We consider $N^{1,p}(X)$ equipped with the norm

$$\|u\|_{N^{1,p}(X)} = \|g_u\|_{L^p(X)} + \|u\|_{L^p(X)}.$$

We denote with $N_*^{1,p}(X) = \{u \in N^{1,p}(X) : \int_X u dx = 0\}$.

The problem

Let X be a complete metric space equipped with a doubling measure supporting a $(1, p)$ -Poincaré inequality ($1 < p < +\infty$).

Given a Neumann boundary value problem with boundary data $f \neq 0$ and reaction term G , we consider the following functional

$$J(u) = \int_\Omega g_u^p d\mu - \int_\Omega G(u) d\mu + \int_{\partial\Omega} T u f dP_\Omega \quad \text{for all } u \in N^{1,p}(\Omega). \quad (2)$$

where

- Ω is a bounded domain (non empty, connected open set) in X with $X \setminus \Omega$ of positive measure such that Ω is of finite perimeter with perimeter measure P_Ω ;
- $G : \Omega \rightarrow \mathbb{R}$ is defined as

$$G(u) = c - |u|^\gamma \quad \text{for all } u \in N^{1,p}(\Omega), \quad (3)$$

for some $c > 0$ and $1 < \gamma < p^* = \frac{ps}{s-p}$ if $p < s$, $1 < \gamma < +\infty$ else;

- $f : \partial\Omega \rightarrow \mathbb{R}$ is a bounded P_Ω -measurable function with $\int_{\partial\Omega} f dP_\Omega = 0$.

Solution to the Neumann boundary value problem

A function $u_0 \in N_*^{1,p}(\Omega)$ is a **p -harmonic solution** to the Neumann boundary value problem with boundary data $f \neq 0$ and reaction term G if

$$\begin{aligned} J(u_0) &= \int_\Omega g_{u_0}^p d\mu - \int_\Omega G(u_0) d\mu + \int_{\partial\Omega} T u_0 f dP_\Omega \\ &\leq \int_\Omega g_v^p d\mu - \int_\Omega G(v) d\mu + \int_{\partial\Omega} T v f dP_\Omega = J(v) \end{aligned}$$

for every $v \in N_*^{1,p}(\Omega)$, where g_{u_0}, g_v are the minimal p -weak upper gradients of u_0 and v in Ω , respectively, and $T u_0$ and $T v$ are the traces of u_0 and v on $\partial\Omega$, respectively.

Main results

Existence and a weaker uniqueness result

- J has a minimizer in $N_*^{1,p}(\Omega)$.
- If $u_1, u_2 \in N_*^{1,p}(\Omega)$ are two minimizers of J , then $g_{u_1} = g_{u_2}$ a.e. in Ω .

Boundedness result

Let $0 < R < \frac{\text{diam}(\Omega)}{4}$ and $\Omega_R = \{y \in \Omega : d(y, \partial\Omega) < \frac{R}{2}\}$. If $u \in N_*^{1,p}(\Omega)$ is a minimizer of J and $f \in L^\infty(\partial\Omega)$, then $u \in L^\infty(\Omega_R)$ and $T u \in L^\infty(\partial\Omega_R)$.

Proof methods based on a De Giorgi type inequality

Let $u \in N_*^{1,p}(\Omega)$ be a minimizer of J and $f \in L^\infty(\partial\Omega)$. If $y \in \partial\Omega$, $0 < \rho < R < \frac{\text{diam}(\Omega)}{10}$ and $\alpha \in \mathbb{R}$, then there is $K \geq 1$ such that the following De Giorgi type inequality

$$\begin{aligned} \int_{\Omega \cap B(y, \rho)} g_{(u-\alpha)_+}^p d\mu &\leq \frac{K}{(R-\rho)^p} \int_{\Omega \cap B(y, R)} (u-\alpha)_+^p d\mu \\ &\quad + K \int_{\partial\Omega \cap B(y, R)} |f|(u-\alpha)_+^p dP_\Omega \end{aligned} \quad (4)$$

is satisfied.

Some references

- J. Kinnunen, N. Shanmugalingam, *Regularity of quasi-minimizers on metric spaces*, Manuscripta Math., 105 (2001), 401–423.
- L. Malý, N. Shanmugalingam, *Neumann problem for p -Laplace equation in metric spaces using a variational approach: Existence, boundedness, and boundary regularity*, J. Differ. Equations, 265 (2018), 2431–2460.
- A. Nastasi, *Neumann p -Laplacian problems with a reaction term on metric spaces*, Ric. Mat., (2020), <https://doi.org/10.1007/s11587-020-00532-6>.

Other results and forthcoming research

- Neumann p -Laplacian problem with zero boundary data;
- Extending the results to the (p, q) -Laplacian problem in the metric setting.